1
|
Wang Y, Liu K, Zhou Y, Chen Y, Jin C, Hu Y. Integrated Analysis of microRNA and RNA-Seq Reveals Phenolic Acid Secretion Metabolism in Continuous Cropping of Polygonatum odoratum. PLANTS (BASEL, SWITZERLAND) 2023; 12:943. [PMID: 36840290 PMCID: PMC9962977 DOI: 10.3390/plants12040943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/08/2023] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
Polygonatum odoratum (Mill.) Druce is an essential Chinese herb, but continuous cropping (CC) often results in a serious root rot disease, reducing the yield and quality. Phenolic acids, released through plant root exudation, are typical autotoxic substances that easily cause root rot in CC. To better understand the phenolic acid biosynthesis of P. odoratum roots in response to CC, this study performed a combined microRNA (miRNA)-seq and RNA-seq analysis. The phenolic acid contents of the first cropping (FC) soil and CC soil were determined by HPLC analysis. The results showed that CC soils contained significantly higher levels of p-coumaric acid, phenylacetate, and caffeic acid than FC soil, except for cinnamic acid and sinapic acid. Transcriptome identification and miRNA sequencing revealed 15,788 differentially expressed genes (DEGs) and 142 differentially expressed miRNAs (DEMs) in roots from FC and CC plants. Among them, 28 DEGs and eight DEMs were involved in phenolic acid biosynthesis. Meanwhile, comparative transcriptome and microRNA-seq analysis demonstrated that eight miRNAs corresponding to five target DEGs related to phenolic acid synthesis were screened. Among them, ath-miR172a, ath-miR172c, novel_130, sbi-miR172f, and tcc-miR172d contributed to phenylalanine synthesis. Osa-miR528-5p and mtr-miR2673a were key miRNAs that regulate syringyl lignin biosynthesis. Nta-miR156f was closely related to the shikimate pathway. These results indicated that the key DEGs and DEMs involved in phenolic acid anabolism might play vital roles in phenolic acid secretion from roots of P. odoratum under the CC system. As a result of the study, we may have a better understanding of phenolic acid biosynthesis during CC of roots of P. odoratum.
Collapse
Affiliation(s)
- Yan Wang
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi 417000, China
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, State Key Laboratory of Chemo/Biosensing and Chemometrics, National Center of Technology Innovation for Saline-Alkali Tolerant Rice, College of Biology, Hunan University, Changsha 410082, China
| | - Kaitai Liu
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi 417000, China
| | - Yunyun Zhou
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi 417000, China
| | - Yong Chen
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi 417000, China
| | - Chenzhong Jin
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi 417000, China
| | - Yihong Hu
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi 417000, China
| |
Collapse
|
2
|
Wu D, Zhao Z, Zhang L, Wang L, Zhou Y. Metagenomic assembled genomes unravel purple non‑sulfur bacteria (PNSB) involved in integrating C, N, P biotransformation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 830:154591. [PMID: 35318065 DOI: 10.1016/j.scitotenv.2022.154591] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/17/2022] [Accepted: 03/11/2022] [Indexed: 06/14/2023]
Abstract
Purple non‑sulfur bacteria (PNSB) based bioprocess has been developed to remove carbon, nitrogen and phosphorus from wastewater. However, the interactions of various bioconversion of carbon (C), nitrogen (N) and phosphorus (P) are not completely clear. In this study, a genome-centric metagenomic approach was employed to delineate the shift in microbial community structures and functional genes under light and dark conditions. Seven and 22 metagenomic assembled genomes (MAGs) were recovered from samples in light and dark conditions, accounting for a substantial portion of microbes. Under light, Rhodopseudomonas palustris promoted complex metabolic processes and interactions for C, N and P conversions. Burkholderia contaminans was discovered as new potential organisms for simultaneous C, N and P removal. Metagenomics analysis confirmed genes involved in the synthesis of glycogen, poly-β-hydroxybutyrate, poly-P, amino acids and carotenoids in R. palustris. The substrate transformation mechanisms and potential pathways were proposed according to the detected metabolites. Our findings provided insights into a new biological system with simultaneous C, N and P bioconversions, and improved the understanding of interactions among the key populations.
Collapse
Affiliation(s)
- Dan Wu
- Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore
| | - Zelong Zhao
- Liaoning Key Lab of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning 116023, PR China
| | - Liang Zhang
- Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore
| | - Li Wang
- Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore
| | - Yan Zhou
- Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, Singapore 639798, Singapore.
| |
Collapse
|
3
|
Abstract
The accumulation of glycogen occurs in Escherichia coli and Salmonella enterica serovar Typhimurium as well as in many other bacteria. Glycogen will be formed when there is an excess of carbon under conditions in which growth is limited due to the lack of a growth nutrient, e.g., a nitrogen source. The structural genes of the glycogen biosynthetic enzymes of E. coli and S. serovar Typhimurium have been cloned previously, and that has provided insights in the genetic regulation of glycogen synthesis. An important aspect of the regulation of glycogen synthesis is the allosteric regulation of the ADP-Glc PPase. The current information, views, and concepts regarding the regulation of enzyme activity and the expression of the glycogen biosynthetic enzymes are presented in this review. The recent information on the amino acid residues critical for the activity of both glycogen synthase and branching enzyme (BE) is also presented. The residue involved in catalysis in the E. coli ADP-Glc PPase was determined by comparing a predicted structure of the enzyme with the known three-dimensional structures of sugar-nucleotide PPase domains. The molecular cloning of the E. coliglg K-12 structural genes greatly facilitated the subsequent study of the genetic regulation of bacterial glycogen biosynthesis. Results from studies of glycogen excess E. coli B mutants SG3 and AC70R1, which exhibit enhanced levels of the enzymes in the glycogen synthesis pathway (i.e., they are derepressed mutants), suggested that glycogen synthesis is under negative genetic regulation.
Collapse
|
4
|
Roller S, Dea ICM. Biotechnology in the Production and Modification of Biopolymers for Foods. Crit Rev Biotechnol 2008. [DOI: 10.3109/07388559209069195] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
5
|
McMeechan A, Lovell MA, Cogan TA, Marston KL, Humphrey TJ, Barrow PA. Glycogen production by different Salmonella enterica serotypes: contribution of functional glgC to virulence, intestinal colonization and environmental survival. MICROBIOLOGY-SGM 2006; 151:3969-3977. [PMID: 16339941 DOI: 10.1099/mic.0.28292-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In enteric bacteria, the contribution of endogenous energy sources to survival both inside and outside the host is poorly understood. The contribution of glycogen production to the virulence, colonization and environmental survival of different Salmonella enterica serotypes was assessed. Of 19 serotypes (339 strains) tested for glycogen production, 17 (256 strains) were positive. The avian-specific serovars S. Gallinarum (62 strains) and S. Pullorum (21 strains) did not produce glycogen. The sequence of glgC in three S. Gallinarum strains tested revealed an identical deletion of 11 consecutive bases, which was not present in S. Pullorum, and a CCC insertion after position 597. Transduction of S. Gallinarum and S. Pullorum to a glycogen-positive phenotype did not change the ability to colonize the intestine or affect virulence in the chicken. Mortality rates in chickens following oral infection with a S. Typhimurium glycogen mutant (glgC : : km) were not significantly reduced, although colonization of the intestine was reduced over the first 4 weeks of the trial. Growth and yield of the glgC : : km mutant were comparable to the parent. The glgC mutant survived less well in faeces and in water at 4 degrees C when the strain was grown in LB broth containing 0.5 % glucose, and in saline it died off more rapidly after 7 days. The data suggest that glycogen has a complex but comparatively minor role in virulence and colonization, but a more significant role in survival.
Collapse
Affiliation(s)
- Alisdair McMeechan
- School of Clinical Veterinary Science, University of Bristol, Langford House, Langford, Bristol BS40 5DU, UK
| | - Margaret A Lovell
- Institute for Animal Health (IAH), Compton Laboratory, Compton, Newbury, Berkshire RG20 7NN, UK
| | - Tristan A Cogan
- School of Clinical Veterinary Science, University of Bristol, Langford House, Langford, Bristol BS40 5DU, UK
| | - Kerrie L Marston
- Institute for Animal Health (IAH), Compton Laboratory, Compton, Newbury, Berkshire RG20 7NN, UK
| | - Tom J Humphrey
- School of Clinical Veterinary Science, University of Bristol, Langford House, Langford, Bristol BS40 5DU, UK
| | - Paul A Barrow
- Institute for Animal Health (IAH), Compton Laboratory, Compton, Newbury, Berkshire RG20 7NN, UK
| |
Collapse
|
6
|
Uttaro AD, Ugalde RA, Preiss J, Iglesias AA. Cloning and expression of the glgC gene from Agrobacterium tumefaciens: purification and characterization of the ADPglucose synthetase. Arch Biochem Biophys 1998; 357:13-21. [PMID: 9721178 DOI: 10.1006/abbi.1998.0786] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The gene encoding ADPglucose synthetase (EC 2.7.7.27) from Agrobacterium tumefaciens was isolated and expressed in Escherichia coli. The recombinant protein was purified to electrophoretic homogeneity in steps including ion-exchange and hydrophobic chromatography. The same purification procedure was utilized to purify ADPglucose synthetase from A. tumefaciens cells. The enzymes from the two sources were purified and characterized and were found to have identical kinetic, regulatory, and structural properties. In polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate, only one polypeptide band of 50 kDa was detected. In immunoblotting following electrophoresis, the 50-kDa band reacted with antibodies raised against the Escherichia coli ADPglucose synthetase; there was no reaction with antibodies raised against the spinach enzyme. The immunoreactivity of the A. tumefaciens ADPglucose synthetase was confirmed in antibody neutralization assays. Using gel filtration, the native enzyme was shown to be a tetramer. Fructose 6-phosphate and pyruvate were the most effective activators of the enzyme; maximal activation was observed in the ADPglucose synthesis direction, in which the enzyme was activated about ninefold by fructose 6-phosphate and fivefold by pyruvate. Both activators increased the affinity of the enzyme for the substrates ATP and glucose 1-phosphate. Inorganic orthophospate, ADP, AMP, and pyridoxal phosphate behaved as inhibitors of the enzyme. The distinctive regulatory properties of the enzyme from A. tumefaciens are compared with those of two enterobacterial enzymes and discussed in the context of their deduced amino acid sequences.
Collapse
Affiliation(s)
- A D Uttaro
- Department of Biochemistry, Michigan State University, East Lansing, Michigan 48824, USA
| | | | | | | |
Collapse
|
7
|
Preiss J. ADPglucose pyrophosphorylase: basic science and applications in biotechnology. BIOTECHNOLOGY ANNUAL REVIEW 1998; 2:259-79. [PMID: 9704099 DOI: 10.1016/s1387-2656(08)70013-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The enzymatic reactions of bacterial glycogen and plant starch synthesis are similar and some of the properties of the biosynthetic enzymes are compared. Regulation occurs at the synthesis of ADPglucose and in almost all cases, ADPglucose pyrophosphorylase, is allosterically activated about 10- to over 40-fold by glycolytic intermediates and inhibited by AMP, ADP or Pi. The activator specificity of the ADPglucose pyrophosphorylase varies with respect to the source of enzyme and can be correlated to the major assimilation pathway occurring in the organism. For example, ADPglucose pyrophosphorylases from plants and other oxygenic photosynthetic organisms are activated by 3-phosphoglycerate. Organisms using glycolysis for carbon assimilation have ADPglucose pyrophosphorylases with fructose-1,6-bis-phosphate as the major activator. Chemical modification and site-directed mutagenesis studies that have determined the activator binding sites for some enzymes are described. The structural genes of Escherichia coli ADPglucose pyrophosphorylase allosteric mutants which no longer require activator for activity have been isolated. Transformation of plant systems with an allosteric bacterial mutant gene (but not with the wild-type gene) increases their starch content. Transformed potato tubers can have 25-60% more starch than the normal tuber indicating the importance of allosteric regulation of ADPglucose synthesis. The increase of a normal plant product by transformation of the plant with a gene encoding the rate-limiting enzyme in starch synthesis is an important biotechnological advance and suggests the possibilities of changing starch composition (extent of branching and chain sizes) via transformation with the starch synthase and branching enzyme genes.
Collapse
Affiliation(s)
- J Preiss
- Department of Biochemistry, Michigan State University, East Lansing 48824, USA.
| |
Collapse
|
8
|
Su X, Schuler L, Shapiro S. Cloning and characterization of a glycogen synthase cDNA from human endometrium. J Steroid Biochem Mol Biol 1996; 59:459-65. [PMID: 9010351 DOI: 10.1016/s0960-0760(96)00138-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
One major human uterine response to post-ovulatory progesterone is the accumulation of glycogen by the endometrium. A temporally related increase in glycogen synthase activity has been documented, but the isozyme responsible has not yet been identified. We have amplified a glycogen synthase (GS) complementary DNA (cDNA) from human endometrium by reverse transcription-polymerase chain reaction (RT-PCR). Overlapping clones of the PCR products provided a cDNA that is 3534 base pairs (bp) long, including a 22-bp poly(A)+ tail, and an open reading frame that encodes a 737 amino acid protein with a molecular weight of 83936. This cDNA is almost identical to that of human striated muscle GS. Differences include a double nucleotide substitution at 1983-1984 and five single nucleotide substitutions located, respectively, at positions 379, 2457, 2470, 2477, and 2553. These differences only alter the predicted amino acid sequence from that of the striated muscle protein by a single substitution at position 608. A 5'-end fragment plus an internal fragment of human myometrial GS cDNA were also analysed and were shown to have identity with the endometrial GS cDNA. Northern blot hybridization, using a human muscle-derived cDNA probe, detected the presence of a 4.0-kb GS messenger RNA (mRNA) in the endometrium and myometrium. Our results establish that the GS of human Mullerian tissues is, essentially, identical to that reported for human striated muscle.
Collapse
Affiliation(s)
- X Su
- Department of Obstetrics and Gynecology, University of Wisconsin, Madison, U.S.A
| | | | | |
Collapse
|
9
|
Abstract
We present edition VIII of the genetic map of Salmonella typhimurium LT2. We list a total of 1,159 genes, 1,080 of which have been located on the circular chromosome and 29 of which are on pSLT, the 90-kb plasmid usually found in LT2 lines. The remaining 50 genes are not yet mapped. The coordinate system used in this edition is neither minutes of transfer time in conjugation crosses nor units representing "phage lengths" of DNA of the transducing phage P22, as used in earlier editions, but centisomes and kilobases based on physical analysis of the lengths of DNA segments between genes. Some of these lengths have been determined by digestion of DNA by rare-cutting endonucleases and separation of fragments by pulsed-field gel electrophoresis. Other lengths have been determined by analysis of DNA sequences in GenBank. We have constructed StySeq1, which incorporates all Salmonella DNA sequence data known to us. StySeq1 comprises over 548 kb of nonredundant chromosomal genomic sequences, representing 11.4% of the chromosome, which is estimated to be just over 4,800 kb in length. Most of these sequences were assigned locations on the chromosome, in some cases by analogy with mapped Escherichia coli sequences.
Collapse
Affiliation(s)
- K E Sanderson
- Department of Biological Sciences, University of Calgary, Alberta, Canada
| | | | | |
Collapse
|
10
|
Thorson JS, Kelly TM, Liu HW. Cloning, sequencing, and overexpression in Escherichia coli of the alpha-D-glucose-1-phosphate cytidylyltransferase gene isolated from Yersinia pseudotuberculosis. J Bacteriol 1994; 176:1840-9. [PMID: 8144449 PMCID: PMC205285 DOI: 10.1128/jb.176.7.1840-1849.1994] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
A clone of Yersinia pseudotuberculosis DNA carrying the ascA gene was constructed, and the corresponding protein was successfully overexpressed in Escherichia coli. A protocol consisting of DEAE-cellulose and Sephadex G-100 column chromatography was developed and led to a nearly homogeneous purification of the ascA product. Initial characterization showed that the ascA-encoded protein is actually the alpha-D-glucose-1-phosphate cytidylyltransferase which catalyzes the first step of the biosynthesis of CDP-ascarylose (CDP-3,6-dideoxy-L-arabino-hexose), converting alpha-D-glucose-1-phosphate to CDP-D-glucose. In contrast to early studies suggesting that this enzyme was a monomeric protein of 111 kDa, the purified cytidylyltransferase from Y. pseudotuberculosis was found to consist of four identical subunits, each with a molecular mass of 29 kDa. This assignment is supported by the fact that the ascA gene, as a part of the ascarylose biosynthetic cluster, exhibits high sequence homology with other nucleotidylyltransferases, and its product shows high cytidylyltransferase activity. Subsequent amino acid comparison with other known nucleotidylyltransferases has allowed a definition of the important active-site residues within this essential catalyst. These comparisons have also afforded the inclusion of the cytidylyltransferase into the mechanistic convergence displayed by this fundamental class of enzyme.
Collapse
Affiliation(s)
- J S Thorson
- Department of Chemistry, University of Minnesota, Minneapolis 55455
| | | | | |
Collapse
|
11
|
May T, Shinabarger D, Boyd A, Chakrabarty A. Identification of amino acid residues involved in the activity of phosphomannose isomerase-guanosine 5'-diphospho-D-mannose pyrophosphorylase. A bifunctional enzyme in the alginate biosynthetic pathway of Pseudomonas aeruginosa. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)37625-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
12
|
Smith-White BJ, Preiss J. Comparison of proteins of ADP-glucose pyrophosphorylase from diverse sources. J Mol Evol 1992; 34:449-64. [PMID: 1318389 DOI: 10.1007/bf00162999] [Citation(s) in RCA: 120] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The primary structures of 11 proteins of ADP-glucose pyrophosphorylase are aligned and compared for relationships among them. These comparisons indicate that many domains are retained in the proteins from both the enteric bacteria and the proteins from angiosperm plants. The proteins from angiosperm plants show two main groups, with one of the main groups demonstrating two subgroups. The two main groups of angiosperm plant proteins are based upon the two subunits of the enzyme, whereas the subgroups of the large subunit group are based upon the tissue in which the particular gene had been expressed. Additionally, the small subunit group shows a slight but distinct division into a grouping based upon whether the protein is from a monocot or dicot source. Previous structure-function studies with the Escherichia coli enzyme have identified regions of the primary structure associated with the substrate binding site, the allosteric activator binding site, and the allosteric inhibitor binding site. There is conservation of the primary structure of the polypeptides for the substrate binding site and the allosteric activator binding site. The nucleotide sequences of the coding regions of the genes of 11 of these proteins are compared for relationships among them. This analysis indicates that the protein for the small subunit has been subject to greater selective pressure to retain a particular primary structure. Also, the coding region of the precursor gene for the small subunit diverged from the coding region of the precursor gene for the large subunits slightly prior to the divergence of the two coding regions of the genes for the two tissue-specific large subunit genes.
Collapse
Affiliation(s)
- B J Smith-White
- Department of Biochemistry, Michigan State University, East Lansing 48824
| | | |
Collapse
|
13
|
Hill M, Kaufmann K, Otero J, Preiss J. Biosynthesis of bacterial glycogen. Mutagenesis of a catalytic site residue of ADP-glucose pyrophosphorylase from Escherichia coli. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)98920-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
14
|
Romeo T, Moore J. Comparison of the 5' flanking regions of the Salmonella typhimurium and Escherichia coli glgC genes, encoding ADP glucose pyrophosphorylases. Nucleic Acids Res 1991; 19:3452. [PMID: 1648207 PMCID: PMC328348 DOI: 10.1093/nar/19.12.3452] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Affiliation(s)
- T Romeo
- Department of Microbiology and Immunology, Texas College of Osteopathic Medicine, University of North Texas, Fort Worth 76107-2690
| | | |
Collapse
|
15
|
Affiliation(s)
- J Preiss
- Department of Biochemistry, Michigan State University, East Lansing 48824
| | | |
Collapse
|
16
|
|
17
|
Kiel JA, Elgersma HS, Beldman G, Vossen JP, Venema G. Cloning and expression of the branching enzyme gene (glgB) from the cyanobacterium Synechococcus sp. PCC7942 in Escherichia coli. Gene 1989; 78:9-17. [PMID: 2527779 DOI: 10.1016/0378-1119(89)90309-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Using the glgB gene from Escherichia coli as a hybridization probe, the gene encoding the branching enzyme of the cyanobacterium Synechococcus sp. PCC7942 has been identified on a 3.9-kb PstI fragment which was cloned into plasmid pUC9. Two types of plasmids have been isolated. Plasmid pKVN1 was expressing the Synechococcus sp. gene as was shown by complementation of the glgB mutation of E. coli KV832. Plasmid pKVN2, which carried the same insert in the opposite orientation was unable to complement E. coli KV832, indicating that the promoter of the cloned gene was either absent or was not recognized in E. coli. Determination of branching activity in extracts of Synechococcus sp. and E. coli KV832[pKVN1] showed that the enzyme was optimally active at approximately 35 degrees C. No significant activity was present at temperatures higher than 55 degrees C, reflecting the mesophilic nature of the cloned enzyme. In a cell-free coupled transcription-translation system the cloned gene specified two proteins of 84 kDa and 72 kDa, respectively, which are probably translated independently from the same gene by initiation at two different start codons.
Collapse
Affiliation(s)
- J A Kiel
- Department of Genetics, Center of Biological Sciences, Haren, The Netherlands
| | | | | | | | | |
Collapse
|
18
|
Browner MF, Nakano K, Bang AG, Fletterick RJ. Human muscle glycogen synthase cDNA sequence: a negatively charged protein with an asymmetric charge distribution. Proc Natl Acad Sci U S A 1989; 86:1443-7. [PMID: 2493642 PMCID: PMC286712 DOI: 10.1073/pnas.86.5.1443] [Citation(s) in RCA: 88] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The cDNA for human muscle glycogen synthase encodes a protein of 737 amino acids. The primary structure of glycogen synthase is not related either to bacterial glycogen synthase or to any glycogen phosphorylase. All nine of the serines that are phosphorylated in the rabbit muscle enzyme in vivo are conserved in the human muscle sequence. The amino- and carboxyl-terminal fragments, which contain all the phosphorylation sites, are very negatively charged. Overall the unphosphorylated protein has a charge of -13, while the fully phosphorylated inactive protein has a net charge of -31. The importance of the asymmetrical charge distribution is discussed.
Collapse
Affiliation(s)
- M F Browner
- Department of Biochemistry, University of California, San Francisco 94143
| | | | | | | |
Collapse
|
19
|
|
20
|
Analysis of the Escherichia coli glycogen gene cluster suggests that catabolic enzymes are encoded among the biosynthetic genes. Gene X 1988; 70:363-76. [PMID: 2975249 DOI: 10.1016/0378-1119(88)90208-9] [Citation(s) in RCA: 82] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The nucleotide sequences of the Escherichia coli genome between the glycogen biosynthetic genes glgB and glgC, and 1170 bp of DNA which follows glgA have been determined. The region between glgB and glgC contains an open reading frame (ORF) of 1521 bp which we call glgX. This ORF is capable of coding for an Mr 56,684 protein. The deduced amino acid (aa) sequence for the putative product shows significant similarity to the E. coli glycogen branching enzyme, and to several different glucan hydrolases and transferases. The regions of sequence similarity include residues which have been reported to be involved in substrate binding and catalysis by taka-amylase. This suggests that the proposed product may catalyze hydrolysis or glycosyl-transferase reactions. The cloned region which follows glgA contains an incomplete ORF (1149 bp), glgY, which appears to encode 383 aa of the N terminus of glycogen phosphorylase, based upon sequence similarity with the enzyme from rabbit muscle (47% identical aa residues) and with maltodextrin phosphorylase from E. coli (37% identical aa residues). Results suggest that neither ORF is required for glycogen biosynthesis. The localization of glycogen biosynthetic and degradative genes together in a cluster may facilitate the regulation of these systems in vivo.
Collapse
|
21
|
Leung PS, Preiss J. Cloning of the ADPglucose pyrophosphorylase (glgC) and glycogen synthase (glgA) structural genes from Salmonella typhimurium LT2. J Bacteriol 1987; 169:4349-54. [PMID: 3040690 PMCID: PMC213751 DOI: 10.1128/jb.169.9.4349-4354.1987] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The structural genes of ADPglucose pyrophosphorylase (glgC) and glycogen synthase (glgA) from Salmonella typhimurium LT2 were cloned on a 5.8-kilobase-pair insert in the SalI site of pBR322. A single strand specific radioactive probe containing the N terminus of the Escherichia coli K-12 glgC gene in M13mp8 was used to hybridize against a S. typhimurium genomic library in lambda 1059. DNA from a plaque showing a positive hybridization signal was isolated, subcloned into pBR322, and transformed into E. coli K-12 RR1 and E. coli G6MD3 (a mutant with a deletion of the glg genes). Transformants were stained with iodine for the presence of glycogen. E. coli K-12 RR1 transformants stained dark brown, whereas G6MD3 transformants stained greenish yellow, and they both were shown to contain a 5.8-kilobase-pair insert in the SalI site of pBR322, designated pPL301. Enzyme assays of E. coli K-12 G6MD3 harboring pPL301 restored ADPglucose pyrophosphorylase and glycogen synthase activities. The specific activities of ADPglucose pyrophosphorylase and glycogen synthase in E. coli K-12 RR1(pPL301) were increased 6- to 7-fold and 13- to 15-fold, respectively. Immunological and kinetic studies showed that the expressed ADPglucose pyrophosphorylase activity in transformed E. coli K-12 G6MD3 cells was very similar to that of the wild-type enzyme.
Collapse
|