1
|
Sun L, Sun S, Liu T, Lei X, Liu R, Zhang J, Dai S, Li J, Ding Y. Association Analysis of the Genomic and Functional Characteristics of Halotolerant Glutamicibacter endophyticus J2-5-19 from the Rhizosphere of Suaeda salsa. Microorganisms 2025; 13:208. [PMID: 39858975 PMCID: PMC11767460 DOI: 10.3390/microorganisms13010208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 01/14/2025] [Accepted: 01/16/2025] [Indexed: 01/27/2025] Open
Abstract
Halotolerant plant growth-promoting bacteria (HT-PGPB) have attracted considerable attention for their significant potential in mitigating salt stress in crops. However, the current exploration and development of HT-PGPB remain insufficient to meet the increasing demands of agriculture. In this study, an HT-PGPB isolated from coastal saline-alkali soil in the Yellow River Delta was identified as Glutamicibacter endophyticus J2-5-19. The strain was capable of growing in media with up to 13% NaCl and producing proteases, siderophores, and the plant hormone IAA. Under 4‱ salt stress, inoculation with strain J2-5-19 significantly increased the wheat seed germination rate from 37.5% to 95%, enhanced the dry weight of maize seedlings by 41.92%, and notably improved the development of maize root systems. Moreover, this work presented the first whole-genome of Glutamicibacter endophyticus, revealing that G. endophyticus J2-5-19 resisted salt stress by expelling sodium ions and taking up potassium ions through Na+/H+ antiporters and potassium uptake proteins, while also accumulating compatible solutes such as betaine, proline, and trehalose. Additionally, the genome contained multiple key plant growth-promoting genes, including those involved in IAA biosynthesis, siderophore production, and GABA synthesis. The findings provide a theoretical foundation and microbial resources for the development of specialized microbial inoculants for saline-alkali soils.
Collapse
Affiliation(s)
- Longhao Sun
- Department of Microbiology, College of Life Sciences, Shandong Agricultural University, Taian 271018, China
- Shandong Engineering Research Center of Plant-Microbial Restoration for Saline-Alkali Land, Taian 271018, China
| | - Shanshan Sun
- Department of Microbiology, College of Life Sciences, Shandong Agricultural University, Taian 271018, China
- Shandong Engineering Research Center of Plant-Microbial Restoration for Saline-Alkali Land, Taian 271018, China
| | - Tianyang Liu
- Department of Microbiology, College of Life Sciences, Shandong Agricultural University, Taian 271018, China
- Shandong Engineering Research Center of Plant-Microbial Restoration for Saline-Alkali Land, Taian 271018, China
| | - Xinmin Lei
- Department of Microbiology, College of Life Sciences, Shandong Agricultural University, Taian 271018, China
- Shandong Engineering Research Center of Plant-Microbial Restoration for Saline-Alkali Land, Taian 271018, China
| | - Ruiqi Liu
- Department of Microbiology, College of Life Sciences, Shandong Agricultural University, Taian 271018, China
- Shandong Engineering Research Center of Plant-Microbial Restoration for Saline-Alkali Land, Taian 271018, China
| | - Junyi Zhang
- Department of Microbiology, College of Life Sciences, Shandong Agricultural University, Taian 271018, China
- Shandong Engineering Research Center of Plant-Microbial Restoration for Saline-Alkali Land, Taian 271018, China
| | - Shanshan Dai
- Department of Microbiology, College of Life Sciences, Shandong Agricultural University, Taian 271018, China
- Shandong Engineering Research Center of Plant-Microbial Restoration for Saline-Alkali Land, Taian 271018, China
| | - Jing Li
- Department of Microbiology, College of Life Sciences, Shandong Agricultural University, Taian 271018, China
- Shandong Engineering Research Center of Plant-Microbial Restoration for Saline-Alkali Land, Taian 271018, China
| | - Yanqin Ding
- Department of Microbiology, College of Life Sciences, Shandong Agricultural University, Taian 271018, China
- Shandong Engineering Research Center of Plant-Microbial Restoration for Saline-Alkali Land, Taian 271018, China
| |
Collapse
|
2
|
Martinac B, Kung C. The force-from-lipid principle and its origin, a ‘ what is true for E. coli is true for the elephant’ refrain. J Neurogenet 2022; 36:44-54. [DOI: 10.1080/01677063.2022.2097674] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Boris Martinac
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Sydney, Australia
- School of Clinical Medicine, UNSW Medicine & Health, St Vincent's Healthcare Clinical Campus, Faculty of Medicine and Health, University of New South Wales, Sydney, Australia
| | - Ching Kung
- Laboratory of Molecular Biology and the Department of Genetics, University of Wisconsin–Madison, Madison, WI, USA
| |
Collapse
|
3
|
MscL: The Bacterial Mechanosensitive Channel of Large Conductance. MECHANOSENSITIVE ION CHANNELS, PART A 2007. [DOI: 10.1016/s1063-5823(06)58008-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
4
|
Abstract
This map is an update of the edition 9 map by Berlyn et al. (M. K. B. Berlyn, K. B. Low, and K. E. Rudd, p. 1715-1902, in F. C. Neidhardt et al., ed., Escherichia coli and Salmonella: cellular and molecular biology, 2nd ed., vol. 2, 1996). It uses coordinates established by the completed sequence, expressed as 100 minutes for the entire circular map, and adds new genes discovered and established since 1996 and eliminates those shown to correspond to other known genes. The latter are included as synonyms. An alphabetical list of genes showing map location, synonyms, the protein or RNA product of the gene, phenotypes of mutants, and reference citations is provided. In addition to genes known to correspond to gene sequences, other genes, often older, that are described by phenotype and older mapping techniques and that have not been correlated with sequences are included.
Collapse
Affiliation(s)
- M K Berlyn
- Department of Biology and School of Forestry and Environmental Studies, Yale University, New Haven, Connecticut 06520-8104, USA.
| |
Collapse
|
5
|
|
6
|
Trchounian A. Ion Exchange in Facultative Anaerobes: Does a Proton-potassium Pump Exist in AnaerobicEscherichia Coli? Anaerobe 1997; 3:355-71. [PMID: 16887611 DOI: 10.1006/anae.1997.0122] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/1997] [Accepted: 05/27/1997] [Indexed: 11/22/2022]
Affiliation(s)
- A Trchounian
- Department of Biophysics, Biological Faculty of Yerevan State University, 375049, Yerevan, Armenia.
| |
Collapse
|
7
|
Sukharev SI, Blount P, Martinac B, Kung C. Mechanosensitive channels of Escherichia coli: the MscL gene, protein, and activities. Annu Rev Physiol 1997; 59:633-57. [PMID: 9074781 DOI: 10.1146/annurev.physiol.59.1.633] [Citation(s) in RCA: 243] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Although mechanosensory responses are ubiquitous and diverse, the molecular bases of mechanosensation in most cases remain mysterious MscL, a mechanosensitive channel of large conductance of Escherichia coli and its bacterial homologues are the first and currently only channel molecules shown to directly sense mechanical stretch of the membrane. In response to the tension conveyed via the lipid bilayer, MscL increases its open probability by several orders of magnitude. In the present review we describe the identification, cloning, and first sets of biophysical and structural data on this simplest mechanosensory molecule. We discovered a 2.5-ns mechanosensitive conductance in giant E. coli spheroplasts. Using chromatographies to enrich the target and patch clamp to assay the channel activity in liposome-reconstituted fractions, we identified the MscL protein and cloned the mscL gene. MscL comprises 136 amino acid residues (15 kDa), with two highly hydrophobic regions, and resides in the inner membrane of the bacterium. PhoA-fusion experiments indicate that the protein spans the membrane twice with both termini in the cytoplasm. Spectroscopic techniques show that it is highly helical. Expression of MscL tandems and covalent cross-linking suggest that the active channel complex is a homo-hexamer. We have identified several residues, which when deleted or substituted, affect channel kinetics or mechanosensitivity. Although unique when discovered, highly conserved MscL homologues in both gram-negative and gram-positive bacteria have been found, suggesting their ubiquitous importance among bacteria.
Collapse
Affiliation(s)
- S I Sukharev
- Laboratory of Molecular Biology, University of Wisconsin, Madison 53706, USA
| | | | | | | |
Collapse
|
8
|
Trchounian AA, Ogandjanian ES. An electrochemical study of energy-dependent potassium accumulation in E. coli Part 15. K+-uptaking activity on glycolysing Trk mutants. ACTA ACUST UNITED AC 1996. [DOI: 10.1016/0302-4598(95)01865-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
9
|
Conway de Macario E, Macario AJ. Transcription of the archaeal trkA homolog in Methanosarcina mazei S-6. J Bacteriol 1995; 177:6077-82. [PMID: 7592370 PMCID: PMC177445 DOI: 10.1128/jb.177.21.6077-6082.1995] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Transcription of the archaeal trkA gene homolog in Methanosarcina mazei S-6 was studied at the optimal growth temperature of 37 degrees C and after heat shock at 45 degrees C. Northern (RNA) blotting results (transcript size) and data from primer extension experiments to map the transcription initiation site indicate that trkA is cotranscribed with another gene. The latter, orf11, encodes a protein of 94 amino acids (10,611 Da) and is located upstream of trkA, with which it overlaps: the translation stop codon of orf11, TGA, shares the bases T and G with the translation start codon of trkA, ATG. These genes' transcription was decreased by heat shock to the point of making the transcript undetectable by Northern or dot blotting procedures. orf11 and trkA differ in codon usage patterns, and the proteins coded by them, i.e., Orf11 and TrkA, are dissimilar in amino acid sequence and composition.
Collapse
Affiliation(s)
- E Conway de Macario
- Wadsworth Center, Division of Molecular Medicine, New York State Department of Health, Albany 12201-0509, USA
| | | |
Collapse
|
10
|
Nakamura T, Matsuba Y, Yamamuro N, Booth IR, Unemoto T. Cloning and sequencing of a K+ transport gene (trk A) from the marine bacterium Vibrio alginolyticus. BIOCHIMICA ET BIOPHYSICA ACTA 1994; 1219:701-5. [PMID: 7948029 DOI: 10.1016/0167-4781(94)90231-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
A gene has been cloned from the marine bacterium Vibrio alginolyticus that functionally complements a mutant strain of Escherichia coli, TK420, defective in K+ transport genes (kdpABC, trkD, trkA). The cloned Vibrio gene allowed TK420 to grow in a synthetic medium containing less than 10 mM K+ and concomitantly led to an increase in K+ uptake activity. The nucleotide sequence of the cloned fragment revealed an open reading frame, which encodes a protein with a predicted 458 amino acid sequence and molecular mass of 50,122 Da. This gene has 71% homology to trkA gene at the DNA level from E. coli and the deduced amino acid sequence is 79% identical with E. coli TrkA, implying that V. alginolyticus has a trkA-like gene as a component of K+ transport systems.
Collapse
Affiliation(s)
- T Nakamura
- Laboratory of Membrane Biochemistry, Faculty of Pharmaceutical Sciences, Chiba University, Japan
| | | | | | | | | |
Collapse
|
11
|
Sukharev SI, Blount P, Martinac B, Blattner FR, Kung C. A large-conductance mechanosensitive channel in E. coli encoded by mscL alone. Nature 1994; 368:265-8. [PMID: 7511799 DOI: 10.1038/368265a0] [Citation(s) in RCA: 562] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
All cellular organisms respond to vibration, touch, gravity or changes in osmolarity, although the molecules on which such mechanosensations depend are unknown. Candidates include certain channels that gate in response to membrane stretch. Patch-clamp experiments with Escherichia coli envelope have revealed a mechanosensitive channel with very large conductance (MscL) and one with a smaller conductance (MscS) which may be important in osmoregulation. Here we have solubilized and fractionated the envelope, reconstituted the MscL activity in vitro, and traced it to a small protein, whose gene, mscL, we then cloned. Insertional disruption of mscL removes the channel activity, whereas re-expression of mscL borne on an expression plasmid restores it. MscL-channel activities were observed in material from a cell-free expression system with mscL as the only template. The mscL nucleotide sequence predicts a unique protein of only 136 amino acids, with a highly hydrophobic core and very different from porins or other known proteins.
Collapse
Affiliation(s)
- S I Sukharev
- Laboratory of Molecular Biology, University of Wisconsin-Madison 53706
| | | | | | | | | |
Collapse
|
12
|
Macario AJ, Dugan CB, Conway de Macario E. An archaeal trkA homolog near dnaK and dnaJ. BIOCHIMICA ET BIOPHYSICA ACTA 1993; 1216:495-8. [PMID: 8268235 DOI: 10.1016/0167-4781(93)90022-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The first trkA gene homolog in the phylogenetic domain Archaea is reported. The gene is located near the dnaK-dnaJ gene cluster in the genome of Methanosarcina mazei S-6, and encodes a protein homologous to the only other TrkA known, i.e., that of the bacterium Escherichia coli, involved in K+ transport. This finding supports an essential, evolutionarily early, and conserved role for this gene in cell survival and adaptation.
Collapse
Affiliation(s)
- A J Macario
- Wadsworth Center for Laboratories and Research, New York State Department of Health, School of Public Health, University at Albany 12201-0509
| | | | | |
Collapse
|
13
|
Schlösser A, Hamann A, Bossemeyer D, Schneider E, Bakker EP. NAD+ binding to the Escherichia coli K(+)-uptake protein TrkA and sequence similarity between TrkA and domains of a family of dehydrogenases suggest a role for NAD+ in bacterial transport. Mol Microbiol 1993; 9:533-43. [PMID: 8412700 DOI: 10.1111/j.1365-2958.1993.tb01714.x] [Citation(s) in RCA: 103] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The nucleotide sequence of trkA, a gene encoding a surface component of the constitutive K(+)-uptake systems TrkG and TrkH from Escherichia coli, was determined. The structure of the TrkA protein deduced from the nucleotide sequence accords with the view that TrkA is peripherally bound to the inner side of the cytoplasmic membrane. Analysis by a dot matrix revealed that TrkA is composed of similar halves. The N-terminal part of each TrkA half (residues 1-130 and 234-355, respectively) is similar to the complete NAD(+)-binding domain of NAD(+)-dependent dehydrogenases. The C-terminal part of each TrkA half (residues 131-233 and 357-458, respectively) aligns with the first 100 residues of the catalytic domain of glyceraldehyde-3-phosphate dehydrogenase. Strong u.v. illumination at 252 nm led to cross-linking of NAD+ or NADH, but not of ATP to the isolated TrkA protein.
Collapse
Affiliation(s)
- A Schlösser
- Abteilung Mikrobiologie, Universität Osnabrück, Germany
| | | | | | | | | |
Collapse
|
14
|
Guillon JM, Mechulam Y, Schmitter JM, Blanquet S, Fayat G. Disruption of the gene for Met-tRNA(fMet) formyltransferase severely impairs growth of Escherichia coli. J Bacteriol 1992; 174:4294-301. [PMID: 1624424 PMCID: PMC206212 DOI: 10.1128/jb.174.13.4294-4301.1992] [Citation(s) in RCA: 136] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
In bacteria, as well as in chloroplasts and mitochondria, the free amino group of the methionylated initiator tRNA(fMet) is specifically modified by the addition of a formyl group. The importance of this modification remains unclear. With the availability of pure Escherichia coli 10-formyltetrahydrofolate:L-methionyl-tRNA(fMet) N-formyltransferase, the enzyme catalyzing Met-tRNA(fMet) formylation, the corresponding fmt gene and its flanking regions were cloned and sequenced. The chromosomal fmt gene was disrupted, and strains modified in their formylation activity were constructed. A depletion of the cellular formylation activity was accompanied by a decrease in the growth rate of the bacteria. At 37 degrees C, in a rich medium, the absence of a functional fmt gene reduced the growth rate to 0.28 doubling per h, from 2.3 for the control strain. At 42 degrees C, the studied fmt mutant strain did not grow further.
Collapse
Affiliation(s)
- J M Guillon
- Laboratoire de Biochimie, Unité Associée au Centre National de la Recherche Scientifique numéro 240, Ecole Polytechnique, Palaiseau, France
| | | | | | | | | |
Collapse
|
15
|
Trchounian A, Ogandjanian E, Mironova G. An electrochemical study of energy-dependent potassium accumulation in E. coli. ACTA ACUST UNITED AC 1992. [DOI: 10.1016/0302-4598(92)87011-i] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
16
|
Trchounian A, Ogandjanian E, Mironova G. An electrochemical study of energy-dependent potassium accumulation in E. coli. J Electroanal Chem (Lausanne) 1992. [DOI: 10.1016/0022-0728(92)85130-u] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
17
|
Genetic analysis of potassium transport loci in Escherichia coli: evidence for three constitutive systems mediating uptake potassium. J Bacteriol 1991; 173:687-96. [PMID: 1987159 PMCID: PMC207060 DOI: 10.1128/jb.173.2.687-696.1991] [Citation(s) in RCA: 116] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The analysis of mutants of Escherichia coli that require elevated concentrations of K+ for growth has revealed two new genes, trkG, near minute 30 within the cryptic rac prophage, and trkH, near minute 87, the products of which affect constitutive K+ transport. The analysis of these and other trk mutations suggests that high rates of transport, previously considered to represent the activity of a single system, named TrkA, appear to be the sum of two systems, here named TrkG and TrkH. Each of these two is absolutely dependent on the product of the trkA gene, a cytoplasmic protein associated with the inner membrane (D. Bossemeyer, A. Borchard, D. C. Dosch, G. C. Helmer, W. Epstein, I. R. Booth, and E. P. Bakker, J. Biol. Chem. 264:16403-16410, 1989). The TrkH system is also dependent on the products of the trkH and trkE genes, while the TrkG system is also dependent on the product of the trkG gene and partially dependent on the product of the trkE gene. It is suggested that the trkH and trkG products are membrane proteins that form the transmembrane path for the K+ movement of the respective systems. Two mutations altering the trkA product reduce the affinity for K+ of both TrkG and TrkH, indicating that changes in peripheral protein can alter the conformation of the sites at which K+ is bound prior to transport. The TrkD system has a relatively modest rate of transport, is dependent solely on the product of the trkD gene, and is the sole saturable system for Cs+ uptake in this species (D. Bossemeyer, A. Schlösser, and E. P. Bakker, J. Bacteriol. 171:2219-2221, 1989).
Collapse
|
18
|
Owolabi JB, Rosen BP. Differential mRNA stability controls relative gene expression within the plasmid-encoded arsenical resistance operon. J Bacteriol 1990; 172:2367-71. [PMID: 2185215 PMCID: PMC208871 DOI: 10.1128/jb.172.5.2367-2371.1990] [Citation(s) in RCA: 63] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The arsenical resistance (ars) operon of the conjugative plasmid R773 encodes an ATP-driven anion extrusion pump, conferring bacterial resistance to arsenicals. The operon contains a regulatory gene, arsR, and three structural genes, arsA, arsB, and arsC. The hydrophilic ArsA and ArsC proteins are produced in large amounts, but the hydrophobic ArsB protein, an integral membrane polypeptide, is synthesized in limited quantities. Northern (RNA-DNA) hybridizations provide evidence that the inducible operon is regulated at the level of transcription. The genes were transcribed in the presence of an inducer (arsenite) as a single polycistronic mRNA with an approximate size of 4.4 kilobases (kb). This transcript was processed to generate relatively stable mRNA species: one of 2.7 kb, encoding the ArsR and ArsA proteins, and a second of 0.5 kb, encoding the ArsC protein. Segmental differences in stability within the polycistronic transcript are proposed to account for the differential expression of the ars genes. In addition, analysis of the mRNA structure at the 5' end of arsB suggests a potential translational block to the synthesis of this membrane protein.
Collapse
Affiliation(s)
- J B Owolabi
- Department of Biochemistry, School of Medicine, Wayne State University, Detroit, Michigan 48201
| | | |
Collapse
|
19
|
Bossemeyer D, Borchard A, Dosch DC, Helmer GC, Epstein W, Booth IR, Bakker EP. K+-transport Protein TrkA of Escherichia coli Is a Peripheral Membrane Protein That Requires other trk Gene Products for Attachment to the Cytoplasmic Membrane. J Biol Chem 1989. [DOI: 10.1016/s0021-9258(19)84721-x] [Citation(s) in RCA: 87] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|