1
|
Thabet MA, Penadés JR, Haag AF. The ClpX protease is essential for inactivating the CI master repressor and completing prophage induction in Staphylococcus aureus. Nat Commun 2023; 14:6599. [PMID: 37852980 PMCID: PMC10584840 DOI: 10.1038/s41467-023-42413-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 10/10/2023] [Indexed: 10/20/2023] Open
Abstract
Bacteriophages (phages) are the most abundant biological entities on Earth, exerting a significant influence on the dissemination of bacterial virulence, pathogenicity, and antimicrobial resistance. Temperate phages integrate into the bacterial chromosome in a dormant state through intricate regulatory mechanisms. These mechanisms repress lytic genes while facilitating the expression of integrase and the CI master repressor. Upon bacterial SOS response activation, the CI repressor undergoes auto-cleavage, producing two fragments with the N-terminal domain (NTD) retaining significant DNA-binding ability. The process of relieving CI NTD repression, essential for prophage induction, remains unknown. Here we show a specific interaction between the ClpX protease and CI NTD repressor fragment of phages Ф11 and 80α in Staphylococcus aureus. This interaction is necessary and sufficient for prophage activation after SOS-mediated CI auto-cleavage, defining the final stage in the prophage induction cascade. Our findings unveil unexpected roles of bacterial protease ClpX in phage biology.
Collapse
Affiliation(s)
- Mohammed A Thabet
- School of Infection & Immunity, University of Glasgow, G12 8TA, Glasgow, UK
- Department of Biology, Faculty of Science, Al-Baha University, Al-Baha city, Al Aqiq, 65779, Kingdom of Saudi Arabia
| | - José R Penadés
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, SW7 2AZ, UK
| | - Andreas F Haag
- School of Infection & Immunity, University of Glasgow, G12 8TA, Glasgow, UK.
- School of Medicine, University of St Andrews, North Haugh, St Andrews, KY16 9TF, UK.
| |
Collapse
|
2
|
Alekseev A, Pobegalov G, Morozova N, Vedyaykin A, Cherevatenko G, Yakimov A, Baitin D, Khodorkovskii M. A new insight into RecA filament regulation by RecX from the analysis of conformation-specific interactions. eLife 2022; 11:78409. [PMID: 35730924 PMCID: PMC9252578 DOI: 10.7554/elife.78409] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 06/21/2022] [Indexed: 11/13/2022] Open
Abstract
RecA protein mediates homologous recombination repair in bacteria through assembly of long helical filaments on ssDNA in an ATP-dependent manner. RecX, an important negative regulator of RecA, is known to inhibit RecA activity by stimulating the disassembly of RecA nucleoprotein filaments. Here we use a single-molecule approach to address the regulation of (Escherichia coli) RecA-ssDNA filaments by RecX (E. coli) within the framework of distinct conformational states of RecA-ssDNA filament. Our findings revealed that RecX effectively binds the inactive conformation of RecA-ssDNA filaments and slows down the transition to the active state. Results of this work provide new mechanistic insights into the RecX-RecA interactions and highlight the importance of conformational transitions of RecA filaments as an additional level of regulation of its biological activity.
Collapse
Affiliation(s)
- Aleksandr Alekseev
- Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russian Federation
| | - Georgii Pobegalov
- Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russian Federation
| | - Natalia Morozova
- Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russian Federation
| | - Alexey Vedyaykin
- Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russian Federation
| | - Galina Cherevatenko
- Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russian Federation
| | - Alexander Yakimov
- Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russian Federation
| | - Dmitry Baitin
- Kurchatov Institute, St. Petersburg, Russian Federation
| | - Mikhail Khodorkovskii
- Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russian Federation
| |
Collapse
|
3
|
Cory MB, Hostetler ZM, Kohli RM. Kinetic dissection of macromolecular complex formation with minimally perturbing fluorescent probes. Methods Enzymol 2022; 664:151-171. [PMID: 35331372 DOI: 10.1016/bs.mie.2022.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The formation of macromolecular complexes containing multiple protein binding partners is at the core of many biochemical pathways. Studying the kinetics of complex formation can offer significant biological insights and complement static structural snapshots or approaches that reveal thermodynamic affinities. However, determining the kinetics of macromolecular complex formation can be difficult without significant manipulations to the system. Fluorescence anisotropy using a fluorophore-labeled constituent of the biologic complex offers potential advantages in obtaining time-resolved signals tracking complex assembly. However, an inherent challenge of traditional post-translational protein labeling is the orthogonality of labeling chemistry with regards to protein target and the potential disruption of complex formation. In this chapter, we will discuss the application of unnatural amino acid labeling as a means for generating a minimally perturbing reporter. We then describe the use of fluorescence anisotropy to define the kinetics of complex formation, using the key protein-protein-nucleic acid complex governing the bacterial DNA damage response-RecA nucleoprotein filaments binding to LexA-as a model system. We will also show how this assay can be expanded to ask questions about the kinetics of complex formation for unlabeled variants, thus assessing assembly kinetics in more native contexts and broadening its utility. We discuss the optimization process for our model system and offer guidelines for applying the same principles to other macromolecular systems.
Collapse
Affiliation(s)
- Michael B Cory
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States; Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Zachary M Hostetler
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States; Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Rahul M Kohli
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States; Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States.
| |
Collapse
|
4
|
Fillol-Salom A, Bacigalupe R, Humphrey S, Chiang YN, Chen J, Penadés JR. Lateral transduction is inherent to the life cycle of the archetypical Salmonella phage P22. Nat Commun 2021; 12:6510. [PMID: 34751192 PMCID: PMC8575938 DOI: 10.1038/s41467-021-26520-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 10/01/2021] [Indexed: 11/08/2022] Open
Abstract
Lysogenic induction ends the stable association between a bacteriophage and its host, and the transition to the lytic cycle begins with early prophage excision followed by DNA replication and packaging (ERP). This temporal program is considered universal for P22-like temperate phages, though there is no direct evidence to support the timing and sequence of these events. Here we report that the long-standing ERP program is an observation of the experimentally favored Salmonella phage P22 tsc229 heat-inducible mutant, and that wild-type P22 actually follows the replication-packaging-excision (RPE) program. We find that P22 tsc229 excises early after induction, but P22 delays excision to just before it is detrimental to phage production. This allows P22 to engage in lateral transduction. Thus, at minimal expense to itself, P22 has tuned the timing of excision to balance propagation with lateral transduction, powering the evolution of its host through gene transfer in the interest of self-preservation.
Collapse
Affiliation(s)
- Alfred Fillol-Salom
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, SW7 2AZ, UK
| | - Rodrigo Bacigalupe
- Dep. Ciencias Biomédicas, Universidad CEU Cardenal Herrera, 46113, Moncada, Spain
- The Rega Institute for Medical Research, KU Leuven, 3000, Leuven, Belgium
| | - Suzanne Humphrey
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK
| | - Yin Ning Chiang
- Department of Microbiology and Immunology, Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, Singapore, Singapore
| | - John Chen
- Department of Microbiology and Immunology, Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, Singapore, Singapore.
| | - José R Penadés
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK.
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, SW7 2AZ, UK.
- Dep. Ciencias Biomédicas, Universidad CEU Cardenal Herrera, 46113, Moncada, Spain.
| |
Collapse
|
5
|
Hu W, Wang Y, Yang B, Lin C, Yu H, Liu G, Deng Z, Ou HY, He X. Bacterial YedK represses plasmid DNA replication and transformation through its DNA single-strand binding activity. Microbiol Res 2021; 252:126852. [PMID: 34454309 DOI: 10.1016/j.micres.2021.126852] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/30/2021] [Accepted: 08/21/2021] [Indexed: 10/20/2022]
Abstract
The SOS response-associated peptidase (SRAP) is an ancient protein superfamily in all domains of life. The mammalian SRAP was recently reported to covalently bind to the abasic sites (AP) in single stranded (ss) DNA to shield the chromosome integrity. YedK, the Escherichia coli SRAP, is not functionally characterized. Here we report the fortuitous pull-down of YedK from bacterial cell lysates by short (<20 bp) double stranded (ds) DNAs, further enrichment of YedK was observed when single stranded (ss) DNA was added. YedK can bind multiple DNA substrates, particularly with a high affinity to DNA duplex with single strand segment. As a SRAP protein, the involvement of YedK in SOS response was extensively examined, however yedK mutant of Escherichia coli showed no difference from the wild type strain upon the treatments with UV and various DNA damaging reagents, indicating its non-essentiality or redundancy in E. coli. Surprisingly, yedK mutants derived from Escherichia coli and Samonella enterica both showed an increased plasmid DNA transformation efficiency compared to the wild types. In accordance with this, induction of YedK effectively decreased the copy number of plasmid DNA. Site-directed mutagenesis of YedK demonstrated that residues involved in single strand DNA binding and cysteine residue at position 2 from N-terminus can discharge the repression of the plasmid transformation efficiency.
Collapse
Affiliation(s)
- Wenyue Hu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, People's Republic of China
| | - Yuli Wang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, People's Republic of China
| | - Bingxu Yang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, People's Republic of China
| | - Chen Lin
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, People's Republic of China
| | - Hao Yu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, People's Republic of China
| | - Guang Liu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, People's Republic of China
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, People's Republic of China
| | - Hong-Yu Ou
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, People's Republic of China
| | - Xinyi He
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, People's Republic of China.
| |
Collapse
|
6
|
Alekseev A, Serdakov M, Pobegalov G, Yakimov A, Bakhlanova I, Baitin D, Khodorkovskii M. Single-molecule analysis reveals two distinct states of the compressed RecA filament on single-stranded DNA. FEBS Lett 2020; 594:3464-3476. [PMID: 32880917 DOI: 10.1002/1873-3468.13922] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 08/20/2020] [Accepted: 08/24/2020] [Indexed: 11/07/2022]
Abstract
The RecA protein plays a key role in bacterial homologous recombination (HR) and acts through assembly of long helical filaments around single-stranded DNA in the presence of ATP. Large-scale conformational changes induced by ATP hydrolysis result in transitions between stretched and compressed forms of the filament. Here, using a single-molecule approach, we show that compressed RecA nucleoprotein filaments can exist in two distinct interconvertible states depending on the presence of ADP in the monomer-monomer interface. Binding of ADP promotes cooperative conformational transitions and directly affects mechanical properties of the filament. Our findings reveal that RecA nucleoprotein filaments are able to continuously cycle between three mechanically distinct states that might have important implications for RecA-mediated processes of HR.
Collapse
Affiliation(s)
| | - Maksim Serdakov
- Peter the Great St Petersburg Polytechnic University, Russia
| | | | - Alexandr Yakimov
- Peter the Great St Petersburg Polytechnic University, Russia
- Department of Molecular and Radiation Biophysics, Petersburg Nuclear Physics Institute (B.P. Konstantinov of National Research Centre 'Kurchatov Institute'), Gatchina, Russia
| | - Irina Bakhlanova
- Department of Molecular and Radiation Biophysics, Petersburg Nuclear Physics Institute (B.P. Konstantinov of National Research Centre 'Kurchatov Institute'), Gatchina, Russia
| | - Dmitry Baitin
- Department of Molecular and Radiation Biophysics, Petersburg Nuclear Physics Institute (B.P. Konstantinov of National Research Centre 'Kurchatov Institute'), Gatchina, Russia
| | - Mikhail Khodorkovskii
- Peter the Great St Petersburg Polytechnic University, Russia
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia
| |
Collapse
|
7
|
Smith RP, Barraza I, Quinn RJ, Fortoul MC. The mechanisms and cell signaling pathways of programmed cell death in the bacterial world. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2020; 352:1-53. [PMID: 32334813 DOI: 10.1016/bs.ircmb.2019.12.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
While programmed cell death was once thought to be exclusive to eukaryotic cells, there are now abundant examples of well regulated cell death mechanisms in bacteria. The mechanisms by which bacteria undergo programmed cell death are diverse, and range from the use of toxin-antitoxin systems, to prophage-driven cell lysis. Moreover, some bacteria have learned how to coopt programmed cell death systems in competing bacteria. Interestingly, many of the potential reasons as to why bacteria undergo programmed cell death may parallel those observed in eukaryotic cells, and may be altruistic in nature. These include protection against infection, recycling of nutrients, to ensure correct morphological development, and in response to stressors. In the following chapter, we discuss the molecular and signaling mechanisms by which bacteria undergo programmed cell death. We conclude by discussing the current open questions in this expanding field.
Collapse
Affiliation(s)
- Robert P Smith
- Department of Biological Sciences, Nova Southeastern University, Fort Lauderdale, FL, United States.
| | - Ivana Barraza
- Department of Biological Sciences, Nova Southeastern University, Fort Lauderdale, FL, United States
| | - Rebecca J Quinn
- Department of Biological Sciences, Nova Southeastern University, Fort Lauderdale, FL, United States
| | - Marla C Fortoul
- Department of Biological Sciences, Nova Southeastern University, Fort Lauderdale, FL, United States
| |
Collapse
|
8
|
Yang R, Santos Garcia D, Pérez Montaño F, da Silva GM, Zhao M, Jiménez Guerrero I, Rosenberg T, Chen G, Plaschkes I, Morin S, Walcott R, Burdman S. Complete Assembly of the Genome of an Acidovorax citrulli Strain Reveals a Naturally Occurring Plasmid in This Species. Front Microbiol 2019; 10:1400. [PMID: 31281298 PMCID: PMC6595937 DOI: 10.3389/fmicb.2019.01400] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 06/04/2019] [Indexed: 11/13/2022] Open
Abstract
Acidovorax citrulli is the causal agent of bacterial fruit blotch (BFB), a serious threat to cucurbit crop production worldwide. Based on genetic and phenotypic properties, A. citrulli strains are divided into two major groups: group I strains have been generally isolated from melon and other non-watermelon cucurbits, while group II strains are closely associated with watermelon. In a previous study, we reported the genome of the group I model strain, M6. At that time, the M6 genome was sequenced by MiSeq Illumina technology, with reads assembled into 139 contigs. Here, we report the assembly of the M6 genome following sequencing with PacBio technology. This approach not only allowed full assembly of the M6 genome, but it also revealed the occurrence of a ∼53 kb plasmid. The M6 plasmid, named pACM6, was further confirmed by plasmid extraction, Southern-blot analysis of restricted fragments and obtention of M6-derivative cured strains. pACM6 occurs at low copy numbers (average of ∼4.1 ± 1.3 chromosome equivalents) in A. citrulli M6 and contains 63 open reading frames (ORFs), most of which (55.6%) encoding hypothetical proteins. The plasmid contains several genes encoding type IV secretion components, and typical plasmid-borne genes involved in plasmid maintenance, replication and transfer. The plasmid also carries an operon encoding homologs of a Fic-VbhA toxin-antitoxin (TA) module. Transcriptome data from A. citrulli M6 revealed that, under the tested conditions, the genes encoding the components of this TA system are among the highest expressed genes in pACM6. Whether this TA module plays a role in pACM6 maintenance is still to be determined. Leaf infiltration and seed transmission assays revealed that, under tested conditions, the loss of pACM6 did not affect the virulence of A. citrulli M6. We also show that pACM6 or similar plasmids are present in several group I strains, but absent in all tested group II strains of A. citrulli.
Collapse
Affiliation(s)
- Rongzhi Yang
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Diego Santos Garcia
- Department of Entomology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Francisco Pérez Montaño
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel.,Department of Microbiology, University of Seville, Seville, Spain
| | - Gustavo Mateus da Silva
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Mei Zhao
- Department of Plant Pathology, University of Georgia, Athens, GA, United States
| | - Irene Jiménez Guerrero
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Tally Rosenberg
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Gong Chen
- Department of Plant Pathology, University of Georgia, Athens, GA, United States
| | - Inbar Plaschkes
- Bioinformatics Unit, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Shai Morin
- Department of Entomology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Ron Walcott
- Department of Plant Pathology, University of Georgia, Athens, GA, United States
| | - Saul Burdman
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
9
|
Induction of Shiga Toxin-Encoding Prophage by Abiotic Environmental Stress in Food. Appl Environ Microbiol 2017; 83:AEM.01378-17. [PMID: 28778890 DOI: 10.1128/aem.01378-17] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 07/24/2017] [Indexed: 11/20/2022] Open
Abstract
The prophage-encoded Shiga toxin is a major virulence factor in Stx-producing Escherichia coli (STEC). Toxin production and phage production are linked and occur after induction of the RecA-dependent SOS response. However, food-related stress and Stx-prophage induction have not been studied at the single-cell level. This study investigated the effects of abiotic environmental stress on stx expression by single-cell quantification of gene expression in STEC O104:H4 Δstx2::gfp::ampr In addition, the effect of stress on production of phage particles was determined. The lethality of stressors, including heat, HCl, lactic acid, hydrogen peroxide, and high hydrostatic pressure, was selected to reduce cell counts by 1 to 2 log CFU/ml. The integrity of the bacterial membrane after exposure to stress was measured by propidium iodide (PI). The fluorescent signals of green fluorescent protein (GFP) and PI were quantified by flow cytometry. The mechanism of prophage induction by stress was evaluated by relative gene expression of recA and cell morphology. Acid (pH < 3.5) and H2O2 (2.5 mM) induced the expression of stx2 in about 18% and 3% of the population, respectively. The mechanism of prophage induction by acid differs from that of induction by H2O2 H2O2 induction but not acid induction corresponded to production of infectious phage particles, upregulation of recA, and cell filamentation. Pressure (200 MPa) or heat did not induce the Stx2-encoding prophage (Stx2-prophage). Overall, the quantification method developed in this study allowed investigation of prophage induction and physiological properties at the single-cell level. H2O2 and acids mediate different pathways to induce Stx2-prophage.IMPORTANCE Induction of the Stx-prophage in STEC results in production of phage particles and Stx and thus relates to virulence as well as the transduction of virulence genes. This study developed a method for a detection of the induction of Stx-prophages at the single-cell level; membrane permeability and an indication of SOS response to environmental stress were additionally assessed. H2O2 and mitomycin C induced expression of the prophage and activated a SOS response. In contrast, HCl and lactic acid induced the Stx-prophage but not the SOS response. The lifestyle of STEC exposes the organism to intestinal and extraintestinal environments that impose oxidative and acid stress. A more thorough understanding of the influence of food processing-related stressors on Stx-prophage expression thus facilitates control of STEC in food systems by minimizing prophage induction during food production and storage.
Collapse
|
10
|
Ichimura K, Shimizu T, Matsumoto A, Hirai S, Yokoyama E, Takeuchi H, Yahiro K, Noda M. Nitric oxide-enhanced Shiga toxin production was regulated by Fur and RecA in enterohemorrhagic Escherichia coli O157. Microbiologyopen 2017; 6. [PMID: 28294553 PMCID: PMC5552940 DOI: 10.1002/mbo3.461] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 01/20/2017] [Accepted: 02/01/2017] [Indexed: 12/27/2022] Open
Abstract
Enterohemorrhagic Escherichia coli (EHEC) produces Shiga toxin 1 (Stx1) and Shiga toxin 2 (Stx2). Nitric oxide (NO), which acts as an antimicrobial defense molecule, was found to enhance the production of Stx1 and Stx2 in EHEC under anaerobic conditions. Although EHEC O157 has two types of anaerobic NO reductase genes, an intact norV and a deleted norV, in the deleted norV‐type EHEC, a high concentration of NO (12–29 μmol/L, maximum steady‐state concentration) is required for enhanced Stx1 production and a low concentration of NO (~12 μmol/L, maximum steady‐state concentration) is sufficient for enhanced Stx2 production under anaerobic conditions. These results suggested that different concentration thresholds of NO elicit a discrete set of Stx1 and Stx2 production pathways. Moreover, the enhancement of Shiga toxin production in the intact norV‐type EHEC required treatment with a higher concentration of NO than was required for enhancement of Shiga toxin production in the deleted norV‐type EHEC, suggesting that the specific NorV type plays an important role in the level of enhancement of Shiga toxin production in response to NO. Finally, Fur derepression and RecA activation in EHEC were shown to participate in the NO‐enhanced Stx1 and Stx2 production, respectively.
Collapse
Affiliation(s)
- Kimitoshi Ichimura
- Departments of Molecular Infectiology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Takeshi Shimizu
- Departments of Molecular Infectiology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Akio Matsumoto
- Pharmacology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Shinichiro Hirai
- Division of Bacteriology, Chiba Prefectural Institute of Public Health, Chiba, Japan
| | - Eiji Yokoyama
- Division of Bacteriology, Chiba Prefectural Institute of Public Health, Chiba, Japan
| | - Hiroki Takeuchi
- Departments of Molecular Infectiology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Kinnosuke Yahiro
- Departments of Molecular Infectiology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Masatoshi Noda
- Departments of Molecular Infectiology, Graduate School of Medicine, Chiba University, Chiba, Japan
| |
Collapse
|
11
|
Colon MP, Chakraborty D, Pevzner Y, Koudelka GB. Mechanisms that Determine the Differential Stability of Stx⁺ and Stx(-) Lysogens. Toxins (Basel) 2016; 8:96. [PMID: 27043626 PMCID: PMC4848623 DOI: 10.3390/toxins8040096] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 03/23/2016] [Accepted: 03/25/2016] [Indexed: 01/29/2023] Open
Abstract
Phages 933W, BAA2326, 434, and λ are evolutionarily-related temperate lambdoid phages that infect Escherichia coli. Although these are highly-similar phages, BAA2326 and 933W naturally encode Shiga toxin 2 (Stx+), but phage 434 and λ do not (Stx−). Previous reports suggest that the 933W Stx+ prophage forms less stable lysogens in E. coli than does the Stx− prophages λ, P22, and 434. The higher spontaneous induction frequency of the Stx+ prophage may be correlated with both virulence and dispersion of the Stx2-encoding phage. Here, we examined the hypothesis that lysogen instability is a common feature of Stx+ prophages. We found in both the absence and presence of prophage inducers (DNA damaging agents, salts), the Stx+ prophages induce at higher frequencies than do Stx− prophages. The observed instability of Stx+ prophages does not appear to be the result of any differences in phage development properties between Stx+ and Stx− phages. Our results indicate that differential stability of Stx+ and Stx− prophages results from both RecA-dependent and RecA-independent effects on the intracellular concentration of the respective cI repressors.
Collapse
Affiliation(s)
- Michael P Colon
- Department of Biological Sciences, University at Buffalo, Buffalo, NY 14260, USA.
| | | | - Yonatan Pevzner
- Department of Biological Sciences, University at Buffalo, Buffalo, NY 14260, USA.
| | - Gerald B Koudelka
- Department of Biological Sciences, University at Buffalo, Buffalo, NY 14260, USA.
| |
Collapse
|
12
|
Chen J, Ram G, Penadés JR, Brown S, Novick RP. Pathogenicity island-directed transfer of unlinked chromosomal virulence genes. Mol Cell 2014; 57:138-49. [PMID: 25498143 DOI: 10.1016/j.molcel.2014.11.011] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 10/03/2014] [Accepted: 11/07/2014] [Indexed: 12/18/2022]
Abstract
In recent decades, the notorious pathogen Staphylococcus aureus has become progressively more contagious, more virulent, and more resistant to antibiotics. This implies a rather dynamic evolutionary capability, representing a remarkable level of genomic plasticity, most probably maintained by horizontal gene transfer. Here we report that the staphylococcal pathogenicity islands have a dual role in gene transfer: they not only mediate their own transfer, but they can independently direct the transfer of unlinked chromosomal segments containing virulence genes. While transfer of the island itself requires specific helper phages, transfer of unlinked chromosomal segments does not, so potentially any pac-type phage will serve. These results reveal that SaPIs can increase the horizontal exchange of accessory genes associated with disease and may shape pathogen genomes beyond the confines of their attachment sites.
Collapse
Affiliation(s)
- John Chen
- Skirball Institute Program in Molecular Pathogenesis, Departments of Microbiology and Medicine, New York University Medical Center, New York, NY 10016, USA
| | - Geeta Ram
- Skirball Institute Program in Molecular Pathogenesis, Departments of Microbiology and Medicine, New York University Medical Center, New York, NY 10016, USA
| | - José R Penadés
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK
| | - Stuart Brown
- NYU Center for Health Informatics and Bioinformatics, New York University School of Medicine, New York, NY 10016, USA
| | - Richard P Novick
- Skirball Institute Program in Molecular Pathogenesis, Departments of Microbiology and Medicine, New York University Medical Center, New York, NY 10016, USA.
| |
Collapse
|
13
|
Biological cost of pyocin production during the SOS response in Pseudomonas aeruginosa. J Bacteriol 2014; 196:3351-9. [PMID: 25022851 DOI: 10.1128/jb.01889-14] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
LexA and two structurally related regulators, PrtR and PA0906, coordinate the Pseudomonas aeruginosa SOS response. RecA-mediated autocleavage of LexA induces the expression of a protective set of genes that increase DNA damage repair and tolerance. In contrast, RecA-mediated autocleavage of PrtR induces antimicrobial pyocin production and a program that lyses cells to release the newly synthesized pyocin. Recently, PrtR-regulated genes were shown to sensitize P. aeruginosa to quinolones, antibiotics that elicit a strong SOS response. Here, we investigated the mechanisms by which PrtR-regulated genes determine antimicrobial resistance and genotoxic stress survival. We found that induction of PrtR-regulated genes lowers resistance to clinically important antibiotics and impairs the survival of bacteria exposed to one of several genotoxic agents. Two distinct mechanisms mediated these effects. Cell lysis genes that are induced following PrtR autocleavage reduced resistance to bactericidal levels of ciprofloxacin, and production of extracellular R2 pyocin was lethal to cells that initially survived UV light treatment. Although typically resistant to R2 pyocin, P. aeruginosa becomes transiently sensitive to R2 pyocin following UV light treatment, likely because of the strong downregulation of lipopolysaccharide synthesis genes that are required for resistance to R2 pyocin. Our results demonstrate that pyocin production during the P. aeruginosa SOS response carries both expected and unexpected costs.
Collapse
|
14
|
Bearson BL, Allen HK, Brunelle BW, Lee IS, Casjens SR, Stanton TB. The agricultural antibiotic carbadox induces phage-mediated gene transfer in Salmonella. Front Microbiol 2014; 5:52. [PMID: 24575089 PMCID: PMC3920066 DOI: 10.3389/fmicb.2014.00052] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 01/23/2014] [Indexed: 12/23/2022] Open
Abstract
Antibiotics are used for disease therapeutic or preventative effects in humans and animals, as well as for enhanced feed conversion efficiency in livestock. Antibiotics can also cause undesirable effects in microbial populations, including selection for antibiotic resistance, enhanced pathogen invasion, and stimulation of horizontal gene transfer. Carbadox is a veterinary antibiotic used in the US during the starter phase of swine production for improved feed efficiency and control of swine dysentery and bacterial swine enteritis. Carbadox has been shown in vitro to induce phage-encoded Shiga toxin in Shiga toxin-producing Escherichia coli (STEC) and a phage-like element transferring antibiotic resistance genes in Brachyspira hyodysenteriae, but the effect of carbadox on prophages in other bacteria is unknown. This study examined carbadox exposure on prophage induction and genetic transfer in Salmonella enterica serovar Typhimurium, a human foodborne pathogen that frequently colonizes swine without causing disease. S. Typhimurium LT2 exposed to carbadox induced prophage production, resulting in bacterial cell lysis and release of virions that were visible by electron microscopy. Carbadox induction of phage-mediated gene transfer was confirmed by monitoring the transduction of a sodCIII::neo cassette in the Fels-1 prophage from LT2 to a recipient Salmonella strain. Furthermore, carbadox frequently induced generalized transducing phages in multidrug-resistant phage type DT104 and DT120 isolates, resulting in the transfer of chromosomal and plasmid DNA that included antibiotic resistance genes. Our research indicates that exposure of Salmonella to carbadox induces prophages that can transfer virulence and antibiotic resistance genes to susceptible bacterial hosts. Carbadox-induced, phage-mediated gene transfer could serve as a contributing factor in bacterial evolution during animal production, with prophages being a reservoir for bacterial fitness genes in the environment.
Collapse
Affiliation(s)
- Bradley L Bearson
- Agroecosystems Management Research Unit, National Laboratory for Agriculture and the Environment, ARS, USDA Ames, IA, USA
| | - Heather K Allen
- Food Safety and Enteric Pathogens Research Unit, National Animal Disease Center, ARS, USDA Ames, IA, USA
| | - Brian W Brunelle
- Food Safety and Enteric Pathogens Research Unit, National Animal Disease Center, ARS, USDA Ames, IA, USA
| | - In Soo Lee
- Agroecosystems Management Research Unit, National Laboratory for Agriculture and the Environment, ARS, USDA Ames, IA, USA ; Department of Biological Sciences and Biotechnology, Hannam University Daejeon, South Korea
| | - Sherwood R Casjens
- Division of Microbiology and Immunology, Department of Pathology, University of Utah Salt Lake City, UT, USA
| | - Thaddeus B Stanton
- Food Safety and Enteric Pathogens Research Unit, National Animal Disease Center, ARS, USDA Ames, IA, USA
| |
Collapse
|
15
|
A replication-inhibited unsegregated nucleoid at mid-cell blocks Z-ring formation and cell division independently of SOS and the SlmA nucleoid occlusion protein in Escherichia coli. J Bacteriol 2013; 196:36-49. [PMID: 24142249 DOI: 10.1128/jb.01230-12] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Chromosome replication and cell division of Escherichia coli are coordinated with growth such that wild-type cells divide once and only once after each replication cycle. To investigate the nature of this coordination, the effects of inhibiting replication on Z-ring formation and cell division were tested in both synchronized and exponentially growing cells with only one replicating chromosome. When replication elongation was blocked by hydroxyurea or nalidixic acid, arrested cells contained one partially replicated, compact nucleoid located mid-cell. Cell division was strongly inhibited at or before the level of Z-ring formation. DNA cross-linking by mitomycin C delayed segregation, and the accumulation of about two chromosome equivalents at mid-cell also blocked Z-ring formation and cell division. Z-ring inhibition occurred independently of SOS, SlmA-mediated nucleoid occlusion, and MinCDE proteins and did not result from a decreased FtsZ protein concentration. We propose that the presence of a compact, incompletely replicated nucleoid or unsegregated chromosome masses at the normal mid-cell division site inhibits Z-ring formation and that the SOS system, SlmA, and MinC are not required for this inhibition.
Collapse
|
16
|
Varshney NK, Ramasamy S, Brannigan JA, Wilkinson AJ, Suresh CG. Cloning, overexpression, crystallization and preliminary X-ray crystallographic analysis of a slow-processing mutant of penicillin G acylase from Kluyvera citrophila. Acta Crystallogr Sect F Struct Biol Cryst Commun 2013; 69:925-9. [PMID: 23908045 PMCID: PMC3729176 DOI: 10.1107/s174430911301943x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 07/14/2013] [Indexed: 06/02/2023]
Abstract
Kluyvera citrophila penicillin G acylase (KcPGA) has recently attracted increased attention relative to the well studied and commonly used Escherichia coli PGA (EcPGA) because KcPGA is more resilient to harsh conditions and is easier to immobilize for the industrial hydrolysis of natural penicillins to generate the 6-aminopenicillin (6-APA) nucleus, which is the starting material for semi-synthetic antibiotic production. Like other penicillin acylases, KcPGA is synthesized as a single-chain inactive pro-PGA, which upon autocatalytic processing becomes an active heterodimer of α and β chains. Here, the cloning of the pac gene encoding KcPGA and the preparation of a slow-processing mutant precursor are reported. The purification, crystallization and preliminary X-ray analysis of crystals of this precursor protein are described. The protein crystallized in two different space groups, P1, with unit-cell parameters a = 54.0, b = 124.6, c = 135.1 Å, α = 104.1, β = 101.4, γ = 96.5°, and C2, with unit-cell parameters a = 265.1, b = 54.0, c = 249.2 Å, β = 104.4°, using the sitting-drop vapour-diffusion method. Diffraction data were collected at 100 K and the phases were determined using the molecular-replacement method. The initial maps revealed electron density for the spacer peptide.
Collapse
Affiliation(s)
- Nishant Kumar Varshney
- Division of Biochemical Sciences, CSIR – National Chemical Laboratory, Pune 411 008, Maharashtra, India
| | - Sureshkumar Ramasamy
- Division of Biochemical Sciences, CSIR – National Chemical Laboratory, Pune 411 008, Maharashtra, India
- California Institute of Technology, Pasadena, USA
| | - James A. Brannigan
- York Structural Biology Laboratory, University of York, Heslington, York YO10 5DD, England
| | - Anthony J. Wilkinson
- York Structural Biology Laboratory, University of York, Heslington, York YO10 5DD, England
| | - C. G. Suresh
- Division of Biochemical Sciences, CSIR – National Chemical Laboratory, Pune 411 008, Maharashtra, India
| |
Collapse
|
17
|
Abstract
From microbes to multicellular eukaryotic organisms, all cells contain pathways responsible for genome maintenance. DNA replication allows for the faithful duplication of the genome, whereas DNA repair pathways preserve DNA integrity in response to damage originating from endogenous and exogenous sources. The basic pathways important for DNA replication and repair are often conserved throughout biology. In bacteria, high-fidelity repair is balanced with low-fidelity repair and mutagenesis. Such a balance is important for maintaining viability while providing an opportunity for the advantageous selection of mutations when faced with a changing environment. Over the last decade, studies of DNA repair pathways in bacteria have demonstrated considerable differences between Gram-positive and Gram-negative organisms. Here we review and discuss the DNA repair, genome maintenance, and DNA damage checkpoint pathways of the Gram-positive bacterium Bacillus subtilis. We present their molecular mechanisms and compare the functions and regulation of several pathways with known information on other organisms. We also discuss DNA repair during different growth phases and the developmental program of sporulation. In summary, we present a review of the function, regulation, and molecular mechanisms of DNA repair and mutagenesis in Gram-positive bacteria, with a strong emphasis on B. subtilis.
Collapse
|
18
|
Induction of mycobacterial resistance to quinolone class antimicrobials. Antimicrob Agents Chemother 2012; 56:3879-87. [PMID: 22564842 DOI: 10.1128/aac.00474-12] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
An agar plate assay was developed for detecting the induction of drug-resistant mycobacterial mutants during exposure to inhibitors of DNA gyrase. When Mycobacterium smegmatis on drug-containing agar, resistant colonies arose over a period of 2 weeks. A recA deficiency reduced mutant recovery, consistent with involvement of the SOS response in mutant induction. The C-8-methoxy compounds gatifloxacin and moxifloxacin allowed the recovery of fewer resistant mutants than either ciprofloxacin or levofloxacin when present at the same multiple of the MIC; a quinolone-like 8-methoxy-quinazoline-2,4-dione was more effective at restricting the emergence of resistant mutants than its cognate fluoroquinolone. Thus, the structure of fluoroquinolone-like compounds affects mutant recovery. A spontaneous mutator mutant of M. smegmatis, obtained by growth in medium containing both isoniazid and rifampin, increased mutant induction during exposure to ciprofloxacin. Moreover, the mutator increased the size of spontaneous resistant mutant subpopulations, as detected by population analysis. Induction of ciprofloxacin resistance was also observed with Mycobacterium tuberculosis H37Rv. When measured with clinical isolates, no difference in mutant recovery was observed between multidrug-resistant (MDR) and pansusceptible isolates. This finding is consistent with at least some MDR isolates of M. tuberculosis lacking mutators detectable by the agar plate assay. Collectively, the data indicate that the use of fluoroquinolones against tuberculosis may induce resistance and that the choice of quinolone may be important for restricting the recovery of induced mutants.
Collapse
|
19
|
Adikesavan AK, Katsonis P, Marciano DC, Lua R, Herman C, Lichtarge O. Separation of recombination and SOS response in Escherichia coli RecA suggests LexA interaction sites. PLoS Genet 2011; 7:e1002244. [PMID: 21912525 PMCID: PMC3164682 DOI: 10.1371/journal.pgen.1002244] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Accepted: 06/29/2011] [Indexed: 12/29/2022] Open
Abstract
RecA plays a key role in homologous recombination, the induction of the DNA damage response through LexA cleavage and the activity of error-prone polymerase in Escherichia coli. RecA interacts with multiple partners to achieve this pleiotropic role, but the structural location and sequence determinants involved in these multiple interactions remain mostly unknown. Here, in a first application to prokaryotes, Evolutionary Trace (ET) analysis identifies clusters of evolutionarily important surface amino acids involved in RecA functions. Some of these clusters match the known ATP binding, DNA binding, and RecA-RecA homo-dimerization sites, but others are novel. Mutation analysis at these sites disrupted either recombination or LexA cleavage. This highlights distinct functional sites specific for recombination and DNA damage response induction. Finally, our analysis reveals a composite site for LexA binding and cleavage, which is formed only on the active RecA filament. These new sites can provide new drug targets to modulate one or more RecA functions, with the potential to address the problem of evolution of antibiotic resistance at its root. In eubacteria, genome integrity is in large part orchestrated by RecA, which directly participates in recombination, induction of DNA damage response through LexA repressor cleavage and error-prone DNA synthesis. Yet, most of the interaction sites necessary for these vital processes are largely unknown. By comparing divergences among RecA sequences and computing putative functional regions, we discovered four functional sites of RecA. Targeted point-mutations were then tested for both recombination and DNA damage induction and reveal distinct RecA functions at each one of these sites. In particular, one new set of mutants is deficient in promoting LexA cleavage and yet maintains the ability to induce the DNA damage response. These results reveal specific amino acid determinants of the RecA–LexA interaction and suggest that LexA binds RecAi and RecAi+6 at a composite site on the RecA filament, which could explain the role of the active filament during LexA cleavage.
Collapse
Affiliation(s)
- Anbu K Adikesavan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | | | | | | | | | | |
Collapse
|
20
|
Fate of mutation rate depends on agr locus expression during oxacillin-mediated heterogeneous-homogeneous selection in methicillin-resistant Staphylococcus aureus clinical strains. Antimicrob Agents Chemother 2011; 55:3176-86. [PMID: 21537016 DOI: 10.1128/aac.01119-09] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) strains are characterized by a heterogeneous expression of resistance. We have previously shown in clinical oxacillin-susceptible, mecA-positive MRSA strains that selection from a very heterogeneous (HeR) to highly homogeneous (HoR) resistant phenotype was mediated by acquisition of mutations through an oxacillin-induced SOS response. In the present study, we used a spotted DNA microarray to evaluate differential gene expression during HeR-HoR selection and found increased expression of the agr two-component regulatory system. We hypothesized that increased expression of agr represents a mechanistically relevant component of this process. We demonstrated that inactivation of agr during the HeR-HoR selection process results in a significant increase in mutation rate; these effects were reversed by complementing the agr mutant. Furthermore, we found that extemporal ectopic expression of agr and, more specifically, RNAII in agr-null mutant HeR cells suppressed mutation frequency and the capacity of these cells to undergo the HeR-HoR selection. These findings sustain the concept that increased expression of agr during HeR-HoR selection plays a critical role in regulating the β-lactam-induced increased mutation rate in very heterogeneous MRSA strains. Moreover, they indicate that a temporally controlled increase in agr expression is required to tightly modulate SOS-mediated mutation rates, which then allows for full expression of oxacillin homogeneous resistance in very heterogeneous clinical MRSA strains.
Collapse
|
21
|
Song Q, Ye T, Zhang X. Proteins responsible for lysogeny of deep-sea thermophilic bacteriophage GVE2 at high temperature. Gene 2011; 479:1-9. [PMID: 21303688 DOI: 10.1016/j.gene.2011.01.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2010] [Revised: 01/19/2011] [Accepted: 01/20/2011] [Indexed: 10/18/2022]
Abstract
The lytic and lysogenic life cycle switch of bacteriophages plays very important roles in virus-host interactions. However, the lysogeny of thermophilic bacteriophage infecting thermophile at high temperatures has not been addressed. In this study, two lysogeny-related genes encoding the CI protein and recombinase of GVE2, a thermophilic bacteriophage obtained from a deep-sea hydrothermal vent, were characterized. Temporal analyses showed that the two genes were expressed at early stages of GVE2 infection. Based on chromatin immunoprecipitation (ChIP) assay and electrophoretic mobility shift assay (EMSA), the GVE2 CI protein was bound with only one DNA fragment located at 24264-24036 bp in the GVE2 genome. This location might be the original transcription site and the lysis-lysogeny switch site, which was very different from mesophilic bacteriophages. The GVE2 CI and recombinase proteins could function only at high temperatures. Therefore our study improved our understanding of the lysogeny process of bacteriophages at high temperatures.
Collapse
Affiliation(s)
- Qing Song
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, State Oceanic Administration, Xiamen 361005, People's Republic of China
| | | | | |
Collapse
|
22
|
Abstract
How do complex gene regulatory circuits evolve? These circuits involve many interacting components, which work together to specify patterns of gene expression. They typically include many subtle mechanistic features, but in most cases it is unclear whether these features are essential for the circuit to work at all, or if instead they make a functional circuit work better. In the latter case, such a feature is here termed 'dispensable', and it is plausible that the feature has been added at a late stage in the evolution of the circuit. This review describes experimental tests of this question, using the phage λ gene regulatory circuit. Several features of this circuit are found to be dispensable, in the sense that the circuitry works without these features, though not as well as the wild type. In some cases, second-site suppressor mutations are needed to confer near-normal behavior in the absence of such a feature. These findings are discussed here in the context of a two-stage model for evolution of gene regulatory circuits. In this model, a circuit evolves by assembly of a primitive or basic form, followed by adjustment of parameters and addition of qualitatively new features. Pathways are suggested for the addition of such features to a more basic form. Selected examples in other systems are described. Some of the dispensable features of phage λ may be evolutionary refinements. Finding that a feature is dispensable, however, does not prove that it is a late addition - it is possible that it was essential early in evolution, and became dispensable as the circuit evolved. Conversely, a late addition might have become essential. As ongoing work provides additional examples of dispensable features, it may become clearer how often they represent refinements.
Collapse
|
23
|
Chai Y, Kolter R, Losick R. Reversal of an epigenetic switch governing cell chaining in Bacillus subtilis by protein instability. Mol Microbiol 2011; 78:218-29. [PMID: 20923420 DOI: 10.1111/j.1365-2958.2010.07335.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Bacillus subtilis forms long chains of cells during growth and biofilm formation. Cell separation is mediated by autolysins, whose genes are under the negative control of a heteromeric complex composed of the proteins SinR and SlrR. Formation of the SinR-SlrR complex is governed by a self-reinforcing, double-negative feedback loop in which SinR represses the gene for SlrR and SlrR, by forming the SinR-SlrR complex, titrates SinR and prevents it from repressing slrR. The loop is a bistable switch and exists in a SlrR(LOW) state in which autolysin genes are on, and a SlrR(HIGH) state in which autolysin genes are repressed by SinR-SlrR. Cells in the SlrR(LOW) state are driven into the SlrR(HIGH) state by SinI, an antirepressor that binds to and inhibits SinR. However, the mechanism by which cells in the SlrR(HIGH) state revert back to the SlrR(LOW) state is unknown. We report that SlrR is proteolytically unstable and present evidence that self-cleavage via a LexA-like autopeptidase and ClpC contribute to its degradation. Cells producing a self-cleavage-resistant mutant of SlrR exhibited more persistent chaining during growth and yielded biofilms with enhanced structural complexity. We propose that degradation of SlrR allows cells to switch from the SlrR(HIGH) to the SlrR(LOW) state.
Collapse
Affiliation(s)
- Yunrong Chai
- Department of Molecular and Cellular Biology, The Biological Laboratories, Harvard University, Cambridge, MA 02138, USA
| | | | | |
Collapse
|
24
|
Ollivierre JN, Sikora JL, Beuning PJ. The dimeric SOS mutagenesis protein UmuD is active as a monomer. J Biol Chem 2010; 286:3607-17. [PMID: 21118802 DOI: 10.1074/jbc.m110.167254] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The homodimeric umuD gene products play key roles in regulating the cellular response to DNA damage in Escherichia coli. UmuD(2) is composed of 139-amino acid subunits and is up-regulated as part of the SOS response. Subsequently, damage-induced RecA·ssDNA nucleoprotein filaments mediate the slow self-cleavage of the N-terminal 24-amino acid arms yielding UmuD'(2). UmuD(2) and UmuD'(2) make a number of distinct protein-protein contacts that both prevent and facilitate mutagenic translesion synthesis. Wild-type UmuD(2) and UmuD'(2) form exceptionally tight dimers in solution; however, we show that the single amino acid change N41D generates stable, active UmuD and UmuD' monomers that functionally mimic the dimeric wild-type proteins. The UmuD N41D monomer is proficient for cleavage and interacts physically with DNA polymerase IV (DinB) and the β clamp. Furthermore, the N41D variants facilitate UV-induced mutagenesis and promote overall cell viability. Taken together, these observations show that a monomeric form of UmuD retains substantial function in vivo and in vitro.
Collapse
Affiliation(s)
- Jaylene N Ollivierre
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
25
|
Little JW, Michalowski CB. Stability and instability in the lysogenic state of phage lambda. J Bacteriol 2010; 192:6064-76. [PMID: 20870769 PMCID: PMC2976446 DOI: 10.1128/jb.00726-10] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2010] [Accepted: 09/11/2010] [Indexed: 12/26/2022] Open
Abstract
Complex gene regulatory circuits exhibit emergent properties that are difficult to predict from the behavior of the components. One such property is the stability of regulatory states. Here we analyze the stability of the lysogenic state of phage λ. In this state, the virus maintains a stable association with the host, and the lytic functions of the virus are repressed by the viral CI repressor. This state readily switches to the lytic pathway when the host SOS system is induced. A low level of SOS-dependent switching occurs without an overt stimulus. We found that the intrinsic rate of switching to the lytic pathway, measured in a host lacking the SOS response, was almost undetectably low, probably less than 10(-8)/generation. We surmise that this low rate has not been selected directly during evolution but results from optimizing the rate of switching in a wild-type host over the natural range of SOS-inducing conditions. We also analyzed a mutant, λprm240, in which the promoter controlling CI expression was weakened, rendering lysogens unstable. Strikingly, the intrinsic stability of λprm240 lysogens depended markedly on the growth conditions; lysogens grown in minimal medium were nearly stable but switched at high rates when grown in rich medium. These effects on stability likely reflect corresponding effects on the strength of the prm240 promoter, measured in an uncoupled assay system. Several derivatives of λprm240 with altered stabilities were characterized. This mutant and its derivatives afford a model system for further analysis of stability.
Collapse
Affiliation(s)
- John W Little
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721, USA.
| | | |
Collapse
|
26
|
Hamamoto A, Bandou C, Nakano M, Mawatari K, Lian X, Yamato M, Harada N, Akutagawa M, Kinouchi Y, Nakaya Y, Takahashi A. Differences in stress response after UVC or UVA irradiation in Vibrio parahaemolyticus. ENVIRONMENTAL MICROBIOLOGY REPORTS 2010; 2:660-666. [PMID: 23766253 DOI: 10.1111/j.1758-2229.2010.00154.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The SOS response is a global regulatory network for repairing DNA damage induced by various environmental stresses such as UV irradiation. The Escherichia coli SOS response has been extensively studied. However, there are no reports on the SOS response in Vibrio parahaemolyticus. In this study, we examined the SOS response in V. parahaemolyticus and compared the differential expression of genes induced by UVC and UVA irradiation. In UVC-exposed wild-type cells, expression of several DNA repair genes was increased. However, expression of these genes was not increased in ΔrecA or lexA mutants. Cell filamentation was observed in wild-type cells, but not in ΔrecA and lexA mutant cells. Sensitivity to UVC was significantly increased in ΔrecA, lexA mutant and Δlon strains compared with wild type. In the case of UVA irradiation, LexA-controlled DNA repair genes were minimally induced and cell filamentation was not observed. Sensitivity to UVA was the same in the mutant and wild-type strains. These findings suggest that there is a RecA-LexA-mediated SOS response in V. parahaemolyticus, and that this response is important to UVC tolerance but does not contribute to UVA tolerance.
Collapse
Affiliation(s)
- Akiko Hamamoto
- Departments of Preventive Environment and Nutrition, and Nutrition and Metabolism, Institute of Health Biosciences, The University of Tokushima Graduate School, Kuramoto-cho, Tokushima, Tokushima, Japan. Department of Electrical and Electronic Engineering, Institute of Socio Techno Sciences, The University of Tokushima Graduate School, Minamijosanjima-cho, Tokushima, Tokushima, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Relevant role of fibronectin-binding proteins in Staphylococcus aureus biofilm-associated foreign-body infections. Infect Immun 2009; 77:3978-91. [PMID: 19581398 DOI: 10.1128/iai.00616-09] [Citation(s) in RCA: 147] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Staphylococcus aureus can establish chronic infections on implanted medical devices due to its capacity to form biofilms. Analysis of the factors that assemble cells into a biofilm has revealed the occurrence of strains that produce either a polysaccharide intercellular adhesin/poly-N-acetylglucosamine (PIA/PNAG) exopolysaccharide- or a protein-dependent biofilm. Examination of the influence of matrix nature on the biofilm capacities of embedded bacteria has remained elusive, because a natural strain that readily converts between a polysaccharide- and a protein-based biofilm has not been studied. Here, we have investigated the clinical methicillin (meticillin)-resistant Staphylococcus aureus strain 132, which is able to alternate between a proteinaceous and an exopolysaccharidic biofilm matrix, depending on environmental conditions. Systematic disruption of each member of the LPXTG surface protein family identified fibronectin-binding proteins (FnBPs) as components of a proteinaceous biofilm formed in Trypticase soy broth-glucose, whereas a PIA/PNAG-dependent biofilm was produced under osmotic stress conditions. The induction of FnBP levels due to a spontaneous agr deficiency present in strain 132 and the activation of a LexA-dependent SOS response or FnBP overexpression from a multicopy plasmid enhanced biofilm development, suggesting a direct relationship between the FnBP levels and the strength of the multicellular phenotype. Scanning electron microscopy revealed that cells growing in the FnBP-mediated biofilm formed highly dense aggregates without any detectable extracellular matrix, whereas cells in a PIA/PNAG-dependent biofilm were embedded in an abundant extracellular material. Finally, studies of the contribution of each type of biofilm matrix to subcutaneous catheter colonization revealed that an FnBP mutant displayed a significantly lower capacity to develop biofilm on implanted catheters than the isogenic PIA/PNAG-deficient mutant.
Collapse
|
28
|
Cuirolo A, Plata K, Rosato AE. Development of homogeneous expression of resistance in methicillin-resistant Staphylococcus aureus clinical strains is functionally associated with a beta-lactam-mediated SOS response. J Antimicrob Chemother 2009; 64:37-45. [PMID: 19457930 DOI: 10.1093/jac/dkp164] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES One of the main characteristics of methicillin-resistant Staphylococcus aureus (MRSA) from both hospitals and community is their heterogeneous expression of resistance. Recently, we reported new heterogeneous MRSA isolates phenotypically susceptible to oxacillin despite being mecA positive. These low-level mecA-mediated resistance MRSA strains are very heterogeneous in expression (HeR) and are likely to be clinically relevant since exposure of such isolates to beta-lactams can result in high-level homotypic resistance (HoR). We hypothesized that HeR to HoR selection in these clinically relevant strains may be determined by the pre-existence of a hypermutable population that favours its selection in the presence of oxacillin. METHODS Using established procedures, SA13011 HeR to HoR selection was performed by using subinhibitory concentrations of oxacillin and examined for mutability. Real-time RT-PCR and transcriptional profiling by DNA microarray were used to compare gene expression between both populations and related genetically modified SA13011 strain. RESULTS We found that HeR/HoR selection by oxacillin was associated with increased mutation rate and oxacillin-mediated SOS response. We determined increased expression of both mecA and SOS response lexA/recA regulators. Mutational inactivation of lexA repressor resulted in a significant decrease in both mutation rate and oxacillin resistance in the HoR cells. Complementation of the lexA mutant strain restored oxacillin resistance to the high levels observed in the corresponding HoR wild-type strain. CONCLUSIONS The present results support the notion that SOS response is mechanistically involved in generating mutations that, in addition to mecA induction, allow the selection of a highly oxacillin-resistant population.
Collapse
Affiliation(s)
- Arabela Cuirolo
- Department of Internal Medicine, Division of Infectious Diseases, Virginia Commonwealth University, Richmond, VA 23298, USA
| | | | | |
Collapse
|
29
|
Fu Y, Pastushok L, Xiao W. DNA damage-induced gene expression inSaccharomyces cerevisiae. FEMS Microbiol Rev 2008; 32:908-26. [DOI: 10.1111/j.1574-6976.2008.00126.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
30
|
Abstract
The bacterial RecA protein participates in a remarkably diverse set of functions, all of which are involved in the maintenance of genomic integrity. RecA is a central component in both the catalysis of recombinational DNA repair and the regulation of the cellular SOS response. Despite the mechanistic differences of its functions, all require formation of an active RecA/ATP/DNA complex. RecA is a classic allosterically regulated enzyme, and ATP binding results in a dramatic increase in DNA binding affinity and a cooperative assembly of RecA subunits to form an ordered, helical nucleoprotein filament. The molecular events that underlie this ATP-induced structural transition are becoming increasingly clear. This review focuses on descriptions of our current understanding of the molecular design and allosteric regulation of RecA. We present a comprehensive list of all published recA mutants and use the results of various genetic and biochemical studies, together with available structural information, to develop ideas regarding the design of RecA functional domains and their catalytic organization.
Collapse
Affiliation(s)
- Dharia A McGrew
- Department of Biochemistry and Molecular Pharmacology, Aaron Lazare Research Building, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605-2324, USA
| | | |
Collapse
|
31
|
Yang MK, Hsu CH, Sung VL. Analyses of binding sequences of the two LexA proteins of Xanthomonas axonopodis pathovar citri. Mol Genet Genomics 2008; 280:49-58. [PMID: 18437426 DOI: 10.1007/s00438-008-0344-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2007] [Accepted: 04/07/2008] [Indexed: 10/22/2022]
Abstract
Xanthomonas axonopodis pv. citri (X. axonopodis pv. citri) possesses two lexA genes, designated lexA1 and lexA2. Electrophoretic mobility shift data show that LexA1 binds to both lexA1 and lexA2 promoters, but LexA2 does not bind to the lexA1 promoter, suggesting that LexA1 and LexA2 play different roles in regulating the expression of SOS genes. In this study, we have determined that LexA2 binds to a 14-bp dyad-spacer-dyad palindromic sequence, 5'-TGTACAAATGTACA-3', located at nucleotides -41 to -28 relative to the translation start site of lexA2 of X. axonopodis pv. citri. The two spacer nucleotides in this sequence can be changed from AA to TT without affecting LexA2 binding; all other base deletions or substitutions abolish LexA2 binding. The LexA1 binding sequence in the promoter region of lexA2 is TTAGTACTAAAGTTATAA and is located at -133 to -116, and that in the lexA1 gene is AGTAGTAATACTACT located at nucleotides -19 to -5 relative to the translation start site of lexA1. Any base change in the latter sequence abolishes LexA1 binding.
Collapse
Affiliation(s)
- Mei-Kwei Yang
- Department of Life Science, Fu Jen University, 510 Chun-Chen Road, Taipei 242, Taiwan, ROC.
| | | | | |
Collapse
|
32
|
Cooperative DNA binding by CI repressor is dispensable in a phage lambda variant. Proc Natl Acad Sci U S A 2007; 104:17741-6. [PMID: 17962420 DOI: 10.1073/pnas.0602223104] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Complex gene regulatory circuits contain many interacting components. In principle, all of these components and interactions may be essential to the function of the circuit. Alternatively, some of them may be refinements to a simpler version of the circuit that improve its fitness. In this work, we have tested whether a particular property of a critical regulatory protein, CI, is essential to the behavior of the phage lambda regulatory circuit. In the lysogenic state, CI represses the expression of the lytic genes, allowing a stable lysogenic state, by binding cooperatively to six operators. A mutant phage lacking cooperativity because of a change in cI could not form stable lysogens; however, this defect could be suppressed by the addition of mutations that altered two cis-acting sites but did not restore cooperativity. The resulting triple mutant was able to grow lytically, form stable single lysogens, and switch to lytic growth upon prophage induction, showing a threshold response in switching similar to that of wild-type lambda. We conclude that cooperative DNA binding by CI is not essential for these properties of the lambda circuitry, provided that suppressors increase the level of CI. Unlike wild-type lysogens, mutant lysogens were somewhat unstable under certain growth conditions. We surmise that cooperativity is a refinement to a more basic circuit, and that it affords increased stability to the lysogenic state in response to environmental variations.
Collapse
|
33
|
Maul RW, Ponticelli SKS, Duzen JM, Sutton MD. Differential binding of Escherichia coli DNA polymerases to the beta-sliding clamp. Mol Microbiol 2007; 65:811-27. [PMID: 17635192 DOI: 10.1111/j.1365-2958.2007.05828.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Escherichia coli strains expressing the mutant beta159-sliding clamp protein (containing both a G66E and a G174A substitution) are temperature sensitive for growth and display altered DNA polymerase (pol) usage. We selected for suppressors of the dnaN159 allele able to grow at 42 degrees C, and identified four intragenic suppressor alleles. One of these alleles (dnaN780) contained only the G66E substitution, while a second (dnaN781) contained only the G174A substitution. Genetic characterization of isogenic E. coli strains expressing these alleles indicated that certain phenotypes were dependent upon only the G174A substitution, while others required both the G66E and G174A substitutions. In order to understand the individual contributions of the G66E and the G174A substitution to the dnaN159 phenotypes, we utilized biochemical approaches to characterize the purified mutant beta159 (G66E and G174A), beta780 (G66E) and beta781 (G174A) clamp proteins. The G66E substitution conferred a more pronounced effect on pol IV replication than it did pol II or pol III, while the G174A substitution conferred a greater effect on pol III and pol IV than it did pol II. Taken together, these findings indicate that pol II, pol III and pol IV interact with distinct, albeit overlapping surfaces of the beta clamp.
Collapse
Affiliation(s)
- Robert W Maul
- Department of Biochemistry, School of Medicine and Biomedical Sciences, University at Buffalo, SUNY, Buffalo, New York 14214, USA
| | | | | | | |
Collapse
|
34
|
Osterhout RE, Figueroa IA, Keasling JD, Arkin AP. Global analysis of host response to induction of a latent bacteriophage. BMC Microbiol 2007. [PMID: 17764558 DOI: 10.1186/1471–2180-7-82] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The transition from viral latency to lytic growth involves complex interactions among host and viral factors, and the extent to which host physiology is buffered from the virus during induction of lysis is not known. A reasonable hypothesis is that the virus should be evolutionarily selected to ensure host health throughout induction to minimize its chance of reproductive failure. To address this question, we collected transcriptional profiles of Escherichia coli and bacteriophage lambda throughout lysogenic induction by UV light. RESULTS We observed a temporally coordinated program of phage gene expression, with distinct early, middle and late transcriptional classes. Our study confirmed known host-phage interactions of induction of the heat shock regulon, escape replication, and suppression of genes involved in cell division and initiation of replication. We identified 728 E. coli genes responsive to prophage induction, which included pleiotropic stress response pathways, the Arc and Cpx regulons, and global regulators crp and lrp. Several hundred genes involved in central metabolism, energy metabolism, translation and transport were down-regulated late in induction. Though statistically significant, most of the changes in these genes were mild, with only 140 genes showing greater than two-fold change. CONCLUSION Overall, we observe that prophage induction has a surprisingly low impact on host physiology. This study provides the first global dynamic picture of how host processes respond to lambda phage induction.
Collapse
Affiliation(s)
- Robin E Osterhout
- Department of Bioengineering and Howard Hughes Medical Institute, University of California at Berkeley, Berkeley, CA 94720, USA.
| | | | | | | |
Collapse
|
35
|
Osterhout RE, Figueroa IA, Keasling JD, Arkin AP. Global analysis of host response to induction of a latent bacteriophage. BMC Microbiol 2007; 7:82. [PMID: 17764558 PMCID: PMC2147009 DOI: 10.1186/1471-2180-7-82] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2006] [Accepted: 08/31/2007] [Indexed: 11/16/2022] Open
Abstract
Background The transition from viral latency to lytic growth involves complex interactions among host and viral factors, and the extent to which host physiology is buffered from the virus during induction of lysis is not known. A reasonable hypothesis is that the virus should be evolutionarily selected to ensure host health throughout induction to minimize its chance of reproductive failure. To address this question, we collected transcriptional profiles of Escherichia coli and bacteriophage lambda throughout lysogenic induction by UV light. Results We observed a temporally coordinated program of phage gene expression, with distinct early, middle and late transcriptional classes. Our study confirmed known host-phage interactions of induction of the heat shock regulon, escape replication, and suppression of genes involved in cell division and initiation of replication. We identified 728 E. coli genes responsive to prophage induction, which included pleiotropic stress response pathways, the Arc and Cpx regulons, and global regulators crp and lrp. Several hundred genes involved in central metabolism, energy metabolism, translation and transport were down-regulated late in induction. Though statistically significant, most of the changes in these genes were mild, with only 140 genes showing greater than two-fold change. Conclusion Overall, we observe that prophage induction has a surprisingly low impact on host physiology. This study provides the first global dynamic picture of how host processes respond to lambda phage induction.
Collapse
Affiliation(s)
- Robin E Osterhout
- Department of Chemistry, University of California at Berkeley, Berkeley, CA 94720, USA
| | - Israel A Figueroa
- Department of Bioengineering and Howard Hughes Medical Institute, University of California at Berkeley, Berkeley, CA 94720, USA
| | - Jay D Keasling
- Department of Chemical Engineering, University of California at Berkeley, Berkeley, CA 94720, USA
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA 94720, USA
| | - Adam P Arkin
- Department of Bioengineering and Howard Hughes Medical Institute, University of California at Berkeley, Berkeley, CA 94720, USA
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA 94720, USA
| |
Collapse
|
36
|
Coddeville M, Auvray F, Mikkonen M, Ritzenthaler P. Single independent operator sites are involved in the genetic switch of the Lactobacillus delbrueckii bacteriophage mv4. Virology 2007; 364:256-68. [PMID: 17412387 DOI: 10.1016/j.virol.2007.02.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2006] [Revised: 12/31/2006] [Accepted: 02/09/2007] [Indexed: 11/21/2022]
Abstract
The lysogeny region of the Lactobacillus delbrueckii bacteriophage mv4 contains two divergently oriented ORFs coding for the Rep (221 aa) and Tec (64 aa) proteins. The transcription of these two genes was analysed by primer extension and Northern blot experiments on lysogenic strains. The location of the transcription initiation sites of rep and tec in the intergenic region allowed the identification of the divergently oriented non overlapping promoters P(rep) and P(tec). Transcriptional fusions analysis showed that Rep negatively regulates the P(tec) promoter and activates its own transcription, and that Tec is a negative regulator of the two promoters. As demonstrated by gel mobility shift assays, the repressor Rep binds to a single specific 17 bp site located between the P(tec) -10 and -35 regions whereas Tec binds to a single specific 40 bp long complex operator site located between the two promoters. The presence of a single specific operator site for each repressor in the intergenic region is an unusual feature.
Collapse
Affiliation(s)
- Michèle Coddeville
- Laboratoire de Microbiologie et de Génétique Moléculaire du CNRS, Université Paul Sabatier, Bat IBCG, 118 route de Narbonne, Toulouse Cedex, France
| | | | | | | |
Collapse
|
37
|
Ubeda C, Maiques E, Tormo MA, Campoy S, Lasa I, Barbé J, Novick RP, Penadés JR. SaPI operon I is required for SaPI packaging and is controlled by LexA. Mol Microbiol 2007; 65:41-50. [PMID: 17581119 DOI: 10.1111/j.1365-2958.2007.05758.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Transfer of Staphylococcus aureus pathogenicity islands (SaPIs) is directly controlled by the cellular repressor LexA. We have found that transcription of the SaPIbov1 operon I is repressed by LexA and is therefore SOS-induced. Two copies of the LexA binding site consensus (Cheo box) are present in the 5' region of this operon, at the same location in all of 15 different SaPIs analysed. Both of these boxes bind LexA protein. Furthermore, replacement of the chromosomal lexA with a non-cleavable mutant LexA (G94E) greatly diminished expression of SaPIbov1 operon I and differentially reduced the production of SaPI transducing particles in comparison with the production of plaque-forming particles. In concordance with this finding, deletion of operon I blocked the formation of SaPI transducing particles but had no effect on replication of the island. Operon I contains a gene encoding a homologue of the phage terminase small subunit plus two other genes that direct the assembly of the small sized SaPIbov1 capsids. Interestingly, mutations affecting the latter two genes were not defective in SaPI transfer, but rather encapsidated the island in full-sized phage heads, which would have to contain a multimeric SaPI genome.
Collapse
Affiliation(s)
- Carles Ubeda
- Centro de Investigación y Tecnología Animal, Instituto Valenciano de Investigaciones Agrarias (CITA-IVIA), Apdo. 187, 12.400 Segorbe, Castellón, Spain
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Maiques E, Ubeda C, Campoy S, Salvador N, Lasa I, Novick RP, Barbé J, Penadés JR. beta-lactam antibiotics induce the SOS response and horizontal transfer of virulence factors in Staphylococcus aureus. J Bacteriol 2006; 188:2726-9. [PMID: 16547063 PMCID: PMC1428414 DOI: 10.1128/jb.188.7.2726-2729.2006] [Citation(s) in RCA: 232] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Antibiotics that interfere with DNA replication and cell viability activate the SOS response. In Staphylococcus aureus, the antibiotic-induced SOS response promotes replication and high-frequency horizontal transfer of pathogenicity island-encoded virulence factors. Here we report that beta-lactams induce a bona fide SOS response in S. aureus, characterized by the activation of the RecA and LexA proteins, the two master regulators of the SOS response. Moreover, we show that beta-lactams are capable of triggering staphylococcal prophage induction in S. aureus lysogens. Consequently, and as previously described for SOS induction by commonly used fluoroquinolone antibiotics, beta-lactam-mediated phage induction also resulted in replication and high-frequency transfer of the staphylococcal pathogenicity islands, showing that such antibiotics may have the unintended consequence of promoting the spread of bacterial virulence factors.
Collapse
Affiliation(s)
- Elisa Maiques
- Departamento de Química, Bioquímica y Biología Molecular, Universidad Cardenal Herrera-CEU, 46113 Moncada, Valencia, Spain
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Atsumi S, Little JW. Role of the lytic repressor in prophage induction of phage lambda as analyzed by a module-replacement approach. Proc Natl Acad Sci U S A 2006; 103:4558-63. [PMID: 16537413 PMCID: PMC1450210 DOI: 10.1073/pnas.0511117103] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2005] [Indexed: 11/18/2022] Open
Abstract
Using a module exchange approach, we have tested a long-standing model for the role of Cro repressor in lambda prophage induction. This epigenetic switch from lysogeny to the lytic state occurs on activation of the host SOS system, which leads to specific cleavage of CI repressor. It has been proposed that Cro repressor, which operates during lytic growth and which we shall term the lytic repressor, is crucial to prophage induction. In this view, Cro binds to the O(R)3 operator, thereby repressing the cI gene and making the switch irreversible. Here we tested this model by replacing lambda Cro with a dimeric form of Lac repressor and adding several lac operators. This approach allowed us to regulate the function of the lytic repressor at will and to prevent it from repressing cI, because lac repressor could not repress P(RM) in our constructs. Repression of cI by the lytic repressor was not required for prophage induction to occur. However, our evidence suggests that this binding can make induction more efficient, particularly at intermediate levels of DNA damage that otherwise cause induction of only a fraction of the population. These results indicate that this strategy of module exchange will have broad applications for analysis of gene regulatory circuits.
Collapse
Affiliation(s)
- Shota Atsumi
- *Departments of Biochemistry and Molecular Biophysics and
| | - John W. Little
- *Departments of Biochemistry and Molecular Biophysics and
- Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721
| |
Collapse
|
40
|
McLeod SM, Kimsey HH, Davis BM, Waldor MK. CTXphi and Vibrio cholerae: exploring a newly recognized type of phage-host cell relationship. Mol Microbiol 2005; 57:347-56. [PMID: 15978069 DOI: 10.1111/j.1365-2958.2005.04676.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The genes encoding cholera toxin, one of the principal virulence factors of the diarrhoeal pathogen Vibrio cholerae, are part of the genome of CTXphi, a filamentous bacteriophage. Thus, CTXphi has played a critical role in the evolution of the pathogenicity of V. cholerae. Unlike the well-studied F pilus-specific filamentous coliphages, CTXphi integrates site-specifically into its host chromosome and forms stable lysogens. Here we focus on the CTXphi life cycle and, in particular, on recent studies of the mechanism of CTXphi integration and the factors that govern lysogeny. These and other processes illustrate the remarkable dependence of CTXphi on host-encoded factors.
Collapse
Affiliation(s)
- Sarah M McLeod
- Howard Hughes Medical Institute and Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, USA
| | | | | | | |
Collapse
|
41
|
Sweetman WA, Moxon ER, Bayliss CD. Induction of the SOS regulon of Haemophilus influenzae does not affect phase variation rates at tetranucleotide or dinucleotide repeats. MICROBIOLOGY-SGM 2005; 151:2751-2763. [PMID: 16079351 DOI: 10.1099/mic.0.27996-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Haemophilus influenzae has microsatellite repeat tracts in 5' coding regions or promoters of several genes that are important for commensal and virulence behaviour. Changes in repeat number lead to switches in expression of these genes, a process referred to as phase variation. Hence, the virulence behaviour of this organism may be influenced by factors that alter the frequency of mutations in these repeat tracts. In Escherichia coli, induction of the SOS response destabilizes dinucleotide repeat tracts. H. influenzae encodes a homologue of the E. coli SOS repressor, LexA. The H. influenzae genome sequence was screened for the presence of the minimal consensus LexA-binding sequence from E. coli, CTG(N)(10)CAG, in order to identify genes with the potential to be SOS regulated. Twenty-five genes were identified that had LexA-binding sequences within 200 bp of the start codon. An H. influenzae non-inducible LexA mutant (lexA(NI)) was generated by site-directed mutagenesis. This mutant showed increased sensitivity, compared with wild-type (WT) cells, to both UV irradiation and mitomycin C (mitC) treatment. Semi-quantitative RT-PCR studies confirmed that H. influenzae mounts a LexA-regulated SOS response following DNA assault. Transcript levels of lexA, recA, recN, recX, ruvA and impA were increased in WT cells following DNA damage but not in lexA(NI) cells. Induction of the H. influenzae SOS response by UV irradiation or mitC treatment did not lead to any observable SOS-dependent changes in phase variation rates at either dinucleotide or tetranucleotide repeat tracts. Treatment with mitC caused a small increase in phase variation rates in both repeat tracts, independently of an SOS response. We suggest that the difference between H. influenzae and E. coli with regard to the effect of the SOS response on dinucleotide phase variation rates is due to the absence of any of the known trans-lesion synthesis DNA polymerases in H. influenzae.
Collapse
Affiliation(s)
- Wendy A Sweetman
- Paediatric Molecular Infectious Diseases Group, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Headington, Oxford OX3 9DS, UK
| | - E Richard Moxon
- Paediatric Molecular Infectious Diseases Group, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Headington, Oxford OX3 9DS, UK
| | - Christopher D Bayliss
- Paediatric Molecular Infectious Diseases Group, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Headington, Oxford OX3 9DS, UK
| |
Collapse
|
42
|
Michalowski CB, Little JW. Positive autoregulation of cI is a dispensable feature of the phage lambda gene regulatory circuitry. J Bacteriol 2005; 187:6430-42. [PMID: 16159777 PMCID: PMC1236637 DOI: 10.1128/jb.187.18.6430-6442.2005] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2005] [Accepted: 06/24/2005] [Indexed: 11/20/2022] Open
Abstract
Complex gene regulatory circuits contain many features that are likely to contribute to their operation. It is unclear, however, whether all these features are necessary for proper circuit behavior or whether certain ones are refinements that make the circuit work better but are dispensable for qualitatively normal behavior. We have addressed this question using the phage lambda regulatory circuit, which can persist in two stable states, the lytic state and the lysogenic state. In the lysogenic state, the CI repressor positively regulates its own expression by stimulating transcription from the P(RM) promoter. We tested whether this feature is an essential part of the regulatory circuitry. Several phages with a cI mutation preventing positive autoregulation and an up mutation in the P(RM) promoter showed near-normal behavior. We conclude that positive autoregulation is not necessary for proper operation of the lambda circuitry and speculate that it serves a partially redundant function of stabilizing a bistable circuit, a form of redundancy we term "circuit-level redundancy." We discuss our findings in the context of a two-stage model for evolution and elaboration of regulatory circuits from simpler to more complex forms.
Collapse
Affiliation(s)
- Christine B Michalowski
- Department of Biochemistry and Molecular Biophysics, Life Sciences South Bldg., 1007 E. Lowell St., University of Arizona, Tucson, Arizona 85721, USA
| | | |
Collapse
|
43
|
Yadava RS, Kumar R, Yadava PK. Expression of lexA targeted ribozyme in Escherichia coli BL-21 (DE3) cells. Mol Cell Biochem 2005; 271:197-203. [PMID: 15881671 DOI: 10.1007/s11010-005-6340-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Coding sequences for a hammerhead ribozyme designed to cleave lexA mRNA in a targeted manner was cloned under phage T7 promoter and expressed in E. coli strain BL-21 (DE3) expressing T7 RNA polymerase under the control of IPTG-inducible lac UV-5 promoter. Ribozyme expression in vivo was demonstrated by RNase protection assay. Also, total RNA extracted from these transformed cells following induction by IPTG, displays site-specific cleavage of labeled lexA RNA in an in vitro reaction. The result demonstrates the active ribozyme in extracts of cell transformed with a recombinant cassette and goes beyond the earlier demonstration of the stability of in vitro synthesized ribozyme in cell extracts. The observed rise in lexA mRNA rules out any role for protease activity or resulting fragments of lexA protein in de-repression of RNA.
Collapse
|
44
|
Affiliation(s)
- John W Little
- Department of Biochemistry and Molecular Biophysics, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
45
|
Tachi S, Kakikawa M, Hashimoto S, Iwahara M, Yamada S. Effects on Bacterial Cells of Exposure to Very-Low-Frequency Magnetic Fields. ACTA ACUST UNITED AC 2005. [DOI: 10.3379/jmsjmag.29.356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
46
|
Quinones M, Kimsey HH, Waldor MK. LexA Cleavage Is Required for CTX Prophage Induction. Mol Cell 2005; 17:291-300. [PMID: 15664197 DOI: 10.1016/j.molcel.2004.11.046] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2004] [Revised: 10/12/2004] [Accepted: 11/19/2004] [Indexed: 10/25/2022]
Abstract
The physiologic conditions and molecular interactions that control phage production have been studied in few temperate phages. We investigated the mechanisms that regulate production of CTXphi, a temperate filamentous phage that infects Vibrio cholerae and encodes cholera toxin. In CTXphi lysogens, the activity of P(rstA), the only CTXphi promoter required for CTX prophage development, is repressed by RstR, the CTXvphi repressor. We found that the V. cholerae SOS response regulates CTXvphi production. The molecular mechanism by which this cellular response to DNA damage controls CTXphi production differs from that by which the E. coli SOS response controls induction of many prophages. UV-stimulated CTXphi production required RecA-dependent autocleavage of LexA, a repressor that controls expression of numerous host DNA repair genes. LexA and RstR both bind to and repress P(rstA). Thus, CTXphi production is controlled by a cellular repressor whose activity is regulated by the cell's response to DNA damage.
Collapse
Affiliation(s)
- Mariam Quinones
- Department of Molecular Microbiology, Tufts University School of Medicine and The Howard Hughes Medical Institute, Boston, MA 02111, USA
| | | | | |
Collapse
|
47
|
Michalowski CB, Short MD, Little JW. Sequence tolerance of the phage lambda PRM promoter: implications for evolution of gene regulatory circuitry. J Bacteriol 2004; 186:7988-99. [PMID: 15547271 PMCID: PMC529058 DOI: 10.1128/jb.186.23.7988-7999.2004] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2004] [Accepted: 09/01/2004] [Indexed: 11/20/2022] Open
Abstract
Much of the gene regulatory circuitry of phage lambda centers on a complex region called the O(R) region. This approximately 100-bp region is densely packed with regulatory sites, including two promoters and three repressor-binding sites. The dense packing of this region is likely to impose severe constraints on its ability to change during evolution, raising the question of how the specific arrangement of sites and their exact sequences could evolve to their present form. Here we ask whether the sequence of a cis-acting site can be widely varied while retaining its function; if it can, evolution could proceed by a larger number of paths. To help address this question, we developed a lambda cloning vector that allowed us to clone fragments spanning the O(R) region. By using this vector, we carried out intensive mutagenesis of the P(RM) promoter, which drives expression of CI repressor and is activated by CI itself. We made a pool of fragments in which 8 of the 12 positions in the -35 and -10 regions were randomized and cloned this pool into the vector, making a pool of P(RM) variant phage. About 10% of the P(RM) variants were able to lysogenize, suggesting that the lambda regulatory circuitry is compatible with a wide range of P(RM) sequences. Analysis of several of these phages indicated a range of behaviors in prophage induction. Several isolates had induction properties similar to those of the wild type, and their promoters resembled the wild type in their responses to CI. We term this property of different sequences allowing roughly equivalent function "sequence tolerance " and discuss its role in the evolution of gene regulatory circuitry.
Collapse
Affiliation(s)
- Christine B Michalowski
- Department of Biochemistry and Molecular Biophysics, University of Arizona, Tucson, AZ 85721, USA
| | | | | |
Collapse
|
48
|
Aertsen A, Van Houdt R, Vanoirbeek K, Michiels CW. An SOS response induced by high pressure in Escherichia coli. J Bacteriol 2004; 186:6133-41. [PMID: 15342583 PMCID: PMC515162 DOI: 10.1128/jb.186.18.6133-6141.2004] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although pressure is an important environmental parameter in microbial niches such as the deep sea and is furthermore used in food preservation to inactivate microorganisms, the fundamental understanding of its effects on bacteria remains fragmentary. Our group recently initiated differential fluorescence induction screening to search for pressure-induced Escherichia coli promoters and has already reported induction of the heat shock regulon. Here the screening was continued, and we report for the first time that pressure induces a bona fide SOS response in E. coli, characterized by the RecA and LexA-dependent expression of uvrA, recA, and sulA. Moreover, it was shown that pressure is capable of triggering lambda prophage induction in E. coli lysogens. The remnant lambdoid e14 element, however, could not be induced by pressure, as opposed to UV irradiation, indicating subtle differences between the pressure-induced and the classical SOS response. Furthermore, the pressure-induced SOS response seems not to be initiated by DNA damage, since DeltarecA and lexA1 (Ind-) mutants, which are intrinsically hypersensitive to DNA damage, were not sensitized or were only very slightly sensitized for pressure-mediated killing and since pressure treatment was not found to be mutagenic. In light of these findings, the current knowledge of pressure-mediated effects on bacteria is discussed.
Collapse
Affiliation(s)
- Abram Aertsen
- Laboratory of Food Microbiology, K.U.Leuven, Kasteelpark Arenberg 22, B-3001 Heverlee, Belgium
| | | | | | | |
Collapse
|
49
|
Pawlowski DR, Koudelka GB. The preferred substrate for RecA-mediated cleavage of bacteriophage 434 repressor is the DNA-bound dimer. J Bacteriol 2004; 186:1-7. [PMID: 14679217 PMCID: PMC303438 DOI: 10.1128/jb.186.1.1-7.2004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Induction of a lysogen of a lambdoid bacteriophage usually involves RecA-stimulated autoproteolysis of the bacteriophage repressor protein. Previous work on the phage repressors showed that the monomeric form of the protein is the target of RecA. Our previous work indicated that in the case of bacteriophage 434, virtually none of the repressor is present as a monomer in vivo. Hence, if the repressor in a lysogen is present as a dimer, how can RecA-stimulated autoproteolysis play a role in bacteriophage induction? We examined this question by determining the rate of RecA-stimulated 434 repressor cleavage as a function of repressor concentration and added DNA. Our results show that binding of 434 repressor to a specific DNA binding site dramatically increases the velocity of repressor autocleavage compared to the velocity of cleavage of the monomer and concentration-induced dimer. DNA binding-deficient hemidimers formed between the intact repressor and its C-terminal domain fragment have a lower rate of cleavage than DNA-bound dimers. These results show that the DNA-bound 434 repressor dimer, which is the form of the repressor that is required for its transcriptional regulatory functions, is the preferred form for RecA-stimulated autocleavage. We also show that the rate of repressor autocleavage is influenced by the sequence of the bound DNA. Kinetic analysis of the autocleavage reaction indicated that the DNA sequence influences the velocity of 434 repressor autocleavage by affecting the affinity of the repressor-DNA complex for RecA, not the chemical cleavage step. Regardless of the mechanism, the finding that the presence and precise sequence of DNA modulate the autocleavage reaction shows that DNA allosterically affects the function of 434 repressor.
Collapse
Affiliation(s)
- David R Pawlowski
- Department of Biological Sciences, University at Buffalo, Buffalo, New York 14260-1300, USA
| | | |
Collapse
|
50
|
Mallik P, Pratt TS, Beach MB, Bradley MD, Undamatla J, Osuna R. Growth phase-dependent regulation and stringent control of fis are conserved processes in enteric bacteria and involve a single promoter (fis P) in Escherichia coli. J Bacteriol 2004; 186:122-35. [PMID: 14679232 PMCID: PMC303451 DOI: 10.1128/jb.186.1.122-135.2004] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The intracellular concentration of the Escherichia coli factor for inversion stimulation (Fis), a global regulator of transcription and a facilitator of certain site-specific DNA recombination events, varies substantially in response to changes in the nutritional environment and growth phase. Under conditions of nutritional upshift, fis is transiently expressed at very high levels, whereas under induced starvation conditions, fis is repressed by stringent control. We show that both of these regulatory processes operate on the chromosomal fis genes of the enterobacteria Klebsiella pneumoniae, Serratia marcescens, Erwinia carotovora, and Proteus vulgaris, strongly suggesting that the physiological role of Fis is closely tied to its transcriptional regulation in response to the nutritional environment. These transcriptional regulatory processes were previously shown to involve a single promoter (fis P) preceding the fis operon in E. coli. Recent work challenged this notion by presenting evidence from primer extension assays which appeared to indicate that there are multiple promoters upstream of fis P that contribute significantly to the expression and regulation of fis in E. coli. Thus, a rigorous analysis of the fis promoter region was conducted to assess the contribution of such additional promoters. However, our data from primer extension analysis, S1 nuclease mapping, beta-galactosidase assays, and in vitro transcription analysis all indicate that fis P is the sole E. coli fis promoter in vivo and in vitro. We further show how certain conditions used in the primer extension reactions can generate artifacts resulting from secondary annealing events that are the likely source of incorrect assignment of additional fis promoters.
Collapse
Affiliation(s)
- Prabhat Mallik
- Department of Biological Sciences, University at Albany, SUNY, Albany, New York 12222, USA
| | | | | | | | | | | |
Collapse
|