1
|
Laureti L, Lee L, Philippin G, Kahi M, Pagès V. Single strand gap repair: The presynaptic phase plays a pivotal role in modulating lesion tolerance pathways. PLoS Genet 2022; 18:e1010238. [PMID: 35653392 PMCID: PMC9203016 DOI: 10.1371/journal.pgen.1010238] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 06/16/2022] [Accepted: 05/05/2022] [Indexed: 11/17/2022] Open
Abstract
During replication, the presence of unrepaired lesions results in the formation of single stranded DNA (ssDNA) gaps that need to be repaired to preserve genome integrity and cell survival. All organisms have evolved two major lesion tolerance pathways to continue replication: Translesion Synthesis (TLS), potentially mutagenic, and Homology Directed Gap Repair (HDGR), that relies on homologous recombination. In Escherichia coli, the RecF pathway repairs such ssDNA gaps by processing them to produce a recombinogenic RecA nucleofilament during the presynaptic phase. In this study, we show that the presynaptic phase is crucial for modulating lesion tolerance pathways since the competition between TLS and HDGR occurs at this stage. Impairing either the extension of the ssDNA gap (mediated by the nuclease RecJ and the helicase RecQ) or the loading of RecA (mediated by RecFOR) leads to a decrease in HDGR and a concomitant increase in TLS. Hence, we conclude that defects in the presynaptic phase delay the formation of the D-loop and increase the time window allowed for TLS. In contrast, we show that a defect in the postsynaptic phase that impairs HDGR does not lead to an increase in TLS. Unexpectedly, we also reveal a strong genetic interaction between recF and recJ genes, that results in a recA deficient-like phenotype in which HDGR is almost completely abolished.
Collapse
Affiliation(s)
- Luisa Laureti
- Team DNA Damage and Genome Instability, Cancer Research Center of Marseille (CRCM); CNRS, Aix Marseille Univ, INSERM, Institut Paoli-Calmettes, Marseille, France
| | - Lara Lee
- Team DNA Damage and Genome Instability, Cancer Research Center of Marseille (CRCM); CNRS, Aix Marseille Univ, INSERM, Institut Paoli-Calmettes, Marseille, France
| | - Gaëlle Philippin
- Team DNA Damage and Genome Instability, Cancer Research Center of Marseille (CRCM); CNRS, Aix Marseille Univ, INSERM, Institut Paoli-Calmettes, Marseille, France
| | - Michel Kahi
- Team DNA Damage and Genome Instability, Cancer Research Center of Marseille (CRCM); CNRS, Aix Marseille Univ, INSERM, Institut Paoli-Calmettes, Marseille, France
| | - Vincent Pagès
- Team DNA Damage and Genome Instability, Cancer Research Center of Marseille (CRCM); CNRS, Aix Marseille Univ, INSERM, Institut Paoli-Calmettes, Marseille, France
| |
Collapse
|
2
|
Sass TH, Ferrazzoli AE, Lovett ST. DnaA and SspA regulation of the iraD gene of Escherichia coli: an alternative DNA damage response independent of LexA/RecA. Genetics 2022; 221:6571813. [PMID: 35445706 PMCID: PMC9157160 DOI: 10.1093/genetics/iyac062] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 10/05/2021] [Indexed: 11/13/2022] Open
Abstract
The transcription factor RpoS of Escherichia coli controls many genes important for tolerance of a variety of stress conditions. IraD promotes the post-translation stability of RpoS by inhibition of RssB, an adaptor protein for ClpXP degradation. We have previously documented DNA damage induction of iraD expression, independent of the SOS response. Both iraD and rpoS are required for tolerance to DNA damaging treatments such as H2O2 and the replication inhibitor azidothymidine in the log phase of growth. Using luciferase gene fusions to the 672 bp iraD upstream region, we show here that both promoters of iraD are induced by azidothymidine. Genetic analysis suggests that both promoters are repressed by DnaA-ATP, partially dependent on a putative DnaA box at -81 bp and are regulated by regulatory inactivation of DnaA, dependent on the DnaN processivity clamp. By electrophoretic mobility shift assays, we show that purified DnaA protein binds to the iraD upstream region, so DnaA regulation of IraD is likely to be direct. DNA damage induction of iraD during log phase growth is abolished in the dnaA-T174P mutant, suggesting that DNA damage, in some way, relieves DnaA repression, possibly through the accumulation of replication clamps and enhanced regulatory inactivation of DnaA. We also demonstrate that the RNA-polymerase associated factor, stringent starvation protein A, induced by the accumulation of ppGpp, also affects iraD expression, with a positive effect on constitutive expression and a negative effect on azidothymidine-induced expression.
Collapse
Affiliation(s)
- Thalia H Sass
- Department of Biology, Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, MA 02454-9110, USA
| | - Alexander E Ferrazzoli
- Department of Biology, Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, MA 02454-9110, USA
| | - Susan T Lovett
- Department of Biology, Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, MA 02454-9110, USA
| |
Collapse
|
3
|
Courcelle J, Worley TK, Courcelle CT. Recombination Mediator Proteins: Misnomers That Are Key to Understanding the Genomic Instabilities in Cancer. Genes (Basel) 2022; 13:genes13030437. [PMID: 35327990 PMCID: PMC8950967 DOI: 10.3390/genes13030437] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/24/2022] [Accepted: 02/24/2022] [Indexed: 02/06/2023] Open
Abstract
Recombination mediator proteins have come into focus as promising targets for cancer therapy, with synthetic lethal approaches now clinically validated by the efficacy of PARP inhibitors in treating BRCA2 cancers and RECQ inhibitors in treating cancers with microsatellite instabilities. Thus, understanding the cellular role of recombination mediators is critically important, both to improve current therapies and develop new ones that target these pathways. Our mechanistic understanding of BRCA2 and RECQ began in Escherichia coli. Here, we review the cellular roles of RecF and RecQ, often considered functional homologs of these proteins in bacteria. Although these proteins were originally isolated as genes that were required during replication in sexual cell cycles that produce recombinant products, we now know that their function is similarly required during replication in asexual or mitotic-like cell cycles, where recombination is detrimental and generally not observed. Cells mutated in these gene products are unable to protect and process replication forks blocked at DNA damage, resulting in high rates of cell lethality and recombination events that compromise genome integrity during replication.
Collapse
|
4
|
Phosphoproteomics of Mycobacterium-host interaction and inspirations for novel measures against tuberculosis. Cell Signal 2022; 91:110238. [PMID: 34986388 DOI: 10.1016/j.cellsig.2021.110238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/19/2021] [Accepted: 12/29/2021] [Indexed: 11/23/2022]
Abstract
Tuberculosis caused by Mycobacterium tuberculosis (Mtb) remains a tremendous global public health concern. Deciphering the biology of the pathogen and its interaction with host can inspire new measures against tuberculosis. Phosphorylation plays versatile and important role in the pathogen and host physiology, such as virulence, signaling and immune response. Proteome-wide phosphorylation of Mtb and its infected host cells, namely phosphoproteome, can inform the post-translational modification of the interaction network between the pathogen and the host, key targets for novel antibiotics. We summarized the phosphoproteome of Mtb, as well as the host, focusing on potential application for new measures against tuberculosis.
Collapse
|
5
|
Klaric JA, Glass DJ, Perr EL, Reuven AD, Towne MJ, Lovett ST. DNA damage-signaling, homologous recombination and genetic mutation induced by 5-azacytidine and DNA-protein crosslinks in Escherichia coli. Mutat Res 2021; 822:111742. [PMID: 33743507 DOI: 10.1016/j.mrfmmm.2021.111742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 02/01/2021] [Accepted: 03/08/2021] [Indexed: 11/29/2022]
Abstract
Covalent linkage between DNA and proteins produces highly toxic lesions and can be caused by commonly used chemotherapeutic agents, by internal and external chemicals and by radiation. In this study, using Escherichia coli, we investigate the consequences of 5-azacytidine (5-azaC), which traps covalent complexes between itself and the Dcm cytosine methyltransferase protein. DNA protein crosslink-dependent effects can be ascertained by effects that arise in wild-type but not in dcmΔ strains. We find that 5-azaC induces the bacterial DNA damage response and stimulates homologous recombination, a component of which is Dcm-dependent. Template-switching at an imperfect inverted repeat ("quasipalindrome", QP) is strongly enhanced by 5-azaC and this enhancement was entirely Dcm-dependent and independent of double-strand break repair. The SOS response helps ameliorate the mutagenic effect of 5-azaC but this is not a result of SOS-induced DNA polymerases since their induction, especially PolIV, seems to stimulate QP-associated mutagenesis. Cell division regulator SulA was also required for recovery of QP mutants induced by 5-azaC. In the absence of Lon protease, Dcm-dependent QP-mutagenesis is strongly elevated, suggesting it may play a role in DPC tolerance. Deletions at short tandem repeats, which occur likewise by a replication template-switch, are elevated, but only modestly, by 5-azaC. We see evidence for Dcm-dependent and-independent killing by 5-azaC in sensitive mutants, such as recA, recB, and lon; homologous recombination and deletion mutations are also stimulated in part by a Dcm-independent effect of 5-azaC. Whether this occurs by a different protein/DNA crosslink or by an alternative form of DNA damage is unknown.
Collapse
Affiliation(s)
- Julie A Klaric
- Department of Biology and Rosentiel Basic Medical Sciences Research Center Brandeis University, Waltham, MA, 02454-9110, United States
| | - David J Glass
- Department of Biology and Rosentiel Basic Medical Sciences Research Center Brandeis University, Waltham, MA, 02454-9110, United States
| | - Eli L Perr
- Department of Biology and Rosentiel Basic Medical Sciences Research Center Brandeis University, Waltham, MA, 02454-9110, United States
| | - Arianna D Reuven
- Department of Biology and Rosentiel Basic Medical Sciences Research Center Brandeis University, Waltham, MA, 02454-9110, United States
| | - Mason J Towne
- Department of Biology and Rosentiel Basic Medical Sciences Research Center Brandeis University, Waltham, MA, 02454-9110, United States
| | - Susan T Lovett
- Department of Biology and Rosentiel Basic Medical Sciences Research Center Brandeis University, Waltham, MA, 02454-9110, United States.
| |
Collapse
|
6
|
Serment-Guerrero J, Dominguez-Monroy V, Davila-Becerril J, Morales-Avila E, Fuentes-Lorenzo JL. Induction of the SOS response of Escherichia coli in repair-defective strains by several genotoxic agents. Mutat Res 2020; 854-855:503196. [PMID: 32660820 DOI: 10.1016/j.mrgentox.2020.503196] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 04/07/2020] [Accepted: 04/21/2020] [Indexed: 11/16/2022]
Abstract
DNA is exposed to the attack of several exogenous agents that modify its chemical structure, so cells must repair those changes in order to survive. Alkylating agents introduce methyl or ethyl groups in most of the cyclic or exocyclic nitrogen atoms of the ring and exocyclic oxygen available in DNA bases producing damage that can induce the SOS response in Escherichia coli and many other bacteria. Likewise, ultraviolet light produces mainly cyclobutane pyrimidine dimers that arrest the progression of the replication fork and triggers such response. The need of some enzymes (such as RecO, ExoI and RecJ) in processing injuries produced by gamma radiation prior the induction of the SOS response has been reported before. In the present work, several repair-defective strains of E. coli were treated with methyl methanesulfonate, ethyl methanesulfonate, mitomycin C or ultraviolet light. Both survival and SOS induction (by means of the Chromotest) were tested. Our results indicate that the participation of these genes depends on the type of injury caused by a genotoxin on DNA.
Collapse
Affiliation(s)
- Jorge Serment-Guerrero
- Departamento de Biología, Instituto Nacional de Investigaciones Nucleares, La Marquesa, Estado de México, Mexico.
| | - Viridiana Dominguez-Monroy
- Departamento de Biología, Instituto Nacional de Investigaciones Nucleares, La Marquesa, Estado de México, Mexico
| | - Jenny Davila-Becerril
- Departamento de Biología, Instituto Nacional de Investigaciones Nucleares, La Marquesa, Estado de México, Mexico
| | - Enrique Morales-Avila
- Facultad de Química, Universidad Autónoma del Estado de México, Toluca, Estado de México, Mexico
| | - Jorge Luis Fuentes-Lorenzo
- Laboratorio de Microbiología y Mutagénesis Ambiental, Grupo de Investigación en Microbiología y Genética, Escuela de Biología, Universidad Industrial de Santander, Bucaramanga, Colombia
| |
Collapse
|
7
|
Mutagenesis of Rhodobacter sphaeroides using atmospheric and room temperature plasma treatment for efficient production of coenzyme Q10. J Biosci Bioeng 2019; 127:698-702. [PMID: 30709705 DOI: 10.1016/j.jbiosc.2018.12.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 12/03/2018] [Accepted: 12/13/2018] [Indexed: 11/20/2022]
Abstract
Coenzyme Q10 (CoQ10) plays an important role in the human respiratory chain and is widely used as medicine and dietary supplement. To improve the fermentation efficiency of CoQ10, a modified version of atmospheric and room temperature plasma (ARTP) treatment was used to mutate Rhodobacter sphaeroides. Meanwhile, Vitamin K3, a structural analog of CoQ10, was used as an inhibitor for mutant selection. In the first round of screening in 24-well plates, three mutants were obtained, with the production of CoQ10 at 311 mg/L, 307 mg/L, and 309 mg/L, which were increased from the parent's production at 265 mg/L. Furthermore, a second round of mutation and screening was performed based on the mutant strain with the highest production in the first round, leading to the identification of a mutant AR01 with the production of CoQ10 at ∼330 mg/L. Finally, 590 mg/L CoQ10 was obtained for AR01 after 100 h fermentation, which was ∼25.5% higher than that of the original parent strain. It is the first report of ARTP treatment usage for the selection of CoQ10 producing bacteria and the results show that plasma jet, driven by helium-based ARTP, can be a feasible strategy for mutation feeding.
Collapse
|
8
|
Feliciello I, Zahradka D, Zahradka K, Ivanković S, Puc N, Đermić D. RecF, UvrD, RecX and RecN proteins suppress DNA degradation at DNA double-strand breaks in Escherichia coli. Biochimie 2018; 148:116-126. [DOI: 10.1016/j.biochi.2018.03.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 03/13/2018] [Indexed: 01/15/2023]
|
9
|
Abstract
Replication forks frequently are challenged by lesions on the DNA template, replication-impeding DNA secondary structures, tightly bound proteins or nucleotide pool imbalance. Studies in bacteria have suggested that under these circumstances the fork may leave behind single-strand DNA gaps that are subsequently filled by homologous recombination, translesion DNA synthesis or template-switching repair synthesis. This review focuses on the template-switching pathways and how the mechanisms of these processes have been deduced from biochemical and genetic studies. I discuss how template-switching can contribute significantly to genetic instability, including mutational hotspots and frequent genetic rearrangements, and how template-switching may be elicited by replication fork damage.
Collapse
Affiliation(s)
- Susan T Lovett
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, MA, 2454-9110, USA.
| |
Collapse
|
10
|
Naiman K, Pagès V, Fuchs RP. A defect in homologous recombination leads to increased translesion synthesis in E. coli. Nucleic Acids Res 2016; 44:7691-9. [PMID: 27257075 PMCID: PMC5027485 DOI: 10.1093/nar/gkw488] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Accepted: 05/19/2016] [Indexed: 12/29/2022] Open
Abstract
DNA damage tolerance pathways allow cells to duplicate their genomes despite the presence of replication blocking lesions. Cells possess two major tolerance strategies, namely translesion synthesis (TLS) and homology directed gap repair (HDGR). TLS pathways involve specialized DNA polymerases that are able to synthesize past DNA lesions with an intrinsic risk of causing point mutations. In contrast, HDGR pathways are essentially error-free as they rely on the recovery of missing information from the sister chromatid by RecA-mediated homologous recombination. We have investigated the genetic control of pathway choice between TLS and HDGR in vivo in Escherichia coli In a strain with wild type RecA activity, the extent of TLS across replication blocking lesions is generally low while HDGR is used extensively. Interestingly, recA alleles that are partially impaired in D-loop formation confer a decrease in HDGR and a concomitant increase in TLS. Thus, partial defect of RecA's capacity to invade the homologous sister chromatid increases the lifetime of the ssDNA.RecA filament, i.e. the 'SOS signal'. This increase favors TLS by increasing both the TLS polymerase concentration and the lifetime of the TLS substrate, before it becomes sequestered by homologous recombination. In conclusion, the pathway choice between error-prone TLS and error-free HDGR is controlled by the efficiency of homologous recombination.
Collapse
Affiliation(s)
- Karel Naiman
- Team DNA Damage Tolerance, Cancer Research Center of Marseille (CRCM), CNRS, UMR7258, Marseille, F-13009, France Inserm, U1068, CRCM, Marseille, F-13009, France Institut Paoli-Calmettes, Marseille, F-13009, France Aix-Marseille University, UM 105, F-13284, Marseille, France
| | - Vincent Pagès
- Team DNA Damage Tolerance, Cancer Research Center of Marseille (CRCM), CNRS, UMR7258, Marseille, F-13009, France Inserm, U1068, CRCM, Marseille, F-13009, France Institut Paoli-Calmettes, Marseille, F-13009, France Aix-Marseille University, UM 105, F-13284, Marseille, France
| | - Robert P Fuchs
- Team DNA Damage Tolerance, Cancer Research Center of Marseille (CRCM), CNRS, UMR7258, Marseille, F-13009, France Inserm, U1068, CRCM, Marseille, F-13009, France Institut Paoli-Calmettes, Marseille, F-13009, France Aix-Marseille University, UM 105, F-13284, Marseille, France
| |
Collapse
|
11
|
Prada Medina CA, Aristizabal Tessmer ET, Quintero Ruiz N, Serment-Guerrero J, Fuentes JL. Survival and SOS response induction in ultraviolet B irradiated Escherichia coli cells with defective repair mechanisms. Int J Radiat Biol 2016; 92:321-8. [DOI: 10.3109/09553002.2016.1152412] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Cesar Augusto Prada Medina
- Laboratorio de Microbiología y Mutagénesis Ambiental, Grupo de Investigaciòn en Microbiología y Genética, Escuela de Biología, Universidad Industrial de Santander, Bucaramanga, Colombia
| | - Elke Tatjana Aristizabal Tessmer
- Laboratorio de Microbiología y Mutagénesis Ambiental, Grupo de Investigaciòn en Microbiología y Genética, Escuela de Biología, Universidad Industrial de Santander, Bucaramanga, Colombia
| | - Nathalia Quintero Ruiz
- Laboratorio de Microbiología y Mutagénesis Ambiental, Grupo de Investigaciòn en Microbiología y Genética, Escuela de Biología, Universidad Industrial de Santander, Bucaramanga, Colombia
| | - Jorge Serment-Guerrero
- Departamento de Biología, Instituto Nacional de Investigaciones Nucleares, Distrito Federal, México
| | - Jorge Luis Fuentes
- Laboratorio de Microbiología y Mutagénesis Ambiental, Grupo de Investigaciòn en Microbiología y Genética, Escuela de Biología, Universidad Industrial de Santander, Bucaramanga, Colombia
| |
Collapse
|
12
|
Odsbu I, Skarstad K. DNA compaction in the early part of the SOS response is dependent on RecN and RecA. MICROBIOLOGY-SGM 2014; 160:872-882. [PMID: 24615185 DOI: 10.1099/mic.0.075051-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The nucleoids of undamaged Escherichia coli cells have a characteristic shape and number, which is dependent on the growth medium. Upon induction of the SOS response by a low dose of UV irradiation an extensive reorganization of the nucleoids occurred. Two distinct phases were observed by fluorescence microscopy. First, the nucleoids were found to change shape and fuse into compact structures at midcell. The compaction of the nucleoids lasted for 10-20 min and was followed by a phase where the DNA was dispersed throughout the cells. This second phase lasted for ~1 h. The compaction was found to be dependent on the recombination proteins RecA, RecO and RecR as well as the SOS-inducible, SMC (structural maintenance of chromosomes)-like protein RecN. RecN protein is produced in high amounts during the first part of the SOS response. It is possible that the RecN-mediated 'compact DNA' stage at the beginning of the SOS response serves to stabilize damaged DNA prior to recombination and repair.
Collapse
Affiliation(s)
- Ingvild Odsbu
- Department of Cell Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Kirsten Skarstad
- Department of Cell Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
13
|
Abstract
Homologous recombination is an ubiquitous process that shapes genomes and repairs DNA damage. The reaction is classically divided into three phases: presynaptic, synaptic, and postsynaptic. In Escherichia coli, the presynaptic phase involves either RecBCD or RecFOR proteins, which act on DNA double-stranded ends and DNA single-stranded gaps, respectively; the central synaptic steps are catalyzed by the ubiquitous DNA-binding protein RecA; and the postsynaptic phase involves either RuvABC or RecG proteins, which catalyze branch-migration and, in the case of RuvABC, the cleavage of Holliday junctions. Here, we review the biochemical properties of these molecular machines and analyze how, in light of these properties, the phenotypes of null mutants allow us to define their biological function(s). The consequences of point mutations on the biochemical properties of recombination enzymes and on cell phenotypes help refine the molecular mechanisms of action and the biological roles of recombination proteins. Given the high level of conservation of key proteins like RecA and the conservation of the principles of action of all recombination proteins, the deep knowledge acquired during decades of studies of homologous recombination in bacteria is the foundation of our present understanding of the processes that govern genome stability and evolution in all living organisms.
Collapse
|
14
|
Morimatsu K, Wu Y, Kowalczykowski SC. RecFOR proteins target RecA protein to a DNA gap with either DNA or RNA at the 5' terminus: implication for repair of stalled replication forks. J Biol Chem 2012; 287:35621-35630. [PMID: 22902627 DOI: 10.1074/jbc.m112.397034] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The repair of single-stranded gaps in duplex DNA by homologous recombination requires the proteins of the RecF pathway. The assembly of RecA protein onto gapped DNA (gDNA) that is complexed with the single-stranded DNA-binding protein is accelerated by the RecF, RecO, and RecR (RecFOR) proteins. Here, we show the RecFOR proteins specifically target RecA protein to gDNA even in the presence of a thousand-fold excess of single-stranded DNA (ssDNA). The binding constant of RecF protein, in the presence of the RecOR proteins, to the junction of ssDNA and dsDNA within a gap is 1-2 nm, suggesting that a few RecF molecules in the cell are sufficient to recognize gDNA. We also found that the nucleation of a RecA filament on gDNA in the presence of the RecFOR proteins occurs at a faster rate than filament elongation, resulting in a RecA nucleoprotein filament on ssDNA for 1000-2000 nucleotides downstream (5' → 3') of the junction with duplex DNA. Thus, RecA loading by RecFOR is localized to a region close to a junction. RecFOR proteins also recognize RNA at the 5'-end of an RNA-DNA junction within an ssDNA gap, which is compatible with their role in the repair of lagging strand gaps at stalled replication forks.
Collapse
Affiliation(s)
- Katsumi Morimatsu
- Department of Microbiology and of Molecular and Cellular Biology, University of California, Davis, California 95616
| | - Yun Wu
- Department of Microbiology and of Molecular and Cellular Biology, University of California, Davis, California 95616
| | - Stephen C Kowalczykowski
- Department of Microbiology and of Molecular and Cellular Biology, University of California, Davis, California 95616.
| |
Collapse
|
15
|
Genetic requirements for high constitutive SOS expression in recA730 mutants of Escherichia coli. J Bacteriol 2011; 193:4643-51. [PMID: 21764927 DOI: 10.1128/jb.00368-11] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The RecA protein in its functional state is in complex with single-stranded DNA, i.e., in the form of a RecA filament. In SOS induction, the RecA filament functions as a coprotease, enabling the autodigestion of the LexA repressor. The RecA filament can be formed by different mechanisms, but all of them require three enzymatic activities essential for the processing of DNA double-stranded ends. These are helicase, 5'-3' exonuclease, and RecA loading onto single-stranded DNA (ssDNA). In some mutants, the SOS response can be expressed constitutively during the process of normal DNA metabolism. The RecA730 mutant protein is able to form the RecA filament without the help of RecBCD and RecFOR mediators since it better competes with the single-strand binding (SSB) protein for ssDNA. As a consequence, the recA730 mutants show high constitutive SOS expression. In the study described in this paper, we studied the genetic requirements for constitutive SOS expression in recA730 mutants. Using a β-galactosidase assay, we showed that the constitutive SOS response in recA730 mutants exhibits different requirements in different backgrounds. In a wild-type background, the constitutive SOS response is partially dependent on RecBCD function. In a recB1080 background (the recB1080 mutation retains only helicase), constitutive SOS expression is partially dependent on RecBCD helicase function and is strongly dependent on RecJ nuclease. Finally, in a recB-null background, the constitutive SOS expression of the recA730 mutant is dependent on the RecJ nuclease. Our results emphasize the importance of the 5'-3' exonuclease for high constitutive SOS expression in recA730 mutants and show that RecBCD function can further enhance the excellent intrinsic abilities of the RecA730 protein in vivo.
Collapse
|
16
|
Michel-Marks E, Courcelle CT, Korolev S, Courcelle J. ATP binding, ATP hydrolysis, and protein dimerization are required for RecF to catalyze an early step in the processing and recovery of replication forks disrupted by DNA damage. J Mol Biol 2010; 401:579-89. [PMID: 20558179 DOI: 10.1016/j.jmb.2010.06.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Revised: 06/06/2010] [Accepted: 06/08/2010] [Indexed: 12/30/2022]
Abstract
In Escherichia coli, the recovery of replication following disruption by UV-induced DNA damage requires the RecF protein and occurs through a process that involves stabilization of replication fork DNA, resection of nascent DNA to allow the offending lesion to be repaired, and reestablishment of a productive replisome on the DNA. RecF forms a homodimer and contains an ATP binding cassette ATPase domain that is conserved among eukaryotic SMC (structural maintenance of chromosome) proteins, including cohesin, condensin, and Rad50. Here, we investigated the functions of RecF dimerization, ATP binding, and ATP hydrolysis in the progressive steps involved in recovering DNA synthesis following disruption by DNA damage. RecF point mutations with altered biochemical properties were constructed in the chromosome. We observed that protein dimerization, ATP binding, and ATP hydrolysis were essential for maintaining and processing the arrested replication fork, as well as for restoring DNA synthesis. In contrast, stabilization of the RecF protein dimer partially protected the DNA at the arrested fork from degradation, although overall processing and recovery remained severely impaired.
Collapse
|
17
|
Rotman E, Amado L, Kuzminov A. Unauthorized horizontal spread in the laboratory environment: the tactics of Lula, a temperate lambdoid bacteriophage of Escherichia coli. PLoS One 2010; 5:e11106. [PMID: 20559442 PMCID: PMC2885432 DOI: 10.1371/journal.pone.0011106] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Accepted: 05/20/2010] [Indexed: 11/29/2022] Open
Abstract
We investigated the characteristics of a lambdoid prophage, nicknamed Lula, contaminating E. coli strains from several sources, that allowed it to spread horizontally in the laboratory environment. We found that new Lula infections are inconspicuous; at the same time, Lula lysogens carry unusually high titers of the phage in their cultures, making them extremely infectious. In addition, Lula prophage interferes with P1 phage development and induces its own lytic development in response to P1 infection, turning P1 transduction into an efficient vehicle of Lula spread. Thus, using Lula prophage as a model, we reveal the following principles of survival and reproduction in the laboratory environment: 1) stealth (via laboratory material commensality), 2) stability (via resistance to specific protocols), 3) infectivity (via covert yet aggressive productivity and laboratory protocol hitchhiking). Lula, which turned out to be identical to bacteriophage phi80, also provides an insight into a surprising persistence of T1-like contamination in BAC libraries.
Collapse
Affiliation(s)
- Ella Rotman
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Luciana Amado
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Andrei Kuzminov
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| |
Collapse
|
18
|
Fu Y, Pastushok L, Xiao W. DNA damage-induced gene expression inSaccharomyces cerevisiae. FEMS Microbiol Rev 2008; 32:908-26. [DOI: 10.1111/j.1574-6976.2008.00126.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
19
|
Gruenig MC, Renzette N, Long E, Chitteni-Pattu S, Inman RB, Cox MM, Sandler SJ. RecA-mediated SOS induction requires an extended filament conformation but no ATP hydrolysis. Mol Microbiol 2008; 69:1165-79. [PMID: 18627467 PMCID: PMC2538424 DOI: 10.1111/j.1365-2958.2008.06341.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The Escherichia coli SOS response to DNA damage is modulated by the RecA protein, a recombinase that forms an extended filament on single-stranded DNA and hydrolyzes ATP. The RecA K72R (recA2201) mutation eliminates the ATPase activity of RecA protein. The mutation also limits the capacity of RecA to form long filaments in the presence of ATP. Strains with this mutation do not undergo SOS induction in vivo. We have combined the K72R variant of RecA with another mutation, RecA E38K (recA730). In vitro, the double mutant RecA E38K/K72R (recA730,2201) mimics the K72R mutant protein in that it has no ATPase activity. The double mutant protein will form long extended filaments on ssDNA and facilitate LexA cleavage almost as well as wild-type, and do so in the presence of ATP. Unlike recA K72R, the recA E38K/K72R double mutant promotes SOS induction in vivo after UV treatment. Thus, SOS induction does not require ATP hydrolysis by the RecA protein, but does require formation of extended RecA filaments. The RecA E38K/K72R protein represents an improved reagent for studies of the function of ATP hydrolysis by RecA in vivo and in vitro.
Collapse
Affiliation(s)
- Marielle C. Gruenig
- Department of Biochemistry, 433 Babcock Drive, University of Wisconsin, Madison, WI 53706
| | - Nicholas Renzette
- Molecular and Cellular Biology Graduate Program, Morrill Science Center, University of Massachusetts at Amherst, Amherst, MA 01003
| | - Edward Long
- Department of Microbiology, Morrill Science Center IV N203, University of Massachusetts at Amherst, Amherst, MA 01003
| | - Sindhu Chitteni-Pattu
- Department of Biochemistry, 433 Babcock Drive, University of Wisconsin, Madison, WI 53706
| | - Ross B. Inman
- Department of Biochemistry, 433 Babcock Drive, University of Wisconsin, Madison, WI 53706
| | - Michael M. Cox
- Department of Biochemistry, 433 Babcock Drive, University of Wisconsin, Madison, WI 53706
| | - Steven J. Sandler
- Molecular and Cellular Biology Graduate Program, Morrill Science Center, University of Massachusetts at Amherst, Amherst, MA 01003
- Department of Microbiology, Morrill Science Center IV N203, University of Massachusetts at Amherst, Amherst, MA 01003
| |
Collapse
|
20
|
Effects of single-strand DNases ExoI, RecJ, ExoVII, and SbcCD on homologous recombination of recBCD+ strains of Escherichia coli and roles of SbcB15 and XonA2 ExoI mutant enzymes. J Bacteriol 2007; 190:179-92. [PMID: 17965170 DOI: 10.1128/jb.01052-07] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To assess the contributions of single-strand DNases (ssDNases) to recombination in a recBCD+ background, we studied 31 strains with all combinations of null alleles of exonuclease I (delta xon), exonuclease VII (xseA), RecJ DNase (recJ), and SbcCD DNase (sbcCD) and exonuclease I mutant alleles xonA2 and sbcB15. The xse recJ sbcCD delta xon and xse recJ sbcCD sbcB15 quadruple mutants were cold sensitive, while the quadruple mutant with xonA2 was not. UV sensitivity increased with ssDNase deficiencies. Most triple and quadruple mutants were highly sensitive. The absence of ssDNases hardly affected P1 transductional recombinant formation, and conjugational recombinant production was decreased (as much as 94%) in several cases. Strains with sbcB15 were generally like the wild type. We determined that the sbcB15 mutation caused an A183V exchange in exonuclease motif III and identified xonA2 as a stop codon eliminating the terminal 8 amino acids. Purified enzymes had 1.6% (SbcB15) and 0.9% (XonA2) of the specific activity of wild-type Xon (Xon+), respectively, with altered activity profiles. In gel shift assays, SbcB15 associated relatively stably with 3' DNA overhangs, giving protection against Xon+. In addition to their postsynaptic roles in the RecBCD pathway, exonuclease I and RecJ are proposed to have presynaptic roles of DNA end blunting. Blunting may be specifically required during conjugation to make DNAs with overhangs RecBCD targets for initiation of recombination. Evidence is provided that SbcB15 protein, known to activate the RecF pathway in recBC strains, contributes independently of RecF to recombination in recBCD+ cells. DNA end binding by SbcB15 can also explain other specific phenotypes of strains with sbcB15.
Collapse
|
21
|
Genetics of recombination in the model bacterium Escherichia coli. MOLECULAR GENETICS OF RECOMBINATION 2007. [DOI: 10.1007/978-3-540-71021-9_1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
22
|
Ivancić-Bacće I, Vlasić I, Cogelja-Cajo G, Brcić-Kostić K, Salaj-Smic E. Roles of PriA protein and double-strand DNA break repair functions in UV-induced restriction alleviation in Escherichia coli. Genetics 2006; 174:2137-49. [PMID: 17028321 PMCID: PMC1698619 DOI: 10.1534/genetics.106.063750] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
It has been widely considered that DNA modification protects the chromosome of bacteria E. coli K-12 against their own restriction-modification systems. Chromosomal DNA is protected from degradation by methylation of target sequences. However, when unmethylated target sequences are generated in the host chromosome, the endonuclease activity of the EcoKI restriction-modification enzyme is inactivated by the ClpXP protease and DNA is protected. This process is known as restriction alleviation (RA) and it can be induced by UV irradiation (UV-induced RA). It has been proposed that chromosomal unmethylated target sequences, a signal for the cell to protect its own DNA, can be generated by homologous recombination during the repair of damaged DNA. In this study, we wanted to further investigate the genetic requirements for recombination proteins involved in the generation of unmethylated target sequences. For this purpose, we monitored the alleviation of EcoKI restriction by measuring the survival of unmodified lambda in UV-irradiated cells. Our genetic analysis showed that UV-induced RA is dependent on the excision repair protein UvrA, the RecA-loading activity of the RecBCD enzyme, and the primosome assembly activity of the PriA helicase and is partially dependent on RecFOR proteins. On the basis of our results, we propose that unmethylated target sequences are generated at the D-loop by the strand exchange of two hemi-methylated duplex DNAs and subsequent initiation of DNA replication.
Collapse
Affiliation(s)
- Ivana Ivancić-Bacće
- Department of Molecular Biology, Faculty of Science, University of Zagreb, Croatia.
| | | | | | | | | |
Collapse
|
23
|
Ivancic-Bace I, Vlasic I, Salaj-Smic E, Brcic-Kostic K. Genetic evidence for the requirement of RecA loading activity in SOS induction after UV irradiation in Escherichia coli. J Bacteriol 2006; 188:5024-32. [PMID: 16816175 PMCID: PMC1539949 DOI: 10.1128/jb.00130-06] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The SOS response in Escherichia coli results in the coordinately induced expression of more than 40 genes which occurs when cells are treated with DNA-damaging agents. This response is dependent on RecA (coprotease), LexA (repressor), and the presence of single-stranded DNA (ssDNA). A prerequisite for SOS induction is the formation of a RecA-ssDNA filament. Depending on the DNA substrate, the RecA-ssDNA filament is produced by either RecBCD, RecFOR, or a hybrid recombination mechanism with specific enzyme activities, including helicase, exonuclease, and RecA loading. In this study we examined the role of RecA loading activity in SOS induction after UV irradiation. We performed a genetic analysis of SOS induction in strains with a mutation which eliminates RecA loading activity in the RecBCD enzyme (recB1080 allele). We found that RecA loading activity is essential for SOS induction. In the recB1080 mutant RecQ helicase is not important, whereas RecJ nuclease slightly decreases SOS induction after UV irradiation. In addition, we found that the recB1080 mutant exhibited constitutive expression of the SOS regulon. Surprisingly, this constitutive SOS expression was dependent on the RecJ protein but not on RecFOR, implying that there is a different mechanism of RecA loading for constitutive SOS expression.
Collapse
Affiliation(s)
- Ivana Ivancic-Bace
- Department of Molecular Biology, Ruder Bosković Institute, Bijenicka 54, HR-10002 Zagreb, Croatia.
| | | | | | | |
Collapse
|
24
|
Courcelle J. Recs preventing wrecks. Mutat Res 2005; 577:217-27. [PMID: 16011837 DOI: 10.1016/j.mrfmmm.2005.03.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2005] [Revised: 03/22/2005] [Accepted: 03/22/2005] [Indexed: 11/20/2022]
Abstract
The asexual cell cycle of E. coli produces two genetically identical clones of the parental cell through processive, semiconservative replication of the chromosome. When this process is prematurely disrupted by DNA damage, several recF pathway gene products play critical roles processing the arrested replication fork, allowing it to resume and complete its task. In contrast, when E. coli cultures are starved for thymine, these same gene products play a detrimental role, allowing replication to become unregulated and highly recombinagenic, resulting in lethality after prolonged starvation. Here, I briefly review the experimental observations that suggest how RecF maintains replication in the presence of DNA damage and discuss how this function may relate to the events that lead to a loss of viability during thymine starvation.
Collapse
Affiliation(s)
- Justin Courcelle
- Portland State University, Department of Biology, P.O. Box 751, Portland, OR 97207-0751, USA.
| |
Collapse
|
25
|
Donaldson JR, Courcelle CT, Courcelle J. RuvAB and RecG are not essential for the recovery of DNA synthesis following UV-induced DNA damage in Escherichia coli. Genetics 2005; 166:1631-40. [PMID: 15126385 PMCID: PMC1470822 DOI: 10.1534/genetics.166.4.1631] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Ultraviolet light induces DNA lesions that block the progression of the replication machinery. Several models speculate that the resumption of replication following disruption by UV-induced DNA damage requires regression of the nascent DNA or migration of the replication machinery away from the blocking lesion to allow repair or bypass of the lesion to occur. Both RuvAB and RecG catalyze branch migration of three- and four-stranded DNA junctions in vitro and are proposed to catalyze fork regression in vivo. To examine this possibility, we characterized the recovery of DNA synthesis in ruvAB and recG mutants. We found that in the absence of either RecG or RuvAB, arrested replication forks are maintained and DNA synthesis is resumed with kinetics that are similar to those in wild-type cells. The data presented here indicate that RecG- or RuvAB-catalyzed fork regression is not essential for DNA synthesis to resume following arrest by UV-induced DNA damage in vivo.
Collapse
Affiliation(s)
- Janet R Donaldson
- Department of Biological Sciences, Mississippi State University, Mississippi State, Mississippi 39762, USA.
| | | | | |
Collapse
|
26
|
Courcelle J, Belle JJ, Courcelle CT. When replication travels on damaged templates: bumps and blocks in the road. Res Microbiol 2004; 155:231-7. [PMID: 15142619 DOI: 10.1016/j.resmic.2004.01.018] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2004] [Accepted: 01/16/2004] [Indexed: 10/26/2022]
Abstract
Escherichia coli can accurately replicate their genome even when it contains hundreds of damaged bases. In this situation, processes such as DNA repair, translesion DNA synthesis, and recombination all contribute to the cell's ability to successfully complete this task. However, under conditions when these reactions go awry, these same processes can result in cell lethality, mutagenesis, or genetic instability. In order to understand the molecular events that can lead this normally faithful duplication of the genome to become less than perfect, it is essential to define the substrates and conditions when each of these processes are recruited to the replication fork.
Collapse
Affiliation(s)
- Justin Courcelle
- Department of Biological Sciences, Box GY, Mississippi State University, Mississippi State, MS 39762, USA.
| | | | | |
Collapse
|
27
|
Donaldson JR, Courcelle CT, Courcelle J. RuvAB and RecG Are Not Essential for the Recovery of DNA Synthesis Following UV-Induced DNA Damage in Escherichia coli. Genetics 2004. [DOI: 10.1093/genetics/166.4.1631] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Abstract
Ultraviolet light induces DNA lesions that block the progression of the replication machinery. Several models speculate that the resumption of replication following disruption by UV-induced DNA damage requires regression of the nascent DNA or migration of the replication machinery away from the blocking lesion to allow repair or bypass of the lesion to occur. Both RuvAB and RecG catalyze branch migration of three- and four-stranded DNA junctions in vitro and are proposed to catalyze fork regression in vivo. To examine this possibility, we characterized the recovery of DNA synthesis in ruvAB and recG mutants. We found that in the absence of either RecG or RuvAB, arrested replication forks are maintained and DNA synthesis is resumed with kinetics that are similar to those in wild-type cells. The data presented here indicate that RecG- or RuvAB-catalyzed fork regression is not essential for DNA synthesis to resume following arrest by UV-induced DNA damage in vivo.
Collapse
Affiliation(s)
- Janet R Donaldson
- Department of Biological Sciences, Mississippi State University, Mississippi State, Mississippi 39762
| | - Charmain T Courcelle
- Department of Biological Sciences, Mississippi State University, Mississippi State, Mississippi 39762
| | - Justin Courcelle
- Department of Biological Sciences, Mississippi State University, Mississippi State, Mississippi 39762
| |
Collapse
|
28
|
Chow KH, Courcelle J. RecO Acts with RecF and RecR to Protect and Maintain Replication Forks Blocked by UV-induced DNA Damage in Escherichia coli. J Biol Chem 2004; 279:3492-6. [PMID: 14625283 DOI: 10.1074/jbc.m311012200] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In Escherichia coli, recF and recR are required to stabilize and maintain replication forks arrested by UV-induced DNA damage. In the absence of RecF, replication fails to recover, and the nascent lagging strand of the arrested replication fork is extensively degraded by the RecQ helicase and RecJ nuclease. recO mutants are epistatic with recF and recR with respect to recombination and survival assays after DNA damage. In this study, we show that RecO functions with RecF and RecR to protect the nascent lagging strand of arrested replication forks after UV-irradiation. In the absence of RecO, the nascent DNA at arrested replication forks is extensively degraded and replication fails to recover. The extent of nascent DNA degradation is equivalent in single, double, or triple mutants of recF, recO, or recR, and the degradation is dependent upon RecJ and RecQ functions. Because RecF has been shown to protect the nascent lagging strand from degradation, these observations indicate that RecR and RecO function with RecF to protect the same nascent strand of the arrested replication fork and are likely to act at a common point during the recovery process. We discuss these results in relation to the biochemical and cellular properties of RecF, RecO, and RecR and their potential role in loading RecA filaments to maintain the replication fork structure after the arrest of replication by UV-induced DNA damage.
Collapse
Affiliation(s)
- Kin-Hoe Chow
- Department of Biological Science, Mississippi State University, Mississippi State, Mississippi 39762, USA.
| | | |
Collapse
|
29
|
Abstract
DNA damage encountered during the cellular process of chromosomal replication can disrupt the replication machinery and result in mutagenesis or lethality. The RecA protein of Escherichia coli is essential for survival in this situation: It maintains the integrity of the arrested replication fork and signals the upregulation of over 40 gene products, of which most are required to restore the genomic template and to facilitate the resumption of processive replication. Although RecA was originally discovered as a gene product that was required to change the genetic information during sexual cell cycles, over three decades of research have revealed that it is also the key enzyme required to maintain the genetic information when DNA damage is encountered during replication in asexual cell cycles. In this review, we examine the significant experimental approaches that have led to our current understanding of the RecA-mediated processes that restore replication following encounters with DNA damage.
Collapse
Affiliation(s)
- Justin Courcelle
- Department of Biological Sciences, Box GY, Mississippi State University, Mississippi State, Mississippi 39762, USA.
| | | |
Collapse
|
30
|
Hvorup RN, Winnen B, Chang AB, Jiang Y, Zhou XF, Saier MH. The multidrug/oligosaccharidyl-lipid/polysaccharide (MOP) exporter superfamily. EUROPEAN JOURNAL OF BIOCHEMISTRY 2003; 270:799-813. [PMID: 12603313 DOI: 10.1046/j.1432-1033.2003.03418.x] [Citation(s) in RCA: 188] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The multidrug/oligosaccharidyl-lipid/polysaccharide (MOP) exporter superfamily (TC #2.A.66) consists of four previously recognized families: (a) the ubiquitous multi-drug and toxin extrusion (MATE) family; (b) the prokaryotic polysaccharide transporter (PST) family; (c) the eukaryotic oligosaccharidyl-lipid flippase (OLF) family and (d) the bacterial mouse virulence factor family (MVF). Of these four families, only members of the MATE family have been shown to function mechanistically as secondary carriers, and no member of the MVF family has been shown to function as a transporter. Establishment of a common origin for the MATE, PST, OLF and MVF families suggests a common mechanism of action as secondary carriers catalyzing substrate/cation antiport. Most protein members of these four families exhibit 12 putative transmembrane alpha-helical segments (TMSs), and several have been shown to have arisen by an internal gene duplication event; topological variation is observed for some members of the superfamily. The PST family is more closely related to the MATE, OLF and MVF families than any of these latter three families are related to each other. This fact leads to the suggestion that primordial proteins most closely related to the PST family were the evolutionary precursors of all members of the MOP superfamily. Here, phylogenetic trees and average hydropathy, similarity and amphipathicity plots for members of the four families are derived and provide detailed evolutionary and structural information about these proteins. We show that each family exhibits unique characteristics. For example, the MATE and PST families are characterized by numerous paralogues within a single organism (58 paralogues of the MATE family are present in Arabidopsis thaliana), while the OLF family consists exclusively of orthologues, and the MVF family consists primarily of orthologues. Only in the PST family has extensive lateral transfer of the encoding genes occurred, and in this family as well as the MVF family, topological variation is a characteristic feature. The results serve to define a large superfamily of transporters that we predict function to export substrates using a monovalent cation antiport mechanism.
Collapse
Affiliation(s)
- Rikki N Hvorup
- Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093-0116, USA
| | | | | | | | | | | |
Collapse
|
31
|
Bunny K, Liu J, Roth J. Phenotypes of lexA mutations in Salmonella enterica: evidence for a lethal lexA null phenotype due to the Fels-2 prophage. J Bacteriol 2002; 184:6235-49. [PMID: 12399494 PMCID: PMC151935 DOI: 10.1128/jb.184.22.6235-6249.2002] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The LexA protein of Escherichia coli represses the damage-inducible SOS regulon, which includes genes for repair of DNA. Surprisingly, lexA null mutations in Salmonella enterica are lethal even with a sulA mutation, which corrects lexA lethality in E. coli. Nine suppressors of lethality isolated in a sulA mutant of S. enterica had lost the Fels-2 prophage, and seven of these (which grew better) had also lost the Gifsy-1 and Gifsy-2 prophages. All three phage genomes included a homologue of the tum gene of coliphage 186, which encodes a LexA-repressed cI antirepressor. The tum homologue of Fels-2 was responsible for lexA lethality and had a LexA-repressed promoter. This basis of lexA lethality was unexpected because the four prophages of S. enterica LT2 are not strongly UV inducible and do not sensitize strains to UV killing. In S. enterica, lexA(Ind(-)) mutants have the same phenotypes as their E. coli counterparts. Although lexA null mutants express their error-prone DinB polymerase constitutively, they are not mutators in either S. enterica or E. coli.
Collapse
Affiliation(s)
- Kim Bunny
- Department of Biology, University of Utah, Salt Lake City 84112, USA
| | | | | |
Collapse
|
32
|
Li L, He Z, Pandey GK, Tsuchiya T, Luan S. Functional cloning and characterization of a plant efflux carrier for multidrug and heavy metal detoxification. J Biol Chem 2002; 277:5360-8. [PMID: 11739388 DOI: 10.1074/jbc.m108777200] [Citation(s) in RCA: 199] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have identified a detoxifying efflux carrier from Arabidopsis using a functional cloning strategy. A bacterial mutant, KAM3, is deficient in multidrug resistance and does not survive on medium containing norfloxacin. After transformation of KAM3 cells with an Arabidopsis cDNA library, transformants were selected for restored growth on the toxic medium. One cDNA clone that complemented KAM3 encodes a novel protein with twelve putative transmembrane domains and contains limited sequence homology to a multidrug and toxin efflux carrier from bacteria. We named this Arabidopsis protein AtDTX1 (for Arabidopsis thaliana Detoxification 1). A large gene family of at least 56 members encoding related proteins was identified from the Arabidopsis genome. Further functional analysis of AtDTX1 protein in KAM3 mutant demonstrated that AtDTX1 serves as an efflux carrier for plant-derived alkaloids, antibiotics, and other toxic compounds. Interestingly, AtDTX1 was also capable of detoxifying Cd(2+), a heavy metal. Further experiments suggest that AtDTX1 is localized in the plasma membrane in plant cells thereby mediating the efflux of plant-derived or exogenous toxic compounds from the cytoplasm.
Collapse
Affiliation(s)
- Legong Li
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, USA
| | | | | | | | | |
Collapse
|
33
|
Rangarajan S, Woodgate R, Goodman MF. Replication restart in UV-irradiated Escherichia coli involving pols II, III, V, PriA, RecA and RecFOR proteins. Mol Microbiol 2002; 43:617-28. [PMID: 11929519 DOI: 10.1046/j.1365-2958.2002.02747.x] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In Escherichia coli, UV-irradiated cells resume DNA synthesis after a transient inhibition by a process called replication restart. To elucidate the role of several key proteins involved in this process, we have analysed the time dependence of replication restart in strains carrying a combination of mutations in lexA, recA, polB (pol II), umuDC (pol V), priA, dnaC, recF, recO or recR. We find that both pol II and the origin-independent primosome-assembling function of PriA are essential for the immediate recovery of DNA synthesis after UV irradiation. In their absence, translesion replication or 'replication readthrough' occurs approximately 50 min after UV and is pol V-dependent. In a wild-type, lexA+ background, mutations in recF, recO or recR block both pathways. Similar results were obtained with a lexA(Def) recF strain. However, lexA(Def) recO or lexA(Def) recR strains, although unable to facilitate PriA-pol II-dependent restart, were able to perform pol V-dependent readthrough. The defects in restart attributed to mutations in recF, recO or recR were suppressed in a recA730 lexA(Def) strain expressing constitutively activated RecA (RecA*). Our data suggest that in a wild-type background, RecF, O and R are important for the induction of the SOS response and the formation of RecA*-dependent recombination intermediates necessary for PriA/Pol II-dependent replication restart. In con-trast, only RecF is required for the activation of RecA that leads to the formation of pol V (UmuD'2C) and facilitates replication readthrough.
Collapse
Affiliation(s)
- Savithri Rangarajan
- Department of Biological Sciences and Chemistry, Hedco Molecular Biology Laboratories, University of Southern California, Los Angeles, CA 90089-1340, USA
| | | | | |
Collapse
|
34
|
Silva G, Rodrigues-Pousada C. A 6940 bp DNA fragment from Desulfovibrio gigas contains genes coding for lipoproteins, universal stress response and transcriptional regulator protein homologues. DNA SEQUENCE : THE JOURNAL OF DNA SEQUENCING AND MAPPING 2001; 12:229-38. [PMID: 11916257 DOI: 10.3109/10425170109024997] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The nucleotide sequence of a 6940 bp DNA fragment from Desulfovibrio gigas, containing seven ORFs was determined. ORF-1 encodes a probable lipoprotein having high similarities with lytic transglycosylases. ORF-2 encodes a polypeptide that does not show homologies with proteins deposited in the database, but it contains the consensus pattern of class II aminoacyl-tRNA synthetases. The putative protein encoded by ORF-3 possesses high similarities with universal stress response proteins from the UspA family. Northern blot analysis of ORF-3 shows that it is constitutively and abundantly expressed. ORF-4 encodes a probable helix-turn-helix-containing DNA-binding protein, given the presence of the helix-turn-helix motif, characteristic of this class of proteins. Its N-terminal region has high identity with its counterparts from proteins belonging to the RRF2 family. Northern blot analysis shows that ORF-4 is transcribed as a single mRNA in contrast to its orthologue from Desulfovibrio vulgaris. ORF-5 encodes a putative fusion protein as its N- and C-termini show significant homologies with molybdenum formylmethanofuran dehydrogenase and molybdopterin biosynthesis proteins, respectively. ORF-7 encodes a prokaryotic lipoprotein having homologies with multidrug efflux and DNA damage-inducible proteins, and it is constitutively and abundantly expressed.
Collapse
Affiliation(s)
- G Silva
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| | | |
Collapse
|
35
|
Kuzminov A. Recombinational repair of DNA damage in Escherichia coli and bacteriophage lambda. Microbiol Mol Biol Rev 1999; 63:751-813, table of contents. [PMID: 10585965 PMCID: PMC98976 DOI: 10.1128/mmbr.63.4.751-813.1999] [Citation(s) in RCA: 729] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although homologous recombination and DNA repair phenomena in bacteria were initially extensively studied without regard to any relationship between the two, it is now appreciated that DNA repair and homologous recombination are related through DNA replication. In Escherichia coli, two-strand DNA damage, generated mostly during replication on a template DNA containing one-strand damage, is repaired by recombination with a homologous intact duplex, usually the sister chromosome. The two major types of two-strand DNA lesions are channeled into two distinct pathways of recombinational repair: daughter-strand gaps are closed by the RecF pathway, while disintegrated replication forks are reestablished by the RecBCD pathway. The phage lambda recombination system is simpler in that its major reaction is to link two double-stranded DNA ends by using overlapping homologous sequences. The remarkable progress in understanding the mechanisms of recombinational repair in E. coli over the last decade is due to the in vitro characterization of the activities of individual recombination proteins. Putting our knowledge about recombinational repair in the broader context of DNA replication will guide future experimentation.
Collapse
Affiliation(s)
- A Kuzminov
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403, USA.
| |
Collapse
|
36
|
Kuzminov A, Stahl FW. Double-strand end repair via the RecBC pathway in Escherichia coli primes DNA replication. Genes Dev 1999; 13:345-56. [PMID: 9990858 PMCID: PMC316432 DOI: 10.1101/gad.13.3.345] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
To study the relationship between homologous recombination and DNA replication in Escherichia coli, we monitored the behavior of phage lambda chromosomes, repressed or not for lambda gene activities. Recombination in our system is stimulated both by DNA replication and by experimentally introduced double-strand ends, supporting the idea that DNA replication generates occasional double-strand ends. We report that the RecBC recombinational pathway of E. coli uses double-strand ends to prime DNA synthesis, implying a circular relationship between DNA replication and recombination and suggesting that the primary role of recombination is in the repair of disintegrated replication forks arising during vegetative reproduction.
Collapse
Affiliation(s)
- A Kuzminov
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403-1229
| | | |
Collapse
|
37
|
Ahmad SI, Kirk SH, Eisenstark A. Thymine metabolism and thymineless death in prokaryotes and eukaryotes. Annu Rev Microbiol 1999; 52:591-625. [PMID: 9891809 DOI: 10.1146/annurev.micro.52.1.591] [Citation(s) in RCA: 184] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
For many years it has been known that thymine auxotrophic microorganisms undergo cell death in response to thymine starvation [thymineless death (TLD)]. This effect is unusual in that deprivation of many other nutritional requirements has a biostatic, but not lethal, effect. Studies of numerous microbes have indicated that thymine starvation has both direct and indirect effects. The direct effects involve both single- and double-strand DNA breaks. The former may be repaired effectively, but the latter lead to cell death. DNA damaged by thymine starvation is a substrate for DNA repair processes, in particular recombinational repair. Mutations in recBCD recombinational repair genes increase sensitivity to thymineless death, whereas mutations in RecF repair protein genes enhance the recovery process. This suggests that the RecF repair pathway may be critical to cell death, perhaps because it increases the occurrence of double-strand DNA breaks with unique DNA configurations at lesion sites. Indirect effects in bacteria include elimination of plasmids, loss of transforming ability, filamentation, changes in the pool sizes of various nucleotides and nucleosides and in their excretion, and phage induction. Yeast cells show effects similar to those of bacteria upon thymine starvation, although there are some unique features. The mode of action of certain anticancer drugs and antibiotics is based on the interruption of thymidylate metabolism and provides a major impetus for further studies on TLD. There are similarities between TLD of bacteria and death of eukaryotic cells. Also, bacteria have "survival" genes other than thy (thymidylate synthetase), and this raises the question of whether there is a relationship between the two. A model is presented for a molecular basis of TLD.
Collapse
Affiliation(s)
- S I Ahmad
- Department of Life Sciences, Nottingham Trent University, England.
| | | | | |
Collapse
|
38
|
Liu YH, Cheng AJ, Wang TC. Involvement of recF, recO, and recR genes in UV-radiation mutagenesis of Escherichia coli. J Bacteriol 1998; 180:1766-70. [PMID: 9537373 PMCID: PMC107088 DOI: 10.1128/jb.180.7.1766-1770.1998] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The recF, recO, and recR genes were originally identified as those affecting the RecF pathway of recombination in Escherichia coli cells. Several lines of evidence suggest that the recF, recO, and recR genes function at the same step of recombination and postreplication repair. In this work, we report that null mutations in recF, recO, or recR greatly reduce UV-radiation mutagenesis (UVM) in an assay for reversion from a Trp- (trpE65) to a Trp+ phenotypes. Introduction of the defective lexA51 mutation [lexA51(Def)] and/or UmuD' into recF, recO, and recR mutants failed to restore normal UVM in the mutants. On the other hand, the presence of recA2020, a suppressor mutation for recF, recO, and recR mutations, restored normal UVM in recF, recO, and recR mutants. These results indicate an involvement of the recF, recO, and recR genes and their products in UVM, possibly by affecting the third role of RecA in UVM.
Collapse
Affiliation(s)
- Y H Liu
- Department of Molecular and Cellular Biology, College of Medicine, Chang Gung University, Kwei-San, Tao-Yuan, Taiwan
| | | | | |
Collapse
|
39
|
Sawitzke JA, Stahl FW. Roles for lambda Orf and Escherichia coli RecO, RecR and RecF in lambda recombination. Genetics 1997; 147:357-69. [PMID: 9335578 PMCID: PMC1208163 DOI: 10.1093/genetics/147.2.357] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Bacteriophage lambda lacking its Red recombination functions requires either its own gene product, Orf, or the product of Escherichia coli's recO, recR and recF genes (RecORF) for efficient recombination in recBC sbcB sbcC mutant cells (the RecF pathway). Phage crosses under conditions of a partial block to DNA replication have revealed the following: (1) In the presence of Orf, RecF pathway recombination is similar to lambda Red recombination; (2) Orf is necessary for focusing recombination toward the right end of the chromosome as lambda is conventionally drawn; (3) RecORF-mediated RecF pathway recombination is not focused toward the right end of the chromosome, which may indicate that RecORF travels along the DNA; (4) both Orf- and RecORF-mediated RecF pathway recombination are stimulated by DNA replication; and (5) low level recombination in the simultaneous absence of Orf and RecORF may occur by a break-copy mechanism that is not initiated by a double strand break. Models for the roles of Orf and RecO, RecR and RecF in recombination are presented.
Collapse
Affiliation(s)
- J A Sawitzke
- Institute of Molecular Biology, University of Oregon, Eugene 97403-1229, USA.
| | | |
Collapse
|
40
|
Hegde SP, Qin MH, Li XH, Atkinson MA, Clark AJ, Rajagopalan M, Madiraju MV. Interactions of RecF protein with RecO, RecR, and single-stranded DNA binding proteins reveal roles for the RecF-RecO-RecR complex in DNA repair and recombination. Proc Natl Acad Sci U S A 1996; 93:14468-73. [PMID: 8962075 PMCID: PMC26156 DOI: 10.1073/pnas.93.25.14468] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The products of the recF, recO, and recR genes are thought to interact and assist RecA in the utilization of single-stranded DNA precomplexed with single-stranded DNA binding protein (Ssb) during synapsis. Using immunoprecipitation, size-exclusion chromatography, and Ssb protein affinity chromatography in the absence of any nucleotide cofactors, we have obtained the following results: (i) RecF interacts with RecO, (ii) RecF interacts with RecR in the presence of RecO to form a complex consisting of RecF, RecO, and RecR (RecF-RecO-RecR); (iii) RecF interacts with Ssb protein in the presence of RecO. These data suggested that RecO mediates the interactions of RecF protein with RecR and with Ssb proteins. Incubation of RecF, RecO, RecR, and Ssb proteins resulted in the formation of RecF-RecO-Ssb complexes; i.e., RecR was excluded. Preincubation of RecF, RecO, and RecR proteins prior to addition of Ssb protein resulted in the formation of complexes consisting of RecF, RecO, RecR, and Ssb proteins. These data suggest that one role of RecF is to stabilize the interaction of RecR with RecO in the presence of Ssb protein. Finally, we found that interactions of RecF with RecO are lost in the presence of ATP. We discuss these results to explain how the RecF-RecO-RecR complex functions as an anti-Ssb factor.
Collapse
Affiliation(s)
- S P Hegde
- Department of Microbiology, University of Texas Health Center at Tyler 75710, USA
| | | | | | | | | | | | | |
Collapse
|
41
|
Whitby MC, Lloyd RG. Altered SOS induction associated with mutations in recF, recO and recR. MOLECULAR & GENERAL GENETICS : MGG 1995; 246:174-9. [PMID: 7862088 DOI: 10.1007/bf00294680] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The SOS system of Escherichia coli aids survival following damage to DNA by promoting DNA repair while cell division is delayed. Induction of the SOS response is dependent on RecA and also on the product of recF. We show that normal induction also requires the products of recO and recR. SOS induction was monitored using a sfiA-lacZ fusion strain. Induction was delayed to a similar degree by mutation in recF, recO or recR. A similar effect was observed following overexpression of RecR from a recombinant recR+ plasmid. We show that the overexpression of RecR also reduces the UV resistance of a recBC sbcBC strain and of a sfiA strain, but not of a rec+sfiA+ strain. The implications of these data for the kinetics of DNA repair are discussed.
Collapse
Affiliation(s)
- M C Whitby
- Department of Genetics, University of Nottingham, Queens Medical Centre, UK
| | | |
Collapse
|
42
|
Hegde S, Sandler SJ, Clark AJ, Madiraju MV. recO and recR mutations delay induction of the SOS response in Escherichia coli. MOLECULAR & GENERAL GENETICS : MGG 1995; 246:254-8. [PMID: 7862097 DOI: 10.1007/bf00294689] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
RecF, RecO and RecR, three of the important proteins of the RecF pathway of recombination, are also needed for repair of DNA damage due to UV irradiation. recF mutants are not proficient in cleaving LexA repressor in vivo following DNA damage: therefore they show a delay of induction of the SOS response. In this communication, by measuring the in vivo levels of LexA repressor using anti-LexA antibodies, we show that recO and recR mutant strains are also not proficient in LexA cleavage reactions. In addition, we show that recO and recR mutations delay induction of beta-galactosidase activity expressed from a lexA-regulated promoter following exposure of cells to UV, thus further supporting the idea that recF, recO and recR gene products are needed for induction of the SOS response.
Collapse
Affiliation(s)
- S Hegde
- Department of Microbiology, University of Texas Health Center, Tyler 75710
| | | | | | | |
Collapse
|
43
|
Matic I. Les mécanismes du contrôle des échanges génétiques interspécifiques et de la variabilité génétique chez les bactéries. ACTA ACUST UNITED AC 1995. [DOI: 10.1016/0020-2452(96)81489-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
44
|
Sawitzke JA, Stahl FW. The phage lambda orf gene encodes a trans-acting factor that suppresses Escherichia coli recO, recR, and recF mutations for recombination of lambda but not of E. coli. J Bacteriol 1994; 176:6730-7. [PMID: 7961426 PMCID: PMC197030 DOI: 10.1128/jb.176.21.6730-6737.1994] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Bacteriophage lambda can recombine in recBC sbcB sbcC mutant cells by using its own gene orf, the Escherichia coli recO, recR, and recF genes, or both. Expression of an orf-containing plasmid complements the recombination defects of orf mutant phage. However, this clone does not complement a recO mutation for conjugational recombination or recO, recR, or recF mutations for repair of UV-induced DNA damage. A plasmid clone of orf produces a protein with an apparent molecular mass of 15 kDa.
Collapse
Affiliation(s)
- J A Sawitzke
- Institute of Molecular Biology, University of Oregon, Eugene 97403-1229
| | | |
Collapse
|
45
|
Abstract
A list of currently identified gene products of Escherichia coli is given, together with a bibliography that provides pointers to the literature on each gene product. A scheme to categorize cellular functions is used to classify the gene products of E. coli so far identified. A count shows that the numbers of genes concerned with small-molecule metabolism are on the same order as the numbers concerned with macromolecule biosynthesis and degradation. One large category is the category of tRNAs and their synthetases. Another is the category of transport elements. The categories of cell structure and cellular processes other than metabolism are smaller. Other subjects discussed are the occurrence in the E. coli genome of redundant pairs and groups of genes of identical or closely similar function, as well as variation in the degree of density of genetic information in different parts of the genome.
Collapse
Affiliation(s)
- M Riley
- Marine Biological Laboratory, Woods Hole, Massachusetts 02543
| |
Collapse
|
46
|
Fluoroquinolones: mechanisms of action and resistance. Int J Antimicrob Agents 1993; 2:151-83. [DOI: 10.1016/0924-8579(93)90052-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/12/1992] [Indexed: 12/16/2022]
|
47
|
Madiraju MV, Clark AJ. Evidence for ATP binding and double-stranded DNA binding by Escherichia coli RecF protein. J Bacteriol 1992; 174:7705-10. [PMID: 1447139 PMCID: PMC207484 DOI: 10.1128/jb.174.23.7705-7710.1992] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
RecF protein is one of the important proteins involved in DNA recombination and repair. RecF protein has been shown to bind single-stranded DNA (ssDNA) in the absence of ATP (T. J. Griffin IV and R. D. Kolodner, J. Bacteriol. 172:6291-6299, 1990; M. V. V. S. Madiraju and A. J. Clark, Nucleic Acids Res. 19:6295-6300, 1991). In the present study, using 8-azido-ATP, a photo-affinity analog of ATP, we show that RecF protein binds ATP and that the binding is specific in the presence of DNA. 8-Azido-ATP photo-cross-linking is stimulated in the presence of DNA (both ssDNA and double-stranded DNA [dsDNA]), suggesting that DNA enhances the affinity of RecF protein for ATP. These data suggest that RecF protein possesses independent ATP- and DNA-binding sites. Further, we find that stable RecF protein-dsDNA complexes are obtained in the presence of ATP or ATP-gamma-S [adenosine-5'-O-(3-thio-triphosphate)]. No other nucleoside triphosphates served as necessary cofactors for dsDNA binding, indicating that RecF is an ATP-dependent dsDNA-binding protein. Since a mutation in a putative phosphate-binding motif of RecF protein results in a recF mutant phenotype (S. J. Sandler, B. Chackerian, J. T. Li, and A. J. Clark, Nucleic Acids Res. 20:839-845, 1992), we suggest on the basis of our data that the interactions of RecF protein with ATP, with dsDNA, or with both are physiologically important for understanding RecF protein function in vivo.
Collapse
Affiliation(s)
- M V Madiraju
- Department of Molecular and Cell Biology, University of California, Berkeley 94720
| | | |
Collapse
|
48
|
Rinken R, Thomas B, Wackernagel W. Evidence that recBC-dependent degradation of duplex DNA in Escherichia coli recD mutants involves DNA unwinding. J Bacteriol 1992; 174:5424-9. [PMID: 1322885 PMCID: PMC206381 DOI: 10.1128/jb.174.16.5424-5429.1992] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Infection of Escherichia coli with phage T4 gene 2am was used to transport 3H-labeled linear duplex DNA into cells to follow its degradation in relation to the cellular genotype. In wild-type cells, 49% of the DNA was made acid soluble within 60 min; in recB or recC cells, only about 5% of the DNA was made acid soluble. Remarkably, in recD cells about 25% of the DNA was rendered acid soluble. The DNA degradation in recD cells depended on intact recB and recC genes. The degradation in recD cells was largely decreased by mutations in recJ (which eliminates the 5' single-strand-specific exonuclease coded by this gene) or xonA (which abolishes the 3' single-strand-specific exonuclease I). In a recD recJ xonA triple mutant, the degradation of linear duplex DNA was roughly at the level of a recB mutant. Results similar to those with the set of recD strains were also obtained with a recC++ mutant (in which the RecD protein is intact but does not function) and its recJ, xonA, and recJ xonA derivatives. The observations provide evidence for a recBC-dependent DNA-unwinding activity that renders unwound DNA susceptible to exonucleolytic degradation. It is proposed that the DNA-unwinding activity causes the efficient recombination, DNA repair, and SOS induction (after application of nalidixic acid) in recD mutants. The RecBC helicase indirectly detected here may have a central function in Chi-dependent recombination and in the recombinational repair of double-strand breaks by the RecBCD pathway.
Collapse
Affiliation(s)
- R Rinken
- Genetik, Fachbereich Biologie, Universität Oldenburg, Germany
| | | | | |
Collapse
|
49
|
Osburne MS, Zavodny SM, Greenstein M, Maiese WM. Phenotypes conferred by the Bacillus subtilis recM13 mutation and the din23 fusion. Mutat Res 1992; 274:79-84. [PMID: 1378209 DOI: 10.1016/0921-8777(92)90054-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The din23 fusion encodes a B. subtilis SOS-inducible regulatory region fused to the E. coli lacZ gene (Love et al., 1985). A strain encoding the din23 fusion and a recM13 allele showed low-level constitutive beta-galactosidase expression, was induced for beta-galactosidase production by DNA gyrase inhibitors but not by DNA-damaging agents, and was slightly induced by a variety of agents which do not normally induce the SOS regulon. The din23 fusion itself resulted in high levels of spontaneous prophage induction in wild-type, recM- and recA-hosts, despite the fact that the din23recM13 strain was not induced for beta-galactosidase production by DNA-damaging agents. The results suggest that the recM gene may be involved with the regulation of the RecA protease-mediated SOS response, while the din23 gene may be involved with the regulation of an alternative function which results in the cleavage of prophage repressor.
Collapse
Affiliation(s)
- M S Osburne
- American Cyanamid Company, Medical Research Division, Lederle Laboratories, Pearl River, NY 10965
| | | | | | | |
Collapse
|
50
|
Sandler SJ, Chackerian B, Li JT, Clark AJ. Sequence and complementation analysis of recF genes from Escherichia coli, Salmonella typhimurium, Pseudomonas putida and Bacillus subtilis: evidence for an essential phosphate binding loop. Nucleic Acids Res 1992; 20:839-45. [PMID: 1542576 PMCID: PMC312026 DOI: 10.1093/nar/20.4.839] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
We have compared the recF genes from Escherichia coli K-12, Salmonella typhimurium, Pseudomonas putida, and Bacillus subtilis at the DNA and amino acid sequence levels. To do this we determined the complete nucleotide sequence of the recF gene from Salmonella typhimurium and we completed the nucleotide sequence of recF gene from Pseudomonas putida begun by Fujita et al. (1). We found that the RecF proteins encoded by these two genes contain respectively 92% and 38% amino acid identity with the E. coli RecF protein. Additionally, we have found that the S. typhimurium and P. putida recF genes will complement an E. coli recF mutant, but the recF gene from Bacillus subtilis [showing about 20% identity with E. coli (2)] will not. Amino acid sequence alignment of the four proteins identified four highly conserved regions. Two of these regions are part of a putative phosphate binding loop. In one region (position 36), we changed the lysine codon (which is essential for ATPase, GTPase and kinase activity in other proteins having this phosphate binding loop) to an arginine codon. We then tested this mutation (recF4101) on a multicopy plasmid for its ability to complement a recF chromosomal mutation and on the E. coli chromosome for its effect on sensitivity to UV irradiation. The strain with recF4101 on its chromosome is as sensitive as a null recF mutant strain. The strain with the plasmid-borne mutant allele is however more UV resistant than the null mutant strain. We conclude that lysine-36 and possibly a phosphate binding loop is essential for full recF activity. Lastly we made two chimeric recF genes by exchanging the amino terminal 48 amino acids of the S. typhimurium and E. coli recF genes. Both chimeras could complement E. coli chromosomal recF mutations.
Collapse
Affiliation(s)
- S J Sandler
- Department of Molecular and Cell Biology, University of California, Berkeley 94720
| | | | | | | |
Collapse
|