1
|
Comparative Genomics of Interreplichore Translocations in Bacteria: A Measure of Chromosome Topology? G3-GENES GENOMES GENETICS 2016; 6:1597-606. [PMID: 27172194 PMCID: PMC4889656 DOI: 10.1534/g3.116.028274] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Genomes evolve not only in base sequence but also in terms of their architecture, defined by gene organization and chromosome topology. Whereas genome sequence data inform us about the changes in base sequences for a large variety of organisms, the study of chromosome topology is restricted to a few model organisms studied using microscopy and chromosome conformation capture techniques. Here, we exploit whole genome sequence data to study the link between gene organization and chromosome topology in bacteria. Using comparative genomics across ∼250 pairs of closely related bacteria we show that: (a) many organisms show a high degree of interreplichore translocations throughout the chromosome and not limited to the inversion-prone terminus (ter) or the origin of replication (oriC); (b) translocation maps may reflect chromosome topologies; and (c) symmetric interreplichore translocations do not disrupt the distance of a gene from oriC or affect gene expression states or strand biases in gene densities. In summary, we suggest that translocation maps might be a first line in defining a gross chromosome topology given a pair of closely related genome sequences.
Collapse
|
2
|
Abstract
Recent advances in the characterization of the archaeal DNA replication system together with comparative genomic analysis have led to the identification of several previously uncharacterized archaeal proteins involved in replication and currently reveal a nearly complete correspondence between the components of the archaeal and eukaryotic replication machineries. It can be inferred that the archaeal ancestor of eukaryotes and even the last common ancestor of all extant archaea possessed replication machineries that were comparable in complexity to the eukaryotic replication system. The eukaryotic replication system encompasses multiple paralogs of ancestral components such that heteromeric complexes in eukaryotes replace archaeal homomeric complexes, apparently along with subfunctionalization of the eukaryotic complex subunits. In the archaea, parallel, lineage-specific duplications of many genes encoding replication machinery components are detectable as well; most of these archaeal paralogs remain to be functionally characterized. The archaeal replication system shows remarkable plasticity whereby even some essential components such as DNA polymerase and single-stranded DNA-binding protein are displaced by unrelated proteins with analogous activities in some lineages.
Collapse
Affiliation(s)
- Kira S Makarova
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894
| | | |
Collapse
|
3
|
Abstract
Plasmids have cell cycle replication patterns that need to be considered in models of their replication dynamics. To compare current theories for control of plasmid replication with experimental data for timing of plasmid replication with the cell cycle, a Monte Carlo simulation of plasmid replication and partition was developed. High-copy plasmid replication was simulated by incorporating equations previously developed from the known molecular biology of ColE1-type plasmids into the cell-cycle simulation. Two types of molecular mechanisms for low-copy plasmid replication were tested: accumulation of an initiator protein in proportion to cell mass and binding of the plasmid origin to the cell membrane. The low-copy plasmids were partitioned actively, with a specific mechanism to mediate the transfer from mother to daughter cells, whereas the high-copy plasmids were partitioned passively with cell mass.The simulation results and experimental data demonstrate cell-cycle-specific replication for the low-copy F plasmid and cell-cycle-independent replication for the high-copy pBR322, ColBM, and R6K plasmids. The simulation results indicate that synchronous replication at multiple plasmid origins is critical for the cell-cycle-specific pattern observed in rapidly growing cells. Variability in the synchrony of initiation of multiple plasmid origins give rise to a cell-cycle-independent pattern and is offered as a plausible explanation for the controversy surrounding the replication pattern of the low-copy plasmids. A comparison of experimental data and simulation results for the low-copy F plasmid at several growth rates indicates that either initiation mechanism would be sufficient to explain the timing of replication with the cell cycle. The simulation results also demonstrate that, although cell-cycle-specific and cell-cycle independent replication patterns give rise to very different gene-expression patterns during short induction periods in age-selected populations, long-term expression of genes encoded on low-copy and high-copy plasmids in exponentially growing cells have nearly the same patterns. These results may be important for the future use of low-copy plasmids as expression vectors and validate the use of simpler models for high-copy plasmids that do not consider cell-cycle phenomena. (c) 1996 John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- H Kuo
- Department of Chemical Engineering, University of California, Berkeley, California 94720-1462
| | | |
Collapse
|
4
|
Extra-chromosomal elements and the evolution of cellular DNA replication machineries. Nat Rev Mol Cell Biol 2008; 9:569-74. [DOI: 10.1038/nrm2426] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
5
|
Bogan JA, Grimwade JE, Thornton M, Zhou P, Denning GD, Helmstetter CE. P1 and NR1 plasmid replication during the cell cycle of Escherichia coli. Plasmid 2001; 45:200-8. [PMID: 11407915 DOI: 10.1006/plas.2000.1512] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Replication patterns of the miniP1 plasmid pZC176, the miniNR1 plasmid pRR933, and the high-copy miniNR1 derivative pRR942 were examined during the Escherichia coli cell division cycle and compared to the cycle-specific replication pattern of a minichromosome and the cycle nonspecific pattern of pBR322. In E. coli cells growing with doubling times of 40 and 60 min, the miniP1 plasmid was found to replicate with a slight periodicity during the division cycle. The periodicity was not nearly as pronounced as that of the minichromosome, was not affected by the presence of a minichromosome, and was not evident in cells growing more rapidly with a doubling time of 25 min. Both miniNR1 plasmids, pRR933 and pRR942, replicated with patterns indistinguishable from that of pBR322 and clearly different from that of the minichromosome. It is concluded that both P1 and NR1 plasmids can replicate at all stages of the cell cycle but that P1 displays a slight periodicity in replication probability in the cycle of slower growing cells. This periodicity does not appear to be coupled to a specific age in the cycle, but could be associated with the achievement of a specific cell mass per plasmid. During temperature shifts of a dnaC(Ts) mutant, the miniP1 plasmid and pBR322 replicated with similar patterns that differed from that of the minichromosome, but were consistent with a brief eclipse between rounds of replication.
Collapse
Affiliation(s)
- J A Bogan
- Department of Biological Sciences, Florida Institute of Technology, Melbourne, Florida, 32901, USA.
| | | | | | | | | | | |
Collapse
|
6
|
Løbner-Olesen A. Distribution of minichromosomes in individual Escherichia coli cells: implications for replication control. EMBO J 1999; 18:1712-21. [PMID: 10075940 PMCID: PMC1171257 DOI: 10.1093/emboj/18.6.1712] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A novel method was devised to measure the number of plasmids in individual Escherichia coli cells. With this method, involving measurement of plasmid-driven expression of the green fluorescent protein gene by flow cytometry, the copy number distribution of a number of different plasmids was measured. Whereas natural plasmids had fairly narrow distributions, minichromosomes, which are plasmids replicating only from a cloned oriC copy, have a wide distribution, suggesting that there is no copy number control for minichromosomes. When the selection pressure (kanamycin concentration) for minichromosomes was increased, the copy number of minichromosomes was also increased. At up to 30 minichromosomes per host chromosome, replication and growth of the host cell was unaffected. This is evidence that there is no negative element for initiation control in oriC and that there is no incompatibility between oriC located on the chromosome and minichromosome. However, higher copy numbers led to integration of the minichromosomes at the chromosomal oriC and to initiation asynchrony of the host chromosome. At a minichromosome copy number of approximately 30, the cell's capacity for synchronous initiation is exceeded and free minichromosomes will compete out the chromosome to yield inviable cells, unless the minichromosomes are incorporated into the chromosome.
Collapse
Affiliation(s)
- A Løbner-Olesen
- Department of Cell Biology, Institute for Cancer Research, Montebello, 0310 Oslo, Norway.
| |
Collapse
|
7
|
Herman-Antosiewicz A, Wegrzyn G. Replication of lambda plasmid DNA in the Escherichia coli cell cycle. Biochem Biophys Res Commun 1998; 247:554-7. [PMID: 9647731 DOI: 10.1006/bbrc.1998.8828] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The Cro repressor autoregulatory loop has long been considered the main regulatory process in controlling lambda plasmid replication initiation in Escherichia coli. However, we found recently that lambda plasmids can be maintained at a constant copy number in the absence of Cro function. Here we demonstrate that shortly after inactivation of the Cro repressor, the synthesis of lambda plasmid DNA increases significantly but is then stabilized at a level similar to that observed in the presence of the Cro function. We found that replication initiation of lambda plasmids carrying a functional cro gene proceeds randomly in the host cell cycle, but in the absence of Cro function the replication initiation of lambda plasmid DNA appears to be cell cycle dependent. The host DnaA protein appears to be at least one of the factors involved in the cell-cycle-specific control of lambda cro- plasmid replication. Therefore, it seems that the lambda cro- plasmid may serve as an amazingly simple model for studies on the regulation of DNA replication in the cell cycle.
Collapse
|
8
|
Abstract
There have been various proposals for the pattern of F-plasmid replication during the division cycle. Here we show that the recent studies of Gordon et al. (Cell 90, 1113-1121, 1997) on the duplication and segregation of green fluorescent protein (GFP) labeled replication origins of the Escherichia coli chromosome and the F plasmid during the division cycle support the proposal that the F plasmid replicates with a cell-cycle-specific (artiocyclic) pattern.
Collapse
Affiliation(s)
- S Cooper
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor 48109-0620, USA.
| | | |
Collapse
|
9
|
Helmstetter CE, Thornton M, Zhou P, Bogan JA, Leonard AC, Grimwade JE. Replication and segregation of a miniF plasmid during the division cycle of Escherichia coli. J Bacteriol 1997; 179:1393-9. [PMID: 9023227 PMCID: PMC178841 DOI: 10.1128/jb.179.4.1393-1399.1997] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Replication of the miniF plasmid pML31 was examined during the division cycle of Escherichia coli growing with doubling times between 40 and 90 min at 37 degrees C and compared to the replication of plasmid pBR322 and the minichromosome pAL70. The replication pattern of pML31 was indistinguishable from that of pBR322 at all growth rates and very different from the cell-cycle-specific replication of the minichromosome. It is concluded that both pML31 and pBR322 plasmids can replicate at all stages of the division cycle, with a probability of replication that increases gradually, but perhaps not exponentially, during the cycle. In contrast, the modes of segregation of pML31 and pBR322 plasmids into daughter cells at division appeared to differ, raising the possibility that pML31 may segregate in a nonrandom fashion similar to that of chromosomes and minichromosomes.
Collapse
Affiliation(s)
- C E Helmstetter
- Department of Biological Sciences, Florida Institute of Technology, Melbourne 32901, USA.
| | | | | | | | | | | |
Collapse
|
10
|
Chattoraj DK, Schneider TD. Replication control of plasmid P1 and its host chromosome: the common ground. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1997; 57:145-86. [PMID: 9175433 DOI: 10.1016/s0079-6603(08)60280-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- D K Chattoraj
- Laboratory of Biochemistry NCI, NIH Bethesda, Maryland 20892, USA
| | | |
Collapse
|
11
|
Eliasson A, Bernander R, Nordström K. Random initiation of replication of plasmids P1 and F (oriS) when integrated into the Escherichia coli chromosome. Mol Microbiol 1996; 20:1025-32. [PMID: 8809755 DOI: 10.1111/j.1365-2958.1996.tb02543.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
We have constructed intP1 and intFs strains of Escherichia coli in which the basic replicons of either plasmid P1 or plasmid F (oriS) were integrated into an inactivated oriC, such that chromosome replication is controlled by the integrated plasmid replicon. In this study, we have further analysed these strains, and density-shift experiments revealed that chromosome replication occurred randomly during the cell cycle. Flow-cytometry analyses of exponentially growing populations supported this conclusion, and also showed that the DNA/mass ratio of the strains decreased with increasing growth rate. Flow cytometry of exponentially growing cultures treated with rifampicin demonstrated that initiation of replication was uncoordinated in cells containing multiple replication origins.
Collapse
Affiliation(s)
- A Eliasson
- Department of Microbiology, Uppsala University, Sweden
| | | | | |
Collapse
|
12
|
Ishiai M, Wada C, Kawasaki Y, Yura T. Replication initiator protein RepE of mini-F plasmid: functional differentiation between monomers (initiator) and dimers (autogenous repressor). Proc Natl Acad Sci U S A 1994; 91:3839-43. [PMID: 8170998 PMCID: PMC43677 DOI: 10.1073/pnas.91.9.3839] [Citation(s) in RCA: 60] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Replication of mini-F plasmid requires the plasmid-encoded RepE initiator protein and several host factors including DnaJ, DnaK, and GrpE, heat shock proteins of Escherichia coli. The RepE protein plays a crucial role in replication and exhibits two major functions: initiation of replication from the origin, ori2, and autogenous repression of repE transcription. One of the mini-F plasmid mutants that can replicate in the dnaJ-defective host produces an altered RepE (RepE54) with a markedly enhanced initiator activity but little or no repressor activity. RepE54 has been purified from cell extracts primarily in monomeric form, unlike the wild-type RepE that is recovered in dimeric form. Gel-retardation assays revealed that RepE54 monomers bind to ori2 (direct repeats) with a very high efficiency but hardly bind to the repE operator (inverted repeat), in accordance with the properties of RepE54 in vivo. Furthermore, the treatment of wild-type RepE dimers with protein denaturants enhanced their binding to ori2 but reduced binding to the operator: RepE dimers were partially converted to monomers, and the ori2 binding activity was uniquely associated with monomers. These results strongly suggest that RepE monomers represent an active form by binding to ori2 to initiate replication, whereas dimers act as an autogenous repressor by binding to the operator. We propose that RepE is structurally and functionally differentiated and that monomerization of RepE dimers, presumably mediated by heat shock protein(s), activates the initiator function and participates in regulation of mini-F DNA replication.
Collapse
Affiliation(s)
- M Ishiai
- Institute for Virus Research, Kyoto University, Japan
| | | | | | | |
Collapse
|
13
|
Ioannou PA, Amemiya CT, Garnes J, Kroisel PM, Shizuya H, Chen C, Batzer MA, de Jong PJ. A new bacteriophage P1-derived vector for the propagation of large human DNA fragments. Nat Genet 1994; 6:84-9. [PMID: 8136839 DOI: 10.1038/ng0194-84] [Citation(s) in RCA: 564] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
We have designed a P1 vector (pCYPAC-1) for the introduction of recombinant DNA into E. coli using electroporation procedures. The new cloning system, P1-derived artificial chromosomes (PACs), was used to establish an initial 15,000 clone library with an average insert size of 130-150 kilobase pairs (kb). No chimaerism has been observed in 34 clones, by fluorescence in situ hybridization. Similarly, no insert instability has been observed after extended culturing, for 20 clones. We conclude that the PAC cloning system will be useful in the mapping and detailed analysis of complex genomes.
Collapse
Affiliation(s)
- P A Ioannou
- Human Genome Center, Lawrence Livermore National Laboratory, Livermore, California 94551
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Abstract
The following characteristics are relevant when replication of chromosomes and plasmids is discussed in relation to the cell cycle: the timing or replication, the selection of molecules for replication, and the coordination of multiple initiation events within a single cell cycle. Several fundamentally different methods have been used to study these processes: Meselson-Stahl density-shift experiments, experiments with the so-called 'baby machine', sorting of cells according to size, and flow cytometry. The evidence for precise timing and co-ordination of chromosome replication in Escherichia coli is overwhelming. Similarly, the high-copy-number plasmid ColE1 and the low-copy-number plasmids R1/R100 without any doubt replicate randomly throughout the cell cycle. Data about the low-copy-number plasmids F and P1 are conflicting. This calls for new types of experiments and for a better understanding of how these plasmids control their replication and partitioning.
Collapse
Affiliation(s)
- K Nordström
- Department of Microbiology, Uppsala University, Sweden
| | | |
Collapse
|
15
|
Abstract
P1 prophage replication during the Escherichia coli division cycle has been analyzed by using the membrane-elution technique to produce cells labelled at different times during the division cycle and scintillation counting for quantitative analysis of radioactive prophage DNA. P1 prophage replicates during a restricted portion of the bacterial division cycle, like the minichromosome, but at a time during the division cycle different than the time at which the minichromosome replicates in the same cell. A high-copy mini-R6K plasmid present in the same cell replicates throughout the division cycle. Over a wide range of growth rates, the P1 prophage replicates approximately one-half generation after the minichromosome replicates. Thus, the mechanisms underlying P1 replication are similar to those for the F plasmid and the chromosome. Replication occurs when some property related to cell size or cell mass reaches a constant value per origin.
Collapse
Affiliation(s)
- J D Keasling
- Department of Chemical Engineering, University of Michigan, Ann Arbor 48109-2136
| | | | | |
Collapse
|
16
|
Keasling JD, Palsson BO, Cooper S. Replication of mini-F plasmids during the bacterial division cycle. Res Microbiol 1992; 143:541-8. [PMID: 1475515 DOI: 10.1016/0923-2508(92)90111-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The cell-cycle replication patterns of two mini-F plasmids have been examined using the membrane-elution technique (to produce cells labelled at different times during the division cycle) and scintillation counting (for quantitative analysis of radioactivity incorporated into plasmid DNA). The mini-F plasmid pML31, which contains the oriV and oriS origins of replication, replicates in a cell-cycle-specific manner with a pattern and cell-cycle timing similar to the parental F plasmid. The mini-F plasmid pMF21, deleted for the region containing the oriV origin of replication, replicates more randomly throughout the division cycle. These results suggest that the oriV origin of replication may be related to cell-cycle-specific replication of the F plasmid.
Collapse
Affiliation(s)
- J D Keasling
- Department of Chemical Engineering, University of Michigan, Ann Arbor 48109-2136
| | | | | |
Collapse
|