1
|
Hiller E, Off M, Hermann A, Vahidinasab M, Benatto Perino EH, Lilge L, Hausmann R. The influence of growth rate-controlling feeding strategy on the surfactin production in Bacillus subtilis bioreactor processes. Microb Cell Fact 2024; 23:260. [PMID: 39343903 PMCID: PMC11440882 DOI: 10.1186/s12934-024-02531-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 09/16/2024] [Indexed: 10/01/2024] Open
Abstract
BACKGROUND The production of surfactin, an extracellular accumulating lipopeptide produced by various Bacillus species, is a well-known representative of microbial biosurfactant. However, only limited information is available on the correlation between the growth rate of the production strain, such as B. subtilis BMV9, and surfactin production. To understand the correlation between biomass formation over time and surfactin production, the availability of glucose as carbon source was considered as main point. In fed-batch bioreactor processes, the B. subtilis BMV9 was used, a strain well-suited for high cell density fermentation. By adjusting the exponential feeding rates, the growth rate of the surfactin-producing strain, was controlled. RESULTS Using different growth rates in the range of 0.075 and 0.4 h-1, highest surfactin titres of 36 g/L were reached at 0.25 h-1 with production yields YP/S of 0.21 g/g and YP/X of 0.7 g/g, while growth rates lower than 0.2 h-1 resulted in insufficient and slowed biomass formation as well as surfactin production (YP/S of 0.11 g/g and YP/X of 0.47 g/g for 0.075 h-1). In contrast, feeding rates higher than 0.25 h-1 led to a stimulation of overflow metabolism, resulting in increased acetate formation of up to 3 g/L and an accumulation of glucose due to insufficient conversion, leading to production yields YP/S of 0.15 g/g and YP/X of 0.46 g/g for 0.4 h-1. CONCLUSIONS Overall, the parameter of adjusting exponential feeding rates have an important impact on the B. subtilis productivity in terms of surfactin production in fed-batch bioreactor processes. A growth rate of 0.25 h-1 allowed the highest surfactin production yield, while the total conversion of substrate to biomass remained constant at the different growth rates.
Collapse
Affiliation(s)
- Eric Hiller
- Department of Bioprocess Engineering, Institute of Food Science and Biotechnology, University of Hohenheim, Stuttgart, Germany
| | - Manuel Off
- Department of Bioprocess Engineering, Institute of Food Science and Biotechnology, University of Hohenheim, Stuttgart, Germany
| | - Alexander Hermann
- Department of Bioprocess Engineering, Institute of Food Science and Biotechnology, University of Hohenheim, Stuttgart, Germany
| | - Maliheh Vahidinasab
- Department of Bioprocess Engineering, Institute of Food Science and Biotechnology, University of Hohenheim, Stuttgart, Germany
| | - Elvio Henrique Benatto Perino
- Department of Bioprocess Engineering, Institute of Food Science and Biotechnology, University of Hohenheim, Stuttgart, Germany.
| | - Lars Lilge
- Department of Bioprocess Engineering, Institute of Food Science and Biotechnology, University of Hohenheim, Stuttgart, Germany.
| | - Rudolf Hausmann
- Department of Bioprocess Engineering, Institute of Food Science and Biotechnology, University of Hohenheim, Stuttgart, Germany
| |
Collapse
|
2
|
Lilge L, Kuipers OP. A two-step regulatory circuit involving Spo0A-AbrB activates mersacidin biosynthesis in Bacillus subtilis. Int J Antimicrob Agents 2024; 63:107155. [PMID: 38527561 DOI: 10.1016/j.ijantimicag.2024.107155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/13/2024] [Accepted: 03/20/2024] [Indexed: 03/27/2024]
Abstract
Due to intramolecular ring structures, the ribosomally produced and post-translationally modified peptide mersacidin shows antimicrobial properties comparable to those of vancomycin without exhibiting cross-resistance. Although the principles of mersacidin biosynthesis are known, there is no information on the molecular control processes for the initial stimulation of mersacidin bioproduction. By using Bacillus subtilis for heterologous biosynthesis, a considerable amount of mersacidin could be produced without the mersacidin-specific immune system and the mersacidin-activating secretory protease. By using the established laboratory strain Bacillus subtilis 168 and strain 3NA, which is used for high cell density fermentation processes, in combination with the construction of reporter strains to determine the promoter strengths within the mersacidin core gene cluster, the molecular regulatory circuit of Spo0A, a master regulator of cell differentiation including sporulation initiation, and the global transcriptional regulator AbrB, which is involved in cell adaptation processes in the transient growth phase, was identified to control the initial stimulation of the mersacidin core gene cluster. In a second downstream regulatory step, the activator MrsR1, encoded in the core gene cluster, acts as a stimulatory element for mersacidin biosynthesis. These findings are important to understand the mechanisms linking environmental conditions and microbial responses with respect to the bioproduction of bioactive metabolites including antimicrobials such as mersacidin. This information will also support the construction of production strains for bioactive metabolites with antimicrobial properties.
Collapse
Affiliation(s)
- Lars Lilge
- Department of Molecular Genetics, University of Groningen, AG Groningen, The Netherlands; Department of Bioprocess Engineering, Institute of Food Science and Biotechnology, University of Hohenheim, Stuttgart, Germany.
| | - Oscar P Kuipers
- Department of Molecular Genetics, University of Groningen, AG Groningen, The Netherlands
| |
Collapse
|
3
|
Rudakova NL, Sabirova AR, Khasanov DI, Danilova IV, Sharipova MR. Regulating Pathways of Bacillus pumilus Adamalysin-like Metalloendopeptidase Expression. Int J Mol Sci 2023; 25:62. [PMID: 38203233 PMCID: PMC10779165 DOI: 10.3390/ijms25010062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/14/2023] [Accepted: 12/17/2023] [Indexed: 01/12/2024] Open
Abstract
The minor secreted proteinase of B. pumilus 3-19 MprBp classified as the unique bacillary adamalysin-like enzyme of the metzincin clan. The functional role of this metalloproteinase in the bacilli cells is not clear. Analysis of the regulatory region of the mprBp gene showed the presence of potential binding sites to the transcription regulatory factors Spo0A (sporulation) and DegU (biodegradation). The study of mprBp activity in mutant strains of B. subtilis defective in regulatory proteins of the Spo- and Deg-systems showed that the mprBp gene is partially controlled by the Deg-system of signal transduction and independent from the Spo-system.
Collapse
Affiliation(s)
| | | | | | | | - Margarita R. Sharipova
- Institute of Fundamental Medicine, Kazan Federal University, Kremlevskaya St. 18, 420008 Kazan, Russia; (N.L.R.); (D.I.K.); (I.V.D.)
| |
Collapse
|
4
|
Sarubbo LA, Silva MDGC, Durval IJB, Bezerra KGO, Ribeiro BG, Silva IA, Twigg MS, Banat IM. Biosurfactants: Production, Properties, Applications, Trends, and General Perspectives. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108377] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
5
|
Klausmann P, Hennemann K, Hoffmann M, Treinen C, Aschern M, Lilge L, Morabbi Heravi K, Henkel M, Hausmann R. Bacillus subtilis High Cell Density Fermentation Using a Sporulation-Deficient Strain for the Production of Surfactin. Appl Microbiol Biotechnol 2021; 105:4141-4151. [PMID: 33991199 PMCID: PMC8140969 DOI: 10.1007/s00253-021-11330-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 04/07/2021] [Accepted: 05/03/2021] [Indexed: 01/13/2023]
Abstract
Abstract Bacillus subtilis 3NA is a strain capable of reaching high cell densities. A surfactin producing sfp+ variant of this strain, named JABs32, was utilized in fed-batch cultivation processes. Both a glucose and an ammonia solution were fed to set a steady growth rate μ of 0.1 h-1. In this process, a cell dry weight of up to 88 g L-1 was reached after 38 h of cultivation, and surfactin titers of up to 26.5 g L-1 were detected in this high cell density fermentation process, achieving a YP/X value of 0.23 g g-1 as well as a qP/X of 0.007 g g-1 h-1. In sum, a 21-fold increase in surfactin titer was obtained compared with cultivations in shake flasks. In contrast to fed-batch operations using Bacillus subtilis JABs24, an sfp+ variant derived from B. subtilis 168, JABs32, reached an up to fourfold increase in surfactin titers using the same fed-batch protocol. Additionally, a two-stage feed process was established utilizing strain JABs32. Using an optimized mineral salt medium in this high cell density fermentation approach, after 31 h of cultivation, surfactin titers of 23.7 g L-1 were reached with a biomass concentration of 41.3 g L-1, thus achieving an enhanced YP/X value of 0.57 g g-1 as well as a qP/X of 0.018 g g-1 h-1. The mutation of spo0A locus and an elongation of AbrB in the strain utilized in combination with a high cell density fed-batch process represents a promising new route for future enhancements on surfactin production. Key points • Utilization of a sporulation deficient strain for fed-batch operations • High cell density process with Bacillus subtilis for lipopeptide production was established • High titer surfactin production capabilities confirm highly promising future platform strain
Collapse
Affiliation(s)
- Peter Klausmann
- Department of Bioprocess Engineering (150 k), Institute of Food Science and Biotechnology (150), University of Hohenheim, Fruwirthstr. 12, 70599, Stuttgart, Germany
| | - Katja Hennemann
- Department of Bioprocess Engineering (150 k), Institute of Food Science and Biotechnology (150), University of Hohenheim, Fruwirthstr. 12, 70599, Stuttgart, Germany
| | - Mareen Hoffmann
- Department of Bioprocess Engineering (150 k), Institute of Food Science and Biotechnology (150), University of Hohenheim, Fruwirthstr. 12, 70599, Stuttgart, Germany
| | - Chantal Treinen
- Department of Bioprocess Engineering (150 k), Institute of Food Science and Biotechnology (150), University of Hohenheim, Fruwirthstr. 12, 70599, Stuttgart, Germany
| | - Moritz Aschern
- Department of Bioprocess Engineering (150 k), Institute of Food Science and Biotechnology (150), University of Hohenheim, Fruwirthstr. 12, 70599, Stuttgart, Germany
| | - Lars Lilge
- Department of Bioprocess Engineering (150 k), Institute of Food Science and Biotechnology (150), University of Hohenheim, Fruwirthstr. 12, 70599, Stuttgart, Germany
| | - Kambiz Morabbi Heravi
- Department of Bioprocess Engineering (150 k), Institute of Food Science and Biotechnology (150), University of Hohenheim, Fruwirthstr. 12, 70599, Stuttgart, Germany
| | - Marius Henkel
- Department of Bioprocess Engineering (150 k), Institute of Food Science and Biotechnology (150), University of Hohenheim, Fruwirthstr. 12, 70599, Stuttgart, Germany.
| | - Rudolf Hausmann
- Department of Bioprocess Engineering (150 k), Institute of Food Science and Biotechnology (150), University of Hohenheim, Fruwirthstr. 12, 70599, Stuttgart, Germany
| |
Collapse
|
6
|
Blake C, Christensen MN, Kovács ÁT. Molecular Aspects of Plant Growth Promotion and Protection by Bacillus subtilis. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2021; 34:15-25. [PMID: 32986513 DOI: 10.1094/mpmi-08-20-0225-cr] [Citation(s) in RCA: 132] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Bacillus subtilis is one of the most widely studied plant growth-promoting rhizobacteria. It is able to promote plant growth as well as control plant pathogens through diverse mechanisms, including the improvement of nutrient availability and alteration of phytohormone homeostasis as well as the production of antimicrobials and triggering induced systemic resistance, respectively. Even though its benefits for crop production have been recognized and studied extensively under laboratory conditions, the success of its application in fields varies immensely. It is widely accepted that agricultural application of B. subtilis often fails because the bacteria are not able to persist in the rhizosphere. Bacterial colonization of plant roots is a crucial step in the interaction between microbe and plant and seems, therefore, to be of great importance for its growth promotion and biocontrol effects. A successful root colonization depends thereby on both bacterial traits, motility and biofilm formation, as well as on a signal interplay with the plant. This review addresses current knowledge about plant-microbial interactions of the B. subtilis species, including the various mechanisms for supporting plant growth as well as the necessity for the establishment of the relationship.[Formula: see text] The author(s) have dedicated the work to the public domain under the Creative Commons CC0 "No Rights Reserved" license by waiving all of his or her rights to the work worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law.
Collapse
Affiliation(s)
- Christopher Blake
- Bacterial Interactions and Evolution Group, DTU Bioengineering, Technical University of Denmark, Kgs. Lyngby, Denmark
| | | | - Ákos T Kovács
- Bacterial Interactions and Evolution Group, DTU Bioengineering, Technical University of Denmark, Kgs. Lyngby, Denmark
| |
Collapse
|
7
|
Vadakkan K, Choudhury AA, Gunasekaran R, Hemapriya J, Vijayanand S. Quorum sensing intervened bacterial signaling: Pursuit of its cognizance and repression. J Genet Eng Biotechnol 2018; 16:239-252. [PMID: 30733731 PMCID: PMC6353778 DOI: 10.1016/j.jgeb.2018.07.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 06/09/2018] [Accepted: 07/03/2018] [Indexed: 01/24/2023]
Abstract
Bacteria communicate within a system by means of a density dependent mechanism known as quorum sensing which regulate the metabolic and behavioral activities of a bacterial community. This sort of interaction occurs through a dialect of chemical signals called as autoinducers synthesized by bacteria. Bacterial quorum sensing occurs through various complex pathways depending upon specious diversity. Therefore the cognizance of quorum sensing mechanism will enable the regulation and thereby constrain bacterial communication. Inhibition strategies of quorum sensing are collectively called as quorum quenching; through which bacteria are incapacitated of its interaction with each other. Many virulence mechanism such as sporulation, biofilm formation, toxin production can be blocked by quorum quenching. Usually quorum quenching mechanisms can be broadly classified into enzymatic methods and non-enzymatic methods. Substantial understanding of bacterial communication and its inhibition enhances the development of novel antibacterial therapeutic drugs. In this review we have discussed the types and mechanisms of quorum sensing and various methods to inhibit and regulate density dependent bacterial communication.
Collapse
Affiliation(s)
- Kayeen Vadakkan
- Bioresource Technology Lab, Department of Biotechnology, Thiruvalluvar University, Vellore, TN 632115, India
| | - Abbas Alam Choudhury
- Bioresource Technology Lab, Department of Biotechnology, Thiruvalluvar University, Vellore, TN 632115, India
| | - Ramya Gunasekaran
- Bioresource Technology Lab, Department of Biotechnology, Thiruvalluvar University, Vellore, TN 632115, India
| | | | - Selvaraj Vijayanand
- Bioresource Technology Lab, Department of Biotechnology, Thiruvalluvar University, Vellore, TN 632115, India
| |
Collapse
|
8
|
Yaseen Y, Diop A, Gancel F, Béchet M, Jacques P, Drider D. Polynucleotide phosphorylase is involved in the control of lipopeptide fengycin production in Bacillus subtilis. Arch Microbiol 2018; 200:783-791. [PMID: 29423562 DOI: 10.1007/s00203-018-1483-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 01/18/2018] [Accepted: 01/23/2018] [Indexed: 10/18/2022]
Abstract
Bacillus subtilis is a wealth source of lipopeptide molecules such as iturins, surfactins and fengycins or plipastatins endowed with a range of biological activities. These molecules, designated secondary metabolites, are synthesized via non-ribosomal peptides synthesis (NRPS) machinery and are most often subjected to a complex regulation with involvement of several regulatory factors. To gain novel insights on mechanism regulating fengycin production, we investigated the effect of the fascinating polynucleotide phosphorylase (PNPase), as well as the effect of lipopeptide surfactin. Compared to the wild type, the production of fengycin in the mutant strains B. subtilis BBG235 and BBG236 altered for PNPase has not only decreased to about 70 and 40%, respectively, but also hampered its antifungal activity towards the plant pathogen Botrytis cinerea. On the other hand, mutant strains BBG231 (srfAA-) and BBG232 (srfAC-) displayed different levels of fengycin production. BBG231 had registered an important decrease in fengycin production, comparable to that observed for BBG235 or BBG236. This study permitted to establish that the products of pnpA gene (PNPase), and srfAA- (surfactin synthetase) are involved in fengycin production.
Collapse
Affiliation(s)
- Yazen Yaseen
- Université de Lille, INRA, Université d'Artois, Université du Littoral-Côte d'Opale, EA 7394 - ICV-Institut Charles Viollette, F-59000, Lille, France
| | - Awa Diop
- Université de Lille, INRA, Université d'Artois, Université du Littoral-Côte d'Opale, EA 7394 - ICV-Institut Charles Viollette, F-59000, Lille, France
| | - Frédérique Gancel
- Université de Lille, INRA, Université d'Artois, Université du Littoral-Côte d'Opale, EA 7394 - ICV-Institut Charles Viollette, F-59000, Lille, France
| | - Max Béchet
- Université de Lille, INRA, Université d'Artois, Université du Littoral-Côte d'Opale, EA 7394 - ICV-Institut Charles Viollette, F-59000, Lille, France
| | - Philippe Jacques
- Université de Lille, INRA, Université d'Artois, Université du Littoral-Côte d'Opale, EA 7394 - ICV-Institut Charles Viollette, F-59000, Lille, France
| | - Djamel Drider
- Université de Lille, INRA, Université d'Artois, Université du Littoral-Côte d'Opale, EA 7394 - ICV-Institut Charles Viollette, F-59000, Lille, France.
| |
Collapse
|
9
|
Miras M, Dubnau D. A DegU-P and DegQ-Dependent Regulatory Pathway for the K-state in Bacillus subtilis. Front Microbiol 2016; 7:1868. [PMID: 27920766 PMCID: PMC5118428 DOI: 10.3389/fmicb.2016.01868] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 11/07/2016] [Indexed: 12/04/2022] Open
Abstract
The K-state in the model bacterium Bacillus subtilis is associated with transformability (competence) as well as with growth arrest and tolerance for antibiotics. Entry into the K-state is determined by the stochastic activation of the transcription factor ComK and occurs in about ∼15% of the population in domesticated strains. Although the upstream mechanisms that regulate the K-state have been intensively studied and are well understood, it has remained unexplained why undomesticated isolates of B. subtilis are poorly transformable compared to their domesticated counterparts. We show here that this is because fewer cells enter the K-state, suggesting that a regulatory pathway limiting entry to the K-state is missing in domesticated strains. We find that loss of this limitation is largely due to an inactivating point mutation in the promoter of degQ. The resulting low level of DegQ decreases the concentration of phosphorylated DegU, which leads to the de-repression of the srfA operon and ultimately to the stabilization of ComK. As a result, more cells reach the threshold concentration of ComK needed to activate the auto-regulatory loop at the comK promoter. In addition, we demonstrate that the activation of srfA transcription in undomesticated strains is transient, turning off abruptly as cells enter the stationary phase. Thus, the K-state and transformability are more transient and less frequently expressed in the undomesticated strains. This limitation is more extreme than appreciated from studies of domesticated strains. Selection has apparently limited both the frequency and the duration of the bistably expressed K-state in wild strains, likely because of the high cost of growth arrest associated with the K-state. Future modeling of K-state regulation and of the fitness advantages and costs of the K-state must take these features into account.
Collapse
Affiliation(s)
- Mathieu Miras
- Public Health Research Institute Center, New Jersey Medical School, Rutgers University, NewarkNJ, USA; Laboratoire de Microbiologie et Génétique Moléculaires, Université de ToulouseToulouse, France
| | - David Dubnau
- Public Health Research Institute Center, New Jersey Medical School, Rutgers University, Newark NJ, USA
| |
Collapse
|
10
|
Ke WJ, Hsueh YH, Cheng YC, Wu CC, Liu ST. Water surface tension modulates the swarming mechanics of Bacillus subtilis. Front Microbiol 2015; 6:1017. [PMID: 26557106 PMCID: PMC4616241 DOI: 10.3389/fmicb.2015.01017] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 09/08/2015] [Indexed: 12/02/2022] Open
Abstract
Many Bacillus subtilis strains swarm, often forming colonies with tendrils on agar medium. It is known that B. subtilis swarming requires flagella and a biosurfactant, surfactin. In this study, we find that water surface tension plays a role in swarming dynamics. B. subtilis colonies were found to contain water, and when a low amount of surfactin is produced, the water surface tension of the colony restricts expansion, causing bacterial density to rise. The increased density induces a quorum sensing response that leads to heightened production of surfactin, which then weakens water surface tension to allow colony expansion. When the barrier formed by water surface tension is breached at a specific location, a stream of bacteria swarms out of the colony to form a tendril. If a B. subtilis strain produces surfactin at levels that can substantially weaken the overall water surface tension of the colony, water floods the agar surface in a thin layer, within which bacteria swarm and migrate rapidly. This study sheds light on the role of water surface tension in regulating B. subtilis swarming, and provides insight into the mechanisms underlying swarming initiation and tendril formation.
Collapse
Affiliation(s)
- Wan-Ju Ke
- Department of Microbiology and Immunology, Chang Gung University Taoyuan, Taiwan ; Research Center for Bacterial Pathogenesis, Chang Gung University Taoyuan, Taiwan
| | - Yi-Huang Hsueh
- Graduate School of Biotechnology and Bioengineering, Yuan Ze University Taoyuan, Taiwan
| | - Yu-Chieh Cheng
- Department of Microbiology and Immunology, Chang Gung University Taoyuan, Taiwan
| | - Chih-Ching Wu
- Department of Medical Biotechnology and Laboratory Science Proteomic Center, College of Medicine, Chang Gung University Taoyuan, Taiwan
| | - Shih-Tung Liu
- Department of Microbiology and Immunology, Chang Gung University Taoyuan, Taiwan ; Department of Medical Research and Development, Chang Gung Memorial Hospital Chiayi Branch Chiayi, Taiwan
| |
Collapse
|
11
|
Jakobs M, Meinhardt F. What renders Bacilli genetically competent? A gaze beyond the model organism. Appl Microbiol Biotechnol 2014; 99:1557-70. [DOI: 10.1007/s00253-014-6316-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 12/08/2014] [Accepted: 12/09/2014] [Indexed: 12/20/2022]
|
12
|
The two putative comS homologs of the biotechnologically important Bacillus licheniformis do not contribute to competence development. Appl Microbiol Biotechnol 2014; 99:2255-66. [PMID: 25520171 DOI: 10.1007/s00253-014-6291-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 11/28/2014] [Accepted: 12/02/2014] [Indexed: 01/17/2023]
Abstract
In Bacillus subtilis, natural genetic competence is subject to complex genetic regulation and quorum sensing dependent. Upon extracellular accumulation of the peptide-pheromone ComX, the membrane-bound sensor histidine kinase ComP initiates diverse signaling pathways by activating-among others-DegQ and ComS. While DegQ favors the expression of extracellular enzymes rather than competence development, ComS is crucial for competence development as it prevents proteolytic degradation of ComK, the key transcriptional activator of all genes required for the uptake and integration of DNA. In Bacillus licheniformis, ComX/ComP sensed cell density negatively influences competence development, suggesting differences from the quorum-sensing-dependent control mechanism in Bacillus subtilis. Here, we show that each of six investigated strains possesses both of two different, recently identified putative comS genes. When expressed from an inducible promoter, none of the comS candidate genes displayed an impact on competence development neither in B. subtilis nor in B. licheniformis. Moreover, disruption of the genes did not reduce transformation efficiency. While the putative comS homologs do not contribute to competence development, we provide evidence that the degQ gene as for B. subtilis negatively influences genetic competency in B. licheniformis.
Collapse
|
13
|
Dogsa I, Choudhary KS, Marsetic Z, Hudaiberdiev S, Vera R, Pongor S, Mandic-Mulec I. ComQXPA quorum sensing systems may not be unique to Bacillus subtilis: a census in prokaryotic genomes. PLoS One 2014; 9:e96122. [PMID: 24788106 PMCID: PMC4008528 DOI: 10.1371/journal.pone.0096122] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2014] [Accepted: 04/03/2014] [Indexed: 11/19/2022] Open
Abstract
The comQXPA locus of Bacillus subtilis encodes a quorum sensing (QS) system typical of Gram positive bacteria. It encodes four proteins, the ComQ isoprenyl transferase, the ComX pre-peptide signal, the ComP histidine kinase, and the ComA response regulator. These are encoded by four adjacent genes all situated on the same chromosome strand. Here we present results of a comprehensive census of comQXPA-like gene arrangements in 2620 complete and 6970 draft prokaryotic genomes (sequenced by the end of 2013). After manually checking the data for false-positive and false-negative hits, we found 39 novel com-like predictions. The census data show that in addition to B. subtilis and close relatives, 20 comQXPA-like loci are predicted to occur outside the B. subtilis clade. These include some species of Clostridiales order, but none outside the phylum Firmicutes. Characteristic gene-overlap patterns were observed in comQXPA loci, which were different for the B. subtilis-like and non-B. subtilis-like clades. Pronounced sequence variability associated with the ComX peptide in B. subtilis clade is evident also in the non-B. subtilis clade suggesting grossly similar evolutionary constraints in the underlying quorum sensing systems.
Collapse
Affiliation(s)
- Iztok Dogsa
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Kumari Sonal Choudhary
- Group of Protein Structure and Bioinformatics, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Ziva Marsetic
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Sanjarbek Hudaiberdiev
- Group of Protein Structure and Bioinformatics, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Roberto Vera
- Group of Protein Structure and Bioinformatics, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| | - Sándor Pongor
- Group of Protein Structure and Bioinformatics, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
- * E-mail: (SP); (IMM)
| | - Ines Mandic-Mulec
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
- * E-mail: (SP); (IMM)
| |
Collapse
|
14
|
|
15
|
Kiley TB, Stanley-Wall NR. Post-translational control of Bacillus subtilis biofilm formation mediated by tyrosine phosphorylation. Mol Microbiol 2010; 78:947-63. [PMID: 20815827 DOI: 10.1111/j.1365-2958.2010.07382.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A biofilm is a complex community of cells enveloped in a self-produced polymeric matrix. Entry into a biofilm is exquisitely controlled at the level of transcription and in the Gram-positive organism Bacillus subtilis it requires the concerted efforts of three major transcription factors. Here, we demonstrate that in addition to transcriptional control, B. subtilis utilizes post-translational modifications to control biofilm formation; specifically through phosphorylation of tyrosine residues. Through our work we have assigned novel roles during biofilm formation to two proteins; the protein tyrosine kinase PtkA and the protein tyrosine phosphatase PtpZ. Furthermore by introducing amino acid point mutations within the catalytic domains of PtkA and PtpZ we have identified that the kinase and phosphatase activities, respectively, are essential for function. PtkA contains a conserved C-terminal tyrosine cluster that is the site of autophosphorylation; however, our in vivo analysis demonstrates that this domain is not required during biofilm formation. With the aim of identifying the target(s) of PtkA controlled during biofilm formation we used a systematic mutagenesis approach but, despite extensive efforts, it remained elusive. Our findings highlight the complexity of biofilm development by revealing an additional level of regulation in the form of protein tyrosine phosphorylation.
Collapse
Affiliation(s)
- Taryn B Kiley
- Division of Molecular Microbiology, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | | |
Collapse
|
16
|
Facilitation of direct conditional knockout of essential genes in Bacillus licheniformis DSM13 by comparative genetic analysis and manipulation of genetic competence. Appl Environ Microbiol 2010; 76:5046-57. [PMID: 20543043 DOI: 10.1128/aem.00660-10] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The genetic manageability of the biotechnologically important Bacillus licheniformis is hampered due to its poor transformability, whereas Bacillus subtilis efficiently takes up DNA during genetic competence, a quorum-sensing-dependent process. Since the sensor histidine kinase ComP, encoded by a gene of the quorum-sensing module comQXPA of B. licheniformis DSM13, was found to be inactive due to an insertion element within comP, the coding region was exchanged with a functional copy. Quorum sensing was restored, but the already-poor genetic competence dropped further. The inducible expression of the key regulator for the transcription of competence genes, ComK, in trans resulted in highly competent strains and facilitated the direct disruption of genes, as well as the conditional knockout of an essential operon. As ComK is inhibited at low cell densities by a proteolytic complex in which MecA binds ComK and such inhibition is antagonized by the interaction of MecA with ComS (the expression of the latter is controlled by cell density in B. subtilis), we performed an in silico analysis of MecA and the hitherto unidentified ComS, which revealed differences for competent and noncompetent strains, indicating that the reduced competence possibly is due to a nonfunctional coupling of the comQXPA-encoded quorum module and ComK. The obtained increased genetic tractability of this industrial workhorse should improve a wide array of scientific investigations.
Collapse
|
17
|
Hobbs CA, Bobay BG, Thompson RJ, Perego M, Cavanagh J. NMR solution structure and DNA-binding model of the DNA-binding domain of competence protein A. J Mol Biol 2010; 398:248-63. [PMID: 20302877 PMCID: PMC2855743 DOI: 10.1016/j.jmb.2010.03.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2009] [Revised: 03/02/2010] [Accepted: 03/03/2010] [Indexed: 11/15/2022]
Abstract
Competence protein A (ComA) is a response regulator protein involved in the development of genetic competence in the Gram-positive spore-forming bacterium Bacillus subtilis, as well as the regulation of the production of degradative enzymes and antibiotic synthesis. ComA belongs to the NarL family of proteins, which are characterized by a C-terminal transcriptional activator domain that consists of a bundle of four helices, where the second and third helices (alpha 8 and alpha 9) form a helix-turn-helix DNA-binding domain. Using NMR spectroscopy, the high-resolution 3D solution structure of the C-terminal DNA-binding domain of ComA (ComAC) has been determined. In addition, surface plasmon resonance and NMR protein-DNA titration experiments allowed for the analysis of the interaction of ComAC with its target DNA sequences. Combining the solution structure and biochemical data, a model of ComAC bound to the ComA recognition sequences on the srfA promoter has been developed. The model shows that for DNA binding, ComA uses the conserved helix-turn-helix motif present in other NarL family members. However, the model reveals also that ComA might use a slightly different part of the helix-turn-helix motif and there appears to be some associated domain re-orientation. These observations suggest a basis for DNA binding specificity within the NarL family.
Collapse
Affiliation(s)
- Carey A. Hobbs
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - Benjamin G. Bobay
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina 27695, USA
- North Carolina Research Campus, Kannapolis, North Carolina 28081, USA
| | - Richele J. Thompson
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - Marta Perego
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California 92037, USA
| | - John Cavanagh
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina 27695, USA
| |
Collapse
|
18
|
Süel GM, Garcia-Ojalvo J, Liberman LM, Elowitz MB. An excitable gene regulatory circuit induces transient cellular differentiation. Nature 2006; 440:545-50. [PMID: 16554821 DOI: 10.1038/nature04588] [Citation(s) in RCA: 497] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2005] [Accepted: 01/18/2006] [Indexed: 11/09/2022]
Abstract
Certain types of cellular differentiation are probabilistic and transient. In such systems individual cells can switch to an alternative state and, after some time, switch back again. In Bacillus subtilis, competence is an example of such a transiently differentiated state associated with the capability for DNA uptake from the environment. Individual genes and proteins underlying differentiation into the competent state have been identified, but it has been unclear how these genes interact dynamically in individual cells to control both spontaneous entry into competence and return to vegetative growth. Here we show that this behaviour can be understood in terms of excitability in the underlying genetic circuit. Using quantitative fluorescence time-lapse microscopy, we directly observed the activities of multiple circuit components simultaneously in individual cells, and analysed the resulting data in terms of a mathematical model. We find that an excitable core module containing positive and negative feedback loops can explain both entry into, and exit from, the competent state. We further tested this model by analysing initiation in sister cells, and by re-engineering the gene circuit to specifically block exit. Excitable dynamics driven by noise naturally generate stochastic and transient responses, thereby providing an ideal mechanism for competence regulation.
Collapse
Affiliation(s)
- Gürol M Süel
- Division of Biology and Department of Applied Physics, California Institute of Technology, Pasadena, California 91125, USA
| | | | | | | |
Collapse
|
19
|
Abstract
Bacteria communicate with one another using chemical signal molecules. As in higher organisms, the information supplied by these molecules is critical for synchronizing the activities of large groups of cells. In bacteria, chemical communication involves producing, releasing, detecting, and responding to small hormone-like molecules termed autoinducers . This process, termed quorum sensing, allows bacteria to monitor the environment for other bacteria and to alter behavior on a population-wide scale in response to changes in the number and/or species present in a community. Most quorum-sensing-controlled processes are unproductive when undertaken by an individual bacterium acting alone but become beneficial when carried out simultaneously by a large number of cells. Thus, quorum sensing confuses the distinction between prokaryotes and eukaryotes because it enables bacteria to act as multicellular organisms. This review focuses on the architectures of bacterial chemical communication networks; how chemical information is integrated, processed, and transduced to control gene expression; how intra- and interspecies cell-cell communication is accomplished; and the intriguing possibility of prokaryote-eukaryote cross-communication.
Collapse
Affiliation(s)
- Christopher M Waters
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544-1014, USA.
| | | |
Collapse
|
20
|
Ansaldi M, Dubnau D. Diversifying selection at the Bacillus quorum-sensing locus and determinants of modification specificity during synthesis of the ComX pheromone. J Bacteriol 2004; 186:15-21. [PMID: 14679219 PMCID: PMC303460 DOI: 10.1128/jb.186.1.15-21.2004] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The competence quorum-sensing system of Bacillus subtilis consists of two-component regulatory proteins, ComP (histidine kinase) and the response regulator, ComA, an extracellular pheromone (ComX), and a protein that is needed for the proteolytic cleavage and modification of pre-ComX (ComQ). ComQ and pre-ComX are both necessary and sufficient for the production of active pheromone, which is released as an isoprenylated peptide. Laboratory strain 168 and a number of natural isolates of bacilli differ in the primary sequences of their pheromones as well as in the masses of their isoprenyl adducts. We have shown that ComX, ComQ, and the membrane-localized sensor domain of ComP are highly polymorphic in natural isolates of bacilli all closely related to the laboratory strain of B. subtilis. In this study, we used two statistical tests (the ratio of synonymous and nonsynonymous substitution rates and the Tajima D test) to demonstrate that these polymorphic sequences evolved by diversifying selection rather than by neutral drift. We show that the choice of isoprenyl derivative is determined by the C-terminal (mature) sequence of pre-ComX rather than by the ComQ protein. The implications of these findings for the evolution of the quorum-sensing system and for the protein-protein interactions involved in determining specificity are discussed.
Collapse
Affiliation(s)
- M Ansaldi
- Public Health Research Institute and Department of Microbiology and Molecular Genetics, University of Medicine and Dentistry of New Jersey, Newark, New Jersey 07103, USA
| | | |
Collapse
|
21
|
Core L, Perego M. TPR-mediated interaction of RapC with ComA inhibits response regulator-DNA binding for competence development in Bacillus subtilis. Mol Microbiol 2003; 49:1509-22. [PMID: 12950917 DOI: 10.1046/j.1365-2958.2003.03659.x] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The Bacillus subtilis Rap family of proteins are characterized by protein-protein interaction modules containing the so-called tetratricopeptide repeats (TPRs). The six TPR motifs of RapC mediate its interaction with the pentapeptide inhibitor PhrC (ERGMT) or with its target protein ComA, a phosphorylation-dependent response regulator transcription factor for genetic competence. Our results show that RapC interaction with ComA inhibits the response regulator's ability to bind its target DNA promoter but does not affect its phosphorylation state. RapC binds equally well to ComA or to ComA approximately P. The PhrC pentapeptide binds to RapC and inhibits its interaction with ComA. The D195 residue in TPR3 and the P263 residue in TPR5 of RapC are critical for the interaction with PhrC as their mutation to asparagine or leucine, respectively, prevents peptide inhibitory activity. The RapC mechanism of regulating ComA activity is a new example of how TPR motifs and their structural organization have been adapted for different specific functions within the B. subtilis Rap family.
Collapse
Affiliation(s)
- Leighton Core
- Division of Cellular Biology, Department of Molecular and Experimental Medicine, MEM-116, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | |
Collapse
|
22
|
Yazgan Karata° A, Çetin S, Özcengiz G. The effects of insertional mutations in comQ, comP, srfA, spo0H, spo0A and abrB genes on bacilysin biosynthesis in Bacillus subtilis. ACTA ACUST UNITED AC 2003. [DOI: 10.1016/s0167-4781(03)00037-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
23
|
Ansaldi M, Marolt D, Stebe T, Mandic-Mulec I, Dubnau D. Specific activation of the Bacillus quorum-sensing systems by isoprenylated pheromone variants. Mol Microbiol 2002; 44:1561-73. [PMID: 12067344 DOI: 10.1046/j.1365-2958.2002.02977.x] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Natural genetic competence in Bacillus subtilis is controlled by quorum-sensing (QS). The ComP- ComA two-component system detects the signalling molecule ComX, and this signal is transduced by a conserved phosphotransfer mechanism. ComX is synthesized as an inactive precursor and is then cleaved and modified by ComQ before export to the extracellular environment. The comQXP' loci of a set of natural Bacillus isolates have been sequenced and shown to possess a striking polymorphism that determines specific patterns of both activation and inhibition of the quorum-sensing response. We have developed a simple purification method for the modified peptide signalling pheromones allowing the characterization of four distinct ComX molecules representing different pherotypes. Genetic and biochemical evidence demonstrate that all the ComX variants are isoprenylated by the post-translational modification of a conserved tryptophan residue and that the modifications on the ComX peptide backbones vary in mass among the various pherotypes. These results give new insights into peptidemediated quorum-sensing signalling in Gram-positive bacteria and emphasize the role of isoprenylation in bacterial signal transduction.
Collapse
Affiliation(s)
- Mireille Ansaldi
- Public Health Research Institute, 225 Warren Street, Newark, NJ 07103, USA
| | | | | | | | | |
Collapse
|
24
|
Lapidus A, Galleron N, Andersen JT, Jørgensen PL, Ehrlich SD, Sorokin A. Co-linear scaffold of the Bacillus licheniformis and Bacillus subtilis genomes and its use to compare their competence genes. FEMS Microbiol Lett 2002; 209:23-30. [PMID: 12007649 DOI: 10.1111/j.1574-6968.2002.tb11104.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
We have established the co-linear regions of Bacillus licheniformis, an industrially important bacterium, and Bacillus subtilis, a model bacterium. In the co-linear regions, revealed by PCR, gene content and order are presumed to be conserved. These regions constitute approximately 60% of the compared chromosomes. Sequencing of the competence genes of B. licheniformis allowed us to validate the approach, and to demonstrate how it can be used for the comparative analysis of complex genetic systems. A new insertion sequence, designated IS3Bli1, was discovered in the competence region of the analyzed B. licheniformis strain.
Collapse
Affiliation(s)
- Alla Lapidus
- Génétique Microbienne, INRA, Domaine de Vilvert, 78352 Jouy en Josas Cedex, France
| | | | | | | | | | | |
Collapse
|
25
|
Nakano MM, Hajarizadeh F, Zhu Y, Zuber P. Loss-of-function mutations in yjbD result in ClpX- and ClpP-independent competence development of Bacillus subtilis. Mol Microbiol 2001; 42:383-94. [PMID: 11703662 DOI: 10.1046/j.1365-2958.2001.02639.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Mutations in clpP and clpX have pleiotropic effects on growth and developmentally regulated gene expression in Bacillus subtilis. ClpP and ClpX are needed for expression of comK, encoding the competence transcription factor required for the expression of genes within the competence regulon. ClpP, in combination with the ATPase ClpC, degrades the inhibitor of ComK, MecA. Proteolysis of MecA is stimulated by a small protein, ComS, which interacts with MecA. Suppressor mutations (cxs) were isolated that bypass the requirement for clpX for comK expression. These were found also to overcome the defect in comK expression conferred by a clpP mutation. These mutations were identified as missense mutations (cxs-5, -7 and -12) and a nonsense (UAG) codon substitution (cxs-10) in the yjbD coding sequence in a locus linked to mecA. That a yjbD disruption confers the cxs phenotype, together with its complementation by an ectopically expressed copy of yjbD, indicated that the suppressor alleles bear recessive, loss-of-function mutations of yjbD. ClpP- and ClpX-independent comK expression rendered by inactivation of yjbD was still medium-dependent and required ComS. MecA levels in a clpP-yjbD mutant were lower that those of clpP mutant cells and ComK protein concentration in the clpP mutant was restored to wild-type levels by the yjbD mutation. Consequently, the yjbD mutation bypasses the defect in competence development conferred by clpP and clpX. YjbD protein is barely detectable in wild-type cells, but is present in large amounts in the clpP mutant cells. The results suggest that the role of ClpP in competence development is to degrade YjbD protein so that ComS can productively interact with the MecA-ClpC-ComK complex. Alternatively, the result could suggest that YjbD has a negative effect on regulated proteolysis and that MecA is degraded independently of ClpP when YjbD is absent.
Collapse
Affiliation(s)
- M M Nakano
- Department of Biochemistry and Molecular Biology, OGI School of Science and Engineering, Oregon Health and Science University, Beaverton, OR 97006-8921, USA
| | | | | | | |
Collapse
|
26
|
Yazgan A, Ozcengiz G, Marahiel MA. Tn10 insertional mutations of Bacillus subtilis that block the biosynthesis of bacilysin. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1518:87-94. [PMID: 11267663 DOI: 10.1016/s0167-4781(01)00182-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Transposon mutagenesis was employed to isolate the gene(s) related with the biosynthesis of dipeptide antibiotic in Bacillus subtilis PY79 (a prototrophic derivative of the standard 168 strain). The blocked mutants were phenotypically selected from the transposon library by bioassay and the complete loss of biosynthetic ability was verified through ESI-mass spectrometry analysis. Four different bacilysin nonproducer mutants (Bac(-)::Tn10(ori-spc)) were isolated from the transposon library. The genes involved in bacilysin biosynthesis were identified as thyA (thymidilate synthetase), ybgG (unknown; similar to homocysteine methyl transferase) and oppA (oligopeptide permease), respectively. The other blocked gene was yvgW (unknown; similar to heavy metal-transporting ATPase); however, backcross studies did not verify its involvement in bacilysin biosynthesis. This gene, on the other hand, appeared to be necessary for efficient sporulation and transformation. Opp involvement was significant as it suggested that bacilysin biosynthesis is under or a component of the quorum sensing pathway which has been shown to be responsible for the establishment of sporulation, competence development and onset of surfactin biosynthesis. For verification, it was necessary to check the involvement of peptide pheromones (PhrA or PhrC) internalized by the Opp system and response regulator ComA as the essential components of this global control. phrA, phrC and comA deleted mutants of PY79 were thus constructed and the latter two genes were shown to be essential for bacilysin biosynthesis.
Collapse
Affiliation(s)
- A Yazgan
- Biology Department, Middle East Technical University, Ankara 06531, Turkey
| | | | | |
Collapse
|
27
|
Kim SB, Shin BS, Choi SK, Kim CK, Park SH. Involvement of acetyl phosphate in the in vivo activation of the response regulator ComA in Bacillus subtilis. FEMS Microbiol Lett 2001; 195:179-83. [PMID: 11179649 DOI: 10.1111/j.1574-6968.2001.tb10518.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Development of genetic competence in Bacillus subtilis is regulated by ComP--ComA, a two-component signal transduction system. The response regulator ComA is primarily activated by ComP, a histidine kinase that mediates response to nutrient conditions and cell density, and the activated ComA is required for transcription of the srf operon, which is essential for the development of genetic competence and surfactin production. In this study we suggested that the ComA could also be activated by a small molecule phospho-donor, acetyl phosphate. Examination of srfA-lacZ expression indicated that a significant amount of srfA expression still occurs in the comP mutant during growth in a sporulation medium containing excess glucose. Analysis of a comP and pta mutant suggests that srfA activation seen in the comP mutant is dependent on the expression of pta, which encodes phosphotransacetylase (Pta). As Pta is responsible for the catalysis for conversion of acetyl coenzyme A to acetyl phosphate, we conclude that the expression of srfA seen in the comP mutant is mainly due to the activation of ComA by acetyl phosphate.
Collapse
Affiliation(s)
- S B Kim
- Laboratory of Microbial and Bioprocess Engineering, Korea Research Institute of Bioscience and Biotechnology, Yusong, Taejon, South Korea
| | | | | | | | | |
Collapse
|
28
|
Lazazzera BA, Kurtser IG, McQuade RS, Grossman AD. An autoregulatory circuit affecting peptide signaling in Bacillus subtilis. J Bacteriol 1999; 181:5193-200. [PMID: 10464187 PMCID: PMC94022 DOI: 10.1128/jb.181.17.5193-5200.1999] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The competence and sporulation factor (CSF) of Bacillus subtilis is an extracellular pentapeptide produced from the product of phrC. CSF has at least three activities: (i) at low concentrations, it stimulates expression of genes activated by the transcription factor ComA; at higher concentrations, it (ii) inhibits expression of those same genes and (iii) stimulates sporulation. Because the activities of CSF are concentration dependent, we measured the amount of extracellular CSF produced by cells. We found that by mid-exponential phase, CSF accumulated to concentrations (1 to 5 nM) that stimulate ComA-dependent gene expression. Upon entry into stationary phase, CSF reached 50 to 100 nM, concentrations that stimulate sporulation and inhibit ComA-dependent gene expression. Transcription of phrC was found to be controlled by two promoters: P1, which precedes rapC, the gene upstream of phrC; and P2, which directs transcription of phrC only. Both RapC and CSF were found to be part of autoregulatory loops that affect transcription from P1, which we show is activated by ComA approximately P. RapC negatively regulates its own expression, presumably due to its ability to inhibit accumulation of ComA approximately P. CSF positively regulates its own expression, presumably due to its ability to inhibit RapC activity. Transcription from P2, which is controlled by the alternate sigma factor sigma(H), increased as cells entered stationary phase, contributing to the increase in extracellular CSF at this time. In addition to controlling transcription of phrC, sigmaH appears to control expression of at least one other gene required for production of CSF.
Collapse
Affiliation(s)
- B A Lazazzera
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | | | |
Collapse
|
29
|
Ogura M, Liu L, Lacelle M, Nakano MM, Zuber P. Mutational analysis of ComS: evidence for the interaction of ComS and MecA in the regulation of competence development in Bacillus subtilis. Mol Microbiol 1999; 32:799-812. [PMID: 10361283 DOI: 10.1046/j.1365-2958.1999.01399.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The development of Bacillus subtilis genetic competence is a highly regulated adaptive response to stationary-phase stress. A key step in competence development is the activation of the transcriptional regulator ComK, which is required for the expression of genes encoding the products that function in DNA uptake. In log-phase cultures, ComK is trapped in a complex composed of MecA and ClpC, in which it is rendered inactive. The comS gene, contained within the srf operon, is induced in response to high culture cell density and nutritional stress. Its product functions to release active ComK from the complex, allowing ComK to stimulate the transcription initiation of its own gene as well as that of the late competence operons. Western analysis showed that ComS accumulates to maximal levels between T3 and T4, mirroring the pattern of competence cell development and late competence gene expression. Experiments to examine the target of ComS activity in vitro showed that ComS binds to MecA. This is further supported by coimmunoprecipitation using anti-MecA antiserum. To clarify the role of ComS in competence regulation, a system for evaluating the effect of comS and mutant derivatives on the expression of comG, one of the late competence operons, was constructed. comS mutations, created by alanine-scanning mutagenesis, that significantly reduced comG-lacZ expression were clustered within two regions, one at the N-terminus and the other at the C-terminus of ComS. ComSI13 --> A and ComSW43 --> A were selected for further analysis as representative mutants for both regions required for ComS activity. We observed that ComSI13 --> A showed significantly reduced affinity for MecA, whereas ComSW43 --> A showed near normal binding affinity for MecA. The results show that binding to MecA is critical for ComS function, but do not rule out the possibility that ComS possesses other activities.
Collapse
Affiliation(s)
- M Ogura
- Department of Biochemistry and Molecular Biology, Louisiana State University Medical Center, Shreveport, LA 71130, USA
| | | | | | | | | |
Collapse
|
30
|
Liu J, Zuber P. A molecular switch controlling competence and motility: competence regulatory factors ComS, MecA, and ComK control sigmaD-dependent gene expression in Bacillus subtilis. J Bacteriol 1998; 180:4243-51. [PMID: 9696775 PMCID: PMC107423 DOI: 10.1128/jb.180.16.4243-4251.1998] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacillus subtilis, like many bacteria, will choose among several response pathways when encountering a stressful environment. Among the processes activated under growth-restricting conditions are sporulation, establishment of motility, and competence development. Recent reports implicate ComK and MecA-ClpC as part of a system that regulates both motility and competence development. MecA, while negatively controlling competence by inhibiting ComK, stimulates sigmaD-dependent transcription of genes that function in motility and autolysin production. Both ComK-dependent and -independent pathways have been proposed for MecA's role in the regulation of motility. Mutations in mecA reduce the transcription of hag. encoding flagellin, and are partially suppressed by comK in both medium promoting motility and medium promoting competence. Reduced sigmaD levels are observed in mecA mutants grown in competence medium, but no change in sigmaD concentration is detected in a comK mutant. The comF operon, transcription of which requires ComK, is located immediately upstream of the operon that contains the flgM gene, encoding the sigmaD-specific antisigma factor. An insertion mutation that disrupts the putative comF-flgM transcription unit confers a phenotype identical to that of the comK mutant with respect to hag-lacZ expression. Expression of a flgM-lacZ operon fusion is reduced in both sigD and comK mutant cells but is abolished in the sigD comK double mutant. Reverse transcription-PCR examination of the comF-flgM transcript indicates that readthrough from comF into the flgM operon is dependent on ComK. ComK negatively controls the transcription of hag by stimulating the transcription of comF-flgM, thereby increasing the production of the FlgM antisigma factor that inhibits sigmaD activity. There likely exists another comK-independent mechanism of hag transcription that requires mecA and possibly affects the sigmaD concentration in cells undergoing competence development.
Collapse
Affiliation(s)
- J Liu
- Department of Biochemistry and Molecular Biology, Louisiana State University Medical Center, Shreveport, Louisiana, USA
| | | |
Collapse
|
31
|
Cosby WM, Vollenbroich D, Lee OH, Zuber P. Altered srf expression in Bacillus subtilis resulting from changes in culture pH is dependent on the Spo0K oligopeptide permease and the ComQX system of extracellular control. J Bacteriol 1998; 180:1438-45. [PMID: 9515911 PMCID: PMC107042 DOI: 10.1128/jb.180.6.1438-1445.1998] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The expression of the srf operon of Bacillus subtilis, encoding surfactin synthetase and the competence regulatory protein ComS, was observed to be reduced when cells were grown in a rich glucose- and glutamine-containing medium in which late-growth culture pH was 5.0 or lower. The production of the surfactin synthetase subunits and of surfactin itself was also reduced. Raising the pH to near neutrality resulted in dramatic increases in srf expression and surfactin production. This apparent pH-dependent induction of srf expression required spo0K, which encodes the oligopeptide permease that functions in cell-density-dependent control of sporulation and competence, but not CSF, the competence-inducing pheromone that regulates srf expression in a Spo0K-dependent manner. Both ComP and ComA, the two-component regulatory pair that stimulates cell-density-dependent srf transcription, were required for optimal expression of srf at low and high pHs, but ComP was not required for pH-dependent srf induction. The known negative regulators of srf, RapC and CodY, were found not to function significantly in pH-dependent srf expression. Late-growth culture supernatants at low pH were not active in inducing srf expression in cells of low-density cultures but were rendered active when their pH was raised to near neutrality. ComQ (and very likely the srf-inducing pheromone ComX) and Spo0K were found to be required for the extracellular induction of srf-lacZ at neutral pH. The results suggest that srf expression, in response to changes in culture pH, requires Spo0K and another, as yet unidentified, extracellular factor. The study also provides evidence consistent with the hypothesis that ComP acts both positively and negatively in the regulation of ComA and that both activities are controlled by the ComX pheromone.
Collapse
Affiliation(s)
- W M Cosby
- Department of Biochemistry and Molecular Biology, Louisiana State University Medical Center, Shreveport 71130-3932, USA
| | | | | | | |
Collapse
|
32
|
Jin S, Levin PA, Matsuno K, Grossman AD, Sonenshein AL. Deletion of the Bacillus subtilis isocitrate dehydrogenase gene causes a block at stage I of sporulation. J Bacteriol 1997; 179:4725-32. [PMID: 9244258 PMCID: PMC179317 DOI: 10.1128/jb.179.15.4725-4732.1997] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
A Bacillus subtilis mutant with a deletion of citC, the gene encoding isocitrate dehydrogenase, the third enzyme of the tricarboxylic acid branch of the Krebs cycle, had a greatly reduced ability to sporulate. Analysis of expression of lacZ fusions to various sporulation gene promoters revealed that in the citC mutant development is probably blocked between stage 0 and stage II. That is, genes expressed very early in sporulation, under the direct control of the Spo0A transcription factor, were induced normally in the citC mutant. However, genes expressed after asymmetric septation (stage II) in wild-type cells were not induced in the citC mutant. Analysis of cell morphology by thin-section electron microscopy and immunofluorescence microscopy showed that the mutant formed axial chromosomal filaments and accumulated rings of FtsZ protein at potential polar division sites but failed to form asymmetric division septa, indicating that sporulation is blocked at stage I. The growth and sporulation defects of the B. subtilis citC mutant were fully overcome by introduction and expression of the Escherichia coli icd gene, encoding an isocitrate dehydrogenase similar to the enzyme from B. subtilis.
Collapse
Affiliation(s)
- S Jin
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | | | | | | | | |
Collapse
|
33
|
Lazazzera BA, Solomon JM, Grossman AD. An exported peptide functions intracellularly to contribute to cell density signaling in B. subtilis. Cell 1997; 89:917-25. [PMID: 9200610 DOI: 10.1016/s0092-8674(00)80277-9] [Citation(s) in RCA: 186] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Competence development and sporulation in B. subtilis are partly controlled by peptides that accumulate in culture medium as cells grow to high density. We constructed two genes that encode mature forms of two different signaling molecules, the PhrA peptide that stimulates sporulation, and CSF, the competence- and sporulation-stimulating factor. Both pentapeptides are normally produced by secretion and processing of precursor molecules. The mature pentapeptides were functional when expressed inside the cell, indicating that they normally need to be imported to function. Furthermore, at physiological concentrations (10 nM), CSF was transported into the cell by the oligopeptide permease encoded by spo0K (opp). CSF was shown to have at least three different targets corresponding to its three activities: stimulating competence gene expression at low concentrations, and inhibiting competence gene expression and stimulating sporulation at high concentrations.
Collapse
Affiliation(s)
- B A Lazazzera
- Department of Biology, Massachusetts Institute of Technology, Cambridge 02139, USA
| | | | | |
Collapse
|
34
|
Serror P, Sonenshein AL. CodY is required for nutritional repression of Bacillus subtilis genetic competence. J Bacteriol 1996; 178:5910-5. [PMID: 8830686 PMCID: PMC178446 DOI: 10.1128/jb.178.20.5910-5915.1996] [Citation(s) in RCA: 124] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The acquisition of genetic competence by Bacillus subtilis is repressed when the growth medium contains Casamino Acids. This repression was shown to be exerted at the level of expression from the promoters of the competence-regulatory genes srfA and comK and was relieved in strains carrying a null mutation in the codY gene. DNase I footprinting experiments showed that purified CodY binds directly to the srfA and comK promoter regions.
Collapse
Affiliation(s)
- P Serror
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | | |
Collapse
|
35
|
Liu L, Nakano MM, Lee OH, Zuber P. Plasmid-amplified comS enhances genetic competence and suppresses sinR in Bacillus subtilis. J Bacteriol 1996; 178:5144-52. [PMID: 8752331 PMCID: PMC178310 DOI: 10.1128/jb.178.17.5144-5152.1996] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The establishment of genetic competence in Bacillus subtilis is controlled by a vast signal transduction network involving the products of genes that function in several postexponential-phase processes. Two of these proteins, SinR and DegU, serve as molecular switches that influence a cell's decision to undergo either sporulation or genetic competence development. In order to determine the roles of SinR and DegU in competence control, multicopy suppression experiments with plasmid-amplified comS, SinR, and degU genes were undertaken. Multicopy comS was found to elevate competence gene transcription and transformation efficiency in both wild-type and sinR mutant cells but not in degU mutant cells. Multicopy degU failed to suppress comS or sinR mutations. No suppression of comS or degU by multicopy sinR was observed. The expression of a comS'::'lacZ translational fusion and srf-lacZ operon fusion was examined in sinR cells and cells bearing plasmid-amplified sinR. The expression of comS'::'lacZ gene fusion was reduced by the sinR mutation, but both comS'::'lacZ and srf-lacZ were repressed by multicopy sinR. Cells bearing plasmid-amplified sinR were poorly competent. These results suggest that sinR is required for optimal comS expression but not transcription from the srf promoter and that SinR at high concentrations represses srf transcription initiation.
Collapse
Affiliation(s)
- L Liu
- Department of Biochemistry and Molecular Biology, Louisiana State University Medical Center, Shreveport, USA
| | | | | | | |
Collapse
|
36
|
Solomon JM, Lazazzera BA, Grossman AD. Purification and characterization of an extracellular peptide factor that affects two different developmental pathways in Bacillus subtilis. Genes Dev 1996; 10:2014-24. [PMID: 8769645 DOI: 10.1101/gad.10.16.2014] [Citation(s) in RCA: 190] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
We have purified and characterized an extracellular peptide factor that serves as a cell density signal for both competence development and sporulation in Bacillus subtilis. This competence and sporulation stimulating factor (CSF) was purified from conditioned medium (culture supernatant) based on its ability to stimulate expression of srfA (comS) in cells at low cell density. CSF is a 5-amino-acid peptide, glu-arg-gly-met-thr (ERGMT), that is, the carboxy-terminal 5 amino acids of the 40-amino-acid peptide encoded by phrC. No detectable CSF was produced in a phrC null mutant. The activity of chemically synthesized CSF (ERGMT) was virtually indistinguishable from that of CSF that was purified from culture supernatants. At relatively low concentrations (1-10 nM), CSF stimulated expression of srfA, whereas high concentrations of CSF stimulated the ability of cells at low cell density to sporulate. Stimulation of srfA expression by CSF requires the oligopeptide permease encoded by spo0K, a member of the ATP-binding-cassette family of transporters, and the putative phosphatase encoded by rapC, the gene immediately upstream of phrC. RapC was found to be a negative regulator of srfA expression, suggesting that the target of RapC is the transcription factor encoded by comA. We propose that CSF is transported into the cell by the Spo0K oligopeptide permease and stimulates competence gene expression by inhibiting (either directly or indirectly) the RapC phosphatase.
Collapse
Affiliation(s)
- J M Solomon
- Department of Biology, Massachusetts Institute of Technology, Cambridge 02139, USA
| | | | | |
Collapse
|
37
|
Solomon JM, Grossman AD. Who's competent and when: regulation of natural genetic competence in bacteria. Trends Genet 1996; 12:150-5. [PMID: 8901420 DOI: 10.1016/0168-9525(96)10014-7] [Citation(s) in RCA: 111] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Natural genetic competence, the ability of cells to bind to and to take up exogenous DNA, is widespread among bacteria and might be an important mechanism for the horizontal transfer of genes. Competent cells express specialized proteins that assemble into a DNA-uptake complex. In many organisms, the development of competence and expression of the uptake machinery is regulated in response to cell-cell signaling and/or nutritional conditions. Exciting new progress has been made in characterizing the signals and pathways that regulate the development of competence.
Collapse
Affiliation(s)
- J M Solomon
- Department of Biology, Massachusetts Institute of Technology, Cambridge 02139, USA
| | | |
Collapse
|
38
|
D'Souza C, Nakano MM, Frisby DL, Zuber P. Translation of the open reading frame encoded by comS, a gene of the srf operon, is necessary for the development of genetic competence, but not surfactin biosynthesis, in Bacillus subtilis. J Bacteriol 1995; 177:4144-8. [PMID: 7608091 PMCID: PMC177150 DOI: 10.1128/jb.177.14.4144-4148.1995] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
A small open reading frame, comS of the srf operon, is the site of mutations that impair competence development in Bacillus subtilis. comS open reading frame translation was required for competence, as was confirmed by the suppression of a comS amber mutation [comS(Am)] by the nonsense suppressor sup-3. comS(Am), when introduced into the srf operon, eliminated late competence gene expression but had no significant effect on surfactin production.
Collapse
Affiliation(s)
- C D'Souza
- Department of Biochemistry and Molecular Biology, Louisiana State University Medical Center, Shreveport 71130-3932, USA
| | | | | | | |
Collapse
|
39
|
Solomon JM, Magnuson R, Srivastava A, Grossman AD. Convergent sensing pathways mediate response to two extracellular competence factors in Bacillus subtilis. Genes Dev 1995; 9:547-58. [PMID: 7698645 DOI: 10.1101/gad.9.5.547] [Citation(s) in RCA: 136] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Development of genetic competence in Bacillus subtilis is regulated by extracellular signaling molecules, including the ComX pheromone, a modified 9- or 10-amino-acid peptide. Here, we present characterization of a second extracellular competence stimulating factor (CSF). CSF appears to be, at least in part, a small peptide of between 520 and 720 daltons. Production of CSF requires several genes that are needed both for initiation of sporulation and development of competence (spo0H, spo0A, spo0B, and spo0F). Although both peptide factors regulate competence, two different sensing pathways mediate the response to the ComX pheromone and CSF. Analysis of double mutants indicated that ComX pheromone is on the same genetic pathway as the membrane-bound histidine protein kinase encoded by comP and that CSF is on the same genetic pathway as the oligopeptide permease encoded by spo0K. Furthermore, the cellular response to partly purified ComX pheromone requires the ComP histidine protein kinase, whereas the response to partly purified CSF requires the Spo0K oligopeptide permease. These two sensing pathways converge to activate competence genes. Both factors and their convergent sensing pathways are required for normal development of competence and might function to integrate different physiological signals.
Collapse
Affiliation(s)
- J M Solomon
- Department of Biology, Massachusetts Institute of Technology, Cambridge 02139
| | | | | | | |
Collapse
|
40
|
D'Souza C, Nakano MM, Zuber P. Identification of comS, a gene of the srfA operon that regulates the establishment of genetic competence in Bacillus subtilis. Proc Natl Acad Sci U S A 1994; 91:9397-401. [PMID: 7937777 PMCID: PMC44819 DOI: 10.1073/pnas.91.20.9397] [Citation(s) in RCA: 110] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Genetic competence (the ability to internalize exogenous DNA) in Bacillus subtilis is dependent on a regulatory pathway that activates the expression of a battery of competence-specific genes. The srfA operon, encoding the subunits of surfactin synthetase, which catalyzes the nonribosomal synthesis of the peptide antibiotic surfactin, also functions in the competence regulatory pathway. The DNA encoding only one of the seven amino acid-activating domains of surfactin synthetase, the valine-activating domain (srfAB1), is necessary for competence. Deletion analysis revealed that a 569-bp fragment of srfAB1, fused to the srfA promoter, complements a srfA deletion mutation (delta srfA) with respect to competence. This fragment contains an open reading frame consisting of 46 amino acids (orf46), which is out of frame with srfAB1. A frameshift mutation in srfAB upstream of orf46 has no effect on competence but a frameshift and nonsense mutation in orf46 resulted in failure to complement the delt srfA mutation. These results indicate that orf46 encodes the srfA-associated competence regulatory factor. Computer-aided analysis of the putative orf46 product (ComS) shows similarity to the homeodomain of the POU domain class of eukaryotic transcriptional regulators.
Collapse
Affiliation(s)
- C D'Souza
- Department of Biochemistry and Molecular Biology, Louisiana State University Medical Center, Shreveport 71130
| | | | | |
Collapse
|
41
|
van Sinderen D, Venema G. comK acts as an autoregulatory control switch in the signal transduction route to competence in Bacillus subtilis. J Bacteriol 1994; 176:5762-70. [PMID: 8083168 PMCID: PMC196780 DOI: 10.1128/jb.176.18.5762-5770.1994] [Citation(s) in RCA: 112] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The comK gene is a regulatory transcription unit which is essential for the development of genetic competence in Bacillus subtilis. The transcription of comK is under strict nutritional and growth phase-dependent control and has been shown to depend on the gene products of comA and srfA. In this report, we show that expression of comK is dependent on its own gene product as well as on the gene products of all other tested regulatory genes known to be involved in competence development (abrB, comA, comP, degU, sin, spo0A, spo0H, spo0K, and srfA). A mecA mutation is able to suppress the competence deficiency of mutations in any of these regulatory loci except for mutations in spo0A and, as we show here, in comK. Furthermore, we show that the presence of comK on a multiple copy plasmid leads to derepression of comK expression, causing an almost constitutive expression of competence in minimal medium as well as permitting competence development in complex medium. We infer from these results that the signals which trigger competence development, after having been received and processed by the various components of the competence signal transduction pathway, all converge at the level of comK expression. As soon as derepression of comK expression occurs, the positive autoregulation rapidly results in accumulation of the comK gene product, which subsequently induces competence.
Collapse
Affiliation(s)
- D van Sinderen
- Department of Genetics, University of Groningen, Haren, The Netherlands
| | | |
Collapse
|
42
|
Hahn J, Kong L, Dubnau D. The regulation of competence transcription factor synthesis constitutes a critical control point in the regulation of competence in Bacillus subtilis. J Bacteriol 1994; 176:5753-61. [PMID: 8083167 PMCID: PMC196779 DOI: 10.1128/jb.176.18.5753-5761.1994] [Citation(s) in RCA: 80] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
comK, which encodes the competence transcription factor, is itself transcriptionally activated at the transition from exponential growth to stationary phase in Bacillus subtilis. MecA, a negative regulator of competence, also inhibits comK transcription when overexpressed, and a mecA null mutation results in comK overexpression. Although null mutations in mecA, as well as in another gene, mecB, are known to bypass the requirements for nearly all of the competence regulatory genes, the comK requirement is not suppressed by mecA inactivation. Various competence regulatory genes (comA, srfA, degU, abrB, sin, and spo0A) are shown to be required for the expression of comK. srfA transcription is shown to occur equally in cells destined for competence and those destined not to become competent. In contrast, comK transcription is restricted to the presumptive competent cells. These and other results are combined to describe a regulatory pathway for competence.
Collapse
Affiliation(s)
- J Hahn
- Public Health Research Institute, New York, New York 10016
| | | | | |
Collapse
|
43
|
Dubnau D, Hahn J, Roggiani M, Piazza F, Weinrauch Y. Two-component regulators and genetic competence in Bacillus subtilis. Res Microbiol 1994; 145:403-11. [PMID: 7855426 DOI: 10.1016/0923-2508(94)90088-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- D Dubnau
- Department of Microbiology, Public Health Research Institute, New York, NY 10016
| | | | | | | | | |
Collapse
|
44
|
Frisby D, Zuber P. Mutations in pts cause catabolite-resistant sporulation and altered regulation of spo0H in Bacillus subtilis. J Bacteriol 1994; 176:2587-95. [PMID: 8169206 PMCID: PMC205396 DOI: 10.1128/jb.176.9.2587-2595.1994] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
A mutation in Bacillus subtilis, ggr-31, that relieves glucose-glutamine-dependent control of a spoVG-lacZ translational fusion was isolated and was subsequently found to confer a pleiotropic phenotype. Mutants cultured in glucose- and glutamine-rich media exhibited a Crs- (catabolite-resistant sporulation) phenotype; enhanced expression of the spo0H gene, encoding sigma H, as evidenced by immunoblot analysis with anti-sigma H antiserum; and derepression of srfA, an operon involved in surfactin biosynthesis and competence development. In addition, ggr-31 mutants exhibited a significant increase in generation time when they were cultured in minimal glucose medium. The mutant phenotype was restored to the wild type by Campbell integration of a plasmid containing part of the ptsG (encoding the enzyme II/III glucose permease) gene, indicating that the mutation probably resides within ptsG and adversely affects glucose uptake. A deletion mutation within ptsI exhibited a phenotype similar to that of ggr-31.
Collapse
Affiliation(s)
- D Frisby
- Department of Biochemistry and Molecular Biology, Louisiana State University Medical Center, Shreveport 71130-3932
| | | |
Collapse
|
45
|
Magnuson R, Solomon J, Grossman AD. Biochemical and genetic characterization of a competence pheromone from B. subtilis. Cell 1994; 77:207-16. [PMID: 8168130 DOI: 10.1016/0092-8674(94)90313-1] [Citation(s) in RCA: 329] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
We have purified and characterized a modified peptide pheromone that accumulates in culture medium as B. subtilis grows to high density. This pheromone is required for the development of genetic competence. When added to cells at low density, the pheromone induces the premature development of competence. The peptide moiety of the pheromone matches nine of the last ten amino acids predicted from a 55 codon open reading frame, comX. comX and comQ, the gene immediately upstream of comX, are required for production of the pheromone. Response to the pheromone requires the comP-comA two-component regulatory system and the oligopeptide permease encoded by spo0K. Spo0K could transport the pheromone into the cell, or function as a receptor, binding the pheromone and sending a transmembrane signal, leading to activation of the ComA transcription factor and induction of competence development.
Collapse
Affiliation(s)
- R Magnuson
- Department of Biology, Massachusetts Institute of Technology, Cambridge 02139
| | | | | |
Collapse
|
46
|
van Sinderen D, ten Berge A, Hayema BJ, Hamoen L, Venema G. Molecular cloning and sequence of comK, a gene required for genetic competence in Bacillus subtilis. Mol Microbiol 1994; 11:695-703. [PMID: 8196543 DOI: 10.1111/j.1365-2958.1994.tb00347.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The transformation-deficient strain E26, isolated as a pHV60 insertion mutant, was used to isolate comK, a novel transcription unit required for genetic competence in Bacillus subtilis. Mutational analysis and sequence determination showed that comK contained one open reading frame (ORF), which could encode a protein of 192 amino acid residues with a predicted molecular weight of 22,500. An integrated copy of comK not only complemented the competence deficiency of a comK deletion mutant, but also that of strains E26 and FB93. Expression of comK occurred exclusively in glucose-based minimal medium during the transition to stationary growth phase. Furthermore, the expression of late competence genes appeared to be dependent on the gene product of comK, the expression of which in turn depended on the presence of a functional comL (or srfA) transcription unit. These epistatic interactions indicate that comK is a competence locus occupying an intermediate position in the competence signal transduction network. Primer extension analysis showed that comK has one major transcription start site, preceded by a sequence resembling the consensus promoter used by the sigma A form of RNA polymerase.
Collapse
Affiliation(s)
- D van Sinderen
- Department of Genetics, University of Groningen, Haren, The Netherlands
| | | | | | | | | |
Collapse
|
47
|
Scotti C, Piatti M, Cuzzoni A, Perani P, Tognoni A, Grandi G, Galizzi A, Albertini AM. A Bacillus subtilis large ORF coding for a polypeptide highly similar to polyketide synthases. Gene 1993; 130:65-71. [PMID: 8344529 DOI: 10.1016/0378-1119(93)90347-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The nucleotide (nt) sequence of 13.6 kb of the outG locus of Bacillus subtilis, which maps at approximately 155 degrees between the genetic markers nrdA and polC, was determined. One putative coding sequence was identified corresponding to a large polypeptide of 4427 amino acids (aa). Structural organization at the nt and aa sequence level and extensive similarities of the deduced product, especially to EryA, suggest that the locus is potentially responsible for the synthesis of a polyketide molecule. The locus has been renamed pksX. Comparison of the deduced product with known fatty acid and polyketide synthases (PKS) suggested the presence of beta-ketosynthase, dehydratase, beta-ketoreductase and acyl-carrier protein domains. Preliminary data obtained with deletion mutants indicate that pksX is not an essential gene.
Collapse
Affiliation(s)
- C Scotti
- Dipartimento di Genetica e Microbiologia, Università di Pavia, Italy
| | | | | | | | | | | | | | | |
Collapse
|
48
|
D'Souza C, Nakano MM, Corbell N, Zuber P. Amino-acylation site mutations in amino acid-activating domains of surfactin synthetase: effects on surfactin production and competence development in Bacillus subtilis. J Bacteriol 1993; 175:3502-10. [PMID: 8501054 PMCID: PMC204750 DOI: 10.1128/jb.175.11.3502-3510.1993] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The part of the srfA operon of Bacillus subtilis that contains the region required for competence development is composed of the first four amino acid-activating domains which are responsible for the incorporation of Glu, Leu, D-Leu, and Val into the peptide moiety of the lipopeptide surfactin. Ser-to-Ala substitutions were made in the amino-acylation site of each domain, and their effects on surfactin production and competence development were examined. All of the mutations conferred a surfactin-negative phenotype, supporting the finding that the conserved Ser in the amino-acylation site is required for peptide synthesis. However, none of the mutations affected significantly competence development or the expression of a lacZ fusion to the late competence operon comG. This, coupled with recent findings that only the fourth, Val-activating, domain is required for competence, suggests that some activity, other than amino-acylation and perhaps unrelated to peptide synthesis, possessed by the fourth domain is involved in the role of srfA in regulating competence development.
Collapse
Affiliation(s)
- C D'Souza
- Department of Biochemistry and Molecular Biology, Louisiana State University Medical Center, Shreveport 71130-3932
| | | | | | | |
Collapse
|
49
|
Cosmina P, Rodriguez F, de Ferra F, Grandi G, Perego M, Venema G, van Sinderen D. Sequence and analysis of the genetic locus responsible for surfactin synthesis in Bacillus subtilis. Mol Microbiol 1993; 8:821-31. [PMID: 8355609 DOI: 10.1111/j.1365-2958.1993.tb01629.x] [Citation(s) in RCA: 225] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The chromosomal region of Bacillus subtilis comprising the entire srfA operon, sfp and about four kilobases in between have been completely sequenced and functionally characterized. The srfA gene codes for three large subunits of surfactin synthetase, 402, 401 and 144 kDa, respectively, arranged in a series of seven amino acid activating domains which, as shown in the accompanying communication, recognize and bind the seven amino acids of the surfactin peptide. The srfA amino acid activating domains share homologies with similar domains of other peptide synthetases; in particular, regions can be identified which are more homologous in domains activating the same amino acid. A fourth gene in srfA encodes a polypeptide homologous to grsT. Four genes are positioned between srfA and sfp, the disruption of which does not affect surfactin biosynthesis.
Collapse
Affiliation(s)
- P Cosmina
- ENIRICERCHE S.p.A. Genetic Engineering and Microbiology Laboratories, San Donato Milanese, Milan, Italy
| | | | | | | | | | | | | |
Collapse
|
50
|
Roggiani M, Dubnau D. ComA, a phosphorylated response regulator protein of Bacillus subtilis, binds to the promoter region of srfA. J Bacteriol 1993; 175:3182-7. [PMID: 8387999 PMCID: PMC204641 DOI: 10.1128/jb.175.10.3182-3187.1993] [Citation(s) in RCA: 130] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
ComA is a response regulator protein of Bacillus subtilis which is required for the transcription of several genes which are involved in late-growth expression and in responses to environmental stress. Among these genes are degQ, gsiA, and srfA. The last is an operon needed for the development of genetic competence, surfactin production, and normal sporulation. We show here that partially purified ComA protein, isolated from an overproducing Escherichia coli strain, is phosphorylated in vitro by incubation with acetyl phosphate and that ComA could bind specifically to a DNA fragment containing the promoter of srfA and associated sequences. The binding affinity is enhanced when ComA is phosphorylated. DNase I protection analysis identified two protected sites located upstream from the srfA promoter. The presence of DNase I-hypersensitive bonds induced by ComA binding which are located between the protected sequences is consistent with a model for ComA action involving the bending of DNA.
Collapse
Affiliation(s)
- M Roggiani
- Public Health Research Institute, New York, New York 10016
| | | |
Collapse
|