1
|
Zhong X, Liu F, Liang T, Lu R, Shi M, Zhou X, Yang M. The two-component system TtrRS boosts Vibrio parahaemolyticus colonization by exploiting sulfur compounds in host gut. PLoS Pathog 2024; 20:e1012410. [PMID: 39038066 PMCID: PMC11293645 DOI: 10.1371/journal.ppat.1012410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 08/01/2024] [Accepted: 07/10/2024] [Indexed: 07/24/2024] Open
Abstract
One of the greatest challenges encountered by enteric pathogens is responding to rapid changes of nutrient availability in host. However, the mechanisms by which pathogens sense gastrointestinal signals and exploit available host nutrients for proliferation remain largely unknown. Here, we identified a two-component system in Vibrio parahaemolyticus, TtrRS, which senses environmental tetrathionate and subsequently activates the transcription of the ttrRS-ttrBCA-tsdBA gene cluster to promote V. parahaemolyticus colonization of adult mice. We demonstrated that TsdBA confers the ability of thiosulfate oxidation to produce tetrathionate which is sensed by TtrRS. TtrRS autoregulates and directly activates the transcription of the ttrBCA and tsdBA gene clusters. Activated TtrBCA promotes bacterial growth under micro-aerobic conditions by inducing the reduction of both tetrathionate and thiosulfate. TtrBCA and TsdBA activation by TtrRS is important for V. parahaemolyticus to colonize adult mice. Therefore, TtrRS and their target genes constitute a tetrathionate-responsive genetic circuit to exploit the host available sulfur compounds, which further contributes to the intestinal colonization of V. parahaemolyticus.
Collapse
Affiliation(s)
- Xiaojun Zhong
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A & F University, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Hangzhou, China
| | - Fuwen Liu
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A & F University, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Hangzhou, China
| | - Tianqi Liang
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A & F University, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Hangzhou, China
| | - Ranran Lu
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A & F University, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Hangzhou, China
| | - Mengting Shi
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A & F University, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Hangzhou, China
| | - Xiujuan Zhou
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A & F University, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Hangzhou, China
| | - Menghua Yang
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A & F University, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Hangzhou, China
| |
Collapse
|
2
|
Müştak İB, Müştak HK, Sarıçam S. Molecular characterisation of hydrogen sulfide negative Salmonella enterica serovar Havana. Antonie van Leeuwenhoek 2020; 113:1241-1246. [PMID: 32607922 DOI: 10.1007/s10482-020-01432-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 05/28/2020] [Indexed: 11/26/2022]
Abstract
Hydrogen sulfide (H2S) detection is a screening method for distinguishing and identifying Salmonella strains from other bacteria in the intestine. Incidences of H2S-negative Salmonella have recently been reported in different countries. Although a high resistance rate against antimicrobial agents has been reported for H2S-positive Salmonella in many regions of the world, there is increasing evidence that high resistance to antibiotics has also increased in many H2S-negative Salmonella isolates. In this study, molecular characterisation of three H2S-negative Salmonella Havana, isolated from cloacal swab samples of broiler chickens, was performed. The phsA, phsB and phsC genes of the phs operon, which is responsible for hydrogen sulfide production, were amplified. Sequence analysis was then performed to identify mutations in the gene cluster. The antimicrobial resistance profiles of the isolates were determined by disc diffusion. Molecular characterisation was performed by multilocus sequence typing (MLST) and pulsed field gel electrophoresis (PFGE). The sequence analysis showed identified five point mutations in the phsA gene and one point mutation in the phsC gene in all isolates. The antibiotic resistance profile showed that the strains were resistant to cefoxitin and ceftazidime. MLST analysis showed that all strains belonged to sequence type (ST) 1621. This study is the first to report the H2S-negative S. Havana serotype.
Collapse
Affiliation(s)
- İnci Başak Müştak
- Department of Microbiology, Faculty of Veterinary Medicine, Ankara University, Şehit Ömer Halisdemir Bulv. Dışkapı, Ankara, 06110, Turkey
| | - Hamit Kaan Müştak
- Department of Microbiology, Faculty of Veterinary Medicine, Ankara University, Şehit Ömer Halisdemir Bulv. Dışkapı, Ankara, 06110, Turkey.
| | - Seyyide Sarıçam
- Department of Microbiology, Faculty of Veterinary Medicine, Ankara University, Şehit Ömer Halisdemir Bulv. Dışkapı, Ankara, 06110, Turkey
| |
Collapse
|
3
|
Antibiotic resistance and molecular characterization of the hydrogen sulfide-negative phenotype among diverse Salmonella serovars in China. BMC Infect Dis 2018; 18:292. [PMID: 29970024 PMCID: PMC6029346 DOI: 10.1186/s12879-018-3209-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Accepted: 06/25/2018] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Among 2179 Salmonella isolates obtained during national surveillance for salmonellosis in China from 2005 to 2013, we identified 46 non-H2S-producing strains originating from different sources. METHODS The isolates were characterized in terms of antibiotic resistance and genetic variability by pulsed-field gel electrophoresis and multilocus sequence typing. Mutation in the phs operon, which may account for the non-H2S-producing phenotype of the isolated Salmonella strains, was performed in this study. RESULTS Among isolated non-H2S-producing Salmonella strains, more than 50% were recovered from diarrhea patients, of which H2S-negative S. Gallinarum, S. Typhimurium, S. Choleraesuis and S. Paratyphi A isolates constituted 76%. H2S-negative isolates exhibited a high rate of resistance to ticarcillin, ampicillin, and tetracycline, and eight of them had the multidrug resistance phenotype. Most H2S-negative Salmonella isolates had similar pulsed-field gel electrophoresis profiles and the same sequence type as H2S-positive strains, indicating a close origin, but carried mutations in the phsA gene, which may account for the non-H2S-producing phenotype. CONCLUSIONS Our data indicate that multiple H2S-negative strains have emerged and persist in China, emphasizing the necessity to implement efficient surveillance measures for controlling dissemination of these atypical Salmonella strains.
Collapse
|
4
|
Abstract
The synthesis of L-cysteine from inorganic sulfur is the predominant mechanism by which reduced sulfur is incorporated into organic compounds. L-cysteineis used for protein and glutathione synthesis and serves as the primary source of reduced sulfur in L-methionine, lipoic acid, thiamin, coenzyme A (CoA), molybdopterin, and other organic molecules. Sulfate and thiosulfate uptake in E. coli and serovar Typhimurium are achieved through a single periplasmic transport system that utilizes two different but similar periplasmic binding proteins. Kinetic studies indicate that selenate and selenite share a single transporter with sulfate, but molybdate also has a separate transport system. During aerobic growth, the reduction of sulfite to sulfide is catalyzed by NADPH-sulfite reductase (SiR), and serovar Typhimurium mutants lacking this enzyme accumulate sulfite from sulfate, implying that sulfite is a normal intermediate in assimilatory sulfate reduction. L-Cysteine biosynthesis in serovar Typhimurium and E. coli ceases almost entirely when cells are grown on L-cysteine or L-cystine, owing to a combination of end product inhibition of serine transacetylase by L-cysteine and a gene regulatory system known as the cysteine regulon, wherein genes for sulfate assimilation and alkanesulfonate utilization are expressed only when sulfur is limiting. In vitro studies with the cysJIH, cysK, and cysP promoters have confirmed that they are inefficient at forming transcription initiation complexes without CysB and N-acetyl-L-serine. Activation of the tauA and ssuE promoters requires Cbl. It has been proposed that the three serovar Typhimurium anaerobic reductases for sulfite, thiosulfate, and tetrathionate may function primarily in anaerobic respiration.
Collapse
|
5
|
Stoffels L, Krehenbrink M, Berks BC, Unden G. Thiosulfate reduction in Salmonella enterica is driven by the proton motive force. J Bacteriol 2012; 194:475-85. [PMID: 22081391 PMCID: PMC3256639 DOI: 10.1128/jb.06014-11] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Accepted: 11/01/2011] [Indexed: 11/20/2022] Open
Abstract
Thiosulfate respiration in Salmonella enterica serovar Typhimurium is catalyzed by the membrane-bound enzyme thiosulfate reductase. Experiments with quinone biosynthesis mutants show that menaquinol is the sole electron donor to thiosulfate reductase. However, the reduction of thiosulfate by menaquinol is highly endergonic under standard conditions (ΔE°' = -328 mV). Thiosulfate reductase activity was found to depend on the proton motive force (PMF) across the cytoplasmic membrane. A structural model for thiosulfate reductase suggests that the PMF drives endergonic electron flow within the enzyme by a reverse loop mechanism. Thiosulfate reductase was able to catalyze the combined oxidation of sulfide and sulfite to thiosulfate in a reverse of the physiological reaction. In contrast to the forward reaction the exergonic thiosulfate-forming reaction was PMF independent. Electron transfer from formate to thiosulfate in whole cells occurs predominantly by intraspecies hydrogen transfer.
Collapse
Affiliation(s)
- Laura Stoffels
- Institute for Microbiology and Wine Research, Johannes Gutenberg-University of Mainz, Mainz, Germany
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Martin Krehenbrink
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Ben C. Berks
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Gottfried Unden
- Institute for Microbiology and Wine Research, Johannes Gutenberg-University of Mainz, Mainz, Germany
| |
Collapse
|
6
|
Anaerobic respiration of elemental sulfur and thiosulfate by Shewanella oneidensis MR-1 requires psrA, a homolog of the phsA gene of Salmonella enterica serovar typhimurium LT2. Appl Environ Microbiol 2009; 75:5209-17. [PMID: 19542325 DOI: 10.1128/aem.00888-09] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Shewanella oneidensis MR-1, a facultatively anaerobic gammaproteobacterium, respires a variety of anaerobic terminal electron acceptors, including the inorganic sulfur compounds sulfite (SO3(2-)), thiosulfate (S2O3(2-)), tetrathionate (S4O6(2-)), and elemental sulfur (S(0)). The molecular mechanism of anaerobic respiration of inorganic sulfur compounds by S. oneidensis, however, is poorly understood. In the present study, we identified a three-gene cluster in the S. oneidensis genome whose translated products displayed 59 to 73% amino acid similarity to the products of phsABC, a gene cluster required for S(0) and S2O3(2-) respiration by Salmonella enterica serovar Typhimurium LT2. Homologs of phsA (annotated as psrA) were identified in the genomes of Shewanella strains that reduce S(0) and S2O3(2-) yet were missing from the genomes of Shewanella strains unable to reduce these electron acceptors. A new suicide vector was constructed and used to generate a markerless, in-frame deletion of psrA, the gene encoding the putative thiosulfate reductase. The psrA deletion mutant (PSRA1) retained expression of downstream genes psrB and psrC but was unable to respire S(0) or S2O3(2-) as the terminal electron acceptor. Based on these results, we postulate that PsrA functions as the main subunit of the S. oneidensis S2O3(2-) terminal reductase whose end products (sulfide [HS-] or SO3(2-)) participate in an intraspecies sulfur cycle that drives S(0) respiration.
Collapse
|
7
|
Factors affecting iron sulfide-enhanced bacteriophage plaque assays in Salmonella. J Microbiol Methods 2006; 67:611-5. [PMID: 16876271 DOI: 10.1016/j.mimet.2006.05.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2006] [Revised: 05/11/2006] [Accepted: 05/24/2006] [Indexed: 11/24/2022]
Abstract
Reaction of ferric ions with hydrogen sulfide (H(2)S) enhances contrast of phage plaques in H(2)S+ Salmonella, but contrast diminishes in weak H(2)S+ strains. H(2)S was affected by concentrations of peptones, glucose, ferric ammonium citrate (FAC) and sodium thiosulfate (ST), and by FAC:ST ratio, temperature, pH, air, and host strain. Increasing peptone levels was most important for improving contrast in weak H(2)S+ strains.
Collapse
|
8
|
Hinsley AP, Berks BC. Specificity of respiratory pathways involved in the reduction of sulfur compounds by Salmonella enterica. MICROBIOLOGY (READING, ENGLAND) 2002; 148:3631-3638. [PMID: 12427953 DOI: 10.1099/00221287-148-11-3631] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The tetrathionate (Ttr) and thiosulfate (Phs) reductases of Salmonella enterica LT2, together with the polysulfide reductase (Psr) of Wolinella succinogenes, are unusual examples of enzymes containing a molybdopterin active-site cofactor since all formally catalyse sulfur-sulfur bond cleavage. This is in contrast to the oxygen or hydrogen transfer reactions exhibited by other molybdopterin enzymes. Here the catalytic specificity of Ttr and Phs has been compared using both physiological and synthetic electron-donor systems. Ttr is shown to catalyse reduction of trithionate but not sulfur or thiosulfate. In contrast, Phs cannot reduce tetrathionate or trithionate but allows whole cells to utilize elemental sulfur as an electron acceptor. Mechanisms are proposed by which the bacterium is able to utilize an insoluble sulfur substrate by means of reactions at the cytoplasmic rather than the outer membrane.
Collapse
Affiliation(s)
- Andrew P Hinsley
- Centre for Metalloprotein Spectroscopy and Biology, School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK1
| | - Ben C Berks
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK2
- Centre for Metalloprotein Spectroscopy and Biology, School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK1
| |
Collapse
|
9
|
Bang SW, Clark DS, Keasling JD. Engineering hydrogen sulfide production and cadmium removal by expression of the thiosulfate reductase gene (phsABC) from Salmonella enterica serovar typhimurium in Escherichia coli. Appl Environ Microbiol 2000; 66:3939-44. [PMID: 10966412 PMCID: PMC92242 DOI: 10.1128/aem.66.9.3939-3944.2000] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The thiosulfate reductase gene (phsABC) from Salmonella enterica serovar Typhimurium was expressed in Escherichia coli to overproduce hydrogen sulfide from thiosulfate for heavy metal removal (or precipitation). A 5.1-kb DNA fragment containing phsABC was inserted into the pMB1-based, high-copy, isopropyl-beta-D-thiogalactopyranoside-inducible expression vector pTrc99A and the RK2-based, medium-copy, m-toluate-inducible expression vector pJB866, resulting in plasmids pSB74 and pSB77. A 3. 7-kb DNA fragment, excluding putative promoter and regulatory regions, was inserted into the same vectors, making plasmids pSB103 and pSB107. E. coli DH5alpha strains harboring the phsABC constructs showed higher thiosulfate reductase activity and produced significantly more sulfide than the control strains under both aerobic and anaerobic conditions. Among the four phsABC constructs, E. coli DH5alpha (pSB74) produced thiosulfate reductase at the highest level and removed the most cadmium from solution under anaerobic conditions: 98% of all concentrations up to 150 microM and 91% of 200 microM. In contrast, a negative control did not produce any measurable sulfide and removed very little cadmium from solution. Energy-dispersive X-ray spectroscopy revealed that the metal removed from solution precipitated as a complex of cadmium and sulfur, most likely cadmium sulfide.
Collapse
Affiliation(s)
- S W Bang
- Department of Chemical Engineering, University of California, Berkeley, California 94720-1462, USA
| | | | | |
Collapse
|
10
|
Sasahara KC, Heinzinger NK, Barrett EL. Hydrogen sulfide production and fermentative gas production by Salmonella typhimurium require F0F1 ATP synthase activity. J Bacteriol 1997; 179:6736-40. [PMID: 9352924 PMCID: PMC179603 DOI: 10.1128/jb.179.21.6736-6740.1997] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
A previously isolated mutant of Salmonella typhimurium lacking hydrogen sulfide production from both thiosulfate and sulfite was shown to have a single mutation which also caused the loss of fermentative gas production and the ability to grow on nonfermentable substrates and which mapped in the vicinity of the atp chromosomal locus. The implication that F0F1 ATP synthase might be essential for H2S and fermentative gas production was explored. The phs plasmid conferring H2S production on wild-type Escherichia coli failed to confer this ability on seven of eight E. coli atp point mutants representing, collectively, the eight genes encoding the subunits of F0F1 ATP synthase. However, it did confer some thiosulfate reductase activity on all except the mutant with a lesion in the ATP synthase catalytic subunit. Localized mutagenesis of the Salmonella atp chromosomal region yielded 500 point mutants unable to reduce thiosulfate to H2S or to produce gas from glucose, but differing in the extents of their ability to grow on succinate, to perform proton translocation as measured in a fluorescence quenching assay, and to reduce sulfite to H2S. Biochemical assays showed that all mutants were completely devoid of both methyl viologen and formate-linked thiosulfate reductase and that N,N'-dicyclohexylcarbodiimide blocked thiosulfate reductase activity by the wild type, suggesting that thiosulfate reductase activity has an absolute requirement for F0F1 ATP synthase. Hydrogenase-linked formate dehydrogenase was also affected, but not as severely as thiosulfate reductase. These results imply that in addition to linking oxidation with phosphorylation, F0F1 ATP synthase plays a key role in the proton movement accompanying certain anaerobic reductions and oxidations.
Collapse
Affiliation(s)
- K C Sasahara
- Department of Food Science and Technology, University of California, Davis 95616-8598, USA
| | | | | |
Collapse
|
11
|
Abstract
We present edition VIII of the genetic map of Salmonella typhimurium LT2. We list a total of 1,159 genes, 1,080 of which have been located on the circular chromosome and 29 of which are on pSLT, the 90-kb plasmid usually found in LT2 lines. The remaining 50 genes are not yet mapped. The coordinate system used in this edition is neither minutes of transfer time in conjugation crosses nor units representing "phage lengths" of DNA of the transducing phage P22, as used in earlier editions, but centisomes and kilobases based on physical analysis of the lengths of DNA segments between genes. Some of these lengths have been determined by digestion of DNA by rare-cutting endonucleases and separation of fragments by pulsed-field gel electrophoresis. Other lengths have been determined by analysis of DNA sequences in GenBank. We have constructed StySeq1, which incorporates all Salmonella DNA sequence data known to us. StySeq1 comprises over 548 kb of nonredundant chromosomal genomic sequences, representing 11.4% of the chromosome, which is estimated to be just over 4,800 kb in length. Most of these sequences were assigned locations on the chromosome, in some cases by analogy with mapped Escherichia coli sequences.
Collapse
Affiliation(s)
- K E Sanderson
- Department of Biological Sciences, University of Calgary, Alberta, Canada
| | | | | |
Collapse
|
12
|
Heinzinger NK, Fujimoto SY, Clark MA, Moreno MS, Barrett EL. Sequence analysis of the phs operon in Salmonella typhimurium and the contribution of thiosulfate reduction to anaerobic energy metabolism. J Bacteriol 1995; 177:2813-20. [PMID: 7751291 PMCID: PMC176953 DOI: 10.1128/jb.177.10.2813-2820.1995] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The phs chromosomal locus of Salmonella typhimurium is essential for the dissimilatory anaerobic reduction of thiosulfate to hydrogen sulfide. Sequence analysis of the phs region revealed a functional operon with three open reading frames, designated phsA, phsB, and phsC, which encode peptides of 82.7, 21.3, and 28.5 kDa, respectively. The predicted products of phsA and phsB exhibited significant homology with the catalytic and electron transfer subunits of several other anaerobic molybdoprotein oxidoreductases, including Escherichia coli dimethyl sulfoxide reductase, nitrate reductase, and formate dehydrogenase. Simultaneous comparison of PhsA to seven homologous molybdoproteins revealed numerous similarities among all eight throughout the entire frame, hence, significant amino acid conservation among molybdoprotein oxidoreductases. Comparison of PhsB to six other homologous sequences revealed four highly conserved iron-sulfur clusters. The predicted phsC product was highly hydrophobic and similar in size to the hydrophobic subunits of the molybdoprotein oxidoreductases containing subunits homologous to phsA and phsB. Thus, phsABC appears to encode thiosulfate reductase. Single-copy phs-lac translational fusions required both anaerobiosis and thiosulfate for full expression, whereas multicopy phs-lac translational fusions responded to either thiosulfate or anaerobiosis, suggesting that oxygen and thiosulfate control of phs involves negative regulation. A possible role for thiosulfate reduction in anaerobic respiration was examined. Thiosulfate did not significantly augment the final densities of anaerobic cultures grown on any of the 18 carbon sources tested. on the other hand, washed stationary-phase cells depleted of ATP were shown to synthesize small amounts of ATP on the addition of the formate and thiosulfate, suggesting that the thiosulfate reduction plays a unique role in anaerobic energy conservation by S typhimurium.
Collapse
Affiliation(s)
- N K Heinzinger
- Department of Food Science and Technology, University of California, Davis 95616, USA
| | | | | | | | | |
Collapse
|
13
|
Alami N, Hallenbeck PC. Cloning and characterization of a gene cluster, phsBCDEF, necessary for the production of hydrogen sulfide from thiosulfate by Salmonella typhimurium. Gene 1995; 156:53-7. [PMID: 7737516 DOI: 10.1016/0378-1119(94)00930-q] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
We cloned, by complementation of an H2S- mutant, a cluster of Salmonella typhimurium genes, phsBCDEF, that appears to be essential for the anaerobic production of hydrogen sulfide from thiosulfate. Tn5 mutagenesis and ExoIII deletion analysis showed that approx. the entire region of a 3.3-kb subclone was necessary for H2S production. Subsequent sequencing revealed the presence of five potential translationally coupled open reading frames (ORFs). Their putative protein products were confirmed by synthesis from a phage T7 expression system. Comparison of the encoded sequences with previously determined sequences suggests that these genes constitute part of a thiosulfate-reducing operon coding for a membrane-associated electron transport chain which contains proteins potentially capable of ligating iron-sulfur clusters and heme. Immediately upstream from these genes, a region encoding the C-terminal portion of an ORF (OrfA) was identified that showed a high degree of similarity to some other anaerobic terminal reductases, polysulfide reductase (PsrA) of Wolinella succinogenes and dimethylsulfoxide reductase (DmsA), formate dehydrogenase (formate-hydrogene-lyase linked) (FdhF) and nitrate reductase (NarG) of Escherichia coli.
Collapse
Affiliation(s)
- N Alami
- Département de microbiologie et immunologie, Université de Montréal, Québec, Canada
| | | |
Collapse
|