1
|
Zhang X, Wu M, Liu Z, Ou Y, Zhang T, Li M. Comprehensive effects of biochar-assisted nitrogen and phosphorus bioremediation on hydrocarbon removal and microecological improvement in petroleum-contaminated soil. BIORESOURCE TECHNOLOGY 2025; 418:131852. [PMID: 39577780 DOI: 10.1016/j.biortech.2024.131852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/13/2024] [Accepted: 11/19/2024] [Indexed: 11/24/2024]
Abstract
Biochar is widely used in agricultural soils, but its effects with nitrogen and phosphorus amendments on petroleum-contaminated soil are unclear. This study investigated biochar-assisted biostimulation in a microcosm experiment, focusing on hydrocarbon degradation, nitrogen cycling, and soil properties. Compared to the biostimulation alone (BS), biochar combined biostimulation (BSC) significantly enhanced the abundances of petroleum hydrocarbon degraders including Lysobacter and Brevundimonas, which led to a 17% increase in total petroleum hydrocarbon (TPH) degradation, with 9% and 39% enhancements in saturated hydrocarbon degradation and aromatic hydrocarbon fraction degradation, respectively. Biochar also promoted ammonia and nitrous oxide oxidation by upregulating AOA, AOB, norB, and nosZ genes, while controlling nitrogen loss by downregulating nirK. Soil moisture, oxidation-reduction potential (ORP), dehydrogenase activity (SDHA), and microbial proliferation were significantly enhanced. Structural equation models (SEM) indicated synergistic interactions between nitrogen cycling and hydrocarbon degradation. Biochar enhances hydrocarbon degradation and nitrogen cycling, offering a promising soil remediation approach.
Collapse
Affiliation(s)
- Xuhong Zhang
- Key Laboratory of Environmental Engineering of Shaanxi Province, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Laboratory of Northwest Water Resources, Environment and Ecology, Ministry of Education, Xi'an 710055, China
| | - Manli Wu
- Key Laboratory of Environmental Engineering of Shaanxi Province, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Laboratory of Northwest Water Resources, Environment and Ecology, Ministry of Education, Xi'an 710055, China.
| | - Zeliang Liu
- Key Laboratory of Environmental Engineering of Shaanxi Province, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Laboratory of Northwest Water Resources, Environment and Ecology, Ministry of Education, Xi'an 710055, China
| | - Yawen Ou
- Key Laboratory of Environmental Engineering of Shaanxi Province, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Laboratory of Northwest Water Resources, Environment and Ecology, Ministry of Education, Xi'an 710055, China
| | - Ting Zhang
- Key Laboratory of Environmental Engineering of Shaanxi Province, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Laboratory of Northwest Water Resources, Environment and Ecology, Ministry of Education, Xi'an 710055, China
| | - Mengqi Li
- Key Laboratory of Environmental Engineering of Shaanxi Province, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Laboratory of Northwest Water Resources, Environment and Ecology, Ministry of Education, Xi'an 710055, China
| |
Collapse
|
2
|
Zheng CW, Luo YH, Lai YJS, Ilhan ZE, Ontiveros-Valencia A, Krajmalnik-Brown R, Jin Y, Gu H, Long X, Zhou D, Rittmann BE. Identifying biodegradation pathways of cetrimonium bromide (CTAB) using metagenome, metatranscriptome, and metabolome tri-omics integration. WATER RESEARCH 2023; 246:120738. [PMID: 37866246 DOI: 10.1016/j.watres.2023.120738] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 09/23/2023] [Accepted: 10/11/2023] [Indexed: 10/24/2023]
Abstract
Traditional research on biodegradation of emerging organic pollutants involves slow and labor-intensive experimentation. Currently, fast-developing metagenome, metatranscriptome, and metabolome technologies promise to expedite mechanistic research on biodegradation of emerging organic pollutants. Integrating the metagenome, metatranscriptome, and metabolome (i.e., tri-omics) makes it possible to link gene abundance and expression with the biotransformation of the contaminant and the formation of metabolites from this biotransformation. In this study, we used this tri-omics approach to study the biotransformation pathways for cetyltrimethylammonium bromide (CTAB) under aerobic conditions. The tri-omics analysis showed that CTAB undergoes three parallel first-step mono-/di-oxygenations (to the α, β, and ω-carbons); intermediate metabolites and expressed enzymes were identified for all three pathways, and the β-carbon mono-/di-oxygenation is a novel pathway; and the genes related to CTAB biodegradation were associated with Pseudomonas spp. Four metabolites - palmitic acid, trimethylamine N-oxide (TMAO), myristic acid, and betaine - were the key identified biodegradation intermediates of CTAB, and they were associated with first-step mono-/di-oxygenations at the α/β-C. This tri-omics approach with CTAB demonstrates its power for identifying promising paths for future research on the biodegradation of complex organics by microbial communities.
Collapse
Affiliation(s)
- Chen-Wei Zheng
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, P.O. Box 875701, Tempe, AZ 85287-5701, USA
| | - Yi-Hao Luo
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, P.O. Box 875701, Tempe, AZ 85287-5701, USA; Engineering Lab for Water Pollution Control and Resources Recovery of Jilin Province, School of Environment, Northeast Normal University, Changchun 130117, China.
| | - Yen-Jung Sean Lai
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, P.O. Box 875701, Tempe, AZ 85287-5701, USA.
| | - Zehra Esra Ilhan
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, P.O. Box 875701, Tempe, AZ 85287-5701, USA; INRAE, Micalis Institute, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas 78350, France
| | - Aura Ontiveros-Valencia
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, P.O. Box 875701, Tempe, AZ 85287-5701, USA; Division de Ciencias Ambientales, Instituto Potosino de Investigación Científica y Tecnológica, Camino a la Presa de San José 2055, ZC, San Luis Potosí 78216, Mexico
| | - Rosa Krajmalnik-Brown
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, P.O. Box 875701, Tempe, AZ 85287-5701, USA; Biodesign Center for Health Through Microbiomes, Arizona State University, P.O. Box 875701, Tempe, AZ 85287-5701, USA
| | - Yan Jin
- Center for Translational Science, Florida International University, Port St. Lucie, FL 34987, USA
| | - Haiwei Gu
- Arizona Metabolomics Laboratory, College of Health Solutions, Arizona State University, Phoenix, AZ 85004, USA
| | - Xiangxing Long
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, P.O. Box 875701, Tempe, AZ 85287-5701, USA
| | - Dandan Zhou
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, P.O. Box 875701, Tempe, AZ 85287-5701, USA; Engineering Lab for Water Pollution Control and Resources Recovery of Jilin Province, School of Environment, Northeast Normal University, Changchun 130117, China
| | - Bruce E Rittmann
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, P.O. Box 875701, Tempe, AZ 85287-5701, USA
| |
Collapse
|
3
|
Yang E, Liu J, Chen D, Wang S, Xu L, Ma K, Zhan X, Sun L, Wang W. Rhizobium cremeum sp. nov., isolated from sewage and capable of acquisition of heavy metal and aromatic compounds resistance genes. Syst Appl Microbiol 2022; 45:126322. [DOI: 10.1016/j.syapm.2022.126322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 03/16/2022] [Accepted: 03/29/2022] [Indexed: 10/18/2022]
|
4
|
Xiang W, Wei X, Tang H, Li L, Huang R. Complete Genome Sequence and Biodegradation Characteristics of Benzoic Acid-Degrading Bacterium Pseudomonas sp. SCB32. BIOMED RESEARCH INTERNATIONAL 2020; 2020:6146104. [PMID: 32714981 PMCID: PMC7354641 DOI: 10.1155/2020/6146104] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 04/17/2020] [Indexed: 11/25/2022]
Abstract
Allelochemicals are metabolites produced by living organisms that have a detrimental effect on other species when released into the environment. These chemicals play critical roles in the problems associated with crop replanting. Benzoic acid is a representative allelochemical found in root exudates and rhizosphere soil of crops and inhibits crop growth. The bioremediation of allelochemicals by microorganisms is an efficient decontamination process. In this research, a bacterial strain capable of degrading benzoic acid as the sole carbon source was isolated. The genome of the strain was sequenced, and biodegradation characteristics and metabolic mechanisms were examined. Strain SCB32 was identified as Pseudomonas sp. based on 16S rRNA gene analysis coupled with physiological and biochemical analyses. The degradation rate of 800 mg L-1 benzoic acid by strain SCB32 was greater than 97.0% in 24 h. The complete genome of strain SCB32 was 6.3 Mbp with a GC content of 64.6% and 5960 coding genes. Potential benzoic acid degradation genes were found by comparison to the KEGG database. Some key intermediate metabolites of benzoic acid, such as catechol, were detected by gas chromatography-mass spectrometry. The biodegradation pathway of benzoic acid, the ortho pathway, is proposed for strain SCB32 based on combined data from genome annotation and mass spectrometry. Moreover, the benzoic acid degradation products from strain SCB32 were essentially nontoxic to lettuce seedlings, while seeds in the benzoic acid-treated group showed significant inhibition of germination. This indicates a possible application of strain SCB32 in the bioremediation of benzoic acid contamination in agricultural environments.
Collapse
Affiliation(s)
- Wei Xiang
- Department of Agronomy, Agricultural College of Guangxi University, Nanning 530004, China
| | - Xiaolan Wei
- Department of Agronomy, Agricultural College of Guangxi University, Nanning 530004, China
| | - Hui Tang
- Guangxi Institute of Botany, Chinese Academy of Sciences, Guilin 541006, China
| | - Liangbo Li
- Department of Agronomy, Agricultural College of Guangxi University, Nanning 530004, China
| | - Rongshao Huang
- Department of Agronomy, Agricultural College of Guangxi University, Nanning 530004, China
| |
Collapse
|
5
|
Solyanikova IP, Emelyanova EV, Shumkova ES, Travkin VM. Pathways of 3-Chlorobenzoate Degradation by Rhodococcus opacus strains 1CP and 6a. Microbiology (Reading) 2019. [DOI: 10.1134/s002626171905014x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
6
|
Emelyanova EV, Solyanikova IP. Evaluation of 3-Chlorobenzoate 1,2-Dioxygenase Inhibition by 2- and 4-Chlorobenzoate with a Cell-Based Technique. BIOSENSORS 2019; 9:E106. [PMID: 31491996 PMCID: PMC6784447 DOI: 10.3390/bios9030106] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 08/16/2019] [Accepted: 09/04/2019] [Indexed: 11/16/2022]
Abstract
The electrochemical reactor microbial sensor with the Clark oxygen electrode as the transducer was used for investigation of the competition between 3-chlorobenzoate (3-CBA) and its analogues, 2- and 4-chlorobenzoate (2-CBA and 4-CBA), for 3-chlorobenzoate-1,2-dioxygenase (3-CBDO) of Rhodococcus opacus 1CP cells. The change in respiration of freshly harvested R. opacus 1CP cells in response to 3-CBA served as an indicator of 3-CBDO activity. The results obtained confirmed inducibility of 3-CBDO. Sigmoidal dependency of the rate of the enzymatic reaction on the concentration of 3-CBA was obtained and positive kinetic cooperativity by a substrate was shown for 3-CBDO. The Hill concentration constant, S0.5, and the constant of catalytic activity, Vmax, were determined. Inhibition of the rate of enzymatic reaction by excess substrate, 3-CBA, was observed. Associative (competitive inhibition according to classic classification) and transient types of the 3-CBA-1,2-DO inhibition by 2-CBA and 4-CBA, respectively, were found. The kinetic parameters such as S0.5i and Vmaxi were also estimated for 2-CBA and 4-CBA. The disappearance of the S-shape of the curve of the V versus S dependence for 3-CBDO in the presence of 4-CBA was assumed to imply that 4-chlorobenzoate had no capability to be catalytically transformed by 3-chlorobenzoate-1,2-dioxygenase of Rhodococcus opacus 1CP cells.
Collapse
Affiliation(s)
- Elena V Emelyanova
- Federal Research Center "Pushchino Biological Research Center of the Russian Academy of Sciences", G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms of the Russian Academy of Sciences; 142290 Pushchino, Moscow Region, Russia.
| | - Inna P Solyanikova
- Federal Research Center "Pushchino Biological Research Center of the Russian Academy of Sciences", G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms of the Russian Academy of Sciences; 142290 Pushchino, Moscow Region, Russia.
| |
Collapse
|
7
|
Motteran F, Nadai BM, Braga JK, Silva EL, Varesche MBA. Metabolic routes involved in the removal of linear alkylbenzene sulfonate (LAS) employing linear alcohol ethoxylated and ethanol as co-substrates in enlarged scale fluidized bed reactor. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 640-641:1411-1423. [PMID: 30021307 DOI: 10.1016/j.scitotenv.2018.05.375] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 05/28/2018] [Accepted: 05/30/2018] [Indexed: 06/08/2023]
Abstract
In this study, the microbial community characterization and metabolic pathway identification involved in the linear alkylbenzene sulfonated (LAS) degradation from commercial laundry wastewater in a fluidized bed reactor (FBR) on an increased scale were performed using the Illumina MiSeq platform. Ethanol and non-ionic surfactant (LAE, Genapol C-100) were used as co-substrates. The FBR was operated in five operational phases: (I) synthetic substrate for inoculation; (II) 7.9 ± 4.7 mg/L LAS and 11.7 ± 6.9 mg/L LAE; (III) 19.4 ± 12.9 mg/L LAS, 19.6 ± 9.2 mg/L LAE and 205 mg/L ethanol; (IV) 25.9 ± 11 mg/L LAS, 19.5 ± 9.1 mg/L LAE and 205 mg/L ethanol and (V) 43.9 ± 18 mg/L LAS, 25 ± 9.8 mg/L LAE and 205 mg/L ethanol. At all operation phases, organic matter was removed from 40.4 to 85.1% and LAS removal was from 24.7 to 56%. Sulfate-reducing bacteria (SRB) were identified in the biofilm of FBR in all operational phases. Although the LAS promoted a toxic effect on the microbiota, this effect can be reduced when using biodegradable co-substrates, such as ethanol and LAE, which was observed in Phase IV. In this phase, there was a greater microbial diversity (Shannon index) and higher microorganism richness (Chao 1 index), both for the Domain Bacteria, and for the Domain Archaea.
Collapse
Affiliation(s)
- Fabricio Motteran
- Department of Hydraulics and Sanitation, School of Engineering of São Carlos, University of São Paulo, Av. Trabalhador Sãocarlense, 400, 13566-590 São Carlos, SP, Brazil.
| | - Bianca Marques Nadai
- Department of Hydraulics and Sanitation, School of Engineering of São Carlos, University of São Paulo, Av. Trabalhador Sãocarlense, 400, 13566-590 São Carlos, SP, Brazil
| | - Juliana Kawanishi Braga
- Department of Hydraulics and Sanitation, School of Engineering of São Carlos, University of São Paulo, Av. Trabalhador Sãocarlense, 400, 13566-590 São Carlos, SP, Brazil
| | - Edson Luiz Silva
- Department of Chemical Engineering, Federal University of São Carlos, Rod. Washington Luiz, Km 235, SP 310, 13565-905 São Carlos, SP, Brazil
| | - Maria Bernadete Amâncio Varesche
- Department of Hydraulics and Sanitation, School of Engineering of São Carlos, University of São Paulo, Av. Trabalhador Sãocarlense, 400, 13566-590 São Carlos, SP, Brazil.
| |
Collapse
|
8
|
Cole AE, Hani FM, Allen BW, Kline PC, Altman E. Nonfunctional Missense Mutants in Two Well Characterized Cytosolic Enzymes Reveal Important Information About Protein Structure and Function. Protein J 2018; 37:407-427. [DOI: 10.1007/s10930-018-9786-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
9
|
The Promiscuous sumA Missense Suppressor from Salmonella enterica Has an Intriguing Mechanism of Action. Genetics 2017; 205:577-588. [DOI: 10.1534/genetics.116.196550] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 11/28/2016] [Indexed: 11/18/2022] Open
Abstract
Abstract
While most missense suppressors have very narrow specificities and only suppress the allele against which they were isolated, the sumA missense suppressor from Salmonella enterica serovar Typhimurium is a promiscuous or broad-acting missense suppressor that suppresses numerous missense mutants. The sumA missense suppressor was identified as a glyV tRNA Gly3(GAU/C) missense suppressor that can recognize GAU or GAC aspartic acid codons and insert a glycine amino acid instead of aspartic acid. In addition to rescuing missense mutants caused by glycine to aspartic acid changes as expected, sumA could also rescue a number of other missense mutants as well by changing a neighboring (contacting) aspartic acid to glycine, which compensated for the other amino acid change. Thus the ability of sumA to rescue numerous missense mutants was due in part to the large number of glycine codons in genes that can be mutated to an aspartic acid codon and in part to the general tolerability and/or preference for glycine amino acids in proteins. Because the glyV tRNA Gly3(GAU/C) missense suppressor has also been extensively characterized in Escherichia coli as the mutA mutator, we demonstrated that all gain-of-function mutants isolated in a glyV tRNA Gly3(GAU/C) missense suppressor are transferable to a wild-type background and thus the increased mutation rates, which occur in glyV tRNA Gly3(GAU/C) missense suppressors, are not due to the suppression of these mutants.
Collapse
|
10
|
Xie M, Ren M, Yang C, Yi H, Li Z, Li T, Zhao J. Metagenomic Analysis Reveals Symbiotic Relationship among Bacteria in Microcystis-Dominated Community. Front Microbiol 2016; 7:56. [PMID: 26870018 PMCID: PMC4735357 DOI: 10.3389/fmicb.2016.00056] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 01/13/2016] [Indexed: 11/13/2022] Open
Abstract
Microcystis bloom, a cyanobacterial mass occurrence often found in eutrophicated water bodies, is one of the most serious threats to freshwater ecosystems worldwide. In nature, Microcystis forms aggregates or colonies that contain heterotrophic bacteria. The Microcystis-bacteria colonies were persistent even when they were maintained in lab culture for a long period. The relationship between Microcystis and the associated bacteria was investigated by a metagenomic approach in this study. We developed a visualization-guided method of binning for genome assembly after total colony DNA sequencing. We found that the method was effective in grouping sequences and it did not require reference genome sequence. Individual genomes of the colony bacteria were obtained and they provided valuable insights into microbial community structures. Analysis of metabolic pathways based on these genomes revealed that while all heterotrophic bacteria were dependent upon Microcystis for carbon and energy, Vitamin B12 biosynthesis, which is required for growth by Microcystis, was accomplished in a cooperative fashion among the bacteria. Our analysis also suggests that individual bacteria in the colony community contributed a complete pathway for degradation of benzoate, which is inhibitory to the cyanobacterial growth, and its ecological implication for Microcystis bloom is discussed.
Collapse
Affiliation(s)
- Meili Xie
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of SciencesWuhan, China; University of Chinese Academy of SciencesBeijing, China
| | - Minglei Ren
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of SciencesWuhan, China; University of Chinese Academy of SciencesBeijing, China
| | - Chen Yang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of SciencesWuhan, China; University of Chinese Academy of SciencesBeijing, China
| | - Haisi Yi
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of SciencesWuhan, China; University of Chinese Academy of SciencesBeijing, China
| | - Zhe Li
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences Beijing, China
| | - Tao Li
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences Wuhan, China
| | - Jindong Zhao
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of SciencesWuhan, China; College of Life Science, Peking UniversityBeijing, China
| |
Collapse
|
11
|
Solyanikova IP, Emelyanova EV, Borzova OV, Golovleva LA. Benzoate degradation by Rhodococcus opacus 1CP after dormancy: Characterization of dioxygenases involved in the process. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2015; 51:182-191. [PMID: 26669259 DOI: 10.1080/03601234.2015.1108814] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The process of benzoate degradation by strain Rhodococcus opacus 1CP after a five-year dormancy was investigated and its peculiarities were revealed. The strain was shown to be capable of growth on benzoate at a concentration of up to 10 g L(-1). The substrate specificity of benzoate dioxygenase (BDO) during the culture growth on a medium with a low (200-250 mg L(-1)) and high (4 g L(-1)) concentration of benzoate was assessed. BDO of R. opacus 1CP was shown to be an extremely narrow specificity enzyme. Out of 31 substituted benzoates, only with one, 3-chlorobenzoate, its activity was higher than 9% of that of benzoate. Two dioxygenases, catechol 1,2-dioxygenase (Cat 1,2-DO) and protocatechuate 3,4-dioxygenase (PCA 3,4-DO), were identified in a cell-free extract, purified and characterized. The substrate specificity of Cat 1,2-DO isolated from cells of strain 1CP after the dormancy was found to differ significantly from that of Cat 1,2-DO isolated earlier from cells of this strain grown on benzoate. By its substrate specificity, the described Cat 1,2-DO was close to the Cat 1,2-DO from strain 1CP grown on 4-methylbenzoate. Neither activity nor inhibition by protocatechuate was observed during the reaction of Cat 1,2-DO with catechol, and catechol had no inhibitory effect on the reaction of PCA 3,4-DO with protocatechuate.
Collapse
Affiliation(s)
- Inna P Solyanikova
- a FSBIS G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences , Pushchino , Russia
| | - Elena V Emelyanova
- a FSBIS G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences , Pushchino , Russia
| | - Oksana V Borzova
- a FSBIS G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences , Pushchino , Russia
- b Pushchino State Natural Science Institute , Pushchino , Russia
| | - Ludmila A Golovleva
- a FSBIS G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences , Pushchino , Russia
- b Pushchino State Natural Science Institute , Pushchino , Russia
| |
Collapse
|
12
|
|
13
|
Uddin R, Saeed K, Khan W, Azam SS, Wadood A. Metabolic pathway analysis approach: Identification of novel therapeutic target against methicillin resistant Staphylococcus aureus. Gene 2015; 556:213-26. [DOI: 10.1016/j.gene.2014.11.056] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 11/18/2014] [Accepted: 11/25/2014] [Indexed: 12/31/2022]
|
14
|
Miyazaki R, Bertelli C, Benaglio P, Canton J, De Coi N, Gharib WH, Gjoksi B, Goesmann A, Greub G, Harshman K, Linke B, Mikulic J, Mueller L, Nicolas D, Robinson-Rechavi M, Rivolta C, Roggo C, Roy S, Sentchilo V, Siebenthal AV, Falquet L, van der Meer JR. Comparative genome analysis of Pseudomonas knackmussii B13, the first bacterium known to degrade chloroaromatic compounds. Environ Microbiol 2014; 17:91-104. [PMID: 24803113 DOI: 10.1111/1462-2920.12498] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2014] [Accepted: 04/28/2014] [Indexed: 01/24/2023]
Abstract
Pseudomonas knackmussii B13 was the first strain to be isolated in 1974 that could degrade chlorinated aromatic hydrocarbons. This discovery was the prologue for subsequent characterization of numerous bacterial metabolic pathways, for genetic and biochemical studies, and which spurred ideas for pollutant bioremediation. In this study, we determined the complete genome sequence of B13 using next generation sequencing technologies and optical mapping. Genome annotation indicated that B13 has a variety of metabolic pathways for degrading monoaromatic hydrocarbons including chlorobenzoate, aminophenol, anthranilate and hydroxyquinol, but not polyaromatic compounds. Comparative genome analysis revealed that B13 is closest to Pseudomonas denitrificans and Pseudomonas aeruginosa. The B13 genome contains at least eight genomic islands [prophages and integrative conjugative elements (ICEs)], which were absent in closely related pseudomonads. We confirm that two ICEs are identical copies of the 103 kb self-transmissible element ICEclc that carries the genes for chlorocatechol metabolism. Comparison of ICEclc showed that it is composed of a variable and a 'core' region, which is very conserved among proteobacterial genomes, suggesting a widely distributed family of so far uncharacterized ICE. Resequencing of two spontaneous B13 mutants revealed a number of single nucleotide substitutions, as well as excision of a large 220 kb region and a prophage that drastically change the host metabolic capacity and survivability.
Collapse
Affiliation(s)
- Ryo Miyazaki
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, 305-8566, Japan; Department of Fundamental Microbiology, University of Lausanne, 1015, Lausanne, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Khara P, Roy M, Chakraborty J, Ghosal D, Dutta TK. Functional characterization of diverse ring-hydroxylating oxygenases and induction of complex aromatic catabolic gene clusters in Sphingobium sp. PNB. FEBS Open Bio 2014; 4:290-300. [PMID: 24918041 PMCID: PMC4048848 DOI: 10.1016/j.fob.2014.03.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 03/03/2014] [Accepted: 03/03/2014] [Indexed: 11/27/2022] Open
Abstract
Sphingobium sp. PNB, like other sphingomonads, has multiple ring-hydroxylating oxygenase (RHO) genes. Three different fosmid clones have been sequenced to identify the putative genes responsible for the degradation of various aromatics in this bacterial strain. Comparison of the map of the catabolic genes with that of different sphingomonads revealed a similar arrangement of gene clusters that harbors seven sets of RHO terminal components and a sole set of electron transport (ET) proteins. The presence of distinctly conserved amino acid residues in ferredoxin and in silico molecular docking analyses of ferredoxin with the well characterized terminal oxygenase components indicated the structural uniqueness of the ET component in sphingomonads. The predicted substrate specificities, derived from the phylogenetic relationship of each of the RHOs, were examined based on transformation of putative substrates and their structural homologs by the recombinant strains expressing each of the oxygenases and the sole set of available ET proteins. The RHO AhdA1bA2b was functionally characterized for the first time and was found to be capable of transforming ethylbenzene, propylbenzene, cumene, p-cymene and biphenyl, in addition to a number of polycyclic aromatic hydrocarbons. Overexpression of aromatic catabolic genes in strain PNB, revealed by real-time PCR analyses, is a way forward to understand the complex regulation of degradative genes in sphingomonads.
Collapse
Affiliation(s)
| | | | | | | | - Tapan K. Dutta
- Department of Microbiology, Bose Institute, P-1/12 C.I.T. Scheme VII M, Kolkata 700054, India
| |
Collapse
|
16
|
Han TL, Tumanov S, Cannon RD, Villas-Boas SG. Metabolic response of Candida albicans to phenylethyl alcohol under hyphae-inducing conditions. PLoS One 2013; 8:e71364. [PMID: 23951145 PMCID: PMC3741116 DOI: 10.1371/journal.pone.0071364] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Accepted: 06/30/2013] [Indexed: 12/05/2022] Open
Abstract
Phenylethyl alcohol was one of the first quorum sensing molecules (QSMs) identified in C. albicans. This extracellular signalling molecule inhibits the hyphal formation of C. albicans at high cell density. Little is known, however, about the underlying mechanisms by which this QSM regulates the morphological switches of C. albicans. Therefore, we have applied metabolomics and isotope labelling experiments to investigate the metabolic changes that occur in C. albicans in response to phenylethyl alcohol under defined hyphae-inducing conditions. Our results showed a global upregulation of central carbon metabolism when hyphal development was suppressed by phenylethyl alcohol. By comparing the metabolic changes in response to phenylethyl alcohol to our previous metabolomic studies, we were able to short-list 7 metabolic pathways from central carbon metabolism that appear to be associated with C. albicans morphogenesis. Furthermore, isotope-labelling data showed that phenylethyl alcohol is indeed taken up and catabolised by yeast cells. Isotope-labelled carbon atoms were found in the majority of amino acids as well as in lactate and glyoxylate. However, isotope-labelled carbon atoms from phenylethyl alcohol accumulated mainly in the pyridine ring of NAD+/NADH and NADP−/NADPH molecules, showing that these nucleotides were the main products of phenylethyl alcohol catabolism. Interestingly, two metabolic pathways where these nucleotides play an important role, nitrogen metabolism and nicotinate/nicotinamide metabolism, were also short-listed through our previous metabolomics works as metabolic pathways likely to be closely associated with C. albicans morphogenesis.
Collapse
Affiliation(s)
- Ting-Li Han
- Centre for Microbial Innovation, School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| | - Sergey Tumanov
- Centre for Microbial Innovation, School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| | - Richard D. Cannon
- Department of Oral Sciences, University of Otago, Dunedin, New Zealand
| | - Silas G. Villas-Boas
- Centre for Microbial Innovation, School of Biological Sciences, The University of Auckland, Auckland, New Zealand
- * E-mail:
| |
Collapse
|
17
|
Xu B, Xu W, Yang F, Li J, Yang Y, Tang X, Mu Y, Zhou J, Huang Z. Metagenomic analysis of the pygmy loris fecal microbiome reveals unique functional capacity related to metabolism of aromatic compounds. PLoS One 2013; 8:e56565. [PMID: 23457582 PMCID: PMC3574064 DOI: 10.1371/journal.pone.0056565] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2012] [Accepted: 01/11/2013] [Indexed: 01/29/2023] Open
Abstract
The animal gastrointestinal tract contains a complex community of microbes, whose composition ultimately reflects the co-evolution of microorganisms with their animal host. An analysis of 78,619 pyrosequencing reads generated from pygmy loris fecal DNA extracts was performed to help better understand the microbial diversity and functional capacity of the pygmy loris gut microbiome. The taxonomic analysis of the metagenomic reads indicated that pygmy loris fecal microbiomes were dominated by Bacteroidetes and Proteobacteria phyla. The hierarchical clustering of several gastrointestinal metagenomes demonstrated the similarities of the microbial community structures of pygmy loris and mouse gut systems despite their differences in functional capacity. The comparative analysis of function classification revealed that the metagenome of the pygmy loris was characterized by an overrepresentation of those sequences involved in aromatic compound metabolism compared with humans and other animals. The key enzymes related to the benzoate degradation pathway were identified based on the Kyoto Encyclopedia of Genes and Genomes pathway assignment. These results would contribute to the limited body of primate metagenome studies and provide a framework for comparative metagenomic analysis between human and non-human primates, as well as a comparative understanding of the evolution of humans and their microbiome. However, future studies on the metagenome sequencing of pygmy loris and other prosimians regarding the effects of age, genetics, and environment on the composition and activity of the metagenomes are required.
Collapse
Affiliation(s)
- Bo Xu
- School of Life Science, Yunnan Normal University, Kunming, China
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Kunming, China
- Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Kunming, China
- Key Laboratory of Enzyme Engineering, Yunnan Normal University, Kunming, China
| | - Weijiang Xu
- School of Life Science, Yunnan Normal University, Kunming, China
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Kunming, China
- Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Kunming, China
- Key Laboratory of Enzyme Engineering, Yunnan Normal University, Kunming, China
| | - Fuya Yang
- School of Life Science, Yunnan Normal University, Kunming, China
- Key Laboratory of Enzyme Engineering, Yunnan Normal University, Kunming, China
| | - Junjun Li
- School of Life Science, Yunnan Normal University, Kunming, China
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Kunming, China
- Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Kunming, China
- Key Laboratory of Enzyme Engineering, Yunnan Normal University, Kunming, China
| | - Yunjuan Yang
- School of Life Science, Yunnan Normal University, Kunming, China
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Kunming, China
- Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Kunming, China
- Key Laboratory of Enzyme Engineering, Yunnan Normal University, Kunming, China
| | - Xianghua Tang
- School of Life Science, Yunnan Normal University, Kunming, China
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Kunming, China
- Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Kunming, China
- Key Laboratory of Enzyme Engineering, Yunnan Normal University, Kunming, China
| | - Yuelin Mu
- School of Life Science, Yunnan Normal University, Kunming, China
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Kunming, China
- Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Kunming, China
- Key Laboratory of Enzyme Engineering, Yunnan Normal University, Kunming, China
| | - Junpei Zhou
- School of Life Science, Yunnan Normal University, Kunming, China
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Kunming, China
- Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Kunming, China
- Key Laboratory of Enzyme Engineering, Yunnan Normal University, Kunming, China
| | - Zunxi Huang
- School of Life Science, Yunnan Normal University, Kunming, China
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Kunming, China
- Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Kunming, China
- Key Laboratory of Enzyme Engineering, Yunnan Normal University, Kunming, China
- * E-mail:
| |
Collapse
|
18
|
Abstract
Pseudomonas sp. B3-1, a wild strain isolated from soil, produced catechol from benzoate and accumulated it outside the cell. catA, a gene encodes a catechol 1,2-dioxygenase in the bioconversion of aromatic compounds, plays the central role in accumulation of catechol. Mutant of the catA gene is disrupted without blocking the transcription of downstream genes was analyzed. The result showed that the mutant had less catechol 1, 2-dioxygenase activity, only 1/3 of strain B3-1’s. The mutant produced a maximal amount of catechol (1.22 mg/ml) from 4 mg/ml of sodium benzoate after growing for 48 h. The conversion rate of benzoate to catechol was 51.5% on a molar basis.
Collapse
|
19
|
Khomenkov VG, Shevelev AB, Zhukov VG, Zagustina NA, Bezborodov AM, Popov VO. Organization of metabolic pathways and molecular-genetic mechanisms of xenobiotic degradation in microorganisms: A review. APPL BIOCHEM MICRO+ 2011. [DOI: 10.1134/s0003683808020014] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
20
|
Abstract
This reminiscence is a celebration of my good fortune in family, biological and scientific. The biological family into which I was born gave me a strong start, although not entirely in the direction I took. I swerved from an anticipated career in medical practice into continuing delight in those who became my scientific family in microbiology. The families changed, yet they continued to give me strength and inspiration. In my youth, I was gently guided by mentors who gave me freedom to explore where curiosity beckoned. I hope I repaid this gift to my laboratory colleagues who enlightened me over the years. I learned much from my students, and my horizons were extended by industrial scientists. It has been my particular good fortune to learn the workings of microorganisms and microbiologists as editor of Journal of Bacteriology for a decade, as editor-in-chief of Applied and Environmental Microbiology for a decade, and as editor of Annual Review of Microbiology for a quarter of a century.
Collapse
Affiliation(s)
- L. Nicholas Ornston
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06520-8103
| |
Collapse
|
21
|
Peng RH, Xiong AS, Xue Y, Fu XY, Gao F, Zhao W, Tian YS, Yao QH. A profile of ring-hydroxylating oxygenases that degrade aromatic pollutants. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2010; 206:65-94. [PMID: 20652669 DOI: 10.1007/978-1-4419-6260-7_4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Numerous aromatic compounds are pollutants to which exposure exists or is possible, and are of concern because they are mutagenic, carcinogenic, or display other toxic characteristics. Depending on the types of dioxygenation reactions of which microorganisms are capable, they utilize ring-hydroxylating oxygenases (RHOs) to initiate the degradation and detoxification of such aromatic compound pollutants. Gene families encoding for RHOs appear to be most common in bacteria. Oxygenases are important in degrading both natural and synthetic aromatic compounds and are particularly important for their role in degrading toxic pollutants; for this reason, it is useful for environmental scientists and others to understand more of their characteristics and capabilities. It is the purpose of this review to address RHOs and to describe much of their known character, starting with a review as to how RHOs are classified. A comprehensive phylogenetic analysis has revealed that all RHOs are, in some measure, related, presumably by divergent evolution from a common ancestor, and this is reflected in how they are classified. After we describe RHO classification schemes, we address the relationship between RHO structure and function. Structural differences affect substrate specificity and product formation. In the alpha subunit of the known terminal oxygenase of RHOs, there is a catalytic domain with a mononuclear iron center that serves as a substrate-binding site and a Rieske domain that retains a [2Fe-2S] cluster that acts as an entity of electron transfer for the mononuclear iron center. Oxygen activation and substrate dihydroxylation occurring at the catalytic domain are dependent on the binding of substrate at the active site and the redox state of the Rieske center. The electron transfer from NADH to the catalytic pocket of RHO and catalyzing mechanism of RHOs is depicted in our review and is based on the results of recent studies. Electron transfer involving the RHO system typically involves four steps: NADH-ferredoxin reductase receives two electrons from NADH; ferredoxin binds with NADH-ferredoxin reductase and accepts electron from it; the reduced ferredoxin dissociates from NADH-ferredoxin reductase and shuttles the electron to the Rieske domain of the terminal oxygenase; the Rieske cluster donates electrons to O2 through the mononuclear iron. On the basis of crystal structure studies, it has been proposed that the broad specificity of the RHOs results from the large size and specific topology of its hydrophobic substrate-binding pocket. Several amino acids that determine the substrate specificity and enantioselectivity of RHOs have been identified through sequence comparison and site-directed mutagenesis at the active site. Exploiting the crystal structure data and the available active site information, engineered RHO enzymes have been and can be designed to improve their capacity to degrade environmental pollutants. Such attempts to enhance degradation capabilities of RHOs have been made. Dioxygenases have been modified to improve the degradation capacities toward PCBs, PAHs, dioxins, and some other aromatic hydrocarbons. We hope that the results of this review and future research on enhancing RHOs will promote their expanded usage and effectiveness for successfully degrading environmental aromatic pollutants.
Collapse
Affiliation(s)
- Ri-He Peng
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Agro-Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, 2901 Beidi Rd, Shanghai, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Parales RE, Parales JV, Pelletier DA, Ditty JL. Diversity of microbial toluene degradation pathways. ADVANCES IN APPLIED MICROBIOLOGY 2008; 64:1-73, 2 p following 264. [PMID: 18485280 DOI: 10.1016/s0065-2164(08)00401-2] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- R E Parales
- Department of Microbiology, University of California, Davis, California 95616, USA
| | | | | | | |
Collapse
|
23
|
Field-based stable isotope probing reveals the identities of benzoic acid-metabolizing microorganisms and their in situ growth in agricultural soil. Appl Environ Microbiol 2008; 74:4111-8. [PMID: 18469130 DOI: 10.1128/aem.00464-08] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We used a combination of stable isotope probing (SIP), gas chromatography-mass spectrometry-based respiration, isolation/cultivation, and quantitative PCR procedures to discover the identity and in situ growth of soil microorganisms that metabolize benzoic acid. We added [(13)C]benzoic acid or [(12)C]benzoic acid (100 microg) once, four times, or five times at 2-day intervals to agricultural field plots. After monitoring (13)CO(2) evolution from the benzoic acid-dosed soil, field soils were harvested and used for nucleic acid extraction and for cultivation of benzoate-degrading bacteria. Exposure of soil to benzoate increased the number of culturable benzoate degraders compared to unamended soil, and exposure to benzoate shifted the dominant culturable benzoate degraders from Pseudomonas species to Burkholderia species. Isopycnic separation of heavy [(13)C]DNA from the unlabeled fraction allowed terminal restriction fragment length polymorphism (T-RFLP) analyses to confirm that distinct 16S rRNA genes were localized in the heavy fraction. Phylogenetic analysis of sequenced 16S rRNA genes revealed a predominance (15 of 58 clones) of Burkholderia species in the heavy fraction. Burkholderia sp. strain EBA09 shared 99.5% 16S rRNA sequence similarity with a group of clones representing the dominant RFLP pattern, and the T-RFLP fragment for strain EBA09 and a clone from that cluster matched the fragment enriched in the [(13)C]DNA fraction. Growth of the population represented by EBA09 during the field-dosing experiment was demonstrated by using most-probable-number-PCR and primers targeting EBA09 and the closely related species Burkholderia hospita. Thus, the target population identified by SIP not only actively metabolized benzoic acid but reproduced in the field upon the addition of the substrate.
Collapse
|
24
|
Gore JM, Ran FA, Ornston LN. Deletion mutations caused by DNA strand slippage in Acinetobacter baylyi. Appl Environ Microbiol 2006; 72:5239-45. [PMID: 16885271 PMCID: PMC1538710 DOI: 10.1128/aem.00283-06] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Short nucleotide sequence repetitions in DNA can provide selective benefits and also can be a source of genetic instability arising from deletions guided by pairing between misaligned strands. These findings raise the question of how the frequency of deletion mutations is influenced by the length of sequence repetitions and by the distance between them. An experimental approach to this question was presented by the heat-sensitive phenotype conferred by pcaG1102, a 30-bp deletion in one of the structural genes for Acinetobacter baylyi protocatechuate 3,4-dioxygenase, which is required for growth with quinate. The original pcaG1102 deletion appears to have been guided by pairing between slipped DNA strands from nearby repeated sequences in wild-type pcaG. Placement of an in-phase termination codon between the repeated sequences in pcaG prevents growth with quinate and permits selection of sequence-guided deletions that excise the codon and permit quinate to be used as a growth substrate at room temperature. Natural transformation facilitated introduction of 68 different variants of the wild-type repeat structure within pcaG into the A. baylyi chromosome, and the frequency of deletion between the repetitions was determined with a novel method, precision plating. The deletion frequency increases with repeat length, decreases with the distance between repeats, and requires a minimum amount of similarity to occur at measurable rates. Deletions occurred in a recA-deficient background. Their frequency was unaffected by deficiencies in mutS and was increased by inactivation of recG.
Collapse
Affiliation(s)
- Jeremy M Gore
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520-8103, USA.
| | | | | |
Collapse
|
25
|
Morimoto S, Togami K, Ogawa N, Hasebe A, Fujii T. Analysis of a Bacterial Community in 3-Chlorobenzoate-Contaminated Soil by PCR-DGGE Targeting the 16S rRNA Gene and Benzoate 1,2-Dioxygenase Gene (benA). Microbes Environ 2005. [DOI: 10.1264/jsme2.20.151] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Sho Morimoto
- National Institute for Agro-Environmental Sciences
| | | | - Naoto Ogawa
- National Institute for Agro-Environmental Sciences
| | - Akira Hasebe
- National Institute for Agro-Environmental Sciences
| | | |
Collapse
|
26
|
Abstract
In prokaryotic genomes, related genes are frequently clustered in operons and higher-order arrangements that reflect functional context. Organization emerges despite rearrangements that constantly shuffle gene and operon order. Evidence is presented that the tandem duplication of related genes acts as a driving evolutionary force in the origin and maintenance of clusters. Gene amplification can be viewed as a dynamic and reversible regulatory mechanism that facilitates adaptation to variable environments. Clustered genes confer selective benefits via their ability to be coamplified. During evolution, rearrangements that bring together related genes can be selected if they increase the fitness of the organism in which they reside. Similarly, the benefits of gene amplification can prevent the dispersal of existing clusters. Examples of frequent and spontaneous amplification of large genomic fragments are provided. The possibility is raised that tandem gene duplication works in concert with horizontal gene transfer as interrelated evolutionary forces for gene clustering.
Collapse
Affiliation(s)
- Andrew B Reams
- Section of Microbiology, University of California, Davis, California 95616, USA.
| | | |
Collapse
|
27
|
Pieper DH. Aerobic degradation of polychlorinated biphenyls. Appl Microbiol Biotechnol 2004; 67:170-91. [PMID: 15614564 DOI: 10.1007/s00253-004-1810-4] [Citation(s) in RCA: 215] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2004] [Revised: 10/10/2004] [Accepted: 10/19/2004] [Indexed: 10/26/2022]
Abstract
The microbial degradation of polychlorinated biphenyls (PCBs) has been extensively studied in recent years. The genetic organization of biphenyl catabolic genes has been elucidated in various groups of microorganisms, their structures have been analyzed with respect to their evolutionary relationships, and new information on mobile elements has become available. Key enzymes, specifically biphenyl 2,3-dioxygenases, have been intensively characterized, structure/sequence relationships have been determined and enzymes optimized for PCB transformation. However, due to the complex metabolic network responsible for PCB degradation, optimizing degradation by single bacterial species is necessarily limited. As PCBs are usually not mineralized by biphenyl-degrading organisms, and cometabolism can result in the formation of toxic metabolites, the degradation of chlorobenzoates has received special attention. A broad set of bacterial strategies to degrade chlorobenzoates has recently been elucidated, including new pathways for the degradation of chlorocatechols as central intermediates of various chloroaromatic catabolic pathways. To optimize PCB degradation in the environment beyond these metabolic limitations, enhancing degradation in the rhizosphere has been suggested, in addition to the application of surfactants to overcome bioavailability barriers. However, further research is necessary to understand the complex interactions between soil/sediment, pollutant, surfactant and microorganisms in different environments.
Collapse
Affiliation(s)
- Dietmar H Pieper
- Department of Environmental Microbiology, German Research Center for Biotechnology, Mascheroder Weg 1, 38124, Braunschweig, Germany.
| |
Collapse
|
28
|
Furukawa K, Suenaga H, Goto M. Biphenyl dioxygenases: functional versatilities and directed evolution. J Bacteriol 2004; 186:5189-96. [PMID: 15292119 PMCID: PMC490896 DOI: 10.1128/jb.186.16.5189-5196.2004] [Citation(s) in RCA: 129] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Kensuke Furukawa
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Hakozaki, Fukuoka 812-8581, Japan.
| | | | | |
Collapse
|
29
|
Okuta A, Ohnishi K, Harayama S. Construction of chimeric catechol 2,3-dioxygenase exhibiting improved activity against the suicide inhibitor 4-methylcatechol. Appl Environ Microbiol 2004; 70:1804-10. [PMID: 15006807 PMCID: PMC368311 DOI: 10.1128/aem.70.3.1804-1810.2004] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Catechol 2,3-dioxygenase (C23O; EC 1.3.11.2), exemplified by XylE and NahH, catalyzes the ring cleavage of catechol and some substituted catechols. C23O is inactivated at an appreciable rate during the ring cleavage of 4-methylcatechol due to the oxidation of the Fe(II) cofactor to Fe(III). In this study, a C23O exhibiting improved activity against 4-methylcatechol was isolated. To isolate this C23O, diverse C23O gene sequences were PCR amplified from DNA which had been isolated from mixed cultures of phenol-degrading bacteria and subcloned in the middle of a known C23O gene sequence (xylE or nahH) to construct a library of chimeric C23O genes. These chimeric C23O genes were then introduced into Pseudomonas putida possessing some of the toluene catabolic genes (xylXYZLGFJQKJI). When a C23O gene (e.g., xylE) is introduced into this strain, the transformants cannot generally grow on p-toluate because 4-methylcatechol, a metabolite of p-toluate, is a substrate as well as a suicide inhibitor of C23O. However, a transformant of this strain capable of growing on p-toluate was isolated, and a chimeric C23O (named NY8) in this transformant was characterized. The rate of enzyme inactivation by 4-methylcatechol was lower in NY8 than in XylE. Furthermore, the rate of the reactivation of inactive C23O in a solution containing Fe(II) and ascorbic acid was higher in NY8 than in XylE. These properties of NY8 might allow the efficient metabolism of 4-methylcatechol and thus allow host cells to grow on p-toluate.
Collapse
Affiliation(s)
- Akiko Okuta
- Marine Biotechnology Institute, Heita, Kamaishi, Iwate 026-0001, Japan
| | | | | |
Collapse
|
30
|
Abstract
Based on structural, biochemical, and genetic data, the soluble diiron monooxygenases can be divided into four groups: the soluble methane monooxygenases, the Amo alkene monooxygenase of Rhodococcus corallinus B-276, the phenol hydroxylases, and the four-component alkene/aromatic monooxygenases. The limited phylogenetic distribution of these enzymes among bacteria, together with available genetic evidence, indicates that they have been spread largely through horizontal gene transfer. Phylogenetic analyses reveal that the alpha- and beta-oxygenase subunits are paralogous proteins and were derived from an ancient gene duplication of a carboxylate-bridged diiron protein, with subsequent divergence yielding a catalytic alpha-oxygenase subunit and a structural beta-oxygenase subunit. The oxidoreductase and ferredoxin components of these enzymes are likely to have been acquired by horizontal transfer from ancestors common to unrelated diiron and Rieske center oxygenases and other enzymes. The cumulative results of phylogenetic reconstructions suggest that the alkene/aromatic monooxygenases diverged first from the last common ancestor for these enzymes, followed by the phenol hydroxylases, Amo alkene monooxygenase, and methane monooxygenases.
Collapse
Affiliation(s)
- Joseph G Leahy
- Department of Biological Sciences, University of Alabama in Huntsville, Huntsville, AL 35899, USA.
| | | | | |
Collapse
|
31
|
Chang HK, Mohseni P, Zylstra GJ. Characterization and regulation of the genes for a novel anthranilate 1,2-dioxygenase from Burkholderia cepacia DBO1. J Bacteriol 2003; 185:5871-81. [PMID: 13129960 PMCID: PMC193950 DOI: 10.1128/jb.185.19.5871-5881.2003] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Anthranilate (2-aminobenzoate) is an important intermediate in tryptophan metabolism. In order to investigate the degradation of tryptophan through anthranilate by Burkholderia cepacia, several plasposon mutations were constructed of strain DBO1 and one mutant with the plasposon insertion in the anthranilate dioxygenase (AntDO) genes was chosen for further study. The gene sequence obtained from flanking DNA of the plasposon insertion site revealed unexpected information. B. cepacia DBO1 AntDO (designated AntDO-3C) is a three-component Rieske-type [2Fe-2S] dioxygenase composed of a reductase (AndAa), a ferredoxin (AndAb), and a two-subunit oxygenase (AndAcAd). This is in contrast to the two-component (an oxygenase and a reductase) AntDO enzyme from Acinetobacter sp. strain ADP1, P. aeruginosa PAO1, and P. putida P111. AntDO from strains ADP1, PAO1, and P111 are closely related to benzoate dioxygenase, while AntDO-3C is closely related to aromatic hydrocarbon dioxygenases from Novosphingobium aromaticivorans F199 and Sphingomonas yanoikuyae B1 and 2-chlorobenzoate dioxygenase from P. aeruginosa strains 142 and JB2. Escherichia coli cells expressing the functional AntDO-3C genes transform anthranilate and salicylate (but not 2-chlorobenzoate) to catechol. The enzyme includes a novel reductase whose absence results in less efficient transformation of anthranilate by the oxygenase and ferredoxin. AndR, a possible AraC/XylS-type transcriptional regulator, was shown to positively regulate expression of the andAcAdAbAa genes. Anthranilate was the only effector (of 12 aromatic compounds tested) that was able to induce expression of the genes.
Collapse
Affiliation(s)
- Hung-Kuang Chang
- Biotechnology Center for Agriculture and the Environment, Cook College, Rutgers University, New Brunswick, New Jersey 08901-8520, USA.
| | | | | |
Collapse
|
32
|
Ge Y, Eltis LD. Characterization of hybrid toluate and benzoate dioxygenases. J Bacteriol 2003; 185:5333-41. [PMID: 12949084 PMCID: PMC193743 DOI: 10.1128/jb.185.18.5333-5341.2003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2003] [Accepted: 06/24/2003] [Indexed: 11/20/2022] Open
Abstract
Toluate dioxygenase of Pseudomonas putida mt-2 (TADO(mt2)) and benzoate dioxygenase of Acinetobacter calcoaceticus ADP1 (BADO(ADP1)) catalyze the 1,2-dihydroxylation of different ranges of benzoates. The catalytic component of these enzymes is an oxygenase consisting of two subunits. To investigate the structural determinants of substrate specificity in these ring-hydroxylating dioxygenases, hybrid oxygenases consisting of the alpha subunit of one enzyme and the beta subunit of the other were prepared, and their respective specificities were compared to those of the parent enzymes. Reconstituted BADO(ADP1) utilized four of the seven tested benzoates in the following order of apparent specificity: benzoate > 3-methylbenzoate > 3-chlorobenzoate > 2-methylbenzoate. This is a significantly narrower apparent specificity than for TADO(mt2) (3-methylbenzoate > benzoate approximately 3-chlorobenzoate > 4-methylbenzoate approximately 4-chlorobenzoate >> 2-methylbenzoate approximately 2-chlorobenzoate [Y. Ge, F. H. Vaillancourt, N. Y. Agar, and L. D. Eltis, J. Bacteriol. 184:4096-4103, 2002]). The apparent substrate specificity of the alphaBbetaT hybrid oxygenase for these benzoates corresponded to that of BADO(ADP1), the parent from which the alpha subunit originated. In contrast, the apparent substrate specificity of the alphaTbetaB hybrid oxygenase differed slightly from that of TADO(mt2) (3-chlorobenzoate > 3-methylbenzoate > benzoate approximately 4-methylbenzoate > 4-chlorobenzoate > 2-methylbenzoate > 2-chlorobenzoate). Moreover, the alphaTbetaB hybrid catalyzed the 1,6-dihydroxylation of 2-methylbenzoate, not the 1,2-dihydroxylation catalyzed by the TADO(mt2) parent. Finally, the turnover of this ortho-substituted benzoate was much better coupled to O2 utilization in the hybrid than in the parent. Overall, these results support the notion that the alpha subunit harbors the principal determinants of specificity in ring-hydroxylating dioxygenases. However, they also demonstrate that the beta subunit contributes significantly to the enzyme's function.
Collapse
Affiliation(s)
- Yong Ge
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | | |
Collapse
|
33
|
Hiraishi A. Biodiversity of Dioxin-Degrading Microorganisms and Potential Utilization in Bioremediation. Microbes Environ 2003. [DOI: 10.1264/jsme2.18.105] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Akira Hiraishi
- Department of Ecological Engineering, Toyohashi University of Technology
| |
Collapse
|
34
|
Greated A, Lambertsen L, Williams PA, Thomas CM. Complete sequence of the IncP-9 TOL plasmid pWW0 from Pseudomonas putida. Environ Microbiol 2002; 4:856-71. [PMID: 12534468 DOI: 10.1046/j.1462-2920.2002.00305.x] [Citation(s) in RCA: 141] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The TOL plasmid pWW0 (117 kb) is the best studied catabolic plasmid and the archetype of the IncP-9 plasmid incompatibility group from Pseudomonas. It carries the degradative (xyl) genes for toluenes and xylenes within catabolic transposons Tn4651 and Tn4653. Analysis of the complete pWW0 nucleotide sequence revealed 148 putative open reading frames. Of these, 77 showed similarity to published sequences in the available databases predicting functions for: plasmid replication, stable maintenance and transfer; phenotypic determinants; gene regulation and expression; and transposition. All identifiable transposition functions lay within the boundaries of the 70 kb transposon Tn4653, leaving a 46 kb sector containing all the IncP-9 core functions. The replicon and stable inheritance region was very similar to the mini-replicon from IncP-9 antibiotic resistance plasmid pM3, with their Rep proteins forming a novel group of initiation proteins. pWW0 transfer functions exist as two blocks encoding putative DNA processing and mating pair formation genes, with organizational and sequence similarity to IncW plasmids. In addition to the known Tn4651 and IS1246 elements, two additional transposable elements were identified as well as several putative transposition functions, which are probably genetic remnants from previous transposition events. Genes likely to be responsible for known resistance to ultraviolet light and free radicals were identified. Other putative phenotypic functions identified included resistance to mercury and other metal ions, as well as to quaternary ammonium compounds. The complexity and size of pWW0 is largely the result of the mosaic organization of the transposable elements that it carries, rather than the backbone functions of IncP-9 plasmids.
Collapse
Affiliation(s)
- Alicia Greated
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | | | | | | |
Collapse
|
35
|
Suzuki K, Ichimura A, Ogawa N, Hasebe A, Miyashita K. Differential expression of two catechol 1,2-dioxygenases in Burkholderia sp. strain TH2. J Bacteriol 2002; 184:5714-22. [PMID: 12270830 PMCID: PMC139607 DOI: 10.1128/jb.184.20.5714-5722.2002] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Burkholderia sp. strain TH2, a 2-chlorobenzoate (2CB)-degrading bacterium, metabolizes benzoate (BA) and 2CB via catechol. Two different gene clusters for the catechol ortho-cleavage pathway (cat1 and cat2) were cloned from TH2 and analyzed. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis and Western blot analysis showed that while both catechol dioxygenases (CatA1 and CatA2) were produced in BA-grown cells, CatA1 was undetectable when strain TH2 was grown on 2CB or cis,cis-muconate (CCM), an intermediate of catechol degradation. However, production of CatA1 during growth on 2CB or CCM was observed when cat2 genes were disrupted. The difference in the production of CatA1 and CatA2 was apparently due to a difference in inducer recognition by the regulators of the gene clusters. The inducer of CatA1 was found to be BA, not 2CB, by using a 2-halobenzoate dioxygenase gene (cbd) disruptant, which is incapable of transforming (chloro)benzoate. It was also found that CCM or its metabolite acts as an inducer for CatA2. When cat2 genes were disrupted, the growth rate in 2CB culture was reduced while that in BA culture was not. These results suggest that although cat2 genes are not indispensable for growth of TH2 on 2CB, they are advantageous.
Collapse
Affiliation(s)
- Katsuhisa Suzuki
- National Institute for Agro-Environmental Sciences, 3-1-3 Kan-nondai, Tsukuba, Ibaraki 305-8604, Japan.
| | | | | | | | | |
Collapse
|
36
|
Ge Y, Vaillancourt FH, Agar NYR, Eltis LD. Reactivity of toluate dioxygenase with substituted benzoates and dioxygen. J Bacteriol 2002; 184:4096-103. [PMID: 12107126 PMCID: PMC135208 DOI: 10.1128/jb.184.15.4096-4103.2002] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Toluate dioxygenase (TADO) of Pseudomonas putida mt-2 catalyzes the dihydroxylation of a broad range of substituted benzoates. The two components of this enzyme were hyperexpressed and anaerobically purified. Reconstituted TADO had a specific activity of 3.8 U/mg with m-toluate, and each component had a full complement of their respective Fe(2)S(2) centers. Steady-state kinetics data obtained by using an oxygraph assay and by varying the toluate and dioxygen concentrations were analyzed by a compulsory order ternary complex mechanism. TADO had greatest specificity for m-toluate, displaying apparent parameters of KmA = 9 +/- 1 microM, k(cat) = 3.9 +/- 0.2 s(-1), and K(m)O(2) = 16 +/- 2 microM (100 mM sodium phosphate, pH 7.0; 25 degrees C), where K(m)O(2) represents the K(m) for O(2) and KmA represents the K(m) for the aromatic substrate. The enzyme utilized benzoates in the following order of specificity: m-toluate > benzoate approximately 3-chlorobenzoate > p-toluate approximately 4-chlorobenzoate >> o-toluate approximately 2-chlorobenzoate. The transformation of each of the first five compounds was well coupled to O(2) utilization and yielded the corresponding 1,2-cis-dihydrodiol. In contrast, the transformation of ortho-substituted benzoates was poorly coupled to O(2) utilization, with >10 times more O(2) being consumed than benzoate. However, the apparent K(m) of TADO for these benzoates was >100 microM, indicating that they do not effectively inhibit the turnover of good substrates.
Collapse
Affiliation(s)
- Yong Ge
- Department of Microbiology and Immunology, University of British Columbia, Vancouver BC V6T 1Z3, Canada
| | | | | | | |
Collapse
|
37
|
Baxter NJ, Scanlan J, De Marco P, Wood AP, Murrell JC. Duplicate copies of genes encoding methanesulfonate monooxygenase in Marinosulfonomonas methylotropha strain TR3 and detection of methanesulfonate utilizers in the environment. Appl Environ Microbiol 2002; 68:289-96. [PMID: 11772638 PMCID: PMC126542 DOI: 10.1128/aem.68.1.289-296.2002] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Marinosulfonomonas methylotropha strain TR3 is a marine methylotroph that uses methanesulfonic acid (MSA) as a sole carbon and energy source. The genes from M. methylotropha strain TR3 encoding methanesulfonate monooxygenase, the enzyme responsible for the initial oxidation of MSA to formaldehyde and sulfite, were cloned and sequenced. They were located on two gene clusters on the chromosome of this bacterium. A 5.0-kbp HindIII fragment contained msmA, msmB, and msmC, encoding the large and small subunits of the hydroxylase component and the ferredoxin component, respectively, of the methanesulfonate monooxygenase, while a 6.5-kbp HindIII fragment contained duplicate copies of msmA and msmB, as well as msmD, encoding the reductase component of methanesulfonate. Both sets of msmA and msmB genes were virtually identical, and the derived msmA and msmB sequences of M. methylotropha strain TR3, compared with the corresponding hydroxylase from the terrestrial MSA utilizer Methylosulfonomonas methylovora strain M2 were found to be 82 and 69% identical. The msmA gene was investigated as a functional gene probe for detection of MSA-utilizing bacteria. PCR primers spanning a region of msmA which encoded a unique Rieske [2Fe-2S] binding region were designed. These primers were used to amplify the corresponding msmA genes from newly isolated Hyphomicrobium, Methylobacterium, and Pedomicrobium species that utilized MSA, from MSA enrichment cultures, and from DNA samples extracted directly from the environment. The high degree of identity of these msmA gene fragments, compared to msmA sequences from extant MSA utilizers, indicated the effectiveness of these PCR primers in molecular microbial ecology.
Collapse
Affiliation(s)
- Nardia J Baxter
- Department of Biological Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom
| | | | | | | | | |
Collapse
|
38
|
Kitagawa W, Miyauchi K, Masai E, Fukuda M. Cloning and characterization of benzoate catabolic genes in the gram-positive polychlorinated biphenyl degrader Rhodococcus sp. strain RHA1. J Bacteriol 2001; 183:6598-606. [PMID: 11673430 PMCID: PMC95491 DOI: 10.1128/jb.183.22.6598-6606.2001] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Benzoate catabolism is thought to play a key role in aerobic bacterial degradation of biphenyl and polychlorinated biphenyls (PCBs). Benzoate catabolic genes were cloned from a PCB degrader, Rhodococcus sp. strain RHA1, by using PCR amplification and temporal temperature gradient electrophoresis separation. A nucleotide sequence determination revealed that the deduced amino acid sequences encoded by the RHA1 benzoate catabolic genes, benABCDK, exhibit 33 to 65% identity with those of Acinetobacter sp. strain ADP1. The gene organization of the RHA1 benABCDK genes differs from that of ADP1. The RHA1 benABCDK region was localized on the chromosome, in contrast to the biphenyl catabolic genes, which are located on linear plasmids. Escherichia coli cells containing RHA1 benABCD transformed benzoate to catechol via 2-hydro-1,2-dihydroxybenzoate. They transformed neither 2- nor 4-chlorobenzoates but did transform 3-chlorobenzoate. The RHA1 benA gene was inactivated by insertion of a thiostrepton resistance gene. The resultant mutant strain, RBD169, neither grew on benzoate nor transformed benzoate, and it did not transform 3-chlorobenzoate. It did, however, exhibit diminished growth on biphenyl and growth repression in the presence of a high concentration of biphenyl (13 mM). These results indicate that the cloned benABCD genes could play an essential role not only in benzoate catabolism but also in biphenyl catabolism in RHA1. Six rhodococcal benzoate degraders were found to have homologs of RHA1 benABC. In contrast, two rhodococcal strains that cannot transform benzoate were found not to have RHA1 benABC homologs, suggesting that many Rhodococcus strains contain benzoate catabolic genes similar to RHA1 benABC.
Collapse
Affiliation(s)
- W Kitagawa
- Department of Bioengineering, Nagaoka University of Technology, Japan
| | | | | | | |
Collapse
|
39
|
Haddad S, Eby DM, Neidle EL. Cloning and expression of the benzoate dioxygenase genes from Rhodococcus sp. strain 19070. Appl Environ Microbiol 2001; 67:2507-14. [PMID: 11375157 PMCID: PMC92901 DOI: 10.1128/aem.67.6.2507-2514.2001] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The bopXYZ genes from the gram-positive bacterium Rhodococcus sp. strain 19070 encode a broad-substrate-specific benzoate dioxygenase. Expression of the BopXY terminal oxygenase enabled Escherichia coli to convert benzoate or anthranilate (2-aminobenzoate) to a nonaromatic cis-diol or catechol, respectively. This expression system also rapidly transformed m-toluate (3-methylbenzoate) to an unidentified product. In contrast, 2-chlorobenzoate was not a good substrate. The BopXYZ dioxygenase was homologous to the chromosomally encoded benzoate dioxygenase (BenABC) and the plasmid-encoded toluate dioxygenase (XylXYZ) of gram-negative acinetobacters and pseudomonads. Pulsed-field gel electrophoresis failed to identify any plasmid in Rhodococcus sp. strain 19070. Catechol 1,2- and 2,3-dioxygenase activity indicated that strain 19070 possesses both meta- and ortho-cleavage degradative pathways, which are associated in pseudomonads with the xyl and ben genes, respectively. Open reading frames downstream of bopXYZ, designated bopL and bopK, resembled genes encoding cis-diol dehydrogenases and benzoate transporters, respectively. The bop genes were in the same order as the chromosomal ben genes of P. putida PRS2000. The deduced sequences of BopXY were 50 to 60% identical to the corresponding proteins of benzoate and toluate dioxygenases. The reductase components of these latter dioxygenases, BenC and XylZ, are 201 residues shorter than the deduced BopZ sequence. As predicted from the sequence, expression of BopZ in E. coli yielded an approximately 60-kDa protein whose presence corresponded to increased cytochrome c reductase activity. While the N-terminal region of BopZ was approximately 50% identical in sequence to the entire BenC or XylZ reductases, the C terminus was unlike other known protein sequences.
Collapse
Affiliation(s)
- S Haddad
- Department of Microbiology, University of Georgia, Athens, Georgia 30602, USA.
| | | | | |
Collapse
|
40
|
Kitagawa W, Suzuki A, Hoaki T, Masai E, Fukuda M. Multiplicity of aromatic ring hydroxylation dioxygenase genes in a strong PCB degrader, Rhodococcus sp. strain RHA1 demonstrated by denaturing gradient gel electrophoresis. Biosci Biotechnol Biochem 2001; 65:1907-11. [PMID: 11577742 DOI: 10.1271/bbb.65.1907] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
To address the multiplicity of aromatic ring hydroxylation dioxygenases, we used PCR amplification and denaturing gradient gel electrophoresis (DGGE). The amplified DNA fragments separated into five bands, A to E. Southern hybridization analysis of RHA1 total DNA using the probes for each band showed that band C originated from a couple of homologous genes. The nucleotide sequences of the bands showed that bands A, C, and E would be parts of new dioxygenase genes in RHA1. That of band B agreed with the bphA1 gene, which was characterized previously. That of band D did not correspond to any known gene sequences. The regions including the entire open reading frames (ORFs) were cloned and sequenced. The nucleotide sequences of ORFs suggested that the genes of bands A, C, and E may respectively encode benzoate, biphenyl, and polyhydrocarbon dioxygenases. Northern hybridization indicated the induction of the gene of band A by benzoate and biphenyl, and that of the gene of band C by biphenyl and ethylbenzene, supporting the above notions. The gene of band E was not induced by any of these substrates. Thus the combination of DGGE and Southern hybridization enable us to address the multiplicity of the ring hydroxylation dioxygenase genes and to isolate some of them.
Collapse
Affiliation(s)
- W Kitagawa
- Department of Bioengineering, Nagaoka University of Technology, Niigata, Japan
| | | | | | | | | |
Collapse
|
41
|
Nojiri H, Sekiguchi H, Maeda K, Urata M, Nakai S, Yoshida T, Habe H, Omori T. Genetic characterization and evolutionary implications of a car gene cluster in the carbazole degrader Pseudomonas sp. strain CA10. J Bacteriol 2001; 183:3663-79. [PMID: 11371531 PMCID: PMC95244 DOI: 10.1128/jb.183.12.3663-3679.2001] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The nucleotide sequences of the 27,939-bp-long upstream and 9,448-bp-long downstream regions of the carAaAaBaBbCAc(ORF7)Ad genes of carbazole-degrading Pseudomonas sp. strain CA10 were determined. Thirty-two open reading frames (ORFs) were identified, and the car gene cluster was consequently revealed to consist of 10 genes (carAaAaBaBbCAcAdDFE) encoding the enzymes for the three-step conversion of carbazole to anthranilate and the degradation of 2-hydroxypenta-2,4-dienoate. The high identities (68 to 83%) with the enzymes involved in 3-(3-hydroxyphenyl)propionic acid degradation were observed only for CarFE. This observation, together with the fact that two ORFs are inserted between carD and carFE, makes it quite likely that the carFE genes were recruited from another locus. In the 21-kb region upstream from carAa, aromatic-ring-hydroxylating dioxygenase genes (ORF26, ORF27, and ORF28) were found. Inductive expression in carbazole-grown cells and the results of homology searching indicate that these genes encode the anthranilate 1,2-dioxygenase involved in carbazole degradation. Therefore, these ORFs were designated antABC. Four homologous insertion sequences, IS5car1 to IS5car4, were identified in the neighboring regions of car and ant genes. IS5car2 and IS5car3 constituted the putative composite transposon containing antABC. One-ended transposition of IS5car2 together with the 5' portion of antA into the region immediately upstream of carAa had resulted in the formation of IS5car1 and ORF9. In addition to the insertion sequence-dependent recombination, gene duplications and presumed gene fusion were observed. In conclusion, through the above gene rearrangement, the novel genetic structure of the car gene cluster has been constructed. In addition, it was also revealed that the car and ant gene clusters are located on the megaplasmid pCAR1.
Collapse
Affiliation(s)
- H Nojiri
- Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Schmidt CL, Shaw L. A comprehensive phylogenetic analysis of Rieske and Rieske-type iron-sulfur proteins. J Bioenerg Biomembr 2001; 33:9-26. [PMID: 11460929 DOI: 10.1023/a:1005616505962] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The Rieske iron-sulfur center consists of a [2Fe-2S] cluster liganded to a protein via two histidine and two cysteine residues present in conserved sequences called Rieske motifs. Two protein families possessing Rieske centers have been defined. The Rieske proteins occur as subunits in the cytochrome bc1 and cytochrome b6f complexes of prokaryotes and eukaryotes or form components of archaeal electron transport systems. The Rieske-type proteins encompass a group of bacterial oxygenases and ferredoxins. Recent studies have uncovered several new proteins containing Rieske centers, including archaeal Rieske proteins, bacterial oxygenases, bacterial ferredoxins, and, intriguingly, eukaryotic Rieske oxygenases. Since all these proteins contain a Rieske motif, they probably form a superfamily with one common ancestor. Phylogenetic analyses have, however, been generally limited to similar sequences, providing little information about relationships within the whole group of these proteins. The aim of this work is, therefore, to construct a dendrogram including representatives from all Rieske and Rieske-type protein classes in order to gain insight into their evolutionary relationships and to further define the phylogenetic niches occupied by the recently discovered proteins mentioned above.
Collapse
Affiliation(s)
- C L Schmidt
- Institut für Biochemie der Medizinischen Universität Lübeck, Germany.
| | | |
Collapse
|
43
|
Suzuki K, Ogawa N, Miyashita K. Expression of 2-halobenzoate dioxygenase genes (cbdSABC) involved in the degradation of benzoate and 2-halobenzoate in Burkholderia sp. TH2. Gene 2001; 262:137-45. [PMID: 11179677 DOI: 10.1016/s0378-1119(00)00542-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Burkholderia sp. TH2, isolated from soil, utilizes 2-chlorobenzoate (2CB) and benzoate (BA) as its sole source of carbon and energy. The genes for 2-halobenzoate dioxygenase (cbdABC) from Burkholderia sp. TH2 were cloned and sequenced. The predicted amino acid sequences of all the gene products are highly similar to the cbd gene products of Pseudomonas sp. 2CBS. Disruption of the promoter region of cbdA resulted in loss of growth on 2CB and BA, indicating that these genes are involved in the growth of TH2 on these substrates. Expression of the cbd genes was analyzed by transcriptional fusion assay. The cbdS gene, a possible araC/xylS-type transcriptional regulatory gene, was shown to positively regulate the expression of cbdA. In addition, the effectors of CbdS were shown to be 2CB, 2-bromobenzoate, o-toluate (2-methylbenzoate), 2-iodobenzoate, and BA. Primer extension analysis showed that the cbdA mRNA started at two positions, 14 and 15 nucleotides upstream from the cbdA start codon, ATG. A pair of direct repeats, identical to that of the Pm promoter of the TOL plasmid, was found upstream of -35 hexamer of the cbdA promoter.
Collapse
Affiliation(s)
- K Suzuki
- National Institute of Agro-Environmental Sciences, 3-1-1 Kan-nondai, Tsukuba, 305-8604, Ibaraki, Japan.
| | | | | |
Collapse
|
44
|
Francisco P, Ogawa N, Suzuki K, Miyashita K. The chlorobenzoate dioxygenase genes of Burkholderia sp. strain NK8 involved in the catabolism of chlorobenzoates. MICROBIOLOGY (READING, ENGLAND) 2001; 147:121-33. [PMID: 11160806 DOI: 10.1099/00221287-147-1-121] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Burkholderia sp. NK8 grows abundantly on 3-chlorobenzoate (3CB),4-chlorobenzoate (4CB) and benzoate. The genes encoding the oxidation of (chloro)benzoates (cbeABCD) and catechol (catA, catBC), the LysR-type regulatory gene cbeR and the gene cbeE with unknown function, all of which form a single cluster in NK8, were cloned and analysed. The protein sequence of chlorobenzoate 1,2-dioxygenase (CbeABC) is 50-65% identical to the benzoate dioxygenase (BenABC) of Acinetobacter sp. ADP1, toluate dioxygenase (XylXYZ) of the TOL plasmid pWW0 and 2-halobenzoate dioxygenase (CbdABC) of Burkholderia cepacia 2CBS. Disruption of the cbeA gene resulted in the simultaneous loss of the ability to grow on benzoate and monochlorobenzoates, indicating the involvement of the cbeABCD genes in the degradation of these aromatics. The cbeABCD genes are preceded by catA, the gene for catechol dioxygenase. lacZ transcriptional fusion studies in Pseudomonas putida showed that catA and cbeA are co-expressed under the positive control of cbeR, a LysR-type transcriptional regulatory gene. The cbeA::lacZ transcriptional fusion studies showed that the inducers of the genes are 3CB, 4CB, benzoate and probably cis,cis-muconate. On the other hand, 2-chlorobenzoate (2CB) did not activate the expression of the genes. The chlorobenzoate dioxygenase was able to transform 2CB, 3CB, 4CB and benzoate at considerable rates. 2CB yielded both catechol and 3-chlorocatechol (3CC), and 3CB gave rise to 4-chlorocatechol and 3CC as the major and minor intermediate products, respectively, indicating that the NK8 dioxygenase lacks absolute regiospecificity. The absence of growth of NK8 on 2CB, despite its considerable degradation activity against 2CB, is apparently due to the inability of CbeR to recognize 2CB as an inducer of the expression of the cbe genes.
Collapse
Affiliation(s)
- P Francisco
- Soil General Microbiology Laboratory, National Institute of Agro-Environmental Sciences, 3-1-1 Kannondai, Tsukuba City, Ibaraki 305-8604, Japan
| | | | | | | |
Collapse
|
45
|
Eby DM, Beharry ZM, Coulter ED, Kurtz DM, Neidle EL. Characterization and evolution of anthranilate 1,2-dioxygenase from Acinetobacter sp. strain ADP1. J Bacteriol 2001; 183:109-18. [PMID: 11114907 PMCID: PMC94856 DOI: 10.1128/jb.183-1.109-118.2001] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The two-component anthranilate 1,2-dioxygenase of the bacterium Acinetobacter sp. strain ADP1 was expressed in Escherichia coli and purified to homogeneity. This enzyme converts anthranilate (2-aminobenzoate) to catechol with insertion of both atoms of O(2) and consumption of one NADH. The terminal oxygenase component formed an alpha(3)beta(3) hexamer of 54- and 19-kDa subunits. Biochemical analyses demonstrated one Rieske-type [2Fe-2S] center and one mononuclear nonheme iron center in each large oxygenase subunit. The reductase component, which transfers electrons from NADH to the oxygenase component, was found to contain approximately one flavin adenine dinucleotide and one ferredoxin-type [2Fe-2S] center per 39-kDa monomer. Activities of the combined components were measured as rates and quantities of NADH oxidation, substrate disappearance, product appearance, and O(2) consumption. Anthranilate conversion to catechol was stoichiometrically coupled to NADH oxidation and O(2) consumption. The substrate analog benzoate was converted to a nonaromatic benzoate 1,2-diol with similarly tight coupling. This latter activity is identical to that of the related benzoate 1, 2-dioxygenase. A variant anthranilate 1,2-dioxygenase, previously found to convey temperature sensitivity in vivo because of a methionine-to-lysine change in the large oxygenase subunit, was purified and characterized. The purified M43K variant, however, did not hydroxylate anthranilate or benzoate at either the permissive (23 degrees C) or nonpermissive (39 degrees C) growth temperatures. The wild-type anthranilate 1,2-dioxygenase did not efficiently hydroxylate methylated or halogenated benzoates, despite its sequence similarity to broad-substrate specific dioxygenases that do. Phylogenetic trees of the alpha and beta subunits of these terminal dioxygenases that act on natural and xenobiotic substrates indicated that the subunits of each terminal oxygenase evolved from a common ancestral two-subunit component.
Collapse
Affiliation(s)
- D M Eby
- Department of Microbiology, University of Georgia, Athens, Georgia 30602, USA
| | | | | | | | | |
Collapse
|
46
|
Ohta Y, Maeda M, Kudo T. Pseudomonas putida CE2010 can degrade biphenyl by a mosaic pathway encoded by the tod operon and cmtE, which are identical to those of P. putida F1 except for a single base difference in the operator-promoter region of the cmt operon. MICROBIOLOGY (READING, ENGLAND) 2001; 147:31-41. [PMID: 11160798 DOI: 10.1099/00221287-147-1-31] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Psudomonas putida CE2010 can assimilate biphenyl despite its high similarity to P. putida F1. Biphenyl degradation in strain CE2010 was achieved using a mosaic of pathways consisting of the cmt and tod operons. CmtE hydrolysed 2-hydroxy-6-oxo-6-phenylhexa-2,4-dienoic acid, the meta-cleavage product of 2,3-dihydroxybiphenyl. This enzyme was expressed differently in strains CE2010 and F1. A cmtE disruption mutant, a tod operon disruption mutant and a cmt operon disruption mutant were unable to utilize biphenyl. The introduction of the cmtE gene enabled the cmt operon disruption mutant to grow on biphenyl. A single base difference was found in the cmt promoter-operator region in strain CE2010, compared with that of strain F1. CymR protein was purified from Escherichia coli and binding assays were performed, the results of which suggested that the protein bound less strongly to the CE2010 operator sequence than to the F1 operator sequence. Exchanging the F1 promoter-operator fragment into strain CE2010 resulted in a loss of biphenyl degradation capacity. These results indicate that cmtE is not effectively repressed by CymR in strain CE2010, leading to low constitutive expression and, therefore, low growth on biphenyl.
Collapse
Affiliation(s)
- Y Ohta
- Laboratory of Microbiology, RIKEN (The Institute of Physical and Chemical Research), Hirosawa 2-1, Wako, Saitama 351-0198, Japan
| | | | | |
Collapse
|
47
|
Cowles CE, Nichols NN, Harwood CS. BenR, a XylS homologue, regulates three different pathways of aromatic acid degradation in Pseudomonas putida. J Bacteriol 2000; 182:6339-46. [PMID: 11053377 PMCID: PMC94779 DOI: 10.1128/jb.182.22.6339-6346.2000] [Citation(s) in RCA: 96] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas putida converts benzoate to catechol using two enzymes that are encoded on the chromosome and whose expression is induced by benzoate. Benzoate also binds to the regulator XylS to induce expression of the TOL (toluene degradation) plasmid-encoded meta pathway operon for benzoate and methylbenzoate degradation. Finally, benzoate represses the ability of P. putida to transport 4-hydroxybenzoate (4-HBA) by preventing transcription of pcaK, the gene encoding the 4-HBA permease. Here we identified a gene, benR, as a regulator of benzoate, methylbenzoate, and 4-HBA degradation genes. A benR mutant isolated by random transposon mutagenesis was unable to grow on benzoate. The deduced amino acid sequence of BenR showed high similarity (62% identity) to the sequence of XylS, a member of the AraC family of regulators. An additional seven genes located adjacent to benR were inferred to be involved in benzoate degradation based on their deduced amino acid sequences. The benABC genes likely encode benzoate dioxygenase, and benD likely encodes 2-hydro-1,2-dihydroxybenzoate dehydrogenase. benK and benF were assigned functions as a benzoate permease and porin, respectively. The possible function of a final gene, benE, is not known. benR activated expression of a benA-lacZ reporter fusion in response to benzoate. It also activated expression of a meta cleavage operon promoter-lacZ fusion inserted in an E. coli chromosome. Third, benR was required for benzoate-mediated repression of pcaK-lacZ fusion expression. The benA promoter region contains a direct repeat sequence that matches the XylS binding site previously defined for the meta cleavage operon promoter. It is likely that BenR binds to the promoter region of chromosomal benzoate degradation genes and plasmid-encoded methylbenzoate degradation genes to activate gene expression in response to benzoate. The action of BenR in repressing 4-HBA uptake is probably indirect.
Collapse
Affiliation(s)
- C E Cowles
- Department of Microbiology, The University of Iowa, Iowa City, Iowa 52242, USA
| | | | | |
Collapse
|
48
|
Briganti F, Pessione E, Giunta C, Mazzoli R, Scozzafava A. Purification and catalytic properties of two catechol 1,2-dioxygenase isozymes from benzoate-grown cells of Acinetobacter radioresistens. JOURNAL OF PROTEIN CHEMISTRY 2000; 19:709-16. [PMID: 11307956 DOI: 10.1023/a:1007116703991] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Two catechol 1,2-dioxygenase (C1,2O) isozymes (IsoA and IsoB) have been purified to homogeneity from a strain of Acinetobacter radioresistens grown on benzoate as the sole carbon and energy source. IsoA and IsoB are both homodimers composed of a single type of subunit with molecular mass of 38,600 and 37,700, Da respectively. In conditions of low ionic strength, IsoA can aggregate as a trimer, in contrast to IsoB, which maintains the dimeric structure, as also supported by the kinetic parameters (Hill numbers). IsoA is identical to the enzyme previously purified from the same bacterium grown on phenol, whereas the IsoB is selectively expressed using benzoate as carbon source. This is the first evidence of the presence of differently expressed C1,2O isozymes in A. radioresistens or more generally of multiple C1,2O isozymes in benzoate-grown Acinetobacter cells. Purified IsoA and IsoB contain approximately 1 iron(III) ion per subunit and both show electronic absorbance and EPR features typical of Fe(III) intradiol dioxygenases. The kinetic properties of the two enzymes such as the specificities toward substituted catechols, the main catalytic parameters, and their behavior in the presence of different kind of inhibitors are, unexpectedly, very similar, in contrast to most of the previously known dioxygenase isozymes.
Collapse
Affiliation(s)
- F Briganti
- Dipartimento di Chimica, Università degli Studi di Firenze, Florence, Italy.
| | | | | | | | | |
Collapse
|
49
|
Bosch R, García-Valdés E, Moore ER. Complete nucleotide sequence and evolutionary significance of a chromosomally encoded naphthalene-degradation lower pathway from Pseudomonas stutzeri AN10. Gene 2000; 245:65-74. [PMID: 10713446 DOI: 10.1016/s0378-1119(00)00038-x] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Pseudomonas stutzeri strain AN10 is a naphthalene-degrading strain whose dissimilatory genes are chromosomally encoded. We sequenced the entire naphthalene-degradation lower pathway of P. stutzeri AN10, this being, together with the upper-pathway reported previously (Bosch R. et al., 1999a. Gene 236, 149-157) the first complete DNA sequence for an entire naphthalene-catabolic pathway. Eleven open reading frames were identified. The nahGTHINLOMKJ genes encode enzymes for the metabolism of salicylate to pyruvate and acetyl-CoA, and nahR encodes the NahR regulatory protein. Our findings suggest that catabolic modules were recruited through transposition events and recombination among tnpA-like genes, and subsequent rearrangements and deletions of non-essential DNA fragments allowed the formation of the actual catabolic pathway. Our results also suggest that the genes encoding the xylene/toluene-degradation enzymes of P. putida mt-2 (pWW0) have coexisted with the nah genes of the P. stutzeri AN10 ancestral genome. This could allow the selection, via recombination events among homologous genes, for a combination of genes enabling the metabolism of a given aromatic compound in the ancestral host strain. Such events accelerate the evolution of modern catabolic pathways and provide new genetic material to the environment, ultimately resulting in improved, natural, bioremediation potential.
Collapse
Affiliation(s)
- R Bosch
- Departament de Biologia, Microbiologia, Universitat de les Illes Balears, and Institut Mediterrani d'Estudis Avançats (CSIC-UIB), 07071, Palma de Mallorca, Spain
| | | | | |
Collapse
|
50
|
Mampel J, Ruff J, Junker F, Cook AM. The oxygenase component of the 2-aminobenzenesulfonate dioxygenase system from Alcaligenes sp. strain O-1. MICROBIOLOGY (READING, ENGLAND) 1999; 145 ( Pt 11):3255-3264. [PMID: 10589735 DOI: 10.1099/00221287-145-11-3255] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Growth of Alcaligenes sp. strain O-1 with 2-aminobenzenesulfonate (ABS; orthanilate) as sole source of carbon and energy requires expression of the soluble, multicomponent 2-aminobenzenesulfonate 2,3-dioxygenase system (deaminating) (ABSDOS) which is plasmid-encoded. ABSDOS was separated by anion-exchange chromatography to yield a flavin-dependent reductase component and an iron-dependent oxygenase component. The oxygenase component was purified to about 98% homogeneity and an alpha2beta2 subunit structure was deduced from the molecular masses of 134,45 and 16 kDa for the native complex, and the alpha and beta subunits, respectively. Analysis of the amount of acid labile sulfur and total iron, and the UV spectrum of the purified oxygenase component indicated one [2Fe-2S] Rieske centre per alpha subunit. The inhibition of activity by the iron-specific chelator o-phenanthroline indicated the presence of an additional iron-binding site. Recovery of active protein required strictly anoxic conditions during all purification steps. The FAD-containing reductase could not be purified. ABSDOS oxygenated nine sulfonated compounds; no oxygen uptake was detected with carboxylated aromatic compounds or with aliphatic sulfonated compounds. Km values of 29, 18 and 108 microM and Vmax values of 140, 110 and 72 pkat for ABS, benzenesulfonate and 4-toluenesulfonate, respectively, were observed. The N-terminal amino acid sequences of the alpha- and beta-subunits of the oxygenase component allowed PCR primers to be deduced and the DNA sequence of the alpha-subunit was thereafter determined. Both redox centres were detected in the deduced amino acid sequence. Sequence data and biochemical properties of the enzyme system indicate a novel member of the class IB ring-hydroxylating dioxygenases.
Collapse
Affiliation(s)
- Jörg Mampel
- Department of Biology, The University, D-78457 Konstanz, Germany1
| | - Jürgen Ruff
- Department of Biology, The University, D-78457 Konstanz, Germany1
| | - Frank Junker
- Department of Biology, The University, D-78457 Konstanz, Germany1
| | - Alasdair M Cook
- Department of Biology, The University, D-78457 Konstanz, Germany1
| |
Collapse
|