1
|
Li L, Guo B, Dai L, Liu C, Lin Z. Ebselen and TPI-1, as RecG helicase inhibitors, potently enhance the susceptibility of Pseudomonas aeruginosa to DNA damage agents. Biochem Pharmacol 2024; 222:116051. [PMID: 38354956 DOI: 10.1016/j.bcp.2024.116051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 02/08/2024] [Accepted: 02/08/2024] [Indexed: 02/16/2024]
Abstract
Holliday junction (HJ) is a four-way structured DNA intermediate in processes of homologous recombination and DNA double-stranded break (DSB) repair. In bacteria, HJs are processed via either the RuvABC or RecG-dependent pathways. In addition, RecG also plays a critical role in the reactivation of stalled replication forks, making it an attractive target for antibacterial drug development. Here, we conducted a high-throughput screening targeting the RecG helicase from a common opportunistic pathogen Pseudomonas aeruginosa (Pa). From a library containing 7920 compounds, we identified Ebselen and TPI-1 (2',5'-Dichloro-[1,1'-biphenyl]-2,5-dione) as two potent PaRecG inhibitors, with IC50 values of 0.31 ± 0.02 μM and 1.16 ± 0.06 μM, respectively. Further biochemical analyses suggested that both Ebselen and TPI-1 inhibited the ATPase activity of PaRecG, and hindered its binding to HJ DNA with high selectivity. These compounds, when combined with our previously reported RuvAB inhibitors, resulted in more severe DNA repair defects than the individual treatment, and potently enhanced the susceptibility of P. aeruginosa to the DNA damage agents. This work reports novel small molecule inhibitors of RecG, offering valuable chemical tools for advancing our understanding of RecG's function and mechanism. Additionally, these inhibitors might be further developed as promising antibacterial agents in the fight against P. aeruginosa infections.
Collapse
Affiliation(s)
- Longheng Li
- College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Binbin Guo
- College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Lin Dai
- College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Chun Liu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China.
| | - Zhonghui Lin
- College of Chemistry, Fuzhou University, Fuzhou 350108, China.
| |
Collapse
|
2
|
Bonde NJ, Wood EA, Myers KS, Place M, Keck JL, Cox MM. Identification of recG genetic interactions in Escherichia coli by transposon sequencing. J Bacteriol 2023; 205:e0018423. [PMID: 38019006 PMCID: PMC10870727 DOI: 10.1128/jb.00184-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/07/2023] [Indexed: 11/30/2023] Open
Abstract
IMPORTANCE DNA damage and subsequent DNA repair processes are mutagenic in nature and an important driver of evolution in prokaryotes, including antibiotic resistance development. Genetic screening approaches, such as transposon sequencing (Tn-seq), have provided important new insights into gene function and genetic relationships. Here, we employed Tn-seq to gain insight into the function of the recG gene, which renders Escherichia coli cells moderately sensitive to a variety of DNA-damaging agents when they are absent. The reported recG genetic interactions can be used in combination with future screens to aid in a more complete reconstruction of DNA repair pathways in bacteria.
Collapse
Affiliation(s)
- Nina J. Bonde
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Elizabeth A. Wood
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Kevin S. Myers
- Great Lakes Bioenergy Research Center and the Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Michael Place
- Great Lakes Bioenergy Research Center and the Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - James L. Keck
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Michael M. Cox
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
3
|
Bonde NJ, Henry C, Wood EA, Cox MM, Keck J. Interaction with the carboxy-terminal tip of SSB is critical for RecG function in E. coli. Nucleic Acids Res 2023; 51:3735-3753. [PMID: 36912097 PMCID: PMC10164576 DOI: 10.1093/nar/gkad162] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/17/2023] [Accepted: 03/03/2023] [Indexed: 03/14/2023] Open
Abstract
In Escherichia coli, the single-stranded DNA-binding protein (SSB) acts as a genome maintenance organizational hub by interacting with multiple DNA metabolism proteins. Many SSB-interacting proteins (SIPs) form complexes with SSB by docking onto its carboxy-terminal tip (SSB-Ct). An alternative interaction mode in which SIPs bind to PxxP motifs within an intrinsically-disordered linker (IDL) in SSB has been proposed for the RecG DNA helicase and other SIPs. Here, RecG binding to SSB and SSB peptides was measured in vitro and the RecG/SSB interface was identified. The results show that RecG binds directly and specifically to the SSB-Ct, and not the IDL, through an evolutionarily conserved binding site in the RecG helicase domain. Mutations that block RecG binding to SSB sensitize E. coli to DNA damaging agents and induce the SOS DNA-damage response, indicating formation of the RecG/SSB complex is important in vivo. The broader role of the SSB IDL is also investigated. E. coli ssb mutant strains encoding SSB IDL deletion variants lacking all PxxP motifs retain wildtype growth and DNA repair properties, demonstrating that the SSB PxxP motifs are not major contributors to SSB cellular functions.
Collapse
Affiliation(s)
- Nina J Bonde
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Camille Henry
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Elizabeth A Wood
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Michael M Cox
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - James L Keck
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
4
|
Protein Transfer through an F Plasmid-Encoded Type IV Secretion System Suppresses the Mating-Induced SOS Response. mBio 2021; 12:e0162921. [PMID: 34253063 PMCID: PMC8406263 DOI: 10.1128/mbio.01629-21] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Bacterial type IV secretion systems (T4SSs) mediate the conjugative transfer of mobile genetic elements (MGEs) and their cargoes of antibiotic resistance and virulence genes. Here, we report that the pED208-encoded T4SS (TrapED208) translocates not only this F plasmid but several plasmid-encoded proteins, including ParA, ParB1, single-stranded DNA-binding protein SSB, ParB2, PsiB, and PsiA, to recipient cells. Conjugative protein translocation through the TrapED208 T4SS required engagement of the pED208 relaxosome with the TraD substrate receptor or coupling protein. T4SSs translocate MGEs as single-stranded DNA intermediates (T-strands), which triggers the SOS response in recipient cells. Transfer of pED208 deleted of psiB or ssb, which, respectively, encode the SOS inhibitor protein PsiB and single-stranded DNA-binding protein SSB, elicited a significantly stronger SOS response than pED208 or mutant plasmids deleted of psiA, parA, parB1, or parB2. Conversely, translocation of PsiB or SSB, but not PsiA, through the TrapED208 T4SS suppressed the mating-induced SOS response. Our findings expand the repertoire of known substrates of conjugation systems to include proteins with functions associated with plasmid maintenance. Furthermore, for this and other F-encoded Tra systems, docking of the DNA substrate with the TraD receptor appears to serve as a critical activating signal for protein translocation. Finally, the observed effects of PsiB and SSB on suppression of the mating-induced SOS response establishes a novel biological function for conjugative protein translocation and suggests the potential for interbacterial protein translocation to manifest in diverse outcomes influencing bacterial communication, physiology, and evolution.
Collapse
|
5
|
DisA Limits RecG Activities at Stalled or Reversed Replication Forks. Cells 2021; 10:cells10061357. [PMID: 34073022 PMCID: PMC8227628 DOI: 10.3390/cells10061357] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/28/2021] [Accepted: 05/28/2021] [Indexed: 11/18/2022] Open
Abstract
The DNA damage checkpoint protein DisA and the branch migration translocase RecG are implicated in the preservation of genome integrity in reviving haploid Bacillus subtilis spores. DisA synthesizes the essential cyclic 3′, 5′-diadenosine monophosphate (c-di-AMP) second messenger and such synthesis is suppressed upon replication perturbation. In vitro, c-di-AMP synthesis is suppressed when DisA binds DNA structures that mimic stalled or reversed forks (gapped forks or Holliday junctions [HJ]). RecG, which does not form a stable complex with DisA, unwinds branched intermediates, and in the presence of a limiting ATP concentration and HJ DNA, it blocks DisA-mediated c-di-AMP synthesis. DisA pre-bound to a stalled or reversed fork limits RecG-mediated ATP hydrolysis and DNA unwinding, but not if RecG is pre-bound to stalled or reversed forks. We propose that RecG-mediated fork remodeling is a genuine in vivo activity, and that DisA, as a molecular switch, limits RecG-mediated fork reversal and fork restoration. DisA and RecG might provide more time to process perturbed forks, avoiding genome breakage.
Collapse
|
6
|
Klimova AN, Sandler SJ. An Epistasis Analysis of recA and recN in Escherichia coli K-12. Genetics 2020; 216:381-393. [PMID: 32816866 PMCID: PMC7536844 DOI: 10.1534/genetics.120.303476] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 08/11/2020] [Indexed: 12/26/2022] Open
Abstract
RecA is essential for double-strand-break repair (DSBR) and the SOS response in Escherichia coli K-12. RecN is an SOS protein and a member of the Structural Maintenance of Chromosomes family of proteins thought to play a role in sister chromatid cohesion/interactions during DSBR. Previous studies have shown that a plasmid-encoded recA4190 (Q300R) mutant had a phenotype similar to ∆recN (mitomycin C sensitive and UV resistant). It was hypothesized that RecN and RecA physically interact, and that recA4190 specifically eliminated this interaction. To test this model, an epistasis analysis between recA4190 and ∆recN was performed in wild-type and recBC sbcBC cells. To do this, recA4190 was first transferred to the chromosome. As single mutants, recA4190 and ∆recN were Rec+ as measured by transductional recombination, but were 3-fold and 10-fold decreased in their ability to do I-SceI-induced DSBR, respectively. In both cases, the double mutant had an additive phenotype relative to either single mutant. In the recBC sbcBC background, recA4190 and ∆recN cells were very UVS (sensitive), Rec-, had high basal levels of SOS expression and an altered distribution of RecA-GFP structures. In all cases, the double mutant had additive phenotypes. These data suggest that recA4190 (Q300R) and ∆recN remove functions in genetically distinct pathways important for DNA repair, and that RecA Q300 was not important for an interaction between RecN and RecA in vivorecA4190 (Q300R) revealed modest phenotypes in a wild-type background and dramatic phenotypes in a recBC sbcBC strain, reflecting greater stringency of RecA's role in that background.
Collapse
Affiliation(s)
- Anastasiia N Klimova
- Molecular and Cellular Biology Program, University of Massachusetts Amherst, Massachusetts 01003
| | - Steven J Sandler
- Molecular and Cellular Biology Program, University of Massachusetts Amherst, Massachusetts 01003
- Department of Microbiology, University of Massachusetts Amherst, Massachusetts 01003
| |
Collapse
|
7
|
Xu J, Wu C, Yang Z, Liu W, Chen H, Batool K, Yao J, Fan X, Wu J, Rao W, Huang T, Xu L, Guan X, Zhang L. For: Pesticide biochemistry and physiology recG is involved with the resistance of Bt to UV. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2020; 167:104599. [PMID: 32527443 DOI: 10.1016/j.pestbp.2020.104599] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 03/07/2020] [Accepted: 05/06/2020] [Indexed: 06/11/2023]
Abstract
As an ATP-dependent DNA helicase, RecG can repair DNA replication forks in many organisms. However, knowledge of recG in Bacillus thuringiensis (Bt) is limited. In our previous study, recG was found damaged in Bt LLP29-M19, which was more resistant to ultraviolet light (UV) after exposing Bt LLP29 to UV for 19 generations. To further understand the function of recG in the mechanism of Bt UV resistance, recG was knocked out and recovered with homologous recombination technology in Bt LLP29. Comparing the resistance of the different mutants to UVB, Bt ∆recG-LLP29 lacking recG was found more sensitive to UVB, hydroxyurea (HU) and H2O2 than LLP29 and the complementation strain. To compare the expression level of recG in the Bt strains under different UV treatments, Quantitative Real-time PCR (RT-qPCR) of recG was performed in the tested Bt strains, which showed that the expression level of recG in Bt ∆recG-LLP29 was substantially lower than that in the original strain and complementation strain. Interestingly, when exposed to UV for 20 min, RecG expression in both Bt LLP29 and Bt recG-R was the highest. The unwinding activity of recG in Bt LLP29 and the complementation strain were also found higher than that of the recG knockout strain, Bt ∆recG-LLP29. These results demonstrate that recG is involved with the resistance of Bt to UV. These findings not only enhance the understanding of the Bt UV resistance mechanism, but also provide an important theoretical basis for the application of Bt.
Collapse
Affiliation(s)
- Jin Xu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops & School of Life Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Chenxu Wu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops & School of Life Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Zhaohui Yang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops & School of Life Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Wencheng Liu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops & School of Life Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Hong Chen
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops & School of Life Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Khadija Batool
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops & School of Life Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Junmin Yao
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops & School of Life Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Xiao Fan
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops & School of Life Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Juan Wu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops & School of Life Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Wenhua Rao
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops & School of Life Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Tianpei Huang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops & School of Life Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Lei Xu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops & School of Life Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Xiong Guan
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops & School of Life Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Lingling Zhang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops & School of Life Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.
| |
Collapse
|
8
|
Sinha AK, Possoz C, Leach DRF. The Roles of Bacterial DNA Double-Strand Break Repair Proteins in Chromosomal DNA Replication. FEMS Microbiol Rev 2020; 44:351-368. [PMID: 32286623 PMCID: PMC7326373 DOI: 10.1093/femsre/fuaa009] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 04/09/2020] [Indexed: 02/06/2023] Open
Abstract
It is well established that DNA double-strand break (DSB) repair is required to underpin chromosomal DNA replication. Because DNA replication forks are prone to breakage, faithful DSB repair and correct replication fork restart are critically important. Cells, where the proteins required for DSB repair are absent or altered, display characteristic disturbances to genome replication. In this review, we analyze how bacterial DNA replication is perturbed in DSB repair mutant strains and explore the consequences of these perturbations for bacterial chromosome segregation and cell viability. Importantly, we look at how DNA replication and DSB repair processes are implicated in the striking recent observations of DNA amplification and DNA loss in the chromosome terminus of various mutant Escherichia coli strains. We also address the mutant conditions required for the remarkable ability to copy the entire E. coli genome, and to maintain cell viability, even in the absence of replication initiation from oriC, the unique origin of DNA replication in wild type cells. Furthermore, we discuss the models that have been proposed to explain these phenomena and assess how these models fit with the observed data, provide new insights and enhance our understanding of chromosomal replication and termination in bacteria.
Collapse
Affiliation(s)
- Anurag Kumar Sinha
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, Copenhagen, 2200, Denmark
| | - Christophe Possoz
- Evolution and maintenance of circular chromosomes, Genome biology department, Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, 1 avenue de la Terrasse Building 26, 91198 Gif-sur-Yvette, France
| | - David R F Leach
- Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, King's Buildings, Edinburgh, EH9 3FF, United Kingdom
| |
Collapse
|
9
|
Henrikus SS, Henry C, Ghodke H, Wood EA, Mbele N, Saxena R, Basu U, van Oijen AM, Cox MM, Robinson A. RecFOR epistasis group: RecF and RecO have distinct localizations and functions in Escherichia coli. Nucleic Acids Res 2019; 47:2946-2965. [PMID: 30657965 PMCID: PMC6451095 DOI: 10.1093/nar/gkz003] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 12/03/2018] [Accepted: 01/10/2019] [Indexed: 01/31/2023] Open
Abstract
In bacteria, genetic recombination is a major mechanism for DNA repair. The RecF, RecO and RecR proteins are proposed to initiate recombination by loading the RecA recombinase onto DNA. However, the biophysical mechanisms underlying this process remain poorly understood. Here, we used genetics and single-molecule fluorescence microscopy to investigate whether RecF and RecO function together, or separately, in live Escherichia coli cells. We identified conditions in which RecF and RecO functions are genetically separable. Single-molecule imaging revealed key differences in the spatiotemporal behaviours of RecF and RecO. RecF foci frequently colocalize with replisome markers. In response to DNA damage, colocalization increases and RecF dimerizes. The majority of RecF foci are dependent on RecR. Conversely, RecO foci occur infrequently, rarely colocalize with replisomes or RecF and are largely independent of RecR. In response to DNA damage, RecO foci appeared to spatially redistribute, occupying a region close to the cell membrane. These observations indicate that RecF and RecO have distinct functions in the DNA damage response. The observed localization of RecF to the replisome supports the notion that RecF helps to maintain active DNA replication in cells carrying DNA damage.
Collapse
Affiliation(s)
- Sarah S Henrikus
- Molecular Horizons Institute and School of Chemistry and Biomolecular Science, University of Wollongong, Wollongong, Australia.,Illawarra Health and Medical Research Institute, Wollongong, NSW 2500, Australia
| | - Camille Henry
- Department of Biochemistry, University of Wisconsin-Madison, WI 53706-1544, USA
| | - Harshad Ghodke
- Molecular Horizons Institute and School of Chemistry and Biomolecular Science, University of Wollongong, Wollongong, Australia.,Illawarra Health and Medical Research Institute, Wollongong, NSW 2500, Australia
| | - Elizabeth A Wood
- Department of Biochemistry, University of Wisconsin-Madison, WI 53706-1544, USA
| | - Neema Mbele
- Department of Biochemistry, University of Wisconsin-Madison, WI 53706-1544, USA
| | - Roopashi Saxena
- Department of Biochemistry, University of Wisconsin-Madison, WI 53706-1544, USA
| | - Upasana Basu
- Department of Biochemistry, University of Wisconsin-Madison, WI 53706-1544, USA
| | - Antoine M van Oijen
- Molecular Horizons Institute and School of Chemistry and Biomolecular Science, University of Wollongong, Wollongong, Australia.,Illawarra Health and Medical Research Institute, Wollongong, NSW 2500, Australia
| | - Michael M Cox
- Department of Biochemistry, University of Wisconsin-Madison, WI 53706-1544, USA
| | - Andrew Robinson
- Molecular Horizons Institute and School of Chemistry and Biomolecular Science, University of Wollongong, Wollongong, Australia.,Illawarra Health and Medical Research Institute, Wollongong, NSW 2500, Australia
| |
Collapse
|
10
|
Warren GM, Stein RA, Mchaourab HS, Eichman BF. Movement of the RecG Motor Domain upon DNA Binding Is Required for Efficient Fork Reversal. Int J Mol Sci 2018; 19:ijms19103049. [PMID: 30301235 PMCID: PMC6213257 DOI: 10.3390/ijms19103049] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 09/29/2018] [Accepted: 10/04/2018] [Indexed: 01/20/2023] Open
Abstract
RecG catalyzes reversal of stalled replication forks in response to replication stress in bacteria. The protein contains a fork recognition (“wedge”) domain that binds branched DNA and a superfamily II (SF2) ATPase motor that drives translocation on double-stranded (ds)DNA. The mechanism by which the wedge and motor domains collaborate to catalyze fork reversal in RecG and analogous eukaryotic fork remodelers is unknown. Here, we used electron paramagnetic resonance (EPR) spectroscopy to probe conformational changes between the wedge and ATPase domains in response to fork DNA binding by Thermotoga maritima RecG. Upon binding DNA, the ATPase-C lobe moves away from both the wedge and ATPase-N domains. This conformational change is consistent with a model of RecG fully engaged with a DNA fork substrate constructed from a crystal structure of RecG bound to a DNA junction together with recent cryo-electron microscopy (EM) structures of chromatin remodelers in complex with dsDNA. We show by mutational analysis that a conserved loop within the translocation in RecG (TRG) motif that was unstructured in the RecG crystal structure is essential for fork reversal and DNA-dependent conformational changes. Together, this work helps provide a more coherent model of fork binding and remodeling by RecG and related eukaryotic enzymes.
Collapse
Affiliation(s)
- Garrett M Warren
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37232, USA.
| | - Richard A Stein
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA.
| | - Hassane S Mchaourab
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA.
| | - Brandt F Eichman
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37232, USA.
| |
Collapse
|
11
|
Abstract
In all organisms, replication impairments are an important source of genome rearrangements, mainly because of the formation of double-stranded DNA (dsDNA) ends at inactivated replication forks. Three reactions for the formation of dsDNA ends at replication forks were originally described for Escherichia coli and became seminal models for all organisms: the encounter of replication forks with preexisting single-stranded DNA (ssDNA) interruptions, replication fork reversal, and head-to-tail collisions of successive replication rounds. Here, we first review the experimental evidence that now allows us to know when, where, and how these three different reactions occur in E. coli. Next, we recall our recent studies showing that in wild-type E. coli, spontaneous replication fork breakage occurs in 18% of cells at each generation. We propose that it results from the replication of preexisting nicks or gaps, since it does not involve replication fork reversal or head-to-tail fork collisions. In the recB mutant, deficient for double-strand break (DSB) repair, fork breakage triggers DSBs in the chromosome terminus during cell division, a reaction that is heritable for several generations. Finally, we recapitulate several observations suggesting that restart from intact inactivated replication forks and restart from recombination intermediates require different sets of enzymatic activities. The finding that 18% of cells suffer replication fork breakage suggests that DNA remains intact at most inactivated forks. Similarly, only 18% of cells need the helicase loader for replication restart, which leads us to speculate that the replicative helicase remains on DNA at intact inactivated replication forks and is reactivated by the replication restart proteins.
Collapse
|
12
|
Myka KK, Hawkins M, Syeda AH, Gupta MK, Meharg C, Dillingham MS, Savery NJ, Lloyd RG, McGlynn P. Inhibiting translation elongation can aid genome duplication in Escherichia coli. Nucleic Acids Res 2017; 45:2571-2584. [PMID: 27956500 PMCID: PMC5389703 DOI: 10.1093/nar/gkw1254] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 11/28/2016] [Accepted: 12/01/2016] [Indexed: 12/28/2022] Open
Abstract
Conflicts between replication and transcription challenge chromosome duplication. Escherichia coli replisome movement along transcribed DNA is promoted by Rep and UvrD accessory helicases with Δrep ΔuvrD cells being inviable under rapid growth conditions. We have discovered that mutations in a tRNA gene, aspT, in an aminoacyl tRNA synthetase, AspRS, and in a translation factor needed for efficient proline-proline bond formation, EF-P, suppress Δrep ΔuvrD lethality. Thus replication-transcription conflicts can be alleviated by the partial sacrifice of a mechanism that reduces replicative barriers, namely translating ribosomes that reduce RNA polymerase backtracking. Suppression depends on RelA-directed synthesis of (p)ppGpp, a signalling molecule that reduces replication-transcription conflicts, with RelA activation requiring ribosomal pausing. Levels of (p)ppGpp in these suppressors also correlate inversely with the need for Rho activity, an RNA translocase that can bind to emerging transcripts and displace transcription complexes. These data illustrate the fine balance between different mechanisms in facilitating gene expression and genome duplication and demonstrate that accessory helicases are a major determinant of this balance. This balance is also critical for other aspects of bacterial survival: the mutations identified here increase persistence indicating that similar mutations could arise in naturally occurring bacterial populations facing antibiotic challenge.
Collapse
Affiliation(s)
- Kamila K. Myka
- Department of Biology, University of York, Wentworth Way, York YO10 5DD, UK
| | - Michelle Hawkins
- Department of Biology, University of York, Wentworth Way, York YO10 5DD, UK
| | - Aisha H. Syeda
- Department of Biology, University of York, Wentworth Way, York YO10 5DD, UK
| | - Milind K. Gupta
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | - Caroline Meharg
- Institute for Global Food Security, Queen's University Belfast, David Keir Building, Malone Road, Belfast BT9 5BN, UK
| | - Mark S. Dillingham
- DNA-Protein Interactions Unit, School of Biochemistry, University of Bristol, Bristol BS8, 1TD, UK
| | - Nigel J. Savery
- DNA-Protein Interactions Unit, School of Biochemistry, University of Bristol, Bristol BS8, 1TD, UK
| | - Robert G. Lloyd
- Centre for Genetics and Genomics, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK
| | - Peter McGlynn
- Department of Biology, University of York, Wentworth Way, York YO10 5DD, UK
| |
Collapse
|
13
|
Azeroglu B, Leach DRF. RecG controls DNA amplification at double-strand breaks and arrested replication forks. FEBS Lett 2017; 591:1101-1113. [PMID: 28155219 PMCID: PMC5412681 DOI: 10.1002/1873-3468.12583] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 01/13/2017] [Accepted: 01/28/2017] [Indexed: 12/16/2022]
Abstract
DNA amplification is a powerful mutational mechanism that is a hallmark of cancer and drug resistance. It is therefore important to understand the fundamental pathways that cells employ to avoid over‐replicating sections of their genomes. Recent studies demonstrate that, in the absence of RecG, DNA amplification is observed at sites of DNA double‐strand break repair (DSBR) and of DNA replication arrest that are processed to generate double‐strand ends. RecG also plays a role in stabilising joint molecules formed during DSBR. We propose that RecG prevents a previously unrecognised mechanism of DNA amplification that we call reverse‐restart, which generates DNA double‐strand ends from incorrect loading of the replicative helicase at D‐loops formed by recombination, and at arrested replication forks.
Collapse
Affiliation(s)
- Benura Azeroglu
- Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, UK
| | - David R F Leach
- Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, UK
| |
Collapse
|
14
|
Hoff G, Bertrand C, Piotrowski E, Thibessard A, Leblond P. Implication of RuvABC and RecG in homologous recombination in Streptomyces ambofaciens. Res Microbiol 2016; 168:26-35. [PMID: 27424811 DOI: 10.1016/j.resmic.2016.07.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 07/04/2016] [Accepted: 07/04/2016] [Indexed: 10/21/2022]
Abstract
Most bacterial organisms rely on homologous recombination to repair DNA double-strand breaks and for the post-replicative repair of DNA single-strand gaps. Homologous recombination can be divided into three steps: (i) a pre-synaptic step in which the DNA 3'-OH ends are processed, (ii) a recA-dependent synaptic step allowing the invasion of an intact copy and the formation of Holliday junctions, and (iii) a post-synaptic step consisting of migration and resolution of these junctions. Currently, little is known about factors involved in homologous recombination, especially for the post-synaptic step. In Escherichia coli, branch migration and resolution are performed by the RuvABC complex, but could also rely on the RecG helicase in a redundant manner. In this study, we show that recG and ruvABC are well-conserved among Streptomyces. ΔruvABC, ΔrecG and ΔruvABC ΔrecG mutant strains were constructed. ΔruvABC ΔrecG is only slightly affected by exposure to DNA damage (UV). We also show that conjugational recombination decreases in the absence of RuvABC and RecG, but that intra-chromosomal recombination is not affected. These data suggest that RuvABC and RecG are indeed involved in homologous recombination in Streptomyces ambofaciens and that alternative factors are able to take over Holliday junction in Streptomyces.
Collapse
Affiliation(s)
- Grégory Hoff
- Université de Lorraine, Dynamique des Génomes et Adaptation Microbienne, UMR 1128, Vandœuvre-lès-Nancy, F-54506, France; INRA, Dynamique des Génomes et Adaptation Microbienne, UMR 1128, Vandœuvre-lès-Nancy, F-54506, France.
| | - Claire Bertrand
- Université de Lorraine, Dynamique des Génomes et Adaptation Microbienne, UMR 1128, Vandœuvre-lès-Nancy, F-54506, France; INRA, Dynamique des Génomes et Adaptation Microbienne, UMR 1128, Vandœuvre-lès-Nancy, F-54506, France.
| | - Emilie Piotrowski
- Université de Lorraine, Dynamique des Génomes et Adaptation Microbienne, UMR 1128, Vandœuvre-lès-Nancy, F-54506, France; INRA, Dynamique des Génomes et Adaptation Microbienne, UMR 1128, Vandœuvre-lès-Nancy, F-54506, France.
| | - Annabelle Thibessard
- Université de Lorraine, Dynamique des Génomes et Adaptation Microbienne, UMR 1128, Vandœuvre-lès-Nancy, F-54506, France; INRA, Dynamique des Génomes et Adaptation Microbienne, UMR 1128, Vandœuvre-lès-Nancy, F-54506, France.
| | - Pierre Leblond
- Université de Lorraine, Dynamique des Génomes et Adaptation Microbienne, UMR 1128, Vandœuvre-lès-Nancy, F-54506, France; INRA, Dynamique des Génomes et Adaptation Microbienne, UMR 1128, Vandœuvre-lès-Nancy, F-54506, France.
| |
Collapse
|
15
|
Lloyd RG, Rudolph CJ. 25 years on and no end in sight: a perspective on the role of RecG protein. Curr Genet 2016; 62:827-840. [PMID: 27038615 PMCID: PMC5055574 DOI: 10.1007/s00294-016-0589-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 03/02/2016] [Indexed: 11/27/2022]
Abstract
The RecG protein of Escherichia coli is a double-stranded DNA translocase that unwinds a variety of branched substrates in vitro. Although initially associated with homologous recombination and DNA repair, studies of cells lacking RecG over the past 25 years have led to the suggestion that the protein might be multi-functional and associated with a number of additional cellular processes, including initiation of origin-independent DNA replication, the rescue of stalled or damaged replication forks, replication restart, stationary phase or stress-induced 'adaptive' mutations and most recently, naïve adaptation in CRISPR-Cas immunity. Here we discuss the possibility that many of the phenotypes of recG mutant cells that have led to this conclusion may stem from a single defect, namely the failure to prevent re-replication of the chromosome. We also present data indicating that this failure does indeed contribute substantially to the much-reduced recovery of recombinants in conjugational crosses with strains lacking both RecG and the RuvABC Holliday junction resolvase.
Collapse
Affiliation(s)
- Robert G Lloyd
- Centre for Genetics and Genomics, University of Nottingham, Queen's Medical Centre, Nottingham, NG7 2UH, UK
| | - Christian J Rudolph
- Division of Biosciences, College of Health and Life Sciences, Brunel University London, Uxbridge, UB8 3PH, UK.
| |
Collapse
|
16
|
Azeroglu B, Mawer JSP, Cockram CA, White MA, Hasan AMM, Filatenkova M, Leach DRF. RecG Directs DNA Synthesis during Double-Strand Break Repair. PLoS Genet 2016; 12:e1005799. [PMID: 26872352 PMCID: PMC4752480 DOI: 10.1371/journal.pgen.1005799] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 12/19/2015] [Indexed: 11/19/2022] Open
Abstract
Homologous recombination provides a mechanism of DNA double-strand break repair (DSBR) that requires an intact, homologous template for DNA synthesis. When DNA synthesis associated with DSBR is convergent, the broken DNA strands are replaced and repair is accurate. However, if divergent DNA synthesis is established, over-replication of flanking DNA may occur with deleterious consequences. The RecG protein of Escherichia coli is a helicase and translocase that can re-model 3-way and 4-way DNA structures such as replication forks and Holliday junctions. However, the primary role of RecG in live cells has remained elusive. Here we show that, in the absence of RecG, attempted DSBR is accompanied by divergent DNA replication at the site of an induced chromosomal DNA double-strand break. Furthermore, DNA double-stand ends are generated in a recG mutant at sites known to block replication forks. These double-strand ends, also trigger DSBR and the divergent DNA replication characteristic of this mutant, which can explain over-replication of the terminus region of the chromosome. The loss of DNA associated with unwinding joint molecules previously observed in the absence of RuvAB and RecG, is suppressed by a helicase deficient PriA mutation (priA300), arguing that the action of RecG ensures that PriA is bound correctly on D-loops to direct DNA replication rather than to unwind joint molecules. This has led us to put forward a revised model of homologous recombination in which the re-modelling of branched intermediates by RecG plays a fundamental role in directing DNA synthesis and thus maintaining genomic stability.
Collapse
Affiliation(s)
- Benura Azeroglu
- Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Julia S. P. Mawer
- Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Charlotte A. Cockram
- Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Martin A. White
- Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - A. M. Mahedi Hasan
- Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Milana Filatenkova
- Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - David R. F. Leach
- Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
17
|
The Consequences of Replicating in the Wrong Orientation: Bacterial Chromosome Duplication without an Active Replication Origin. mBio 2015; 6:e01294-15. [PMID: 26530381 PMCID: PMC4631800 DOI: 10.1128/mbio.01294-15] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Chromosome replication is regulated in all organisms at the assembly stage of the replication machinery at specific origins. In Escherichia coli, the DnaA initiator protein regulates the assembly of replication forks at oriC. This regulation can be undermined by defects in nucleic acid metabolism. In cells lacking RNase HI, replication initiates independently of DnaA and oriC, presumably at persisting R-loops. A similar mechanism was assumed for origin-independent synthesis in cells lacking RecG. However, recently we suggested that this synthesis initiates at intermediates resulting from replication fork fusions. Here we present data suggesting that in cells lacking RecG or RNase HI, origin-independent synthesis arises by different mechanisms, indicative of these two proteins having different roles in vivo. Our data support the idea that RNase HI processes R-loops, while RecG is required to process replication fork fusion intermediates. However, regardless of how origin-independent synthesis is initiated, a fraction of forks will proceed in an orientation opposite to normal. We show that the resulting head-on encounters with transcription threaten cell viability, especially if taking place in highly transcribed areas. Thus, despite their different functions, RecG and RNase HI are both important factors for maintaining replication control and orientation. Their absence causes severe replication problems, highlighting the advantages of the normal chromosome arrangement, which exploits a single origin to control the number of forks and their orientation relative to transcription, and a defined termination area to contain fork fusions. Any changes to this arrangement endanger cell cycle control, chromosome dynamics, and, ultimately, cell viability. IMPORTANCE Cell division requires unwinding of millions of DNA base pairs to generate the template for RNA transcripts as well as chromosome replication. As both processes use the same template, frequent clashes are unavoidable. To minimize the impact of these clashes, transcription and replication in bacteria follow the same directionality, thereby avoiding head-on collisions. This codirectionality is maintained by a strict regulation of where replication is started. We have used Escherichia coli as a model to investigate cells in which the defined location of replication initiation is compromised. In cells lacking either RNase HI or RecG, replication initiates away from the defined replication origin, and we discuss the different mechanisms by which this synthesis arises. In addition, the resulting forks proceed in a direction opposite to normal, thereby inducing head-on collisions between transcription and replication, and we show that the resulting consequences are severe enough to threaten the viability of cells.
Collapse
|
18
|
Abstract
Early research on the origins and mechanisms of mutation led to the establishment of the dogma that, in the absence of external forces, spontaneous mutation rates are constant. However, recent results from a variety of experimental systems suggest that mutation rates can increase in response to selective pressures. This chapter summarizes data demonstrating that,under stressful conditions, Escherichia coli and Salmonella can increase the likelihood of beneficial mutations by modulating their potential for genetic change.Several experimental systems used to study stress-induced mutagenesis are discussed, with special emphasison the Foster-Cairns system for "adaptive mutation" in E. coli and Salmonella. Examples from other model systems are given to illustrate that stress-induced mutagenesis is a natural and general phenomenon that is not confined to enteric bacteria. Finally, some of the controversy in the field of stress-induced mutagenesis is summarized and discussed, and a perspective on the current state of the field is provided.
Collapse
|
19
|
Wallet C, Le Ret M, Bergdoll M, Bichara M, Dietrich A, Gualberto JM. The RECG1 DNA Translocase Is a Key Factor in Recombination Surveillance, Repair, and Segregation of the Mitochondrial DNA in Arabidopsis. THE PLANT CELL 2015; 27:2907-25. [PMID: 26462909 PMCID: PMC4682331 DOI: 10.1105/tpc.15.00680] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 09/14/2015] [Accepted: 09/25/2015] [Indexed: 05/24/2023]
Abstract
The mitochondria of flowering plants have considerably larger and more complex genomes than the mitochondria of animals or fungi, mostly due to recombination activities that modulate their genomic structures. These activities most probably participate in the repair of mitochondrial DNA (mtDNA) lesions by recombination-dependent processes. Rare ectopic recombination across short repeats generates new genomic configurations that contribute to mtDNA heteroplasmy, which drives rapid evolution of the sequence organization of plant mtDNAs. We found that Arabidopsis thaliana RECG1, an ortholog of the bacterial RecG translocase, is an organellar protein with multiple roles in mtDNA maintenance. RECG1 targets to mitochondria and plastids and can complement a bacterial recG mutant that shows defects in repair and replication control. Characterization of Arabidopsis recG1 mutants showed that RECG1 is required for recombination-dependent repair and for suppression of ectopic recombination in mitochondria, most likely because of its role in recovery of stalled replication forks. The analysis of alternative mitotypes present in a recG1 line and of their segregation following backcross allowed us to build a model to explain how a new stable mtDNA configuration, compatible with normal plant development, can be generated by stoichiometric shift.
Collapse
Affiliation(s)
- Clémentine Wallet
- Institut de Biologie Moléculaire des Plantes, CNRS UPR2357, Université de Strasbourg, 67084 Strasbourg, France
| | - Monique Le Ret
- Institut de Biologie Moléculaire des Plantes, CNRS UPR2357, Université de Strasbourg, 67084 Strasbourg, France
| | - Marc Bergdoll
- Institut de Biologie Moléculaire des Plantes, CNRS UPR2357, Université de Strasbourg, 67084 Strasbourg, France
| | - Marc Bichara
- CNRS UMR7242, IREBS, Université de Strasbourg, 67412 Illkirch, France
| | - André Dietrich
- Institut de Biologie Moléculaire des Plantes, CNRS UPR2357, Université de Strasbourg, 67084 Strasbourg, France
| | - José M Gualberto
- Institut de Biologie Moléculaire des Plantes, CNRS UPR2357, Université de Strasbourg, 67084 Strasbourg, France
| |
Collapse
|
20
|
Thakur RS, Basavaraju S, Khanduja JS, Muniyappa K, Nagaraju G. Mycobacterium tuberculosis RecG protein but not RuvAB or RecA protein is efficient at remodeling the stalled replication forks: implications for multiple mechanisms of replication restart in mycobacteria. J Biol Chem 2015; 290:24119-39. [PMID: 26276393 DOI: 10.1074/jbc.m115.671164] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Indexed: 11/06/2022] Open
Abstract
Aberrant DNA replication, defects in the protection, and restart of stalled replication forks are major causes of genome instability in all organisms. Replication fork reversal is emerging as an evolutionarily conserved physiological response for restart of stalled forks. Escherichia coli RecG, RuvAB, and RecA proteins have been shown to reverse the model replication fork structures in vitro. However, the pathways and the mechanisms by which Mycobacterium tuberculosis, a slow growing human pathogen, responds to different types of replication stress and DNA damage are unclear. Here, we show that M. tuberculosis RecG rescues E. coli ΔrecG cells from replicative stress. The purified M. tuberculosis RecG (MtRecG) and RuvAB (MtRuvAB) proteins catalyze fork reversal of model replication fork structures with and without a leading strand single-stranded DNA gap. Interestingly, single-stranded DNA-binding protein suppresses the MtRecG- and MtRuvAB-mediated fork reversal with substrates that contain lagging strand gap. Notably, our comparative studies with fork structures containing template damage and template switching mechanism of lesion bypass reveal that MtRecG but not MtRuvAB or MtRecA is proficient in driving the fork reversal. Finally, unlike MtRuvAB, we find that MtRecG drives efficient reversal of forks when fork structures are tightly bound by protein. These results provide direct evidence and valuable insights into the underlying mechanism of MtRecG-catalyzed replication fork remodeling and restart pathways in vivo.
Collapse
Affiliation(s)
- Roshan Singh Thakur
- From the Department of Biochemistry, Indian Institute of Science, Bangalore-560012, India
| | - Shivakumar Basavaraju
- From the Department of Biochemistry, Indian Institute of Science, Bangalore-560012, India
| | - Jasbeer Singh Khanduja
- From the Department of Biochemistry, Indian Institute of Science, Bangalore-560012, India
| | - K Muniyappa
- From the Department of Biochemistry, Indian Institute of Science, Bangalore-560012, India
| | - Ganesh Nagaraju
- From the Department of Biochemistry, Indian Institute of Science, Bangalore-560012, India
| |
Collapse
|
21
|
Bianco PR. I came to a fork in the DNA and there was RecG. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2015; 117:166-173. [PMID: 25613916 PMCID: PMC4417463 DOI: 10.1016/j.pbiomolbio.2015.01.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 01/07/2015] [Accepted: 01/08/2015] [Indexed: 11/28/2022]
Abstract
RecG is a potent, atypical, monomeric DNA helicase. It simultaneously couples ATP hydrolysis to duplex unwinding and rewinding, and to the displacement of proteins bound to the DNA. A model is presented for the localization of the enzyme to the inner membrane via its binding to SSB. Upon fork stalling, SSB targets the enzyme to the fork where it can act. RecG displays a strong preference for processing the fork in the regression direction, that is, away from the site of damage that initially led to fork arrest. Regression is mediated by strong binding of the wedge domain to the fork arms as well as to parental duplex DNA by the helicase domains. Once RecG has regressed the fork, it will dissociate leaving the now relaxed, Holliday junction-like DNA, available for further processing by enzymes such as RuvAB.
Collapse
Affiliation(s)
- Piero R Bianco
- Department of Biochemistry, University at Buffalo, Buffalo, NY 14214, USA; Center for Single Molecule Biophysics, University at Buffalo, Buffalo, NY 14214, USA.
| |
Collapse
|
22
|
Escherichia coli genes and pathways involved in surviving extreme exposure to ionizing radiation. J Bacteriol 2014; 196:3534-45. [PMID: 25049088 DOI: 10.1128/jb.01589-14] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To further an improved understanding of the mechanisms used by bacterial cells to survive extreme exposure to ionizing radiation (IR), we broadly screened nonessential Escherichia coli genes for those involved in IR resistance by using transposon-directed insertion sequencing (TraDIS). Forty-six genes were identified, most of which become essential upon heavy IR exposure. Most of these were subjected to direct validation. The results reinforced the notion that survival after high doses of ionizing radiation does not depend on a single mechanism or process, but instead is multifaceted. Many identified genes affect either DNA repair or the cellular response to oxidative damage. However, contributions by genes involved in cell wall structure/function, cell division, and intermediary metabolism were also evident. About half of the identified genes have not previously been associated with IR resistance or recovery from IR exposure, including eight genes of unknown function.
Collapse
|
23
|
Upton AL, Grove JI, Mahdi AA, Briggs GS, Milner DS, Rudolph CJ, Lloyd RG. Cellular location and activity of Escherichia coli RecG proteins shed light on the function of its structurally unresolved C-terminus. Nucleic Acids Res 2014; 42:5702-14. [PMID: 24692661 PMCID: PMC4027168 DOI: 10.1093/nar/gku228] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
RecG is a DNA translocase encoded by most species of bacteria. The Escherichia coli protein targets branched DNA substrates and drives the unwinding and rewinding of DNA strands. Its ability to remodel replication forks and to genetically interact with PriA protein have led to the idea that it plays an important role in securing faithful genome duplication. Here we report that RecG co-localises with sites of DNA replication and identify conserved arginine and tryptophan residues near its C-terminus that are needed for this localisation. We establish that the extreme C-terminus, which is not resolved in the crystal structure, is vital for DNA unwinding but not for DNA binding. Substituting an alanine for a highly conserved tyrosine near the very end results in a substantial reduction in the ability to unwind replication fork and Holliday junction structures but has no effect on substrate affinity. Deleting or substituting the terminal alanine causes an even greater reduction in unwinding activity, which is somewhat surprising as this residue is not uniformly present in closely related RecG proteins. More significantly, the extreme C-terminal mutations have little effect on localisation. Mutations that do prevent localisation result in only a slight reduction in the capacity for DNA repair.
Collapse
Affiliation(s)
- Amy L Upton
- Centre for Genetics and Genomics, University of Nottingham, Queen's Medical Centre, Nottingham, NG7 2UH, UK Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Jane I Grove
- Centre for Genetics and Genomics, University of Nottingham, Queen's Medical Centre, Nottingham, NG7 2UH, UK School of Medicine, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK
| | - Akeel A Mahdi
- Centre for Genetics and Genomics, University of Nottingham, Queen's Medical Centre, Nottingham, NG7 2UH, UK
| | - Geoffrey S Briggs
- Centre for Genetics and Genomics, University of Nottingham, Queen's Medical Centre, Nottingham, NG7 2UH, UK
| | - David S Milner
- Centre for Genetics and Genomics, University of Nottingham, Queen's Medical Centre, Nottingham, NG7 2UH, UK
| | - Christian J Rudolph
- Centre for Genetics and Genomics, University of Nottingham, Queen's Medical Centre, Nottingham, NG7 2UH, UK School of Health Sciences and Social Care, Division of Biosciences, Brunel University, Uxbridge, London UB8 3PH, UK
| | - Robert G Lloyd
- Centre for Genetics and Genomics, University of Nottingham, Queen's Medical Centre, Nottingham, NG7 2UH, UK
| |
Collapse
|
24
|
Thakur RS, Basavaraju S, Somyajit K, Jain A, Subramanya S, Muniyappa K, Nagaraju G. Evidence for the role of Mycobacterium tuberculosis RecG helicase in DNA repair and recombination. FEBS J 2013; 280:1841-60. [PMID: 23438087 DOI: 10.1111/febs.12208] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Revised: 02/05/2013] [Accepted: 02/18/2013] [Indexed: 11/28/2022]
Abstract
In order to survive and replicate in a variety of stressful conditions during its life cycle, Mycobacterium tuberculosis must possess mechanisms to safeguard the integrity of the genome. Although DNA repair and recombination related genes are thought to play key roles in the repair of damaged DNA in all organisms, so far only a few of them have been functionally characterized in the tubercle bacillus. In this study, we show that M. tuberculosis RecG (MtRecG) expression was induced in response to different genotoxic agents. Strikingly, expression of MtRecG in Escherichia coli ∆recG mutant strain provided protection against mitomycin C, methyl methane sulfonate and UV induced cell death. Purified MtRecG exhibited higher binding affinity for the Holliday junction (HJ) compared with a number of canonical recombinational DNA repair intermediates. Notably, although MtRecG binds at the core of the mobile and immobile HJs, and with higher binding affinity for the immobile HJ, branch migration was evident only in the case of the mobile HJ. Furthermore, immobile HJs stimulate MtRecG ATPase activity less efficiently than mobile HJs. In addition to HJ substrates, MtRecG exhibited binding affinity for a variety of branched DNA structures including three-way junctions, replication forks, flap structures, forked duplex and a D-loop structure, but demonstrated strong unwinding activity on replication fork and flap DNA structures. Together, these results support that MtRecG plays an important role in processes related to DNA metabolism under normal as well as stress conditions.
Collapse
Affiliation(s)
- Roshan S Thakur
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | | | | | | | | | | | | |
Collapse
|
25
|
The nucleotide excision repair system of Borrelia burgdorferi is the sole pathway involved in repair of DNA damage by UV light. J Bacteriol 2013; 195:2220-31. [PMID: 23475971 DOI: 10.1128/jb.00043-13] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
To survive and avoid accumulation of mutations caused by DNA damage, the genomes of prokaryotes encode a variety of DNA repair pathways most well characterized in Escherichia coli. Some of these are required for the infectivity of various pathogens. In this study, the importance of 25 DNA repair/recombination genes for Borrelia burgdorferi survival to UV-induced DNA damage was assessed. In contrast to E. coli, where 15 of these genes have an effect on survival of UV irradiation, disruption of recombinational repair, transcription-coupled repair, methyl-directed mismatch correction, and repair of arrested replication fork pathways did not decrease survival of B. burgdorferi exposed to UV light. However, the disruption of the B. burgdorferi nucleotide excision repair (NER) pathway (uvrA, uvrB, uvrC, and uvrD) resulted in a 10- to 1,000-fold increase in sensitivity to UV light. A functional NER pathway was also shown to be required for B. burgdorferi resistance to nitrosative damage. Finally, disruption of uvrA, uvrC, and uvrD had only a minor effect upon murine infection by increasing the time required for dissemination.
Collapse
|
26
|
Abstract
Homologous recombination is an ubiquitous process that shapes genomes and repairs DNA damage. The reaction is classically divided into three phases: presynaptic, synaptic, and postsynaptic. In Escherichia coli, the presynaptic phase involves either RecBCD or RecFOR proteins, which act on DNA double-stranded ends and DNA single-stranded gaps, respectively; the central synaptic steps are catalyzed by the ubiquitous DNA-binding protein RecA; and the postsynaptic phase involves either RuvABC or RecG proteins, which catalyze branch-migration and, in the case of RuvABC, the cleavage of Holliday junctions. Here, we review the biochemical properties of these molecular machines and analyze how, in light of these properties, the phenotypes of null mutants allow us to define their biological function(s). The consequences of point mutations on the biochemical properties of recombination enzymes and on cell phenotypes help refine the molecular mechanisms of action and the biological roles of recombination proteins. Given the high level of conservation of key proteins like RecA and the conservation of the principles of action of all recombination proteins, the deep knowledge acquired during decades of studies of homologous recombination in bacteria is the foundation of our present understanding of the processes that govern genome stability and evolution in all living organisms.
Collapse
|
27
|
Abstract
Bacterial DNA ligases, NAD⁺-dependent enzymes, are distinct from eukaryotic ATP-dependent ligases, representing promising targets for broad-spectrum antimicrobials. Yet, the chromosomal consequences of ligase-deficient DNA replication, during which Okazaki fragments accumulate, are still unclear. Using ligA251(Ts), the strongest ligase mutant of Escherichia coli, we studied ligase-deficient DNA replication by genetic and physical approaches. Here we show that replication without ligase kills after a short resistance period. We found that double-strand break repair via RecA, RecBCD, RuvABC and RecG explains the transient resistance, whereas irreparable chromosomal fragmentation explains subsequent cell death. Remarkably, death is mostly prevented by elimination of linear DNA degradation activity of ExoV, suggesting that non-allelic double-strand breaks behind replication forks precipitate DNA degradation that enlarge them into allelic double-strand gaps. Marker frequency profiling of synchronized replication reveals stalling of ligase-deficient forks with subsequent degradation of the DNA synthesized without ligase. The mechanism that converts unsealed nicks behind replication forks first into repairable double-strand breaks and then into irreparable double-strand gaps may be behind lethality of any DNA damaging treatment.
Collapse
Affiliation(s)
- Elena A Kouzminova
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801-3709, USA
| | | |
Collapse
|
28
|
Xu T, Brown W, Marinus MG. Bleomycin sensitivity in Escherichia coli is medium-dependent. PLoS One 2012; 7:e33256. [PMID: 22438905 PMCID: PMC3305319 DOI: 10.1371/journal.pone.0033256] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Accepted: 02/06/2012] [Indexed: 11/19/2022] Open
Abstract
Bleomycin (BLM) is a glycopeptide antibiotic and anti-tumor agent that targets primarily the furanose rings of DNA and in the presence of ferrous ions produces oxidative damage and DNA strand breaks. Escherichia coli cells growing in broth medium and exposed to low concentrations of BLM contain double-strand breaks and require homologous recombination to survive. To a lesser extent, the cells also require the abasic (AP) endonucleases associated with base excision repair, presumably to repair oxidative damage. As expected, there is strong induction of the SOS system in treated cells. In contrast, E. coli cells growing in glucose or glycerol minimal medium are resistant to the lethal action of BLM and do not require either homologous recombination functions or AP-endonucleases for survival. DNA ligase activity, however, is needed for cells growing in minimal medium to resist the lethal effects of BLM. There is weak SOS induction in such treated cells.
Collapse
Affiliation(s)
| | | | - Martin G. Marinus
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
29
|
Double-Strand Break Repair and Holliday Junction Processing Are Required for Chromosome Processing in Stationary-Phase Escherichia coli Cells. G3-GENES GENOMES GENETICS 2012; 1:417-26. [PMID: 22384352 PMCID: PMC3276156 DOI: 10.1534/g3.111.001057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Accepted: 09/10/2011] [Indexed: 11/25/2022]
Abstract
As nutrients are depleted and cell division ceases in batch cultures of bacteria, active processes are required to ensure that each cell has a complete copy of its genome. How chromosome number is manipulated and maintained in nondividing bacterial cells is not fully understood. Using flow cytometric analysis of cells from different growth phases, we show that the Holliday junction–processing enzymes RuvABC and RecG, as well as RecBCD, the enzyme complex that initiates DNA double-strand break repair, are required to establish the normal distribution of fluorescent peaks, which is commonly accepted to reflect the distribution of chromosome numbers. Our results reveal that these proteins are required for the proper processing of chromosomes in stationary phase.
Collapse
|
30
|
Rath D, Mangoli SH, Pagedar AR, Jawali N. Involvement of pnp in survival of UV radiation in Escherichia coli K-12. MICROBIOLOGY-SGM 2012; 158:1196-1205. [PMID: 22322961 DOI: 10.1099/mic.0.056309-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Polynucleotide phosphorylase (PNPase), a multifunctional protein, is a 3'→5' exoribonuclease or exoDNase in the presence of inorganic phosphate (P(i)), and extends a 3'-OH of RNA or ssDNA in the presence of ADP or dADP. In Escherichia coli, PNPase is known to protect against H(2)O(2)- and mitomycin C-induced damage. Recent reports show that Bacillus subtilis PNPase is required for repair of H(2)O(2)-induced double-strand breaks. Here we show that absence of PNPase makes E. coli cells sensitive to UV, indicating that PNPase has a role in survival of UV radiation damage. Analyses of various DNA repair pathways show that in the absence of nucleotide excision repair, survival of UV radiation depends critically on PNPase function. Consequently, uvrA pnp, uvrB pnp and uvrC pnp strains show hypersensitivity to UV radiation. Whereas the pnp mutation is non-epistatic to recJ, recQ and recG mutations with respect to the UV-sensitivity phenotype, it is epistatic to uvrD, recB and ruvA mutations, implicating it in the recombinational repair process.
Collapse
Affiliation(s)
- Devashish Rath
- Molecular Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085, India
| | - Suhas H Mangoli
- Molecular Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085, India
| | - Amruta R Pagedar
- Molecular Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085, India
| | - Narendra Jawali
- Molecular Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085, India
| |
Collapse
|
31
|
Kuzminov A. Homologous Recombination-Experimental Systems, Analysis, and Significance. EcoSal Plus 2011; 4:10.1128/ecosalplus.7.2.6. [PMID: 26442506 PMCID: PMC4190071 DOI: 10.1128/ecosalplus.7.2.6] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Indexed: 12/30/2022]
Abstract
Homologous recombination is the most complex of all recombination events that shape genomes and produce material for evolution. Homologous recombination events are exchanges between DNA molecules in the lengthy regions of shared identity, catalyzed by a group of dedicated enzymes. There is a variety of experimental systems in Escherichia coli and Salmonella to detect homologous recombination events of several different kinds. Genetic analysis of homologous recombination reveals three separate phases of this process: pre-synapsis (the early phase), synapsis (homologous strand exchange), and post-synapsis (the late phase). In E. coli, there are at least two independent pathway of the early phase and at least two independent pathways of the late phase. All this complexity is incongruent with the originally ascribed role of homologous recombination as accelerator of genome evolution: there is simply not enough duplication and repetition in enterobacterial genomes for homologous recombination to have a detectable evolutionary role and therefore not enough selection to maintain such a complexity. At the same time, the mechanisms of homologous recombination are uniquely suited for repair of complex DNA lesions called chromosomal lesions. In fact, the two major classes of chromosomal lesions are recognized and processed by the two individual pathways at the early phase of homologous recombination. It follows, therefore, that homologous recombination events are occasional reflections of the continual recombinational repair, made possible in cases of natural or artificial genome redundancy.
Collapse
|
32
|
Rudolph CJ, Mahdi AA, Upton AL, Lloyd RG. RecG protein and single-strand DNA exonucleases avoid cell lethality associated with PriA helicase activity in Escherichia coli. Genetics 2010; 186:473-92. [PMID: 20647503 PMCID: PMC2954477 DOI: 10.1534/genetics.110.120691] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2010] [Accepted: 07/16/2010] [Indexed: 11/18/2022] Open
Abstract
Replication of the Escherichia coli chromosome usually initiates at a single origin (oriC) under control of DnaA. Two forks are established and move away in opposite directions. Replication is completed when these meet in a broadly defined terminus area half way around the circular chromosome. RecG appears to consolidate this arrangement by unwinding D-loops and R-loops that PriA might otherwise exploit to initiate replication at other sites. It has been suggested that without RecG such replication generates 3' flaps as the additional forks collide and displace nascent leading strands, providing yet more potential targets for PriA. Here we show that, to stay alive, cells must have either RecG or a 3' single-stranded DNA (ssDNA) exonuclease, which can be exonuclease I, exonuclease VII, or SbcCD. Cells lacking all three nucleases are inviable without RecG. They also need RecA recombinase and a Holliday junction resolvase to survive rapid growth, but SOS induction, although elevated, is not required. Additional requirements for Rep and UvrD are identified and linked with defects in DNA mismatch repair and with the ability to cope with conflicts between replication and transcription, respectively. Eliminating PriA helicase activity removes the requirement for RecG. The data are consistent with RecG and ssDNA exonucleases acting to limit PriA-mediated re-replication of the chromosome and the consequent generation of linear DNA branches that provoke recombination and delay chromosome segregation.
Collapse
Affiliation(s)
| | | | | | - Robert G. Lloyd
- Institute of Genetics, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, United Kingdom
| |
Collapse
|
33
|
Williams AB, Hetrick KM, Foster PL. Interplay of DNA repair, homologous recombination, and DNA polymerases in resistance to the DNA damaging agent 4-nitroquinoline-1-oxide in Escherichia coli. DNA Repair (Amst) 2010; 9:1090-7. [PMID: 20724226 DOI: 10.1016/j.dnarep.2010.07.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2010] [Revised: 07/09/2010] [Accepted: 07/13/2010] [Indexed: 11/18/2022]
Abstract
Escherichia coli has three DNA damage-inducible DNA polymerases: DNA polymerase II (Pol II), DNA polymerase IV (Pol IV), and DNA polymerase V (Pol V). While the in vivo function of Pol V is well understood, the precise roles of Pol IV and Pol II in DNA replication and repair are not as clear. Study of these polymerases has largely focused on their participation in the recovery of failed replication forks, translesion DNA synthesis, and origin-independent DNA replication. However, their roles in other repair and recombination pathways in E. coli have not been extensively examined. This study investigated how E. coli's inducible DNA polymerases and various DNA repair and recombination pathways function together to convey resistance to 4-nitroquinoline-1-oxide (NQO), a DNA damaging agent that produces replication blocking DNA base adducts. The data suggest that full resistance to this compound depends upon an intricate interplay among the activities of the inducible DNA polymerases and recombination. The data also suggest new relationships between the different pathways that process recombination intermediates.
Collapse
Affiliation(s)
- Ashley B Williams
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, United States
| | | | | |
Collapse
|
34
|
Rotman E, Amado L, Kuzminov A. Unauthorized horizontal spread in the laboratory environment: the tactics of Lula, a temperate lambdoid bacteriophage of Escherichia coli. PLoS One 2010; 5:e11106. [PMID: 20559442 PMCID: PMC2885432 DOI: 10.1371/journal.pone.0011106] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Accepted: 05/20/2010] [Indexed: 11/29/2022] Open
Abstract
We investigated the characteristics of a lambdoid prophage, nicknamed Lula, contaminating E. coli strains from several sources, that allowed it to spread horizontally in the laboratory environment. We found that new Lula infections are inconspicuous; at the same time, Lula lysogens carry unusually high titers of the phage in their cultures, making them extremely infectious. In addition, Lula prophage interferes with P1 phage development and induces its own lytic development in response to P1 infection, turning P1 transduction into an efficient vehicle of Lula spread. Thus, using Lula prophage as a model, we reveal the following principles of survival and reproduction in the laboratory environment: 1) stealth (via laboratory material commensality), 2) stability (via resistance to specific protocols), 3) infectivity (via covert yet aggressive productivity and laboratory protocol hitchhiking). Lula, which turned out to be identical to bacteriophage phi80, also provides an insight into a surprising persistence of T1-like contamination in BAC libraries.
Collapse
Affiliation(s)
- Ella Rotman
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Luciana Amado
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Andrei Kuzminov
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| |
Collapse
|
35
|
Abstract
Homologous recombination (HR) performs crucial functions including DNA repair, segregation of homologous chromosomes, propagation of genetic diversity, and maintenance of telomeres. HR is responsible for the repair of DNA double-strand breaks and DNA interstrand cross-links. The process of HR is initiated at the site of DNA breaks and gaps and involves a search for homologous sequences promoted by Rad51 and auxiliary proteins followed by the subsequent invasion of broken DNA ends into the homologous duplex DNA that then serves as a template for repair. The invasion produces a cross-stranded structure, known as the Holliday junction. Here, we describe the properties of Rad54, an important and versatile HR protein that is evolutionarily conserved in eukaryotes. Rad54 is a motor protein that translocates along dsDNA and performs several important functions in HR. The current review focuses on the recently identified Rad54 activities which contribute to the late phase of HR, especially the branch migration of Holliday junctions.
Collapse
Affiliation(s)
- Alexander V Mazin
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19102, USA.
| | | | | | | |
Collapse
|
36
|
Fonville NC, Blankschien MD, Magner DB, Rosenberg SM. RecQ-dependent death-by-recombination in cells lacking RecG and UvrD. DNA Repair (Amst) 2010; 9:403-13. [PMID: 20138014 DOI: 10.1016/j.dnarep.2009.12.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2009] [Revised: 11/11/2009] [Accepted: 12/21/2009] [Indexed: 12/24/2022]
Abstract
Maintenance of genomic stability is critical for all cells. Homologous recombination (HR) pathways promote genome stability using evolutionarily conserved proteins such as RecA, SSB, and RecQ, the Escherichia coli homologue of five human proteins at least three of which suppress genome instability and cancer. A previous report indicated that RecQ promotes the net accumulation in cells of intermolecular HR intermediates (IRIs), a net effect opposite that of the yeast and two human RecQ homologues. Here we extend those conclusions. We demonstrate that cells that lack both UvrD, an inhibitor of RecA-mediated strand exchange, and RecG, a DNA helicase implicated in IRI resolution, are inviable. We show that the uvrD recG cells die a "death-by-recombination" in which IRIs accumulate blocking chromosome segregation. First, their death requires RecA HR protein. Second, the death is accompanied by cytogenetically visible failure to segregate chromosomes. Third, FISH analyses show that the unsegregated chromosomes have completed replication, supporting the hypothesis that unresolved IRIs prevented the segregation. Fourth, we show that RecQ and induction of the SOS response are required for the accumulation of replicated, unsegregated chromosomes and death, as are RecF, RecO, and RecJ. ExoI exonuclease and MutL mismatch-repair protein are partially required. This set of genes is similar but not identical to those that promote death-by-recombination of DeltauvrD Deltaruv cells. The data support models in which RecQ promotes the net accumulation in cells of IRIs and RecG promotes resolution of IRIs that form via pathways not wholly identical to those that produce the IRIs resolved by RuvABC. This implies that RecG resolves intermediates other than or in addition to standard Holliday junctions resolved by RuvABC. The role of RecQ in net accumulation of IRIs may be shared by one or more of its human homologues.
Collapse
|
37
|
Rudolph CJ, Upton AL, Briggs GS, Lloyd RG. Is RecG a general guardian of the bacterial genome? DNA Repair (Amst) 2010; 9:210-23. [PMID: 20093100 DOI: 10.1016/j.dnarep.2009.12.014] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The RecG protein of Escherichia coli is a double-stranded DNA translocase that unwinds a variety of branched DNAs in vitro, including Holliday junctions, replication forks, D-loops and R-loops. Coupled with the reported pleiotropy of recG mutations, this broad range of potential targets has made it hard to pin down what the protein does in vivo, though roles in recombination and replication fork repair have been suggested. However, recent studies suggest that RecG provides a more general defence against pathological DNA replication. We have postulated that this is achieved through the ability of RecG to eliminate substrates that the replication restart protein, PriA, could otherwise exploit to re-replicate the chromosome. Without RecG, PriA triggers a cascade of events that interfere with the duplication and segregation of chromosomes. Here we review the studies that led us to this idea and to conclude that RecG may be both a specialist activity and a general guardian of the genome.
Collapse
Affiliation(s)
- Christian J Rudolph
- Institute of Genetics, University of Nottingham, Queen's Medical Centre, Nottingham, NG7 2UH, United Kingdom
| | | | | | | |
Collapse
|
38
|
Cao Z, Mueller CW, Julin DA. Analysis of the recJ gene and protein from Deinococcus radiodurans. DNA Repair (Amst) 2010; 9:66-75. [DOI: 10.1016/j.dnarep.2009.10.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2009] [Revised: 10/26/2009] [Accepted: 10/26/2009] [Indexed: 02/01/2023]
|
39
|
Abstract
The Escherichia coli chromosome encodes seven demonstrated type 2 toxin-antitoxin (TA) systems: cassettes of two or three cotranscribed genes, one encoding a stable toxin protein that can cause cell stasis or death, another encoding a labile antitoxin protein, and sometimes a third regulatory protein. We demonstrate that the yafNO genes constitute an additional chromosomal type 2 TA system that is upregulated during the SOS DNA damage response. The yafNOP genes are part of the dinB operon, of which dinB underlies stress-induced mutagenesis mechanisms. yafN was identified as a putative antitoxin by homology to known antitoxins, implicating yafO (and/or yafP) as a putative toxin. Using phage-mediated cotransduction assays for linkage disruption, we show first that yafN is an essential gene and second that it is essential only when yafO is present. Third, yafP is not a necessary part of either the toxin or the antitoxin. Fourth, although DinB is required, the yafNOP genes are not required for stress-induced mutagenesis in the Escherichia coli Lac assay. These results imply that yafN encodes an antitoxin that protects cells against a yafO-encoded toxin and show a protein-based TA system upregulated by the SOS response.
Collapse
|
40
|
Stress-induced beta-lactam antibiotic resistance mutation and sequences of stationary-phase mutations in the Escherichia coli chromosome. J Bacteriol 2009; 191:5881-9. [PMID: 19648247 DOI: 10.1128/jb.00732-09] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In some enterobacterial pathogens, but not in Escherichia coli, loss-of-function mutations are a common route to clinically relevant beta-lactam antibiotic resistance. We previously constructed an assay system for studying enterobacterial beta-lactam resistance mutations using the well-developed genetics of E. coli by integrating enterobacterial ampRC genes into the E. coli chromosome. Like the cells of other enterobacteria, E. coli cells acquire beta-lactam resistance by ampD mutation. Here we show that starvation and stress responses provoke ampD beta-lactam resistance mutagenesis. When starved on lactose medium, Lac(-) strains used in mutagenesis studies accumulate ampD beta-lactam resistance mutations independent of Lac reversion. DNA double-strand break repair (DSBR) proteins and the SOS and RpoS stress responses are required for this mutagenesis, in agreement with the results obtained for lac reversion in these cells. Surprisingly, the stress-induced ampD mutations require DinB (DNA polymerase IV) and partially require error-prone DNA polymerase V, unlike lac mutagenesis, which requires only DinB. This assay demonstrates that real-world stressors, such as starvation, can induce clinically relevant resistance mutations. Finally, we used the ampD system to observe the true forward-mutation sequence spectrum of DSBR-associated stress-induced mutagenesis, for which previously only frameshift reversions were studied. We found that base substitutions outnumber frameshift mutations, as seen in other experimental systems showing stress-induced mutagenesis. The important evolutionary implication is that not only loss-of-function mutations but also change-of-function mutations can be generated by this mechanism.
Collapse
|
41
|
Wu Y, Chen W, Zhao Y, Xu H, Hua Y. Involvement of RecG in H2O2-induced damage repair in Deinococcus radiodurans. Can J Microbiol 2009; 55:841-8. [DOI: 10.1139/w09-028] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Deinococcus radiodurans (ex Raj et al. 1960) Brooks and Murray 1981 is well known for its efficient repair of various types of physically or chemically induced DNA damage caused by ionizing and ultraviolet radiation or H2O2. RecG codes for a helicase that is known to be involved in repairing oxidative damage in other bacterium. In this work, we constructed a DRrecG deletion mutant and investigated its possible role in H2O2-induced damage. The results showed that the deletion of DRrecG resulted in an obvious growth defect and great decrease of radioresistance of D. radiodurans to gamma radiation and H2O2. We also defined the transcriptional profiles of the recG mutant and wild-type strain with and without treatment with H2O2. These results suggested that DRrecG is important for DNA repair during oxidative damage.
Collapse
Affiliation(s)
- Yuanyuan Wu
- Key Laboratory for Nuclear-Agricultural Sciences of Chinese Ministry of Agriculture and Zhejiang Province, Institute of Nuclear-Agricultural Sciences, Zhejiang University, 310029 Hangzhou, China
| | - Weiwei Chen
- Key Laboratory for Nuclear-Agricultural Sciences of Chinese Ministry of Agriculture and Zhejiang Province, Institute of Nuclear-Agricultural Sciences, Zhejiang University, 310029 Hangzhou, China
| | - Ye Zhao
- Key Laboratory for Nuclear-Agricultural Sciences of Chinese Ministry of Agriculture and Zhejiang Province, Institute of Nuclear-Agricultural Sciences, Zhejiang University, 310029 Hangzhou, China
| | - Hong Xu
- Key Laboratory for Nuclear-Agricultural Sciences of Chinese Ministry of Agriculture and Zhejiang Province, Institute of Nuclear-Agricultural Sciences, Zhejiang University, 310029 Hangzhou, China
| | - Yuejin Hua
- Key Laboratory for Nuclear-Agricultural Sciences of Chinese Ministry of Agriculture and Zhejiang Province, Institute of Nuclear-Agricultural Sciences, Zhejiang University, 310029 Hangzhou, China
| |
Collapse
|
42
|
The extent of migration of the Holliday junction is a crucial factor for gene conversion in Rhizobium etli. J Bacteriol 2009; 191:4987-95. [PMID: 19502410 DOI: 10.1128/jb.00111-09] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Gene conversion, defined as the nonreciprocal transfer of DNA, is one result of homologous recombination. Three steps in recombination could give rise to gene conversion: (i) DNA synthesis for repair of the degraded segment, (ii) Holliday junction migration, leading to heteroduplex formation, and (iii) repair of mismatches in the heteroduplex. There are at least three proteins (RuvAB, RecG, and RadA) that participate in the second step. Their roles have been studied for homologous recombination, but evidence of their relative role in gene conversion is lacking. In this work, we showed the effect on gene conversion of mutations in ruvB, recG, and radA in Rhizobium etli, either alone or in combination, using a cointegration strategy previously developed in our laboratory. The results indicate that the RuvAB system is highly efficient for gene conversion, since its absence provokes smaller gene conversion segments than those in the wild type as well as a shift in the preferred position of conversion tracts. The RecG system possesses a dual role for gene conversion. Inactivation of recG leads to longer gene conversion tracts than those in the wild type, indicating that its activity may hinder heteroduplex extension. However, under circumstances where it is the only migration activity present (as in the ruvB radA double mutant), conversion segments can still be seen, indicating that RecG can also promote gene conversion. RadA is the least efficient system in R. etli but is still needed for the production of detectable gene conversion tracts.
Collapse
|
43
|
Martínez-Salazar JM, Zuñiga-Castillo J, Romero D. Differential roles of proteins involved in migration of Holliday junctions on recombination and tolerance to DNA damaging agents in Rhizobium etli. Gene 2008; 432:26-32. [PMID: 19071199 DOI: 10.1016/j.gene.2008.11.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2008] [Revised: 11/07/2008] [Accepted: 11/11/2008] [Indexed: 11/26/2022]
Abstract
The recombination genes involved in Holliday junction migration (ruvB, recG, radA) and heteroduplex editing (mutS) were studied in the alpha-proteobacterium Rhizobium etli. The genes were interrupted with a loxPSp interposon and R. etli mutants, either single or in combination, were constructed by marker exchange. Our results show that these systems play a differential role in sensitivity to DNA damaging agents and recombination in R. etli. RuvB appears to be the main system for tolerance toward agents instigating single- or double-strand breaks (such as UV light, methyl methanesulphonate and nalidixic acid) while the RecG and RadA systems play minor roles in tolerance to these agents. Using five different recombination assays, we have found that a ruvB null mutant showed a notable reduction in recombination proficiency, while a radA mutant was only weakly affected. A null mutation in recG had the opposite effect, enhancing recombination in most of our assays. This effect was more clearly seen in an assay that measured recombination between divergent sequences (i.e. homeologous), but is unaffected by inactivation of mutS. These data indicate that RecG in R. etli limits intra- and intergenomic plasticity.
Collapse
Affiliation(s)
- Jaime M Martínez-Salazar
- Programa de Ingeniería Genómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Apartado Postal 565-A, 62210 Cuernavaca, Morelos, México
| | | | | |
Collapse
|
44
|
Buss JA, Kimura Y, Bianco PR. RecG interacts directly with SSB: implications for stalled replication fork regression. Nucleic Acids Res 2008; 36:7029-42. [PMID: 18986999 PMCID: PMC2602778 DOI: 10.1093/nar/gkn795] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
RecG and RuvAB are proposed to act at stalled DNA replication forks to facilitate replication restart. To define the roles of these proteins in fork regression, we used a combination of assays to determine whether RecG, RuvAB or both are capable of acting at a stalled fork. The results show that RecG binds to the C-terminus of single-stranded DNA binding protein (SSB) forming a stoichiometric complex of 2 RecG monomers per SSB tetramer. This binding occurs in solution and to SSB protein bound to single stranded DNA (ssDNA). The result of this binding is stabilization of the interaction of RecG with ssDNA. In contrast, RuvAB does not bind to SSB. Side-by-side analysis of the catalytic efficiency of the ATPase activity of each enzyme revealed that (-)scDNA and ssDNA are potent stimulators of the ATPase activity of RecG but not for RuvAB, whereas relaxed circular DNA is a poor cofactor for RecG but an excellent one for RuvAB. Collectively, these data suggest that the timing of repair protein access to the DNA at stalled forks is determined by the nature of the DNA available at the fork. We propose that RecG acts first, with RuvAB acting either after RecG or in a separate pathway following protein-independent fork regression.
Collapse
Affiliation(s)
- Jackson A Buss
- Department of Microbiology and Immunology, Center for Single Molecule Biophysics, University at Buffalo, Buffalo, NY 14214, USA
| | | | | |
Collapse
|
45
|
Kepple KV, Patel N, Salamon P, Segall AM. Interactions between branched DNAs and peptide inhibitors of DNA repair. Nucleic Acids Res 2008; 36:5319-34. [PMID: 18689438 PMCID: PMC2532710 DOI: 10.1093/nar/gkn512] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2008] [Revised: 07/23/2008] [Accepted: 07/25/2008] [Indexed: 11/15/2022] Open
Abstract
The RecG helicase of Escherichia coli unwinds both Holliday junction (HJ) and replication fork DNA substrates. Our lab previously identified and characterized peptides (WRWYCR and KWWCRW) that block the activity of RecG on these substrates. We determined that the peptides bind HJ DNA and prevent the binding of RecG. Herein, we present further evidence that the peptides are competitive inhibitors of RecG binding to its substrates. We have generated structural models of interactions between WRWYCR and a junction substrate. Using the fluorescent probe 2-aminopurine, we show that inhibitors interact with highest affinity with HJs (K(d) = 14 nM) and approximately 4- to 9-fold more weakly with replication fork substrates. The fluorescence assay results agree with the structural model, and predict the molecular basis for interactions between HJ-trapping peptides and branched DNA molecules. Specifically, aromatic amino acids in the peptides stack with bases at the center of the DNA substrates. These interactions are stabilized by hydrogen bonds to the DNA and by intrapeptide interactions. These peptides inhibit several proteins involved in DNA repair in addition to RecG, have been useful as tools to dissect recombination, and possess antibiotic activity. Greater understanding of the peptides' mechanism of action will further increase their utility.
Collapse
Affiliation(s)
- Kevin V. Kepple
- Center for Microbial Sciences and Department of Biology and Department of Mathematics and Statistics, San Diego State University, San Diego, CA 92182, USA
| | - Namita Patel
- Center for Microbial Sciences and Department of Biology and Department of Mathematics and Statistics, San Diego State University, San Diego, CA 92182, USA
| | - Peter Salamon
- Center for Microbial Sciences and Department of Biology and Department of Mathematics and Statistics, San Diego State University, San Diego, CA 92182, USA
| | - Anca M. Segall
- Center for Microbial Sciences and Department of Biology and Department of Mathematics and Statistics, San Diego State University, San Diego, CA 92182, USA
| |
Collapse
|
46
|
Role of global regulators and nucleotide metabolism in antibiotic tolerance in Escherichia coli. Antimicrob Agents Chemother 2008; 52:2718-26. [PMID: 18519731 DOI: 10.1128/aac.00144-08] [Citation(s) in RCA: 223] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Bacterial populations produce a small number of persister cells that exhibit multidrug tolerance. Persister cells are largely responsible for the antibiotic recalcitrance of biofilm infections. The mechanism of persister cell formation largely remains unknown due to the challenges in identifying persister genes. We screened an ordered comprehensive library of 3,985 Escherichia coli knockout strains to identify mutants with altered antibiotic tolerance. Stationary-state cultures in 96-well plates were exposed to ofloxacin at a concentration which allows only tolerant persister cells to survive. The persister cell level of each culture was determined. A total of 150 mutants with decreased persistence were identified in the initial screen, and subsequent validation confirmed that neither the growth rate nor the ofloxacin MIC was affected for 10 of them. The genes affected in these strains were dnaJ and dnaK (chaperones), apaH (diadenosine tetraphosphatase), surA (peptidyl-prolyl cis-trans isomerase), fis and hns (global regulators), hnr (response regulator of RpoS), dksA (transcriptional regulator of rRNA transcription), ygfA (5-formyl-tetrahydrofolate cyclo-ligase), and yigB (flavin mononucleotide [FMN] phosphatase). The prominent presence of global regulators among these strains pointed to the likely redundancy of persister cell formation mechanisms: the elimination of a regulator controlling several redundant persister genes would be expected to produce a phenotype. This observation is consistent with previous findings for a possible role of redundant genes such as toxin/antitoxin modules in persister cell formation. ygfA and yigB were of special interest. The mammalian homolog of YgfA (methenyltetrahydrofolate synthetase) catalyzes the conversion of 5-formyl-tetrahydrofolate (THF) into the rapidly degraded 5,10-methenyl-THF, depleting the folate pool. The YigB protein is a phosphatase of FMN which would deplete the pool of this cofactor. Stochastic overexpression of these genes could lead to dormancy and, hence, tolerance by depleting the folate and FMN pools, respectively. Consistent with this scenario, the overexpression of both genes produced increased tolerance to ofloxacin.
Collapse
|
47
|
Abstract
Orthologs of RecG and RuvABC are highly conserved among prokaryotes; in Escherichia coli, they participate in independent pathways that branch migrate Holliday junctions during recombinational DNA repair. RecG also has been shown to directly convert stalled replication forks into Holliday junctions. The bacterium Helicobacter pylori, with remarkably high levels of recombination, possesses RecG and RuvABC homologs, but in contrast to E. coli, H. pylori RecG limits recombinational repair. We now show that the RuvABC pathway plays the prominent, if not exclusive, repair role. By introducing an E. coli resolvase (RusA) into H. pylori, the repair and recombination phenotypes of the ruvB mutant but not the recG mutant were improved. Our results indicate that RecG and RuvB compete for Holliday junction structures in recombinational repair, but since a classic RecG resolvase is absent from H. pylori, deployment of the RecG pathway is lethal. We propose that evolutionary loss of the H. pylori RecG resolvase provides an "antirepair" pathway allowing for selection of varied strains. Such competition between repair and antirepair provides a novel mechanism to maximize fitness at a bacterial population level.
Collapse
|
48
|
Williams AB, Foster PL. The Escherichia coli histone-like protein HU has a role in stationary phase adaptive mutation. Genetics 2007; 177:723-35. [PMID: 17720921 PMCID: PMC2034638 DOI: 10.1534/genetics.107.075861] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2007] [Accepted: 08/13/2007] [Indexed: 11/18/2022] Open
Abstract
Stationary phase adaptive mutation in Escherichia coli is thought to be a mechanism by which mutation rates are increased during stressful conditions, increasing the possibility that fitness-enhancing mutations arise. Here we present data showing that the histone-like protein, HU, has a role in the molecular pathway by which adaptive Lac(+) mutants arise in E. coli strain FC40. Adaptive Lac(+) mutations are largely but not entirely due to error-prone DNA polymerase IV (Pol IV). Mutations in either of the HU subunits, HUalpha or HUbeta, decrease adaptive mutation to Lac(+) by both Pol IV-dependent and Pol IV-independent pathways. Additionally, HU mutations inhibit growth-dependent mutations without a reduction in the level of Pol IV. These effects of HU mutations on adaptive mutation and on growth-dependent mutations reveal novel functions for HU in mutagenesis.
Collapse
Affiliation(s)
- Ashley B Williams
- Department of Biology, Indiana University, Bloomington, Indiana 47405, USA
| | | |
Collapse
|
49
|
Abstract
Bacteria spend their lives buffeted by changing environmental conditions. To adapt to and survive these stresses, bacteria have global response systems that result in sweeping changes in gene expression and cellular metabolism. These responses are controlled by master regulators, which include: alternative sigma factors, such as RpoS and RpoH; small molecule effectors, such as ppGpp; gene repressors such as LexA; and, inorganic molecules, such as polyphosphate. The response pathways extensively overlap and are induced to various extents by the same environmental stresses. These stresses include nutritional deprivation, DNA damage, temperature shift, and exposure to antibiotics. All of these global stress responses include functions that can increase genetic variability. In particular, up-regulation and activation of error-prone DNA polymerases, down-regulation of error-correcting enzymes, and movement of mobile genetic elements are common features of several stress responses. The result is that under a variety of stressful conditions, bacteria are induced for genetic change. This transient mutator state may be important for adaptive evolution.
Collapse
Affiliation(s)
- Patricia L Foster
- Department of Biology, Indiana University, Bloomington, Indiana 47405, USA.
| |
Collapse
|
50
|
Wu L, Hickson ID. DNA helicases required for homologous recombination and repair of damaged replication forks. Annu Rev Genet 2007; 40:279-306. [PMID: 16856806 DOI: 10.1146/annurev.genet.40.110405.090636] [Citation(s) in RCA: 139] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
DNA helicases are found in all kingdoms of life and function in all DNA metabolic processes where the two strands of duplex DNA require to be separated. Here, we review recent developments in our understanding of the roles that helicases play in the intimately linked processes of replication fork repair and homologous recombination, and highlight how the cell has evolved many distinct, and sometimes antagonistic, uses for these enzymes.
Collapse
Affiliation(s)
- Leonard Wu
- Cancer Research UK, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DS, United Kingdom
| | | |
Collapse
|