1
|
Wei Y, Miller CG. Characterization of a group of anaerobically induced, fnr-dependent genes of Salmonella typhimurium. J Bacteriol 1999; 181:6092-7. [PMID: 10498722 PMCID: PMC103637 DOI: 10.1128/jb.181.19.6092-6097.1999] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have previously reported the isolation of a group of anaerobically regulated, fnr-dependent lac fusions in Salmonella typhimurium and have grouped these oxd genes into classes based on map position. In order to identify these genes, we have replaced the original Mud-lac fusion in a member of each oxd class with the much smaller Mud-cam element, cloned the fusion, and determined DNA sequence sufficient to define the oxd gene. Several of the fusions correspond to previously known genes from S. typhimurium or Escherichia coli: oxd-4 = cbiA and oxd-11 = cbiK, oxd-5 = hybB, oxd-7 = dcuB, oxd-8 = moaB, oxd-12 = dmsA, and oxd-14 = napB (aeg-46. 5). Two other fusions correspond to previously unknown loci: oxd-2 encodes an acetate/propionate kinase, and oxd-6 encodes a putative ABC transporter present in S. typhimurium but not in E. coli.
Collapse
Affiliation(s)
- Y Wei
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | | |
Collapse
|
2
|
Rondon MR, Escalante-Semerena JC. High levels of transcription factor RpoS (sigma S) in mviA mutants negatively affect 1,2-propanediol-dependent transcription of the cob/pdu regulon of Salmonella typhimurium LT2. FEMS Microbiol Lett 1998; 169:147-53. [PMID: 9851046 DOI: 10.1111/j.1574-6968.1998.tb13311.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Expression of the cobalamin biosynthetic (cob) and 1,2-propanediol utilization (cob/pdu) regulon of Salmonella typhimurium LT2 is controlled at the transcriptional level by global and specific regulatory proteins. In this paper we show that mutations in the mviA gene negatively affect cob/pdu transcription in response to 1,2-propanediol in the environment. The effects of mviA mutations were consistent with its role in the regulation of RpoS levels in the cell. Null mutations in rpoS eliminated the negative effect of mviA mutations on cob/pdu transcription, and restored growth on succinate, propionate and 1,2-propanediol. In addition, mviA mutants were deficient in the utilization of succinate, propionate and 1,2-propanediol as carbon and energy sources.
Collapse
Affiliation(s)
- M R Rondon
- Department of Bacteriology, University of Wisconsin-Madison 53706-1567, USA
| | | |
Collapse
|
3
|
Sasahara KC, Heinzinger NK, Barrett EL. Hydrogen sulfide production and fermentative gas production by Salmonella typhimurium require F0F1 ATP synthase activity. J Bacteriol 1997; 179:6736-40. [PMID: 9352924 PMCID: PMC179603 DOI: 10.1128/jb.179.21.6736-6740.1997] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
A previously isolated mutant of Salmonella typhimurium lacking hydrogen sulfide production from both thiosulfate and sulfite was shown to have a single mutation which also caused the loss of fermentative gas production and the ability to grow on nonfermentable substrates and which mapped in the vicinity of the atp chromosomal locus. The implication that F0F1 ATP synthase might be essential for H2S and fermentative gas production was explored. The phs plasmid conferring H2S production on wild-type Escherichia coli failed to confer this ability on seven of eight E. coli atp point mutants representing, collectively, the eight genes encoding the subunits of F0F1 ATP synthase. However, it did confer some thiosulfate reductase activity on all except the mutant with a lesion in the ATP synthase catalytic subunit. Localized mutagenesis of the Salmonella atp chromosomal region yielded 500 point mutants unable to reduce thiosulfate to H2S or to produce gas from glucose, but differing in the extents of their ability to grow on succinate, to perform proton translocation as measured in a fluorescence quenching assay, and to reduce sulfite to H2S. Biochemical assays showed that all mutants were completely devoid of both methyl viologen and formate-linked thiosulfate reductase and that N,N'-dicyclohexylcarbodiimide blocked thiosulfate reductase activity by the wild type, suggesting that thiosulfate reductase activity has an absolute requirement for F0F1 ATP synthase. Hydrogenase-linked formate dehydrogenase was also affected, but not as severely as thiosulfate reductase. These results imply that in addition to linking oxidation with phosphorylation, F0F1 ATP synthase plays a key role in the proton movement accompanying certain anaerobic reductions and oxidations.
Collapse
Affiliation(s)
- K C Sasahara
- Department of Food Science and Technology, University of California, Davis 95616-8598, USA
| | | | | |
Collapse
|
4
|
Zahrt TC, Maloy S. Barriers to recombination between closely related bacteria: MutS and RecBCD inhibit recombination between Salmonella typhimurium and Salmonella typhi. Proc Natl Acad Sci U S A 1997; 94:9786-91. [PMID: 9275203 PMCID: PMC23269 DOI: 10.1073/pnas.94.18.9786] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Previous studies have shown that inactivation of the MutS or MutL mismatch repair enzymes increases the efficiency of homeologous recombination between Escherichia coli and Salmonella typhimurium and between S. typhimurium and Salmonella typhi. However, even in mutants defective for mismatch repair the recombination frequencies are 10(2)- to 10(3)-fold less than observed during homologous recombination between a donor and recipient of the same species. In addition, the length of DNA exchanged during transduction between S. typhimurium and S. typhi is less than in transductions between strains of S. typhimurium. In homeologous transductions, mutations in the recD gene increased the frequency of transduction and the length of DNA exchanged. Furthermore, in mutS recD double mutants the frequency of homeologous recombination was nearly as high as that seen during homologous recombination. The phenotypes of the mutants indicate that the gene products of mutS and recD act independently. Because S. typhimurium and S. typhi are approximately 98-99% identical at the DNA sequence level, the inhibition of recombination is probably not due to a failure of RecA to initiate strand exchange. Instead, these results suggest that mismatches act at a subsequent step, possibly by slowing the rate of branch migration. Slowing the rate of branch migration may stimulate helicase proteins to unwind rather than extend the heteroduplex and leave uncomplexed donor DNA susceptible to further degradation by RecBCD exonuclease.
Collapse
Affiliation(s)
- T C Zahrt
- Department of Microbiology, University of Illinois, Urbana, IL 61801, USA
| | | |
Collapse
|
5
|
Olafsson O, Ericson JU, VanBogelen R, Björk GR. Mutation in the structural gene for release factor 1 (RF-1) of Salmonella typhimurium inhibits cell division. J Bacteriol 1996; 178:3829-39. [PMID: 8682787 PMCID: PMC232643 DOI: 10.1128/jb.178.13.3829-3839.1996] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
A temperature-sensitive mutant of Salmonella typhimurium LT2 was isolated. At the nonpermissive temperature cell division stopped and multinucleated filaments were formed. DNA, RNA, or protein synthesis was not affected until after about two generations. Different physiological conditions, such as anaerobiosis and different growth media, suppress the division deficiency at high temperatures. Certain mutations causing a reduced polypeptide chain elongation rate also suppress the division deficiency. The mutation is recessive and shown to be in the structural gene for release factor I (prfA). DNA sequencing of both the wild-type (prfA+) and mutant (prfA101) allele revealed a GC-to-AT transition in codon 168. Like other known prfA mutants, prfA101 can suppress amber mutations. The division defect in the prfA101 mutant strain could not be suppressed by overexpression of the ftsQAZ operon. Moreover, at the nonpermissive temperature the mutant shows a normal heat shock and SOS response and has a normal ppGpp level. We conclude that the prfA101-mediated defect in cell division is not directed through any of these metabolic pathways, which are all known to affect cell division. We speculate that the altered release factor I induces aberrant synthesis of an unidentified protein(s) involved in the elaborate process of septation.
Collapse
Affiliation(s)
- O Olafsson
- Department of Microbiology, University of Umea, Sweden
| | | | | | | |
Collapse
|
6
|
Kingsley R, Rabsch W, Roberts M, Reissbrodt R, Williams PH. TonB-dependent iron supply in Salmonella by alpha-ketoacids and alpha-hydroxyacids. FEMS Microbiol Lett 1996; 140:65-70. [PMID: 8666202 DOI: 10.1111/j.1574-6968.1996.tb08316.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
A range of structurally diverse alpha-ketoacids and alpha-hydroxyacids promoted the growth of isolates of Salmonella serovars S. typhimurium, S. enteritidis, S. agona, S. paratyphi and S. stanleyville in iron restricted conditions in the absence of functional siderophores. Growth stimulation, observed both in cross-feeding tests on solid medium and in liquid cultures, and uptake of 55Fe in the presence of alpha-ketoisocaproic acid, were TonB dependent in S. typhimurium. In this respect the mechanism is distinct from a previously described Serratia marcescens system (sfuABC); the presence of the cloned sfuABC genes mediated tonB-independent uptake by S. typhimurium of iron complexed with alpha-ketoacids.
Collapse
Affiliation(s)
- R Kingsley
- Department of Microbiology and Immunology, University of Leicester, UK
| | | | | | | | | |
Collapse
|
7
|
Hecht K, Zhang S, Klopotowski T, Ames GF. D-histidine utilization in Salmonella typhimurium is controlled by the leucine-responsive regulatory protein (Lrp). J Bacteriol 1996; 178:327-31. [PMID: 8550449 PMCID: PMC177661 DOI: 10.1128/jb.178.2.327-331.1996] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
A new class of D-histidine-utilizing mutants which carry mutations in the gene encoding the leucine-responsive regulatory protein (Lrp) has been identified in Salmonella typhimurium. The lrp mutations arise as suppressors of mutations in the genes encoding the histidine permease which drastically decrease the level of histidine transport activity. However, the suppressor effect is not exerted by elevating the level of the permease. Rather, the properties of the suppressor mutants are consistent with the notion that the parent permease mutants transport D-histidine at a low level and that in the suppressor mutants D-histidine is utilized effectively through elevated levels of racemization. The enzymatic activity of D-alanine dehydrogenase (Dad) is shown to be elevated in the suppressor mutants and is a possible pathway of D-histidine utilization. The suppressor mutations are located in the helix-turn-helix region of Lrp.
Collapse
Affiliation(s)
- K Hecht
- Department of Molecular and Cell Biology, University of California at Berkeley 94720, USA
| | | | | | | |
Collapse
|
8
|
Esberg B, Björk GR. The methylthio group (ms2) of N6-(4-hydroxyisopentenyl)-2-methylthioadenosine (ms2io6A) present next to the anticodon contributes to the decoding efficiency of the tRNA. J Bacteriol 1995; 177:1967-75. [PMID: 7536729 PMCID: PMC176837 DOI: 10.1128/jb.177.8.1967-1975.1995] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
A Salmonella typhimurium LT2 mutant which harbors a mutation (miaB2508::Tn10dCm) that results in a reduction in the activities of the amber suppressors supF30 (tRNA(CUATyr)), supD10 (tRNA(CUASer)), and supJ60 (tRNA(CUALeu)) was isolated. The mutant was deficient in the methylthio group (ms2) of N6-(4-hydroxyisopentenyl)-2-methylthioadenosine (ms2io6A), a modified nucleoside that is normally present next to the anticodon (position 37) in tRNAs that read codons that start with uridine. Consequently, the mutant had i6A37 instead of ms2io6A37 in its tRNA. Only small amounts of io6A37 was found. We suggest that the synthesis of ms2io6A occurs in the following order: A-37-->i6A37-->ms2i6A37-->ms2io6A37. The mutation miaB2508::Tn10dCm was 60% linked to the nag gene (min 15) and 40% linked to the fur gene and is located counterclockwise from both of these genes. The growth rates of the mutant in four growth media did not significantly deviate from those of a wild-type strain. The polypeptide chain elongation rate was also unaffected in the mutant. However, the miaB2508::Tn10dCm mutation rendered the cell more resistant or sensitive, compared with a wild-type cell, to several amino acid analogs, suggesting that this mutation influences the regulation of several amino acid biosynthetic operons. The efficiencies of the aforementioned amber suppressors were decreased to as low as 16%, depending on the suppressor and the codon context monitored, demonstrating that the ms2 group of ms2io6A contributes to the decoding efficiency of tRNA. However, the major impact of the ms2io6 modification in the decoding process comes from the io6 group alone or from the combination of the ms2 and io6 groups, not from the ms2 group alone.
Collapse
Affiliation(s)
- B Esberg
- Department of Microbiology, Umeå University, Sweden
| | | |
Collapse
|
9
|
Osuna R, Lienau D, Hughes KT, Johnson RC. Sequence, regulation, and functions of fis in Salmonella typhimurium. J Bacteriol 1995; 177:2021-32. [PMID: 7536730 PMCID: PMC176845 DOI: 10.1128/jb.177.8.2021-2032.1995] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The fis operon from Salmonella typhimurium has been cloned and sequenced, and the properties of Fis-deficient and Fis-constitutive strains were examined. The overall fis operon organization in S. typhimurium is the same as that in Escherichia coli, with the deduced Fis amino acid sequences being identical between both species. While the open reading frames upstream of fis have diverged slightly, the promoter regions between the two species are also identical between -49 and +94. Fis protein and mRNA levels fluctuated dramatically during the course of growth in batch cultures, peaking at approximately 40,000 dimers per cell in early exponential phase, and were undetectable after growth in stationary phase. fis autoregulation was less effective in S. typhimurium than that in E. coli, which can be correlated with the absence or reduced affinity of several Fis-binding sites in the S. typhimurium fis promoter region. Phenotypes of fis mutants include loss of Hin-mediated DNA inversion, cell filamentation, reduced growth rates in rich medium, and increased lag times when the mutants are subcultured after prolonged growth in stationary phase. On the other hand, cells constitutively expressing Fis exhibited normal logarithmic growth but showed a sharp reduction in survival during stationary phase. During the course of these studies, the sigma 28-dependent promoter within the hin-invertible segment that is responsible for fljB (H2) flagellin synthesis was precisely located.
Collapse
MESH Headings
- Amino Acid Sequence
- Bacterial Proteins/genetics
- Bacterial Proteins/physiology
- Base Sequence
- Carrier Proteins/genetics
- Carrier Proteins/physiology
- Chromosome Mapping
- Cloning, Molecular
- DNA Primers/genetics
- DNA, Bacterial/genetics
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/physiology
- Escherichia coli/genetics
- Escherichia coli Proteins
- Factor For Inversion Stimulation Protein
- Flagellin/biosynthesis
- Flagellin/genetics
- Gene Expression Regulation, Bacterial
- Genes, Bacterial
- Integration Host Factors
- Molecular Sequence Data
- Mutation
- Operon
- Phenotype
- RNA, Bacterial/genetics
- RNA, Bacterial/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Recombination, Genetic
- Salmonella typhimurium/genetics
- Salmonella typhimurium/growth & development
- Salmonella typhimurium/physiology
- Transcription, Genetic
Collapse
Affiliation(s)
- R Osuna
- Department of Biological Chemistry, School of Medicine, University of California, Los Angeles 90024, USA
| | | | | | | |
Collapse
|
10
|
KARCHER SUSANJ. TRANSPOSON MUTAGENESIS OF Escherichia coli. Mol Biol 1995. [DOI: 10.1016/b978-012397720-5.50035-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
11
|
Belden WJ, Miller SI. Further characterization of the PhoP regulon: identification of new PhoP-activated virulence loci. Infect Immun 1994; 62:5095-101. [PMID: 7927792 PMCID: PMC303230 DOI: 10.1128/iai.62.11.5095-5101.1994] [Citation(s) in RCA: 102] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Salmonella typhimurium survival within macrophages is an essential virulence property necessary to enteric fever pathogenesis. This survival requires coordinate transcriptional activation of virulence genes within acidified macrophage phagosomes. Virulence gene transcription is regulated by a two-component system comprising the PhoP (transcriptional activator) and PhoQ (sensor-kinase) proteins. Thirteen new PhoP-activated loci (designated pagD to pagP) encoding membrane or secreted proteins have been identified by use of the transposon TnphoA. Three of these loci have a chromosomal location that was linked to the previously identified pagC locus. Strains with TnphoA insertions in pagD, pagJ, pagK, and pagM were significantly attenuated for mouse virulence (50% lethal dose greater than 1,000 times that of wild-type bacteria). No strains with pag::TnphoA insertions were found to have altered sensitivity to the cationic antimicrobial peptide NP-1 defensin. PhoP and PhoQ are pleotropic regulators of membrane or secreted proteins, suggesting that the ability to effect a global change in the expression of these proteins is required for S. typhimurium survival within acidified macrophage phagosomes.
Collapse
Affiliation(s)
- W J Belden
- Infectious Disease Unit, Massachusetts General Hospital, Boston 02114
| | | |
Collapse
|
12
|
Kupchella E, Koch WH, Cebula TA. Mutant alleles of tRNA(Thr) genes suppress the hisG46 missense mutation in Salmonella typhimurium. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 1994; 23:81-88. [PMID: 8143705 DOI: 10.1002/em.2850230202] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Extragenic suppressors of the hisG46 missense mutation were mapped to the 71 and 88 min regions of the Salmonella typhimurium chromosome, positions that in Escherichia coli contain the thrV (tRNA(Thr1)) and thrT (tRNA(Thr3)) genes, respectively. The suppressor loci were identified as mutant alleles of thrV and thrT, using allele-specific colony hybridization. An oligomer, based on the conserved 5' sequence of the thrT and thrV genes in E. coli and designed to contain the putative mutant anticodon, discriminated between suppressor-containing and wild-type strains. Similarly, probes specific for the thrV[SuGGG] and thrT[SuGGG] were used to differentiate the two suppressors. To date, all extragenic suppressors of hisG46 have been identified as either thrV[SuGGG] or thrT[SuGGG]. A near equal distribution of thrV[SuGGG] and thrT[SuGGG] suppressors was found among 29 spontaneous and 43 mutagen-induced hisG46 extragenic suppressor revertants. It was concluded, therefore, that mutant alleles of thrV and thrT are predominantly, if not solely, responsible for intergenic suppression of the hisG46 mutation.
Collapse
Affiliation(s)
- E Kupchella
- Molecular Biology Branch, Food and Drug Administration, Washington, D.C. 20204
| | | | | |
Collapse
|
13
|
Abstract
The chromosomes of enteric bacteria are divided into about 50 independently supercoiled domains. It is not known whether the net level of DNA supercoiling is similar in each domain, or whether the domains are differentially supercoiled. We have addressed this question genetically, using a supercoiling-sensitive promoter to probe the relative levels of supercoiling at defined points around the Salmonella typhimurium chromosome. We conclude that, within the limits of resolution of this approach, the level of supercoiling does not differ significantly between chromosomal domains, and that each domain responds in a similar fashion to factors that perturb supercoiling. These findings have implications for the organization of the bacterial genome.
Collapse
Affiliation(s)
- G D Pavitt
- Imperial Cancer Research Fund Laboratories, University of Oxford, John Radcliffe Hospital, UK
| | | |
Collapse
|
14
|
Behlau I, Miller SI. A PhoP-repressed gene promotes Salmonella typhimurium invasion of epithelial cells. J Bacteriol 1993; 175:4475-84. [PMID: 8392513 PMCID: PMC204888 DOI: 10.1128/jb.175.14.4475-4484.1993] [Citation(s) in RCA: 218] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The Salmonella typhimurium transcriptional regulators, PhoP/PhoQ, induce phoP-activated gene (pag) expression to promote virulence and intracellular survival within macrophages. This response to the macrophage intracellular environment is simulated by phoP/phoQ constitutive mutations (phenotype PhoPc) that increase the expression of pag genes and repress the synthesis of approximately 20 proteins encoded by phoP-repressed genes (prg genes) (S. I. Miller and J. J. Mekalanos, J. Bacteriol. 172:2485-2490, 1990). PhoPc bacteria are attenuated for mouse virulence, suggesting that prg genes are virulence genes. We now report the identification of five unlinked prg loci by use of the transposon TnphoA. In general, medium conditions (i.e., starvation) that activate pag expression repress prg expression. However, variable effects on the PhoP regulon were observed when bacteria were grown under different oxygen tensions (pag and prg genes) or exposed to low pH (prg genes), suggesting heterogenous control of the regulon. One prg locus, prgH, was demonstrated to contribute to mouse virulence by both the oral and the intraperitoneal routes. prgH was located at 59 min on the Salmonella chromosome, a region where other genes essential to invasion of epithelial cells are clustered. The prgH locus was highly linked to one invasion locus, hil (C.A. Lee, B.D. Jones, and S. Falkow, Proc. Natl. Acad. Sci. USA 89:1847-1851, 1992), although transcription of prgH was opposite that of the Tn5B50-encoded promoters that result in a hyperinvasive or hil phenotype. Both PrgH and PhoPc mutant S. typhimurium were found to be defective in induction of endocytosis by Madin-Darby canine kidney (MDCK) epithelial cells. The invasion defect of PrgH but not that of PhoPc mutant bacteria was complemented by plasmids containing prgH (hil) DNA. Therefore, two virulence properties of Salmonella species, induction of endocytosis by epithelial cells and survival within macrophages, are oppositely modulated by the PhoP/PhoQ virulence regulators.
Collapse
Affiliation(s)
- I Behlau
- Infectious Disease Unit, Massachusetts General Hospital, Boston
| | | |
Collapse
|
15
|
Abstract
In a previous search for mutants of Salmonella typhimurium that are defective in heme synthesis, one class that is apparently defective in 5-aminolevulinic acid (ALA) uptake (alu) was found. Here, I describe the characterization of these mutations. The mutations all map to a single locus near 77.5 min on the genetic map, which is transcribed counterclockwise. Nutritional tests, genetic and physical mapping, and partial DNA sequence analysis revealed that alu mutants are defective in a periplasmic binding protein-dependent permease that also transports dipeptides, encoded by the dpp operon. The uptake of labeled ALA is defective in dpp mutants and is markedly increased in a strain that has elevated transcription of the dpp locus. Unlabeled L-leucyl-glycine competes with labeled ALA for uptake. In a strain carrying both a dpp-lac operon fusion and a functional copy of the dpp locus, the expression of beta-galactosidase is not induced by ALA, nor, in a hemL mutant, does expression of dpp change substantially during starvation for ALA. The dipeptide permease displays a relaxed substrate specificity that allows transport of the important nonpeptide nutrient ALA, whose structure is closely related to that of glycyl-glycine.
Collapse
Affiliation(s)
- T Elliott
- Department of Microbiology, University of Alabama, Birmingham 35294
| |
Collapse
|
16
|
Lifsics MR, Lancy ED, Maurer R. DNA replication defect in Salmonella typhimurium mutants lacking the editing (epsilon) subunit of DNA polymerase III. J Bacteriol 1992; 174:6965-73. [PMID: 1400246 PMCID: PMC207376 DOI: 10.1128/jb.174.21.6965-6973.1992] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
In Salmonella typhimurium, dnaQ null mutants (encoding the epsilon editing subunit of DNA polymerase III [Pol III]) exhibit a severe growth defect when the genetic background is otherwise wild type. Suppression of the growth defect requires both a mutation affecting the alpha (polymerase) subunit of DNA polymerase III and adequate levels of DNA polymerase I. In the present paper, we report on studies that clarify the nature of the physiological defect imposed by the loss of epsilon and the mechanism of its suppression. Unsuppressed dnaQ mutants exhibited chronic SOS induction, indicating exposure of single-stranded DNA in vivo, most likely as gaps in double-stranded DNA. Suppression of the growth defect was associated with suppression of SOS induction. Thus, Pol I and the mutant Pol III combined to reduce the formation of single-stranded DNA or accelerate its maturation to double-stranded DNA. Studies with mutants in major DNA repair pathways supported the view that the defect in DNA metabolism in dnaQ mutants was at the level of DNA replication rather than of repair. The requirement for Pol I was satisfied by alleles of the gene for Pol I encoding polymerase activity or by rat DNA polymerase beta (which exhibits polymerase activity only). Consequently, normal growth is restored to dnaQ mutants when sufficient polymerase activity is provided and this compensatory polymerase activity can function independently of Pol III. The high level of Pol I polymerase activity may be required to satisfy the increased demand for residual DNA synthesis at regions of single-stranded DNA generated by epsilon-minus pol III. The emphasis on adequate polymerase activity in dnaQ mutants is also observed in the purified alpha subunit containing the suppressor mutation, which exhibits a modestly elevated intrinsic polymerase activity relative to that of wild-type alpha.
Collapse
Affiliation(s)
- M R Lifsics
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106-4960
| | | | | |
Collapse
|
17
|
Galán JE, Ginocchio C, Costeas P. Molecular and functional characterization of the Salmonella invasion gene invA: homology of InvA to members of a new protein family. J Bacteriol 1992; 174:4338-49. [PMID: 1624429 PMCID: PMC206218 DOI: 10.1128/jb.174.13.4338-4349.1992] [Citation(s) in RCA: 432] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
One of the earliest steps in the pathogenic cycle of the facultative intracellular pathogen Salmonella spp. is the invasion of the cells of the intestinal epithelium. We have previously identified a genetic locus, inv, that allows Salmonella spp. to enter cultured epithelial cells. invA is a member of this locus, and it is the first gene of an operon consisting of at least two additional invasion genes. We have constructed strains carrying nonpolar mutations in invA and examined the individual contribution of this gene to the invasion phenotype of Salmonella typhimurium. Nonpolar S. typhimurium invA mutants were deficient in invasion of cultured epithelial cells although they were fully capable of attaching to the same cells. In addition, unlike wild-type S. typhimurium, invA mutants did not alter the normal architecture of the microvilli of polarized epithelial cells nor did they cause any alterations in the distribution of actin microfilaments of infected cells. The invasion phenotype of invA mutants was readily rescued by wild-type S. typhimurium when cultured epithelial cells were simultaneously infected with both strains. On the contrary, in a similar experiment, the adherent Escherichia coli strain RDEC-1 was not internalized into cultured cells when coinfected with wild-type S. typhimurium. The invA locus was found to be located at about 59 min on the Salmonella chromosome, 7% linked to mutS. The nucleotide sequence of invA showed an open reading frame capable of encoding a polypeptide of 686 amino acids with eight possible membrane-spanning regions and a predicted molecular weight of 75,974. A protein of this size was visualized when invA was expressed in a bacteriophage T7 RNA polymerase-based expression system. The predicted sequence of InvA was found to be homologous to Caulobacter crescentus FlbF, Yersinia LcrD, Shigella flexneri VirH, and E. coli FlhA proteins. These proteins may form part of a family of proteins with a common function, quite possibly the translocation of specific proteins across the bacterial cell membrane.
Collapse
Affiliation(s)
- J E Galán
- Department of Microbiology, School of Medicine, State University of New York, Stony Brook 11794
| | | | | |
Collapse
|
18
|
Abstract
A new method for mapping mutations in the Salmonella typhimurium chromosome is described and applied to the localization of novel regulatory mutations affecting expression of the nirB (nitrite reductase) gene. The mapping technique is also illustrated by the mapping of mutations in genes affecting carbohydrate catabolism and biosynthetic pathways. The new mapping method involves use of the hybrid phage MudP and MudQ (together referred to as Mud-P22), originally constructed by Youderian et al. (Genetics 118:581-592, 1988). This report describes a set of Mud-P22 lysogens, each member of the set containing a different Mud-P22 insertion. The insertions are scattered along the entire Salmonella genome. These lysogens, when induced by mitomycin C, generate transducing lysates that are enriched (45- to 1,400-fold over the background, generalized transducing particle population) for transducing particles containing bacterial DNA that flanks one side of the insertion. We demonstrate that within the set of lysogens there can be found at least one Mud-P22 insertion that enriches for any particular region of the Salmonella chromosome and that, therefore, all regions of the chromosome are discretely enriched and represented by the collection as a whole. We describe a technique that allows the rapid and facile determination of which lysate contains enriched sequences for the repair of a mutant locus, thereby allowing the determination of the map position of the locus. This technique is applicable to those mutations for which the wild-type allele is selectable. We also describe a procedure whereby any Tn10 insertion can be mapped by selecting for the loss of Tetr.
Collapse
Affiliation(s)
- N R Benson
- Department of Biology, University of Utah, Salt Lake City
| | | |
Collapse
|
19
|
Liu SL, Sanderson KE. A physical map of the Salmonella typhimurium LT2 genome made by using XbaI analysis. J Bacteriol 1992; 174:1662-72. [PMID: 1311300 PMCID: PMC206564 DOI: 10.1128/jb.174.5.1662-1672.1992] [Citation(s) in RCA: 93] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
XbaI digestion and pulsed-field gel electrophoresis of the genome of Salmonella typhimurium LT2 yields 24 fragments: 23 fragments (total size, 4,807 kb) are from the chromosome, and one fragment (90 kb) is from the virulence plasmid pSLT. Some of the 23 fragments from the chromosome were located on the linkage map by the use of cloned genes as probes and by analysis of strains which gain an XbaI site from the insertion of Tn10. Twenty-one of the fragments were arranged as a circular physical map by the use of linking probes from a set of 41 lysogens in which Mud-P22 was stably inserted at different sites of the chromosome; fragment W (6.6 kb) and fragment X (6.4 kb) were not located on the physical map. XbaI digestion of strains with Tn10 insertions allowed the physical locations of specific genes along the chromosome to be determined on the basis of analysis of new-fragment sizes. There is good agreement between the order of genes on the linkage map, which is based primarily on P22 joint transduction and F-mediated conjugation, and the physical map, but there are frequently differences in the length of the interval from the two methods. These analyses allowed the measurement of the amount of DNA packaged in phage P22 heads by Mud-P22 lysogens following induction; this varies from ca. 100 kb (2 min) to 240 kb (5 min) in different parts of the chromosome.
Collapse
Affiliation(s)
- S L Liu
- Department of Biological Sciences, University of Calgary, Alberta, Canada
| | | |
Collapse
|
20
|
Conlin CA, Miller CG. Cloning and nucleotide sequence of opdA, the gene encoding oligopeptidase A in Salmonella typhimurium. J Bacteriol 1992; 174:1631-40. [PMID: 1537805 PMCID: PMC206560 DOI: 10.1128/jb.174.5.1631-1640.1992] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The opdA gene (formerly called optA) of Salmonella typhimurium encodes a metallopeptidase, oligopeptidase A (OpdA), first recognized by its ability to cleave and allow utilization of N-acetyl-L-Ala4 (E. R. Vimr, L. Green, and C. G. Miller, J. Bacteriol. 153:1259-1265, 1983). Derivatives of pBR328 carrying the opdA gene were isolated and shown to express oligopeptidase activity at levels approximately 100-fold higher than that of the wild type. These plasmids complemented all of the phenotypes associated with opdA mutations (failure to use N-acetyl-L-Ala4, defective phage P22 development, and diminished endopeptidase activity). The opdA region of one of these plasmids (pCM127) was defined by insertions of Tn1000 (gamma delta), and these insertions were used as priming sites to determine the nucleotide sequence of a 2,843-bp segment of the insert DNA. This region contained an open reading frame coding for a 680-amino-acid protein, the N terminus of which agreed with that determined for purified OpdA. This open reading frame contained both a sequence motif typical of Zn2+ metalloproteases and a putative sigma 32 promoter. However, no induction was detected upon temperature shift by using a beta-galactosidase operon fusion. The predicted OpdA sequence showed similarity to dipeptidyl carboxypeptidase, the product of the S. typhimurium gene dcp, and to rat metallopeptidase EC 3.4.24.15., which is involved in peptide hormone processing.
Collapse
Affiliation(s)
- C A Conlin
- Department of Molecular Biology and Microbiology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106
| | | |
Collapse
|
21
|
Lombardo MJ, Bagga D, Miller CG. Mutations in rpoA affect expression of anaerobically regulated genes in Salmonella typhimurium. J Bacteriol 1991; 173:7511-8. [PMID: 1938946 PMCID: PMC212517 DOI: 10.1128/jb.173.23.7511-7518.1991] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
oxrB8, a mutation that diminishes the anaerobic induction of pepT and other anaerobically regulated, oxrA (fnr)-dependent Salmonella typhimurium genes, is an allele of rpoA, the gene for the alpha subunit of RNA polymerase. Four additional rpoA mutations that affect anaerobic pepT expression have been isolated after localized mutagenesis of the rpoA region. All but one of these rpoA mutations appear to have relatively specific effects on genes that require the OxrA (FNR) protein, a positive transcriptional regulator of a family of anaerobically expressed genes. All of these mutations lead to amino acid substitutions in the C-terminal region of the alpha subunit. These results taken with a number of previous observations suggest a role for the alpha subunit in the interaction between RNA polymerase and positive transcriptional regulatory proteins. They also suggest that the C-terminal region of alpha is important for these interactions.
Collapse
Affiliation(s)
- M J Lombardo
- Department of Molecular Biology and Microbiology, Case Western Reserve University, School of Medicine, Cleveland 44106
| | | | | |
Collapse
|
22
|
Miller CG, Miller JL, Bagga DA. Cloning and nucleotide sequence of the anaerobically regulated pepT gene of Salmonella typhimurium. J Bacteriol 1991; 173:3554-8. [PMID: 1904438 PMCID: PMC207971 DOI: 10.1128/jb.173.11.3554-3558.1991] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The anaerobically regulated pepT gene of Salmonella typhimurium has been cloned in pBR328. Strains carrying the pepT plasmid, pJG17, overproduce peptidase T by approximately 70-fold. The nucleotide sequence of a 2.5-kb region including pepT has been determined. The sequence codes for a protein of 44,855 Da, consistent with a molecular weight of approximately 46,000 for peptidase T (as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and gel filtration). The N-terminal amino acid sequence of peptidase T purified from a pJG17-containing strain matches that predicted by the nucleotide sequence. A plasmid carrying an anaerobically regulated pepT::lacZ transcriptional fusion contains only 165 bp 5' to the start of translation. This region contains a sequence highly homologous to that identified in Escherichia coli as the site of action of the FNR protein, a positive regulator of anaerobic gene expression. A region of the deduced amino acid sequence of peptidase T is similar to segments of Pseudomonas carboxypeptidase G2, the E. coli peptidase encoded by the iap gene, and E. coli peptidase D.
Collapse
Affiliation(s)
- C G Miller
- Department of Molecular Biology and Microbiology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106
| | | | | |
Collapse
|
23
|
Kulakauskas S, Wikström PM, Berg DE. Efficient introduction of cloned mutant alleles into the Escherichia coli chromosome. J Bacteriol 1991; 173:2633-8. [PMID: 1826503 PMCID: PMC207830 DOI: 10.1128/jb.173.8.2633-2638.1991] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
An efficient method for moving mutations in cloned Escherichia coli DNA from plasmid vectors to the bacterial chromosome was developed. Cells carrying plasmids that had been mutated by the insertion of a resistance gene were infected with lambda phage containing homologous cloned DNA, and resulting lysates were used for transduction. Chromosomal transductants (recombinants) were distinguished from plasmid transductants by their ampicillin-sensitive phenotype, or plasmid transductants were avoided by using a recBC sbcB E. coli strain as recipient. Chromosomal transductants were usually haploid when obtained in a nonlysogen because of selection against the lambda vector and partially diploid when obtained in a lysogen. Pure stocks of phage that carry the resistance marker and transduce it at high frequency were obtained from transductant bacteria. The lambda-based method for moving mutant alleles into the bacterial chromosome described here should be useful for diverse analyses of gene function and genome structure.
Collapse
Affiliation(s)
- S Kulakauskas
- Department of Molecular Microbiology, Washington University Medical School, St. Louis, Missouri 63110
| | | | | |
Collapse
|
24
|
Abstract
Thirteen temperature-sensitive lethal mutations of Salmonella typhimurium map near metC at 65 min and form the clmF (conditional lethal mutation) locus. The mutations in this region were ordered by three-point transduction crosses. After a shift to the nonpermissive temperature, many of these clmF mutants failed to complete the segregation of nucleoids into daughter cells; daughter nucleoids appeared incompletely separated and asymmetrically positioned within cells. Some clmF mutants showed instability of F' episomes at permissive growth temperatures yet showed no detectable defect with smaller multicopy plasmids such as pSC101 or pBR322. In addition, many of the clmF mutants rapidly lost viability yet continued DNA replication at the nonpermissive temperature. These results suggest that the clmF locus encodes at least one indispensable gene product that is required for faithful partitioning of the bacterial nucleoid and F-plasmid replicons.
Collapse
Affiliation(s)
- M B Schmid
- Department of Biology, Princeton University, New Jersey 08544
| |
Collapse
|
25
|
Schmid MB, Kapur N, Isaacson DR, Lindroos P, Sharpe C. Genetic analysis of temperature-sensitive lethal mutants of Salmonella typhimurium. Genetics 1989; 123:625-33. [PMID: 2558954 PMCID: PMC1203875 DOI: 10.1093/genetics/123.4.625] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
We have isolated 440 mutants of Salmonella typhimurium that show temperature-sensitive growth on complex medium at 44 degrees. Approximately 16% of the mutations in these strains have been mapped to 17 chromosomal locations; two of these chromosomal locations seem to include several essential genes. Genetic analysis of the mutations suggests that the collection saturates the genes readily mutable to a ts lethal phenotype in S. typhimurium. Physiological characteristics of the ts lethal mutants were tested: 6% of the mutants can grow at high temperature under anaerobic conditions, 17% can grow when the medium includes 0.5 M KCl, and 9% of the mutants die after a 2-hr incubation at the nonpermissive temperature. Most ts lethal mutations in this collection probably affect genes required for growth at all temperatures (not merely during high temperature growth) since Tn10 insertions that cause a temperature-sensitive lethal phenotype are rare.
Collapse
Affiliation(s)
- M B Schmid
- Department of Biology, Princeton University, New Jersey 08544
| | | | | | | | | |
Collapse
|
26
|
Lancy ED, Lifsics MR, Kehres DG, Maurer R. Isolation and characterization of mutants with deletions in dnaQ, the gene for the editing subunit of DNA polymerase III in Salmonella typhimurium. J Bacteriol 1989; 171:5572-80. [PMID: 2551891 PMCID: PMC210399 DOI: 10.1128/jb.171.10.5572-5580.1989] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
dnaQ (mutD) encodes the editing exonuclease subunit (epsilon) of DNA polymerase III. Previously described mutations in dnaQ include dominant and recessive mutator alleles as well as leaky temperature-sensitive alleles. We describe the properties of strains bearing null mutations (deletion-substitution alleles) of this gene. Null mutants exhibited a growth defect as well as elevated spontaneous mutation. As a consequence of the poor growth of dnaQ mutants and their high mutation rate, these strains were replaced within single colonies by derivatives carrying an extragenic suppressor mutation that compensated the growth defect but apparently not the mutator effect. Sixteen independently derived suppressors mapped in the vicinity of dnaE, the gene for the polymerization subunit (alpha) of DNA polymerase III, and one suppressor that was sequenced encoded an altered alpha polypeptide. Partially purified DNA polymerase III containing this altered alpha subunit was active in polymerization assays. In addition to their dependence on a suppressor mutation affecting alpha, dnaQ mutants strictly required DNA polymerase I for viability. We argue from these data that in the absence of epsilon, DNA replication falters unless secondary mechanisms, including genetically coded alteration in the intrinsic replication capacity of alpha and increased use of DNA polymerase I, come into play. Thus, epsilon plays a role in DNA replication distinct from its known role in controlling spontaneous mutation frequency.
Collapse
Affiliation(s)
- E D Lancy
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, Ohio 44106
| | | | | | | |
Collapse
|
27
|
Hmiel SP, Snavely MD, Florer JB, Maguire ME, Miller CG. Magnesium transport in Salmonella typhimurium: genetic characterization and cloning of three magnesium transport loci. J Bacteriol 1989; 171:4742-51. [PMID: 2548998 PMCID: PMC210275 DOI: 10.1128/jb.171.9.4742-4751.1989] [Citation(s) in RCA: 116] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Salmonella typhimurium strains lacking the CorA Mg2+ transport system retain Mg2+ transport and the ability to grow in medium containing a low concentration of Mg2+. Mutagenesis of a corA strain followed by ampicillin selection allowed isolation of a strain that required Mg2+-supplemented media for growth. This strain contained mutations in at least two loci in addition to corA, designated mgtA and mgtB (for magnesium transport). Strains with mutations at all three loci (corA, mgtA, and mgtB) exhibited no detectable Mg2+ uptake and required 10 mM Mg2+ in the medium for growth at the wild-type rate. A wild-type allele at any one of the three loci was sufficient to restore both Mg2+ transport and growth on 50 microM Mg2+. P22 transduction was used to map the mgt loci. The mgtA mutation was located to approximately 98 map units (cotransducible with pyrB), and mgtB mapped at about 80.5 map units (near gltC). A chromosomal library from S. typhimurium was screened for clones that complemented the Mg2+ requirement of a corA mgtA mgtB mutant. The three classes of plasmids obtained could each independently restore Mg2+ transport to this strain and corresponded to the corA, mgtA, and mgtB loci. Whereas the corA locus of S. typhimurium is analogous to the corA locus previously described for Escherichia coli, neither of the mgt loci described in this report appears analogous to the single mgt locus described in E. coli. Our data in this and the accompanying papers (M. D. Snavely, J. B. Florer, C. G. Miller, and M. E. Maguire, J. Bacteriol. 171:4752-4760, 4761-4766, 1989) indicate that the corA, mgtA, and mgtB loci of S. typhimurium represent three distinct systems that transport Mg2+.
Collapse
Affiliation(s)
- S P Hmiel
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106
| | | | | | | | | |
Collapse
|
28
|
Snavely MD, Florer JB, Miller CG, Maguire ME. Magnesium transport in Salmonella typhimurium: 28Mg2+ transport by the CorA, MgtA, and MgtB systems. J Bacteriol 1989; 171:4761-6. [PMID: 2670893 PMCID: PMC210277 DOI: 10.1128/jb.171.9.4761-4766.1989] [Citation(s) in RCA: 142] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Three loci in Salmonella typhimurium (corA, mgtA, and mgtB) code for components of distinct Mg2+ transport systems (S. P. Hmiel, M. D. Snavely, J. B. Florer, M. E. Maguire, and C. G. Miller, J. Bacteriol. 171:4742-4751, 1989). Strains carrying one wild-type and two mutant alleles of the three loci were constructed to study the kinetics and specificity of ion transport of each system in isolation. The transport systems had different Km and Vmax values for Mg2+ uptake, and each was inhibited by other divalent cations in a distinct rank order of potency: for CorA, Mg2+ greater than Mn2+ greater than Co2+ greater than Ni2+ greater than Ca2+; for MgtA, Zn2+ greater than or equal to Mg2+ greater than Ni2+ approximately Co2+ greater than Ca2+; and for MgtB, Mg2+ approximately Ni2+ approximately Ni2+ greater than Mn2+ much greater than Ca2+. Other differences among the three systems were apparent. The CorA transport system functioned as a Mg2+-Mg2+ exchange system, mediating both efflux and influx of Mg2+. Neither the MgtA nor the MgtB system could mediate Mg2+ efflux. Transport via the MgtB system was very temperature sensitive; Mg2+ was transported at 37 degrees C but not at 20 degrees C. The MgtA and the MgtB transport systems were found to be regulated by the extracellular concentration of Mg2+.
Collapse
Affiliation(s)
- M D Snavely
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44120
| | | | | | | |
Collapse
|
29
|
Miller SI, Kukral AM, Mekalanos JJ. A two-component regulatory system (phoP phoQ) controls Salmonella typhimurium virulence. Proc Natl Acad Sci U S A 1989; 86:5054-8. [PMID: 2544889 PMCID: PMC297555 DOI: 10.1073/pnas.86.13.5054] [Citation(s) in RCA: 704] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
We have determined that Salmonella typhimurium strains with mutations in the positive regulatory locus phoP are markedly attenuated in virulence for BALB/c mice. The DNA sequence for the phoP locus indicates that it is composed of two genes present in an operon, termed phoP and phoQ. The deduced amino acid sequence of the phoP and phoQ gene products are highly similar to other members of bacterial two-component transcriptional regulators that respond to environmental stimuli. S. typhimurium strains with transposon insertions that create transcriptional and translational gene fusions that require phoP and phoQ for expression have been isolated and have different chromosomal locations, indicating that this system is a regulon. One of these fusion strains, containing a mutation in a gene termed pagC, has a virulence defect. Other strains, including those containing mutations in the phoN gene, encoding an acid phosphatase, have wild-type virulence. Strains with pagC, phoP, or phoQ mutations have decreased survival in cultured mouse macrophages. When used as live vaccines in mice, strains with phoP or phoQ mutations afford partial protection to subsequent challenge by wild-type S. typhimurium.
Collapse
Affiliation(s)
- S I Miller
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, MA 02115
| | | | | |
Collapse
|
30
|
Singer M, Baker TA, Schnitzler G, Deischel SM, Goel M, Dove W, Jaacks KJ, Grossman AD, Erickson JW, Gross CA. A collection of strains containing genetically linked alternating antibiotic resistance elements for genetic mapping of Escherichia coli. Microbiol Rev 1989; 53:1-24. [PMID: 2540407 PMCID: PMC372715 DOI: 10.1128/mr.53.1.1-24.1989] [Citation(s) in RCA: 519] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We present a collection of 182 isogenic strains containing genetically linked antibiotic resistance elements located at approximately 1-min intervals around the Escherichia coli chromosome. At most positions both Tn10 (Tetr) and TN10kan (Kanr) elements are available, so that the collection contains a linked set of alternating antibiotic resistance markers. The map position of each insertion has been aligned to the E. coli genetic map as well as to the Kohara ordered clone bank. These strains are designed to be used in a rapid two-step mapping system in E. coli. In the first step, the mutation is localized to a 5- to 15-min region of the chromosome by Hfr mapping with a set of Hfr strains containing either Tn10 or Tn10kan elements located 20 min from their respective origins of transfer. In the second step, the mutation is localized to a 1-min region by P1 transduction, with a collection of isogenic insertion strains as donors. We discuss the uses of this collection of strains to map and eventually to clone a variety of mutations in E. coli.
Collapse
|
31
|
|
32
|
Goldman RC, Devine EM. Isolation of Salmonella typhimurium strains that utilize exogenous 3-deoxy-D-manno-octulosonate for synthesis of lipopolysaccharide. J Bacteriol 1987; 169:5060-5. [PMID: 2822662 PMCID: PMC213908 DOI: 10.1128/jb.169.11.5060-5065.1987] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Spontaneous mutants of Salmonella typhimurium LT2 were selected for the ability to accumulate exogenous 3-deoxy-D-manno-octulosonate (KDO). Bacteria containing a gene (kdsA) which codes for a temperature-sensitive KDO-8-phosphate synthetase were plated at the restrictive temperature of 42 degrees C on medium containing 5 mM KDO. Since bacteria containing the kdsA lesion are unable to grow at 42 degrees C due to inhibition of lipopolysaccharide (LPS) synthesis and accumulation of lipid A precursor, this method allowed direct, positive selection of mutants capable of utilizing exogenous KDO for LPS synthesis. Spontaneous mutants, selected at a frequency of about 10(-6), required exogenous KDO for growth at 42 degrees C. The growth rate at 42 degrees C was nearly normal in the presence of 20 mM KDO and was directly proportional to KDO concentrations below 20 mM. Exogenous KDO also suppressed accumulation of lipid A precursor. The apparent Km for KDO accumulation was 23 mM, and the maximum rate of transport was calculated to be 505 pmol of KDO per min per 10(8) cells. Bacteria incorporated exogenous [3H]KDO exclusively into LPS, with less than 10% dilution in specific activity due to residual endogenous KDO synthesis. The mutation giving rise to the ability to accumulate exogenous KDO was extremely useful in the direct screening for new mutations in the kdsA gene after localized mutagenesis. Five mutations in kdsA were isolated, four of which were new alleles as determined by on fine-structure analysis. The ability to introduce labeled (3H, 13C, and 14C) KDO in vivo should simplify and extend the analysis of this critical metabolic pathway in gram-negative bacteria.
Collapse
Affiliation(s)
- R C Goldman
- Anti-Infective Research Division, Abbott Laboratories, Abbott Park, Illinois 60064
| | | |
Collapse
|