1
|
Chen D, Burford WB, Pham G, Zhang L, Alto LT, Ertelt JM, Winter MG, Winter SE, Way SS, Alto NM. Systematic reconstruction of an effector-gene network reveals determinants of Salmonella cellular and tissue tropism. Cell Host Microbe 2021; 29:1531-1544.e9. [PMID: 34536347 DOI: 10.1016/j.chom.2021.08.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 06/24/2021] [Accepted: 08/20/2021] [Indexed: 11/17/2022]
Abstract
The minimal genetic requirements for microbes to survive within multiorganism communities, including host-pathogen interactions, remain poorly understood. Here, we combined targeted gene mutagenesis with phenotype-guided genetic reassembly to identify a cooperative network of SPI-2 T3SS effector genes that are sufficient for Salmonella Typhimurium (STm) to cause disease in a natural host organism. Five SPI-2 effector genes support pathogen survival within the host cell cytoplasm by coordinating bacterial replication with Salmonella-containing vacuole (SCV) division. Unexpectedly, this minimal genetic repertoire does not support STm systemic infection of mice. In vivo screening revealed a second effector-gene network, encoded by the spv operon, that expands the life cycle of STm from growth in cells to deep-tissue colonization in a murine model of typhoid fever. Comparison between Salmonella infection models suggests how cooperation between effector genes drives tissue tropism in a pathogen group.
Collapse
Affiliation(s)
- Didi Chen
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Wesley B Burford
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Giang Pham
- Division of Infectious Diseases, Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Lishu Zhang
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Laura T Alto
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - James M Ertelt
- Division of Infectious Diseases, Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Maria G Winter
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Sebastian E Winter
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Sing Sing Way
- Division of Infectious Diseases, Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Neal M Alto
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
2
|
The Tcp plasmids of Clostridium perfringens require the resP gene to ensure stable inheritance. Plasmid 2020; 107:102461. [DOI: 10.1016/j.plasmid.2019.102461] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 10/31/2019] [Accepted: 11/05/2019] [Indexed: 11/23/2022]
|
3
|
Wang Y, Jia B, Xu X, Zhang L, Wei C, Ou H, Cui Y, Shi C, Shi X. Comparative Genomic Analysis and Characterization of Two Salmonella enterica Serovar Enteritidis Isolates From Poultry With Notably Different Survival Abilities in Egg Whites. Front Microbiol 2018; 9:2111. [PMID: 30245675 PMCID: PMC6137255 DOI: 10.3389/fmicb.2018.02111] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 08/20/2018] [Indexed: 12/13/2022] Open
Abstract
Salmonellaenterica serovar Enteritidis (Salmonella Enteritidis) is a globally important foodborne pathogen, and the contaminated chicken eggs are the major source of salmonellosis in humans. Salmonella Enteritidis strains are differentially susceptible to the hostile environment of egg whites. Strains with superior survival ability in egg whites are more likely to contaminate eggs and consequently infect humans. However, the genetic basis for this phenotype is unclear. We characterized two Salmonella Enteritidis strains isolated from chicken meat that had similar genetic backgrounds but large differences in survival ability in egg whites. Although genome comparisons indicated that the gene content and genomic synteny were highly conserved, variations including six insertions or deletions (INDELs) and 70 single nucleotide polymorphisms (SNPs) were observed between the two genomes. Of these, 38 variations including four INDELs and 34 non-synonymous SNPs (nsSNP) were annotated to result in amino acid substitutions or INDELs in coding proteins. These variations were located in 38 genes involved in lysozyme inhibition, vitamin biosynthesis, cell division and DNA damage response, osmotic and oxidative protection, iron-related functions, cell envelope maintenance, amino acid and carbohydrate metabolism, antimicrobial resistance, and type III secretion system. We carried out allelic replacements for two nsSNPs in bioC (biotin synthesis) and pliC (lysozyme inhibition), and two INDELs in ftsK and yqiJ (DNA damage response) by homologous recombination, and these replacements did not alter the bacterial survival ability in egg whites. However, the bacterial survival ability in egg whites was reduced when deletion mutation of the genes bioC and pliC occurred. This study provides initial correlations between observed genotypes and phenotypes and serves as an important caveat for further functional studies.
Collapse
Affiliation(s)
- Yanyan Wang
- MOST-USDA Joint Research Center for Food Safety, School of Agriculture and Biology and State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, China
| | - Ben Jia
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Xuebin Xu
- Department of Microbiology, Shanghai Center for Disease Control and Prevention, Shanghai, China
| | - Lida Zhang
- MOST-USDA Joint Research Center for Food Safety, School of Agriculture and Biology and State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, China
| | - Chaochun Wei
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Hongyu Ou
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yan Cui
- MOST-USDA Joint Research Center for Food Safety, School of Agriculture and Biology and State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, China
| | - Chunlei Shi
- MOST-USDA Joint Research Center for Food Safety, School of Agriculture and Biology and State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, China
| | - Xianming Shi
- MOST-USDA Joint Research Center for Food Safety, School of Agriculture and Biology and State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
4
|
Afroj S, Aldahami K, Reddy G, Guard J, Adesiyun A, Samuel T, Abdela W. Simultaneous Detection of Multiple Salmonella Serovars from Milk and Chicken Meat by Real-Time PCR Using Unique Genomic Target Regions. J Food Prot 2017; 80:1944-1957. [PMID: 29058479 DOI: 10.4315/0362-028x.jfp-17-133] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 07/19/2017] [Indexed: 12/29/2022]
Abstract
A novel genomic and plasmid target-based PCR platform was developed for the detection of Salmonella serovars Heidelberg, Dublin, Hadar, Kentucky, and Enteritidis. Unique genome loci were obtained through extensive genome mining of protein databases and comparative genomic analysis of these serovars. Assays targeting Salmonella serovars Hadar, Heidelberg, Kentucky, and Dublin had 100% specificity and sensitivity, whereas those for Salmonella Enteritidis had 97% specificity and 88% sensitivity. The limits of detection for Salmonella serovars Heidelberg, Kentucky, Hadar, Enteritidis, and Dublin were 12, 9, 40, 13, and 5,280 CFU, respectively. A sensitivity assay was also performed by using milk artificially inoculated with pooled Salmonella serovars, yielding a detection limit of 1 to10 CFU/25 mL of milk samples after enrichment. The minimum DNA detected using the multiplexed TaqMan assay was 75.8 fg (1.53 × 101 genomic equivalents [GE]) for Salmonella Heidelberg, 140.8 fg (2.8 × 101 GE) for Salmonella Enteritidis, and 3.48 pg (6.96 × 102 GE) for Salmonella Dublin. PCR efficiencies were 89.8% for Salmonella Heidelberg, 94.5% for Salmonella Enteritidis, and 75.5% for Salmonella Dublin. Four types of 30 pasteurized milk samples were tested negative by culture techniques and with a genus-specific Salmonella invA gene PCR assay. Among 30 chicken samples similarly tested, 12 (40%) were positive by both culture and the invA PCR. Testing of these 12 samples with the serovar-specific PCR assay detected single and mixed contamination with Salmonella Kentucky, Salmonella Enteritidis, and Salmonella Heidelberg. Five unique primers were designed and tested by multiplex conventional PCR in conjunction with the use of the multiplex TaqMan assay with three of the primers. The diagnostic assays developed in this study could be used as tools for routine detection of these five Salmonella serovars and for epidemiological investigations of foodborne disease outbreaks.
Collapse
Affiliation(s)
- Sayma Afroj
- Department of Biology and.,Department of Pathobiology, College of Veterinary Medicine, Tuskegee University, Tuskegee, Alabama 36088, USA (ORCID: http://orcid.org/0000-0002-9262-5117 [W.A.]).,Cellular and Molecular Biosciences Program, Auburn University, Auburn, Alabama 36849, USA
| | - Khaled Aldahami
- Department of Pathobiology, College of Veterinary Medicine, Tuskegee University, Tuskegee, Alabama 36088, USA (ORCID: http://orcid.org/0000-0002-9262-5117 [W.A.])
| | - Gopal Reddy
- Department of Pathobiology, College of Veterinary Medicine, Tuskegee University, Tuskegee, Alabama 36088, USA (ORCID: http://orcid.org/0000-0002-9262-5117 [W.A.])
| | - Jean Guard
- U.S. Department of Agriculture, Agricultural Research Service, Athens, Georgia 30602, USA
| | - Abiodun Adesiyun
- School of Veterinary Medicine, Faculty of Medical Sciences, University of the West Indies, St. Augustine, Trinidad and Tobago
| | - Temesgen Samuel
- Department of Pathobiology, College of Veterinary Medicine, Tuskegee University, Tuskegee, Alabama 36088, USA (ORCID: http://orcid.org/0000-0002-9262-5117 [W.A.])
| | - Woubit Abdela
- Department of Pathobiology, College of Veterinary Medicine, Tuskegee University, Tuskegee, Alabama 36088, USA (ORCID: http://orcid.org/0000-0002-9262-5117 [W.A.])
| |
Collapse
|
5
|
Lobato-Márquez D, Molina-García L, Moreno-Córdoba I, García-Del Portillo F, Díaz-Orejas R. Stabilization of the Virulence Plasmid pSLT of Salmonella Typhimurium by Three Maintenance Systems and Its Evaluation by Using a New Stability Test. Front Mol Biosci 2016; 3:66. [PMID: 27800482 PMCID: PMC5065971 DOI: 10.3389/fmolb.2016.00066] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Accepted: 09/27/2016] [Indexed: 12/27/2022] Open
Abstract
Certain Salmonella enterica serovars belonging to subspecies I carry low-copy-number virulence plasmids of variable size (50–90 kb). All of these plasmids share the spv operon, which is important for systemic infection. Virulence plasmids are present at low copy numbers. Few copies reduce metabolic burden but suppose a risk of plasmid loss during bacterial division. This drawback is counterbalanced by maintenance modules that ensure plasmid stability, including partition systems and toxin-antitoxin (TA) loci. The low-copy number virulence pSLT plasmid of Salmonella enterica serovar Typhimurium encodes three auxiliary maintenance systems: one partition system (parAB) and two TA systems (ccdABST and vapBC2ST). The TA module ccdABST has previously been shown to contribute to pSLT plasmid stability and vapBC2ST to bacterial virulence. Here we describe a novel assay to measure plasmid stability based on the selection of plasmid-free cells following elimination of plasmid-containing cells by ParE toxin, a DNA gyrase inhibitor. Using this new maintenance assay we confirmed a crucial role of parAB in pSLT maintenance. We also showed that vapBC2ST, in addition to contribute to bacterial virulence, is important for plasmid stability. We have previously shown that ccdABST encodes an inactive CcdBST toxin. Using our new stability assay we monitored the contribution to plasmid stability of a ccdABST variant containing a single mutation (R99W) that restores the toxicity of CcdBST. The “activation” of CcdBST (R99W) did not increase pSLT stability by ccdABST. In contrast, ccdABST behaves as a canonical type II TA system in terms of transcriptional regulation. Of interest, ccdABST was shown to control the expression of a polycistronic operon in the pSLT plasmid. Collectively, these results show that the contribution of the CcdBST toxin to pSLT plasmid stability may depend on its role as a co-repressor in coordination with CcdAST antitoxin more than on its toxic activity.
Collapse
Affiliation(s)
- Damián Lobato-Márquez
- Section of Microbiology, Department of Medicine, Centre for Molecular Bacteriology and Infection, Imperial College London London, UK
| | - Laura Molina-García
- Department of Cell and Developmental Biology, University College London London, UK
| | - Inma Moreno-Córdoba
- Departamento de Microbiología Molecular y Biología de las Infecciones, Centro de Investigaciones Biológicas-Spanish National Research Council Madrid, Spain
| | - Francisco García-Del Portillo
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología-Spanish National Research Council Madrid, Spain
| | - Ramón Díaz-Orejas
- Departamento de Microbiología Molecular y Biología de las Infecciones, Centro de Investigaciones Biológicas-Spanish National Research Council Madrid, Spain
| |
Collapse
|
6
|
Instability of Escherichia coli R-factors in Salmonella enterica serovar Typhi involves formation of recombinant composite plasmid structures. Plasmid 2012; 68:125-32. [PMID: 22579995 DOI: 10.1016/j.plasmid.2012.04.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Revised: 04/10/2012] [Accepted: 04/30/2012] [Indexed: 11/23/2022]
Abstract
In spite of a well-documented ability of Samonella enterica Typhi strains to receive R factors from Escherichia coli and other enterobacteria, epidemiological data show that Typhi is a rather poor host of antibiotic-resistance genes and in fact, of plasmids, suggesting that most of the plasmids naturally acquired by Typhi strains become unstable and eventually segregate. We have previously reported evidence that each of three plasmids conjugatively transferred to S. enterica Typhi experienced deletion-mediated loss of a resistance determinant before plasmid segregation occurred. We now report that in Typhi strains containing these unstable plasmids a superhelical DNA species of lower mobility is detected, probably representing plasmid dimer structures. Plasmid deletion is a RecA-dependent process since it is not detected in derivatives of a recA1 S. enterica Typhi strain containing the corresponding plasmids, and in such strains we were unable to detect either the low-mobility species. We propose that the deletable segments contain key information for plasmid stability in S. enterica Typhi, possibly a multimer resolution system.
Collapse
|
7
|
Prevalence and significance of plasmid maintenance functions in the virulence plasmids of pathogenic bacteria. Infect Immun 2011; 79:2502-9. [PMID: 21555398 DOI: 10.1128/iai.00127-11] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Virulence functions of pathogenic bacteria are often encoded on large extrachromosomal plasmids. These plasmids are maintained at low copy number to reduce the metabolic burden on their host. Low-copy-number plasmids risk loss during cell division. This is countered by plasmid-encoded systems that ensure that each cell receives at least one plasmid copy. Plasmid replication and recombination can produce plasmid multimers that hinder plasmid segregation. These are removed by multimer resolution systems. Equitable distribution of the resulting monomers to daughter cells is ensured by plasmid partition systems that actively segregate plasmid copies to daughter cells in a process akin to mitosis in higher organisms. Any plasmid-free cells that still arise due to occasional failures of replication, multimer resolution, or partition are eliminated by plasmid-encoded postsegregational killing systems. Here we argue that all of these three systems are essential for the stable maintenance of large low-copy-number plasmids. Thus, they should be found on all large virulence plasmids. Where available, well-annotated sequences of virulence plasmids confirm this. Indeed, virulence plasmids often appear to contain more than one example conforming to each of the three system classes. Since these systems are essential for virulence, they can be regarded as ubiquitous virulence factors. As such, they should be informative in the search for new antibacterial agents and drug targets.
Collapse
|
8
|
Conjugative plasmid from Lactobacillus gasseri LA39 that carries genes for production of and immunity to the circular bacteriocin gassericin A. Appl Environ Microbiol 2009; 75:6340-51. [PMID: 19666732 DOI: 10.1128/aem.00195-09] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Gassericin A is a circular bacteriocin produced by Lactobacillus gasseri strain LA39. We found a 33,333-bp plasmid, designated pLgLA39, in this strain. pLgLA39 contained 44 open reading frames, including seven genes related to gassericin A production/immunity (gaa), as well as genes for replication, plasmid maintenance, and conjugative transfer. pLgLA39 was transferred from LA39 to the type strain of L. gasseri (JCM 1131) by filter mating. The transconjugant exhibited >30-fold-higher more resistance to gassericin A and produced antibacterial activity. Lactobacillus reuteri LA6, the producer of reutericin 6, was proved to harbor a plasmid indistinguishable from pLgLA39 and carrying seven genes 100% identical to gaa. This suggests that pLgLA39 might have been transferred naturally between L. gasseri LA39 and L. reuteri LA6. The seven gaa genes of pLgLA39 were cloned into a plasmid vector to construct pGAA. JCM 1131(T) transformed with pGAA expressed antibacterial activity and resistance to gassericin A. pGAA was segregationally more stable than a pGAA derivative plasmid from which gaaA was deleted and even was more stable than the vector. This suggests the occurrence of postsegregational host killing by the gaa genes. pLgLA39 carried a pemIK homolog, and segregational stabilization of a plasmid by the pLgLA39-type pemIK genes was also confirmed. Thus, pLgLA39 was proved to carry the genes for at least two plasmid maintenance mechanisms, i.e., gaa and pemIK. Plasmids containing a repA gene similar to pLgLA39 repA were distributed in several L. gasseri strains.
Collapse
|
9
|
Abstract
Attenuated Salmonella Typhi vaccine strains hold great promise as live vectors for presentation of foreign antigens from unrelated bacterial, viral and parasitic pathogens to the immune system. Although this approach has proved quite successful in experimental animal models for eliciting antigen-specific mucosal, humoral and cellular responses, results have been disappointing for clinical trials carried out thus far. We hypothesize that the paucity of human responses to foreign antigens delivered by live vectors suggests that the strains and genetic approaches used to date have resulted in overattenuated vaccine strains with severely reduced immunogenicity. However, remarkable advances have now been made in the genetics of foreign antigen expression, understanding mechanisms of live vector immunity and refining immunization strategies. The time has now come for development of multivalent live vectors in which stable antigen expression and export is balanced with metabolic fitness to create highly immunogenic vaccines.
Collapse
|
10
|
Stephens JC, Darsley MJ, Turner AK. Stabilization of a plasmid coding for a heterologous antigen in Salmonella enterica serotype typhi vaccine strain CVD908-htrA by using site-specific recombination. Infect Immun 2006; 74:4383-6. [PMID: 16790817 PMCID: PMC1489714 DOI: 10.1128/iai.00429-06] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A gene cassette incorporating the crs-rsd site-specific recombination system from the Salmonella enterica subsp. enterica serovar Dublin virulence plasmid improved the inheritance in S. enterica serotype Typhi strain CVD908-htrA of a multicopy plasmid expression vector. Use of this recombination cassette may improve expression of heterologous antigens from multicopy plasmid expression vectors in attenuated bacterial vaccine strains.
Collapse
Affiliation(s)
- Jonathan C Stephens
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, United Kingdom
| | | | | |
Collapse
|
11
|
Haneda T, Okada N, Nakazawa N, Kawakami T, Danbara H. Complete DNA sequence and comparative analysis of the 50-kilobase virulence plasmid of Salmonella enterica serovar Choleraesuis. Infect Immun 2001; 69:2612-20. [PMID: 11254626 PMCID: PMC98198 DOI: 10.1128/iai.69.4.2612-2620.2001] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The complete nucleotide sequence of pKDSC50, a large virulence plasmid from Salmonella enterica serovar Choleraesuis strain RF-1, has been determined. We identified 48 of the open reading frames (ORFs) encoded by the 49,503-bp molecule. pKDSC50 encodes a known virulence-associated operon, the spv operon, which is composed of genes essential for systemic infection by nontyphoidal Salmonella. Analysis of the genetic organization of pKDSC50 suggests that the plasmid is composed of several virulence-associated genes, which include the spvRABCD genes, plasmid replication and maintenance genes, and one insertion sequence element. A second virulence-associated region including the pef (plasmid-encoded fimbria) operon and rck (resistance to complement killing) gene, which has been identified on the virulence plasmid of S. enterica serovar Typhimurium, was absent. Two different replicon regions, similar to the RepFIIA and RepFIB replicons, were found. Both showed high similarity to those of the pO157 plasmid of enterohemorrhagic Escherichia coli O157:H7 and the enteropathogenic E. coli (EPEC) adherence factor plasmid harbored by EPEC strain B171 (O111:NM), as well as the virulence plasmids of Salmonella serovars Typhimurium and Enteritidis. Comparative analysis of the nucleotide sequences of the 50-kb virulence plasmid of serovar Choleraesuis and the 94-kb virulence plasmid of serovar Typhimurium revealed that 47 out of 48 ORFs of the virulence plasmid of serovar Choleraesuis are highly homologous to the corresponding ORFs of the virulence plasmid of serovar Typhimurium, suggesting a common ancestry.
Collapse
Affiliation(s)
- T Haneda
- Department of Microbiology, School of Pharmaceutical Sciences, Kitasato University, Tokyo 108-8641, Japan
| | | | | | | | | |
Collapse
|
12
|
Massey RC, Bowe F, Sheehan BJ, Dougan G, Dorman CJ. The virulence plasmid of Salmonella typhimurium contains an autoregulated gene, rlgA, that codes for a resolvase-like DNA binding protein. Plasmid 2000; 44:24-33. [PMID: 10873524 DOI: 10.1006/plas.2000.1463] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The virulence plasmid of Salmonella typhimurium contains a gene, rlgA, that shows strong homology to several reported resolvase-like proteins. This gene maps 5 kb upstream of spv locus, the major virulence determinant on the plasmid. Regulation of rlgA was studied using a lacZ transcriptional reporter fusion. The rlgA gene was found to be repressed at the level of transcription by its own product and to be expressed maximally in the late exponential phase of growth. The transcription start site of the rlgA gene was determined and the RlgA binding site was mapped and found to overlap with the transcription initiation signals. A derivative of the virulence plasmid was constructed with a knockout mutation in rlgA. This mutation did not alter the stability of the virulence plasmid nor did it affect the ability of S. typhimurium to cause systemic disease in mice.
Collapse
Affiliation(s)
- R C Massey
- Department of Microbiology, Moyne Institute of Preventive Medicine, University of Dublin, Trinity College, Dublin 2, Republic of Ireland
| | | | | | | | | |
Collapse
|
13
|
Chu C, Hong SF, Tsai C, Lin WS, Liu TP, Ou JT. Comparative physical and genetic maps of the virulence plasmids of Salmonella enterica serovars typhimurium, enteritidis, choleraesuis, and dublin. Infect Immun 1999; 67:2611-4. [PMID: 10225928 PMCID: PMC116011 DOI: 10.1128/iai.67.5.2611-2614.1999] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Using fragment profiling, PCR, and Southern hybridization, we found that Salmonella enterica serovar Choleraesuis harbored virulence plasmids of various sizes, whereas serovars Typhimurium, Enteritidis, and Dublin carried a plasmid of a unique size. Also, the virulence plasmid of Typhimurium contained genes in the same order detected in the other three plasmids, all of which contained deletions.
Collapse
Affiliation(s)
- C Chu
- Department of Microbiology and Immunology, Chang Gung University College of Medicine, Kweishan, Taoyuan, Taiwan
| | | | | | | | | | | |
Collapse
|
14
|
Merkel TJ, Barros C, Stibitz S. Characterization of the bvgR locus of Bordetella pertussis. J Bacteriol 1998; 180:1682-90. [PMID: 9537363 PMCID: PMC107078 DOI: 10.1128/jb.180.7.1682-1690.1998] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/1997] [Accepted: 01/24/1998] [Indexed: 02/07/2023] Open
Abstract
Bordetella pertussis, the causative agent of whooping cough, produces a wide array of factors that are associated with its ability to cause disease. The expression and regulation of these virulence factors is dependent upon the bvg locus (originally designated the vir locus), which encodes two proteins: BvgA, a 23-kDa cytoplasmic protein, and BvgS, a 135-kDa transmembrane protein. It is proposed that BvgS responds to environmental signals and interacts with BvgA, a transcriptional regulator which upon modification by BvgS binds to specific promoters and activates transcription. An additional class of genes is repressed by the bvg locus. Expression of this class, the bvg-repressed genes (vrgs [for vir-repressed genes]), is reduced under conditions in which expression of the aforementioned bvg-activated virulence factors is maximal; this repression is dependent upon the presence of an intact bvgAS locus. We have previously identified a locus required for regulation of all of the known bvg-repressed genes in B. pertussis. This locus, designated bvgR, maps to a location immediately downstream of bvgAS. We have undertaken deletion and complementation studies, as well as sequence analysis, in order to identify the bvgR open reading frame and identify the cis-acting sequences required for regulated expression of bvgR. Studies utilizing transcriptional fusions of bvgR to the gene encoding alkaline phosphatase have demonstrated that bvgR is activated at the level of transcription and that this activation is dependent upon an intact bvgAS locus.
Collapse
Affiliation(s)
- T J Merkel
- National Institute of Dental Research, National Institutes of Health, Bethesda, Maryland 20892-4350, USA.
| | | | | |
Collapse
|
15
|
Nunes-Düby SE, Kwon HJ, Tirumalai RS, Ellenberger T, Landy A. Similarities and differences among 105 members of the Int family of site-specific recombinases. Nucleic Acids Res 1998; 26:391-406. [PMID: 9421491 PMCID: PMC147275 DOI: 10.1093/nar/26.2.391] [Citation(s) in RCA: 351] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Alignments of 105 site-specific recombinases belonging to the Int family of proteins identified extended areas of similarity and three types of structural differences. In addition to the previously recognized conservation of the tetrad R-H-R-Y, located in boxes I and II, several newly identified sequence patches include charged amino acids that are highly conserved and a specific pattern of buried residues contributing to the overall protein fold. With some notable exceptions, unconserved regions correspond to loops in the crystal structures of the catalytic domains of lambda Int (Int c170) and HP1 Int (HPC) and of the recombinases XerD and Cre. Two structured regions also harbor some pronounced differences. The first comprises beta-sheets 4 and 5, alpha-helix D and the adjacent loop connecting it to alpha-helix E: two Ints of phages infecting thermophilic bacteria are missing this region altogether; the crystal structures of HPC, XerD and Cre reveal a lack of beta-sheets 4 and 5; Cre displays two additional beta-sheets following alpha-helix D; five recombinases carry large insertions. The second involves the catalytic tyrosine and is seen in a comparison of the four crystal structures. The yeast recombinases can theoretically be fitted to the Int fold, but the overall differences, involving changes in spacing as well as in motif structure, are more substantial than seen in most other proteins. The phenotypes of mutations compiled from several proteins are correlated with the available structural information and structure-function relationships are discussed. In addition, a few prokaryotic and eukaryotic enzymes with partial homology with the Int family of recombinases may be distantly related, either through divergent or convergent evolution. These include a restriction enzyme and a subgroup of eukaryotic RNA helicases (D-E-A-D proteins).
Collapse
Affiliation(s)
- S E Nunes-Düby
- Division of Biology and Medicine, Brown University, Providence, RI 02912, USA.
| | | | | | | | | |
Collapse
|
16
|
Easter CL, Sobecky PA, Helinski DR. Contribution of different segments of the par region to stable maintenance of the broad-host-range plasmid RK2. J Bacteriol 1997; 179:6472-9. [PMID: 9335298 PMCID: PMC179565 DOI: 10.1128/jb.179.20.6472-6479.1997] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
A 3.2-kb region of the broad-host-range plasmid RK2 has been shown to encode a highly efficient plasmid maintenance system that functions in a vector-independent manner. This region, designated par, consists of two divergently arranged operons: parCBA and parDE. The 0.7-kb parDE operon promotes plasmid stability by a postsegregational killing mechanism that ensures that plasmid-free daughter cells do not survive after cell division. The 2.3-kb parCBA operon encodes a site-specific resolvase protein (ParA) and its multimer resolution site (res) and two proteins (ParB and ParC) whose functions are as yet unknown. It has been proposed that the parCBA operon encodes a plasmid partitioning system (M. Gerlitz, O. Hrabak, and H. Schwabb, J. Bacteriol. 172:6194-6203, 1990; R. C. Roberts, R. Burioni, and D. R. Helinski, J. Bacteriol. 172:6204-6216, 1990). To further define the role of this region in promoting the stable maintenance of plasmid RK2, the parCBA and parDE operons separately and the intact (parCBA/DE) par region (3.2 kb) were reintroduced into an RK2 plasmid deleted for par and assayed for plasmid stability in two Escherichia coli strains (MC1061K and MV10delta lac). The intact 3.2-kb region provided the highest degree of stability in the two strains tested. The ability of the parCBA or parDE region alone to promote stable maintenance in the E. coli strains was dependent on the particular strain and the growth temperature. Furthermore, the insertion of the ColE1 cer site into the RK2 plasmid deleted for the par region failed to stabilize the plasmid in the MC1061K strain, indicating that the multimer resolution activity encoded by parCBA is not by itself responsible for the stabilization activity observed for this operon. To examine the relative contributions of postsegregational cell killing and a possible partitioning function encoded by the intact 3.2-kb par region, stability assays were carried out with ParD provided in trans by a compatible (R6K) minireplicon to prevent postsegregational killing. In E. coli MV10delta lac, postsegregational killing appeared to be the predominant mechanism for stabilization since the presence of ParD substantially reduced the stability of plasmids carrying either the 3.2- or 0.7-kb region. However, in the case of E. coli MC1061K, the presence of ParD in trans did not result in a significant loss of stabilization by the 3.2-kb region, indicating that the putative partitioning function was largely responsible for RK2 maintenance. To examine the basis for the apparent differences in postsegregational killing between the two E. coli strains, transformation assays were carried out to determine the relative sensitivities of the strains to the ParE toxin protein. Consistent with the relatively small contribution of the postsegregational killing to plasmid stabilization in MC1061K, we found that this strain was substantially more resistant to killing by ParE in comparison to E. coli MV10delta lac. A transfer-deficient mutant of thepar-deleted plasmid was constructed for the stable maintenance studies. This plasmid was found to be lost from E. coli MV10delta lac at a rate three times greater than the rate for the transfer-proficient plasmid, suggesting that conjugation can also play a significant role in the maintenance of plasmid RK2.
Collapse
Affiliation(s)
- C L Easter
- Department of Biology and Center for Molecular Genetics, University of California, San Diego, La Jolla 92093-0634, USA
| | | | | |
Collapse
|
17
|
Libby SJ, Adams LG, Ficht TA, Allen C, Whitford HA, Buchmeier NA, Bossie S, Guiney DG. The spv genes on the Salmonella dublin virulence plasmid are required for severe enteritis and systemic infection in the natural host. Infect Immun 1997; 65:1786-92. [PMID: 9125562 PMCID: PMC175217 DOI: 10.1128/iai.65.5.1786-1792.1997] [Citation(s) in RCA: 102] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The pathogenic role of the spv (Salmonella plasmid virulence) genes of Salmonella dublin was determined in the natural, bovine host. Since the lack of overt signs of enteritis or enterocolitis due to Salmonella infections in mice has limited the development of a convenient experimental system to study enteric disease, we used calves to study the contribution of the spv genes to S. dublin-induced salmonellosis. Since the SpvR transcriptional regulator is required for expression of the spvABCD operon, we constructed an spvR knockout mutation in a calf-virulent strain of S. dublin. Calves were infected with the wild-type strain, an spvR mutant, and an spvR mutant containing a complementing plasmid. Calves that were infected with the wild type or the complemented spvR mutant rapidly developed severe diarrhea and became moribund. Calves that were infected with the spvR mutant showed little or no clinical signs of systemic salmonellosis and developed only mild diarrhea. The survival and growth of the wild-type strain and the spvR mutant were determined by using blood-derived bovine monocytes. Wild-type S. dublin survived and grew inside cells, while the spvR mutant did not proliferate. These results suggest that the spv genes of S. dublin promote enhanced intracellular proliferation in intestinal tissues and at extraintestinal sites in the natural host.
Collapse
Affiliation(s)
- S J Libby
- Department of Medicine, University of California, San Diego, La Jolla 92093-0640, USA.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Rodríguez-Peña JM, Buisan M, Ibáñez M, Rotger R. Genetic map of the virulence plasmid of Salmonella enteritidis and nucleotide sequence of its replicons. Gene 1997; 188:53-61. [PMID: 9099859 DOI: 10.1016/s0378-1119(96)00776-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Partial sequencing of a genomic library of the virulence plasmid of Salmonella enteritidis has been used to localize in the restriction map of this plasmid the genetic loci already described in other Salmonella plasmids. The comparison of the vestigial tra region with the corresponding genes in the F plasmid allowed us to define the extent of the deletions that the S. enteritidis plasmid should have suffered. The putative replicons of the plasmid, repB and repC, were isolated and both proved to be functional in Escherichia coli, but repC was segregationally unstable. The nucleotide sequence of repB showed the typical organization of RepFIIA replicons, although the similarity was lower than usual in this group of replicons. The highest homology was found with the replicon of the virulence plasmid pYVe439-80 from Yersinia enterocolitica (72.5%). Replicon repC also showed a maximum identity of 72.6% with known replicons, namely the RepFIB of pColV-K30 and P307, both virulence plasmids isolated from E. coli. We conclude that the S. enteritidis plasmid could arise from the S. typhimurium plasmid through deletions, and that they are evolutionary distant from other IncFI and IncFII plasmids.
Collapse
Affiliation(s)
- J M Rodríguez-Peña
- Departamento de Microbiologia II, Facultad de Farmacia, Universidad Complutense, Madrid, Spain
| | | | | | | |
Collapse
|
19
|
Bloomfield GA, Whittle G, McDonagh MB, Katz ME, Cheetham BF. Analysis of sequences flanking the vap regions of Dichelobacter nodosus: evidence for multiple integration events, a killer system, and a new genetic element. MICROBIOLOGY (READING, ENGLAND) 1997; 143 ( Pt 2):553-562. [PMID: 9043132 DOI: 10.1099/00221287-143-2-553] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Dichelobacter nodosus is the causative agent of ovine footrot. The vap regions of the D. nodosus genome may have arisen by the integration of a genetic element and may have a role in virulence. The virulent D. nodosus strain A198 has multiple copies of the vap regions. In the present study, sequences to the left and right of vap regions 1, 2 and 3 of strain A198 were analysed by Southern blotting and DNa sequencing. The results suggest that vap regions 1 and 2 rose by independent integration events into different tRNA genes. The discovery of a second integrase gene (intB), a gene with similarity to bacteriophage repressor proteins (regA), and a gene similar to an ORF from a conjugative transposon (gepA), suggests that a second genetic element, either a bacteriophage or a conjugative transposon, is integrated next to vap region 3 in the D. nodosus genome. The arrangement of intB and the vap regions in three other virulent strains and one benign strain was determined using using Southern blotting and PCR. One strain, H1215, contained vapE' and not vapE, and thus resembles vap region 3, suggesting that vap region 3 also may have arisen by an independent integration event. In all strains, a copy of intB was found next to the vap regions. The vap regions contain two genes, vapA and toxA, with similarity to the hig genes of the killer plasmid Rts1. Evidence is presented that vapA and toxA have a similar function in D. nodosus.
Collapse
Affiliation(s)
- Garry A Bloomfield
- Department of Molecular and Cellular Biology, The University of New England, Armidale, NSW 2351, Australia
| | - Gabrielle Whittle
- Department of Molecular and Cellular Biology, The University of New England, Armidale, NSW 2351, Australia
| | - Matthew B McDonagh
- Department of Molecular and Cellular Biology, The University of New England, Armidale, NSW 2351, Australia
| | - Margaret E Katz
- Department of Molecular and Cellular Biology, The University of New England, Armidale, NSW 2351, Australia
| | - Brian F Cheetham
- Department of Molecular and Cellular Biology, The University of New England, Armidale, NSW 2351, Australia
| |
Collapse
|
20
|
Sohel I, Puente JL, Ramer SW, Bieber D, Wu CY, Schoolnik GK. Enteropathogenic Escherichia coli: identification of a gene cluster coding for bundle-forming pilus morphogenesis. J Bacteriol 1996; 178:2613-28. [PMID: 8626330 PMCID: PMC177987 DOI: 10.1128/jb.178.9.2613-2628.1996] [Citation(s) in RCA: 111] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Sequence flanking the bfpA locus on the enteroadherent factor plasmid of the enteropathogenic Escherichia coli (EPEC) strain B171-8 (O111:NM) was obtained to identify genes that might be required for bundle-forming pilus (BFP) biosynthesis. Deletion experiments led to the identification of a contiguous cluster of at least 12 open reading frames, including bfpA, that could direct the synthesis of a morphologically normal BFP filament. Within the bfp gene cluster, we identified open reading frames that share homology with other type IV pilus accessory genes and with genes required for transformation competence and protein secretion. Immediately upstream of the bfp gene cluster, we identified a potential replication origin including genes that are predicted to encode proteins homologous with replicase and resolvase. Restriction fragment length polymorphism analysis of DNA from six additional EPEC serotypes showed that the organization of the bfp gene cluster and its juxtaposition with a potential plasmid origin of replication are highly conserved features of the EPEC biotype.
Collapse
Affiliation(s)
- I Sohel
- Department of Microbiology and Immunology, Stanford University School of Medicine, California 94305, USA
| | | | | | | | | | | |
Collapse
|
21
|
Sobecky PA, Easter CL, Bear PD, Helinski DR. Characterization of the stable maintenance properties of the par region of broad-host-range plasmid RK2. J Bacteriol 1996; 178:2086-93. [PMID: 8606188 PMCID: PMC177909 DOI: 10.1128/jb.178.7.2086-2093.1996] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
A 3.2-kb fragment encoding five genes, parCBA/DE, in two divergently transcribed operons promotes stable maintenance of the replicon of the broad-host-range plasmid RK2 in a vector-independent manner in Escherichia coli. The parDE operon has been shown to contribute to stabilization through the postsegregational killing of plasmid-free daughter cells, while the parCBA operon encodes a resolvase, ParA, that mediates the resolution of plasmid multimers through site-specific recombination. To date, evidence indicates that multimer resolution alone does not play a significant role in RK2 stable maintenance by the parCBA operon in E. coli. It has been proposed, instead, that the parCBA region encodes an additional stability mechanism, a partition system, that ensures that each daughter cell receives a plasmid copy at cell division. However, studies carried out to date have not directly determined the plasmid stabilization activity of the parCBA operon alone. An assessment was made of the relative contributions of postsegregational killing (parDE) and the putative partitioning system (parCBA) to the stabilization of mini-RK2 replicons in E. coli. Mini-RK2 replicons carrying either the entire 3.2-kb (parCBA/DE) fragment or the 2.3-kb parCBA region alone were found to be stably maintained in two E. coli strains tested. The stabilization found is not due to resolution of multimers. The stabilizing effectiveness of parCBA was substantially reduced when the plasmid copy number was lowered, as in the case of E. coli cells carrying a temperature-sensitive mini-RK2 replicon grown at a nonpermissive temperature. The presence of the entire 3.2-kb region effectively stabilized the replicon, however, under both low- and high-copy-number-conditions. In those instances of decreased plasmid copy number, the postsegregational killing activity, encoded by parDE, either as part of the 3.2-kb fragment or alone played the major role in the stabilization of mini-RK2 replicons within the growing bacterial population. Our findings indicate that the parCBA operon functions to stabilize by a mechanism other than cell killing and resolution of plasmid multimers, while the parDE operon functions solely to stabilize plasmids by cell killing. The relative contribution of each system to stabilization depends on plasmid copy number and the particular E. coli host.
Collapse
Affiliation(s)
- P A Sobecky
- Department of Biology and Center for Molecular Genetics, University of California, San Diego, La Jolla, California 92093-0634, USA
| | | | | | | |
Collapse
|
22
|
Merkel TJ, Stibitz S. Identification of a locus required for the regulation of bvg-repressed genes in Bordetella pertussis. J Bacteriol 1995; 177:2727-36. [PMID: 7751282 PMCID: PMC176943 DOI: 10.1128/jb.177.10.2727-2736.1995] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
In Bordetella pertussis, the coordinate regulation of virulence factor expression is controlled by the products of the bvgAS locus. In the presence of modulating signals such as MgSO4, nicotinic acid, or reduced temperature, the expression of bvg-activated genes is reduced while the expression of bvg-repressed genes is induced. One model for the regulation of bvg-repressed genes predicts the existence of a repressor protein encoded by a bvg-activated gene. Once activated, the product of this bvg-activated gene would bind to and repress transcription from the bvg-repressed genes. We isolated five genetically independent transposon insertion mutants of B. pertussis that have a phenotype consistent with the knockout of a putative bvg-regulated repressor. These mutants constitutively expressed a vrg6-phoA transcriptional fusion but demonstrated normal bvgAS function. Genomic mapping and DNA sequence analysis of the sites of transposon insertion demonstrated that these mutants define a locus downstream of bvgAS. Introduction of an in-frame, 12-bp insertion within this locus also conferred the mutant phenotype, confirming that the phenotype seen in the transposon mutants is the result of disruption of a distinct gene, which we have designated bvgR, and is not a consequence of polar effects on bvgAS.
Collapse
Affiliation(s)
- T J Merkel
- National Institute of Dental Research, NIH, Bethesda, MD 20892, USA
| | | |
Collapse
|
23
|
Guiney DG, Fang FC, Krause M, Libby S. Plasmid-mediated virulence genes in non-typhoid Salmonella serovars. FEMS Microbiol Lett 1994; 124:1-9. [PMID: 8001760 DOI: 10.1111/j.1574-6968.1994.tb07253.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Specific non-typhoid Salmonella serovars carry large virulence plasmids that promote sustained extra-intestinal infections. These plasmids all share a highly conserved 8-kb region containing the spv operon, consisting of the regulatory spvR locus and the four structural spvABCD genes. The SpvR protein belongs to the LysR/MetR family of transcriptional activators, and induces spvABCD expression in the stationary phase in response to nutrient limitation. spv expression also depends on the chromosomal stationary phase sigma factor RpoS (KatF), and is markedly induced when salmonellae enter eukaryotic cells. Additional plasmid genes encode complement resistance including the rck locus which is homologous to ail from Yersinia. Rck blocks formation of the complement membrane attack complex on the bacterial surface. Several loci involved in plasmid replication and stable maintenance have also been identified.
Collapse
Affiliation(s)
- D G Guiney
- Department of Medicine 0613Z, UCSD School of Medicine, La Jolla 92093-0613Z
| | | | | | | |
Collapse
|
24
|
Eberl L, Kristensen CS, Givskov M, Grohmann E, Gerlitz M, Schwab H. Analysis of the multimer resolution system encoded by the parCBA operon of broad-host-range plasmid RP4. Mol Microbiol 1994; 12:131-41. [PMID: 8057833 DOI: 10.1111/j.1365-2958.1994.tb01002.x] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The broad-host-range plasmid RP4 encodes a highly efficient partitioning function, termed par, that is capable of stabilizing plasmids in a variety of Gram-negative bacteria independently of the nature of the replicon. The mechanism responsible for plasmid stabilization by this locus appears to be a complex system which includes a site-specific recombination system mediating resolution of plasmid multimers. In this report we present a detailed study on this multimer resolution system (mrs). The parA gene encodes two forms of a resolvase capable of catalysing site-specific recombination between specific sites situated in the promoter region of the parCBA operon. The two ParA proteins that are produced as a result of independent translation initiation at two different start codons within the same open reading frame were overexpressed in Escherichia coli and partially purified. Both forms of the enzyme are able to recombine a supercoiled cointegrate substrate containing two cis-acting elements with the same orientation in an in vitro resolution assay. ParA-mediated, site-specific recombination was found to be independent of any other gene product encoded by the RP4 par locus in vitro and in vivo. The DNA-binding sites for the ParA resolvase were determined using DNase I protection experiments. The results identified three binding sites within the mrs cis-acting region. Both the biochemical properties of the ParA protein and the organization of the cis-acting recombination site revealed a high degree of similarity to the site-specific recombination systems of Tn3-like transposable elements suggesting an evolutionary relationship.
Collapse
Affiliation(s)
- L Eberl
- Institut für Biotechnologie, Arbeitsgruppe Genetik, Technische Universität Graz, Austria
| | | | | | | | | | | |
Collapse
|
25
|
Roudier C, Fierer J, Guiney DG. Characterization of translation termination mutations in the spv operon of the Salmonella virulence plasmid pSDL2. J Bacteriol 1992; 174:6418-23. [PMID: 1400193 PMCID: PMC207594 DOI: 10.1128/jb.174.20.6418-6423.1992] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The spv region of the Salmonella virulence plasmids consists of five genes located on an 8-kb fragment previously shown to be essential for virulence in mice. Four structural genes, spvABCD, form an operon that is transcriptionally activated by the spvR gene product in the stationary phase of growth. The role of the individual spv genes in the virulence phenotype was tested by isolating translation termination linker insertions in each gene. Analysis of proteins synthesized in minicells identified each of the spvABCD gene products and confirmed the dependence of spv structural gene expression on the SpvR regulatory protein. The oligonucleotide insertions in spvA, -B, and -C were shown to be nonpolar. Virulence testing indicated that the SpvB protein, regulated by SpvR, is essential for Salmonella dublin to cause lethal disease in mice. Inserts in spvC and spvD were unstable in vivo for unknown reasons, but these mutants still killed mice at slightly higher inocula. Abolition of spvA had no effect on virulence in this system.
Collapse
Affiliation(s)
- C Roudier
- Center for Molecular Genetics, University of California, San Diego 92103
| | | | | |
Collapse
|
26
|
Davis TL, Helinski DR, Roberts RC. Transcription and autoregulation of the stabilizing functions of broad-host-range plasmid RK2 in Escherichia coli, Agrobacterium tumefaciens and Pseudomonas aeruginosa. Mol Microbiol 1992; 6:1981-94. [PMID: 1508045 DOI: 10.1111/j.1365-2958.1992.tb01371.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The broad-host-range plasmid RK2 has been shown to encode several proteins important for its maintenance within bacterial populations of a number of Gram-negative bacteria. Their genes are organized into two operons: parCBA and parD. These operons have been proposed to be transcribed from two divergent promoters, p-parCBA and p-parD, located within a sequence of approximately 150 bases. In this report we identify and characterize the sequences required for regulated transcription from these promoters in Escherichia coli, Agrobacterium tumefaciens and Pseudomonas aeruginosa. Both of these promoters are repressed by their own gene products in the same manner in all three bacteria tested, with ParA functioning as the primary repressor of p-parCBA and ParD functioning as the repressor of p-parD. The binding regions of these proteins were determined through deletion analyses, DNA mobility shift assays, and an examination of the effect of mutations in this region. Based on these observations, the ParA protein appears to bind to either two inverted repeat or two direct repeat sequences, one downstream from the transcriptional initiation site and the other upstream of the p-parCBA -35 box. The ParD protein appears to bind to one inverted repeat sequence, located between the -35 and -10 boxes of p-parD.
Collapse
Affiliation(s)
- T L Davis
- Department of Biology, University of California, San Diego, La Jolla 92093-0634
| | | | | |
Collapse
|
27
|
Krause M, Fang FC, Guiney DG. Regulation of plasmid virulence gene expression in Salmonella dublin involves an unusual operon structure. J Bacteriol 1992; 174:4482-9. [PMID: 1378053 PMCID: PMC206235 DOI: 10.1128/jb.174.13.4482-4489.1992] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The 80-kb plasmid pSDL2 of Salmonella dublin Lane is essential for lethal systemic infection in experimental mice. A cluster of five plasmid genes, designated spvR, spvA, spvB, spvC, and spvD, is sufficient to express the plasmid-related virulent phenotype. The spvR gene product has recently been identified as a positive regulator of spvB expression in the stationary phase of bacterial growth (F. C. Fang, M. Krause, C. Roudier, J. Fierer, and D. G. Guiney, J. Bacteriol. 173:6783-6789, 1991). In this study, we evaluated the role of SpvR in the transcription of the downstream virulence genes spvABCD. Analysis of mRNA synthesis revealed that SpvR promotes transcription of the downstream spvABCD genes in the stationary growth phase. Transcript mapping of the spv region demonstrated an unusual operon structure involving messages for spvA, spvAB, spvABC, and spvABCD. Quantitative measurement of transcription and of gene expression by use of translational spv-lacZ fusions suggested that SpvA, SpvB, SpvC, and SpvD are produced in decreasing abundance. Primer extension assays identified two transcriptional start sites 70 and 98 bp upstream of the start codon of spvA, but none upstream of spvB, spvC, or spvD. Deletion of a 320-bp EcoRI-ApaI segment that contains both start sites abolished expression of the downstream spvB and spvC genes. Our results establish a central function of SpvR as a positive regulator of the downstream spvABCD genes in the stationary phase of bacterial growth and indicate that the primary mechanism of regulation is by activation of promoters upstream of spvA.
Collapse
Affiliation(s)
- M Krause
- Department of Medicine, UCSD Medical Center 92103
| | | | | |
Collapse
|
28
|
Pullinger GD, Lax AJ. A Salmonella dublin virulence plasmid locus that affects bacterial growth under nutrient-limited conditions. Mol Microbiol 1992; 6:1631-43. [PMID: 1495391 DOI: 10.1111/j.1365-2958.1992.tb00888.x] [Citation(s) in RCA: 80] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
This paper reports the characterization of a new locus, vagC/vagD, on the virulence plasmid of Salmonella dublin. Strain G19, harbouring a TnA insertion in vagC, exhibited reduced virulence although vagC was outside the 8 kb essential virulence region. G19 was also unable to grow on minimal-medium containing various sole carbon/energy sources, unlike the wild-type and plasmid-cured strains. Sequencing of the locus revealed the presence of two ORFs (vagC and vagD) which overlapped by one nucleotide. The VagC polypeptide (12 kDa) was observed using minicell expression. Results indicated that vagD was responsible for the phenotypic differences observed between the wild type and G19, and that vagC modulated the activity of vagD. Furthermore, microscopic analysis of G19 cells harvested from minimal-medium plates showed that a high proportion of cells were elongated, which suggested that vagC and vagD might be involved in coordination of plasmid replication with cell division. We propose that vagD, under certain environmental conditions, acts to prevent cell division until plasmid replication is complete, thus aiding plasmid maintenance. vagC and vagD are absent from the related virulence plasmid of Salmonella typhimurium.
Collapse
Affiliation(s)
- G D Pullinger
- AFRC Institute for Animal Health, Newbury, Berkshire, UK
| | | |
Collapse
|