1
|
Bodine SP, Muir TW. Molecular Mechanisms of Virulence Regulation in Staphylococcus aureus: A Journey into Reconstitutive Biochemistry. Acc Chem Res 2025; 58:1657-1669. [PMID: 40331756 DOI: 10.1021/acs.accounts.5c00117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
ConspectusMethodological development in the fields of genetics, chemical biology, and biochemistry over the last several decades has provided researchers with a diverse set of powerful tools to investigate biological processes. Leveraging these innovations in concert, scientists can now characterize biological pathways at a level of complexity ranging from systems biology down to molecular and atomic detail.Throughout this Account, we illustrate how discoveries made using these tools build on each other to develop a comprehensive understanding of biological pathways. Advancements in genetic sequencing facilitates association of genotypes and phenotypes, independent of biochemical mechanism. Through the biochemical reconstitution of the interactions between biological macromolecules─including the small molecules (ligands and metabolites) and proteins─that participate in these biological pathways, scientists can characterize the specific molecular features that link genotype and phenotype. This facilitates identification of targets within these pathways that can be manipulated to achieve a greater understanding of the biological process or to develop interventions to improve human health outcomes.Specifically, we describe how this toolbox was leveraged to discover and characterize the molecular biochemistry underlying control of pathogenicity in the Gram-positive bacterium Staphylococcus aureus. Concurrent with advancements in the investigative tools available to the scientific community, we and others reported on the genetic, molecular, and biochemical/biophysical components of this regulatory system. Virulence control in S. aureus is achieved through a chemical system of bacterial cell-to-cell communication indexed to local population density, referred to as quorum sensing (QS). We and our collaborators identified that this QS system is encoded in the accessory gene regulator (agr) operon and functions via the biosynthesis, secretion, and accumulation of a short peptide signaling molecule─the autoinducing peptide (AIP)─in the local environment correlated with the growth of S. aureus in the same biological niche. Above a threshold concentration, these AIPs bind and activate a cell-surface receptor to stimulate an intracellular response resulting in altered gene expression and bacterial group behaviors. We discovered that chemical modification of these AIPs often generates molecules that exhibit potent inhibition of agr QS, with demonstrated therapeutic potential to treat S. aureus infections. We went on to characterize the biochemical mechanism of signaling molecule biosynthesis and receptor activation in controlled systems through in vitro reconstitution of the constituent enzymes and substrates. Biochemical reconstitution enabled quantitative assessment of biophysical parameters. These efforts culminated in the comprehensive characterization and functional in vitro reconstitution of agr QS in a synthetic system in a minimal model at the interface of genotype, mechanism, and phenotype.
Collapse
Affiliation(s)
- Steven P Bodine
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Tom W Muir
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
2
|
Swingle D, Epstein L, Aymon R, Isiorho EA, Abzalimov RR, Favaro DC, Gardner KH. Variations in kinase and effector signaling logic in a bacterial two component signaling network. J Biol Chem 2025:108534. [PMID: 40273983 DOI: 10.1016/j.jbc.2025.108534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 04/08/2025] [Accepted: 04/10/2025] [Indexed: 04/26/2025] Open
Abstract
The general stress response (GSR) protects bacteria from a wide range of stressors. In Alphaproteobacteria, GSR activation is coordinated by HWE/HisKA2 family histidine kinases (HKs), which can exhibit non-canonical structure and function. For example, while most light-oxygen-voltage sensor-containing HKs are light activated dimers, the Rubellimicrobium thermophilum RT-HK has inverted "dark on, light off" signaling logic with a tunable monomer/dimer equilibrium. Here, we further investigate these atypical behaviors of RT-HK and characterize its downstream signaling network. Using hydrogen-deuterium exchange mass spectrometry, we find that RT-HK uses a signal transduction mechanism similar to light-activated systems, despite its inverted logic. Mutagenesis reveals that RT-HK autophosphorylates in trans, with changes to the Jα helix linking sensor and kinase domains affecting autophosphorylation levels. Exploring downstream effects of RT-HK, we identified two GSR genetic regions, each encoding a copy of the central regulator PhyR. In vitro measurements of phosphotransfer from RT-HK to the two putative PhyRs revealed that RT-HK signals only to one, and does so at an increased intensity in the dark, consistent with its reversed logic. X-ray crystal structures of both PhyRs revealed a substantial shift within the receiver domain of one, suggesting a basis for RT-HK specificity. We probed further down the pathway using nuclear magnetic resonance to determine that the single NepR homolog interacts with both unphosphorylated PhyRs, and this interaction is decoupled from activation in one PhyR. This work expands our understanding of HWE/HisKA2 family signal transduction, revealing marked variations from signaling mechanisms previously identified in other GSR networks.
Collapse
Affiliation(s)
- Danielle Swingle
- Structural Biology Initiative, CUNY Advanced Science Research Center, New York, NY 10031; Ph.D. Program in Biochemistry, The Graduate Center - City University of New York, New York, NY 10016
| | - Leah Epstein
- Structural Biology Initiative, CUNY Advanced Science Research Center, New York, NY 10031; Ph.D. Program in Biochemistry, The Graduate Center - City University of New York, New York, NY 10016
| | - Ramisha Aymon
- Structural Biology Initiative, CUNY Advanced Science Research Center, New York, NY 10031; Department of Chemistry and Biochemistry, City College of New York, New York, NY 10031
| | - Eta A Isiorho
- Structural Biology Initiative, CUNY Advanced Science Research Center, New York, NY 10031
| | - Rinat R Abzalimov
- Structural Biology Initiative, CUNY Advanced Science Research Center, New York, NY 10031
| | - Denize C Favaro
- Structural Biology Initiative, CUNY Advanced Science Research Center, New York, NY 10031
| | - Kevin H Gardner
- Structural Biology Initiative, CUNY Advanced Science Research Center, New York, NY 10031; Department of Chemistry and Biochemistry, City College of New York, New York, NY 10031; Ph.D. Programs in Biochemistry, Biology, and Chemistry, The Graduate Center - City University of New York, New York, NY 10016.
| |
Collapse
|
3
|
Swingle D, Epstein L, Aymon R, Isiorho EA, Abzalimov RR, Favaro DC, Gardner KH. Variations in kinase and effector signaling logic in a bacterial two component signaling network. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.04.621962. [PMID: 39574756 PMCID: PMC11580852 DOI: 10.1101/2024.11.04.621962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
The general stress response (GSR) protects bacteria from a wide range of stressors. In Alphaproteobacteria, GSR activation is coordinated by HWE/HisKA2 family histidine kinases (HKs), which can exhibit non-canonical structure and function. For example, while most light-oxygen-voltage sensor-containing HKs are light activated dimers, the Rubellimicrobium thermophilum RT-HK has inverted "dark on, light off" signaling logic with a tunable monomer/dimer equilibrium. Here, we further investigate these atypical behaviors of RT-HK and characterize its downstream signaling network. Using hydrogen-deuterium exchange mass spectrometry, we find that RT-HK uses a signal transduction mechanism similar to light-activated systems, despite its inverted logic. Mutagenesis reveals that RT-HK autophosphorylates in trans, with changes to the Jα helix linking sensor and kinase domains affecting autophosphorylation levels. Exploring downstream effects of RT-HK, we identified two GSR genetic regions, each encoding a copy of the central regulator PhyR. In vitro measurements of phosphotransfer from RT-HK to the two putative PhyRs revealed that RT-HK signals only to one, and does so at an increased intensity in the dark, consistent with its reversed logic. X-ray crystal structures of both PhyRs revealed a substantial shift within the receiver domain of one, suggesting a basis for RT-HK specificity. We probed further down the pathway using nuclear magnetic resonance to determine that the single NepR homolog interacts with both unphosphorylated PhyRs, and this interaction is decoupled from activation in one PhyR. This work expands our understanding of HWE/HisKA2 family signal transduction, revealing marked variations from signaling mechanisms previously identified in other GSR networks.
Collapse
Affiliation(s)
- Danielle Swingle
- Structural Biology Initiative, CUNY Advanced Science Research Center, New York, NY 10031
- Ph.D. Program in Biochemistry, The Graduate Center – City University of New York, New York, NY 10016
| | - Leah Epstein
- Structural Biology Initiative, CUNY Advanced Science Research Center, New York, NY 10031
- Ph.D. Program in Biochemistry, The Graduate Center – City University of New York, New York, NY 10016
| | - Ramisha Aymon
- Structural Biology Initiative, CUNY Advanced Science Research Center, New York, NY 10031
- Department of Chemistry and Biochemistry, City College of New York, New York, NY 10031
| | - Eta A. Isiorho
- Structural Biology Initiative, CUNY Advanced Science Research Center, New York, NY 10031
| | - Rinat R. Abzalimov
- Structural Biology Initiative, CUNY Advanced Science Research Center, New York, NY 10031
| | - Denize C. Favaro
- Structural Biology Initiative, CUNY Advanced Science Research Center, New York, NY 10031
| | - Kevin H. Gardner
- Structural Biology Initiative, CUNY Advanced Science Research Center, New York, NY 10031
- Department of Chemistry and Biochemistry, City College of New York, New York, NY 10031
- Ph.D. Programs in Biochemistry, Biology, and Chemistry, The Graduate Center – City University of New York, New York, NY 10016
| |
Collapse
|
4
|
Barron S, Mus F, Peters JW. Nitrogen-Fixing Gamma Proteobacteria Azotobacter vinelandii-A Blueprint for Nitrogen-Fixing Plants? Microorganisms 2024; 12:2087. [PMID: 39458396 PMCID: PMC11509896 DOI: 10.3390/microorganisms12102087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/15/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
The availability of fixed nitrogen limits overall agricultural crop production worldwide. The so-called modern "green revolution" catalyzed by the widespread application of nitrogenous fertilizer has propelled global population growth. It has led to imbalances in global biogeochemical nitrogen cycling, resulting in a "nitrogen problem" that is growing at a similar trajectory to the "carbon problem". As a result of the increasing imbalances in nitrogen cycling and additional environmental problems such as soil acidification, there is renewed and increasing interest in increasing the contributions of biological nitrogen fixation to reduce the inputs of nitrogenous fertilizers in agriculture. Interestingly, biological nitrogen fixation, or life's ability to convert atmospheric dinitrogen to ammonia, is restricted to microbial life and not associated with any known eukaryotes. It is not clear why plants never evolved the ability to fix nitrogen and rather form associations with nitrogen-fixing microorganisms. Perhaps it is because of the large energy demand of the process, the oxygen sensitivity of the enzymatic apparatus, or simply failure to encounter the appropriate selective pressure. Whatever the reason, it is clear that this ability of crop plants, especially cereals, would transform modern agriculture once again. Successfully engineering plants will require creating an oxygen-free niche that can supply ample energy in a tightly regulated manner to minimize energy waste and ensure the ammonia produced is assimilated. Nitrogen-fixing aerobic bacteria can perhaps provide a blueprint for engineering nitrogen-fixing plants. This short review discusses the key features of robust nitrogen fixation in the model nitrogen-fixing aerobe, gamma proteobacteria Azotobacter vinelandii, in the context of the basic requirements for engineering nitrogen-fixing plants.
Collapse
Affiliation(s)
| | | | - John W. Peters
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK 73019, USA
| |
Collapse
|
5
|
Kumarapperuma I, Tom IP, Bandara S, Montano S, Yang X. Mode of autophosphorylation in bacteriophytochromes RpBphP2 and RpBphP3. Photochem Photobiol Sci 2023; 22:1257-1266. [PMID: 36757561 PMCID: PMC10619329 DOI: 10.1007/s43630-023-00366-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 01/12/2023] [Indexed: 02/10/2023]
Abstract
Phytochromes are red-light photoreceptors that regulate a wide range of physiological processes in plants, fungi and bacteria. Canonical bacteriophytochromes are photosensory histidine kinases that undergo light-dependent autophosphorylation, thereby regulating cellular responses to red light via two-component signaling pathways. However, the molecular mechanism of kinase activation remains elusive for bacteriophytochromes. In particular, the directionality of autophosphorylation is still an open question in these dimeric photoreceptor kinases. In this work, we perform histidine kinase assays on two tandem bacteriophytochromes RpBphP2 and RpBphP3 from the photosynthetic bacterium Rhodopseudomonas palustris. By examining the kinase activities of full-length bacteriophytochromes and two loss-of-function mutants under different light conditions, we demonstrate that RpBphP2 and RpBphP3 undergo light-dependent trans-phosphorylation between protomers in both homodimeric and heterodimeric forms. We have further determined the crystal structure of the histidine kinase domains of RpBphP2 at 3.19 Å resolution. Based on structural comparisons and homology modeling, we also present a model to account for the actions of trans-autophosphorylation in bacteriophytochromes.
Collapse
Affiliation(s)
| | - Irin P Tom
- Department of Chemistry, University of Illinois Chicago, Chicago, IL, USA
| | - Sepalika Bandara
- Department of Chemistry, University of Illinois Chicago, Chicago, IL, USA
| | - Sherwin Montano
- Department of Chemistry, University of Illinois Chicago, Chicago, IL, USA
| | - Xiaojing Yang
- Department of Chemistry, University of Illinois Chicago, Chicago, IL, USA.
- Department of Ophthalmology and Vision Sciences, University of Illinois Chicago, Chicago, IL, USA.
| |
Collapse
|
6
|
The role of sensory kinase proteins in two-component signal transduction. Biochem Soc Trans 2022; 50:1859-1873. [DOI: 10.1042/bst20220848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/02/2022] [Accepted: 11/08/2022] [Indexed: 11/19/2022]
Abstract
Two-component systems (TCSs) are modular signaling circuits that regulate diverse aspects of microbial physiology in response to environmental cues. These molecular circuits comprise a sensor histidine kinase (HK) protein that contains a conserved histidine residue, and an effector response regulator (RR) protein with a conserved aspartate residue. HKs play a major role in bacterial signaling, since they perceive specific stimuli, transmit the message across the cytoplasmic membrane, and catalyze their own phosphorylation, and the trans-phosphorylation and dephosphorylation of their cognate response regulator. The molecular mechanisms by which HKs co-ordinate these functions have been extensively analyzed by genetic, biochemical, and structural approaches. Here, we describe the most common modular architectures found in bacterial HKs, and address the operation mode of the individual functional domains. Finally, we discuss the use of these signaling proteins as drug targets or as sensing devices in whole-cell biosensors with medical and biotechnological applications.
Collapse
|
7
|
Ma P, Phillips-Jones MK. Membrane Sensor Histidine Kinases: Insights from Structural, Ligand and Inhibitor Studies of Full-Length Proteins and Signalling Domains for Antibiotic Discovery. Molecules 2021; 26:molecules26165110. [PMID: 34443697 PMCID: PMC8399564 DOI: 10.3390/molecules26165110] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/02/2021] [Accepted: 08/19/2021] [Indexed: 12/19/2022] Open
Abstract
There is an urgent need to find new antibacterial agents to combat bacterial infections, including agents that inhibit novel, hitherto unexploited targets in bacterial cells. Amongst novel targets are two-component signal transduction systems (TCSs) which are the main mechanism by which bacteria sense and respond to environmental changes. TCSs typically comprise a membrane-embedded sensory protein (the sensor histidine kinase, SHK) and a partner response regulator protein. Amongst promising targets within SHKs are those involved in environmental signal detection (useful for targeting specific SHKs) and the common themes of signal transmission across the membrane and propagation to catalytic domains (for targeting multiple SHKs). However, the nature of environmental signals for the vast majority of SHKs is still lacking, and there is a paucity of structural information based on full-length membrane-bound SHKs with and without ligand. Reasons for this lack of knowledge lie in the technical challenges associated with investigations of these relatively hydrophobic membrane proteins and the inherent flexibility of these multidomain proteins that reduces the chances of successful crystallisation for structural determination by X-ray crystallography. However, in recent years there has been an explosion of information published on (a) methodology for producing active forms of full-length detergent-, liposome- and nanodisc-solubilised membrane SHKs and their use in structural studies and identification of signalling ligands and inhibitors; and (b) mechanisms of signal sensing and transduction across the membrane obtained using sensory and transmembrane domains in isolation, which reveal some commonalities as well as unique features. Here we review the most recent advances in these areas and highlight those of potential use in future strategies for antibiotic discovery. This Review is part of a Special Issue entitled “Interactions of Bacterial Molecules with Their Ligands and Other Chemical Agents” edited by Mary K. Phillips-Jones.
Collapse
Affiliation(s)
- Pikyee Ma
- Laboratory of Biomolecular Research, Paul Scherrer Institute, CH-5232 Villigen, Switzerland;
| | - Mary K. Phillips-Jones
- National Centre for Macromolecular Hydrodynamics, School of Biosciences, University of Nottingham, Sutton Bonington LE12 5RD, UK
- Correspondence:
| |
Collapse
|
8
|
Miguel-Romero L, Mideros-Mora C, Marina A, Casino P. Structural and Functional Characterization of Autophosphorylation in Bacterial Histidine Kinases. Methods Mol Biol 2020; 2077:121-140. [PMID: 31707656 DOI: 10.1007/978-1-4939-9884-5_9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Autophosphorylation of histidine kinases (HK) is the first step for signal transduction in bacterial two-component signalling systems. As HKs dimerize, the His residue is phosphorylated in cis or trans depending on whether the ATP molecule used in the reaction is bound to the same or the neighboring subunit, respectively. The cis or trans autophosphorylation results from an alternative directionality in the connection between helices α1 and α2 in the HK DHp domain, in such a way that α2 could be oriented almost 90° counterclockwise or clockwise with respect to α1. Sequence and length variability of this connection appears to lie behind the different directionality and is implicated in partner recognition with the response regulator (RR), highlighting its importance in signal transduction. Despite this mechanistic difference, HK autophosphorylation appears to be universal, involving conserved residues neighboring the phosphoacceptor His residue. Herein, we describe a simple protocol to determine both autophosphorylation directionality of HKs and the roles of the catalytic residues in these protein kinases.
Collapse
Affiliation(s)
- Laura Miguel-Romero
- Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas (IBV-CSIC), Valencia, Spain
| | - Cristina Mideros-Mora
- Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas (IBV-CSIC), Valencia, Spain.,Facultad de Ciencias de la Salud Eugenio Espejo, Universidad Tecnológica Equinoccial, Quito, Ecuador
| | - Alberto Marina
- Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas (IBV-CSIC), Valencia, Spain. .,CIBER de Enfermedades Raras (CIBERER-ISCIII), Madrid, Spain.
| | - Patricia Casino
- Departament de Bioquímica i Biología Molecular, Universitat de València, Burjassot, Spain. .,Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED), Universitat de València, Burjassot, Spain.
| |
Collapse
|
9
|
Kukolj C, Pedrosa FO, de Souza GA, Sumner LW, Lei Z, Sumner B, do Amaral FP, Juexin W, Trupti J, Huergo LF, Monteiro RA, Valdameri G, Stacey G, de Souza EM. Proteomic and Metabolomic Analysis of Azospirillum brasilense ntrC Mutant under High and Low Nitrogen Conditions. J Proteome Res 2019; 19:92-105. [DOI: 10.1021/acs.jproteome.9b00397] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Caroline Kukolj
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, UFPR, P.O. Box 19046, 81531980 Curitiba, Paraná, Brazil
| | - Fábio O. Pedrosa
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, UFPR, P.O. Box 19046, 81531980 Curitiba, Paraná, Brazil
| | | | - Lloyd W. Sumner
- Department of Biochemistry, University of Missouri, Bond Life Sciences Center, 1201 Rollins Street, Columbia, Missouri 65211, United States
| | - Zhentian Lei
- Department of Biochemistry, University of Missouri, Bond Life Sciences Center, 1201 Rollins Street, Columbia, Missouri 65211, United States
- MU Metabolomics Center, University of Missouri, Bond Life Sciences Center, 1201 Rollins Street, Columbia, Missouri 65211, United States
| | - Barbara Sumner
- Department of Biochemistry, University of Missouri, Bond Life Sciences Center, 1201 Rollins Street, Columbia, Missouri 65211, United States
- MU Metabolomics Center, University of Missouri, Bond Life Sciences Center, 1201 Rollins Street, Columbia, Missouri 65211, United States
| | | | | | | | - Luciano F. Huergo
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, UFPR, P.O. Box 19046, 81531980 Curitiba, Paraná, Brazil
- Setor Litoral, UFPR, Matinhos, Paraná 80060-000, Brazil
| | - Rose Adele Monteiro
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, UFPR, P.O. Box 19046, 81531980 Curitiba, Paraná, Brazil
| | - Glaucio Valdameri
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, UFPR, P.O. Box 19046, 81531980 Curitiba, Paraná, Brazil
- Departamento de Análises Clínicas, UFPR, Curitiba, Paraná 80060-000, Brazil
| | | | - Emanuel M. de Souza
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, UFPR, P.O. Box 19046, 81531980 Curitiba, Paraná, Brazil
| |
Collapse
|
10
|
Mechanism of metal ion-induced activation of a two-component sensor kinase. Biochem J 2019; 476:115-135. [PMID: 30530842 DOI: 10.1042/bcj20180577] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 12/05/2018] [Accepted: 12/10/2018] [Indexed: 12/12/2022]
Abstract
Two-component systems (TCSs) are essential for bacteria to sense, respond, and adapt to changing environments, such as elevation of Cu(I)/Ag(I) ions in the periplasm. In Escherichia coli, the CusS-CusR TCS up-regulates the cusCFBA genes under increased periplasmic Cu(I)/Ag(I) concentrations to help maintain metal ion homeostasis. The CusS histidine kinase is a homodimeric integral membrane protein that binds to periplasmic Cu(I)/Ag(I) and transduces a signal to its cytoplasmic kinase domain. However, the mechanism of how metal binding in the periplasm activates autophosphorylation in the cytoplasm is unknown. Here, we report that only one of the two metal ion-binding sites in CusS enhances dimerization of the sensor domain. Utilizing nanodisc technology to study full-length CusS, we show that metal-induced dimerization in the sensor domain triggers kinase activity in the cytoplasmic domain. We also investigated autophosphorylation in the cytoplasmic domain of CusS and phosphotransfer between CusS and CusR. In vitro analyses show that CusS autophosphorylates its conserved H271 residue at the N1 position of the histidine imidazole. The phosphoryl group is removed by the response regulator CusR in a reaction that requires a conserved aspartate at position 51. Functional analyses in vivo of CusS and CusR variants with mutations in the autophosphorylation or phosphoacceptor residues suggest that the phosphotransfer event is essential for metal resistance in E. coli Biochemical analysis shows that the CusS dimer autophosphorylates using a cis mechanism. Our results support a signal transduction model in which rotation and bending movements in the cytoplasmic domain maintain the mode of autophosphorylation.
Collapse
|
11
|
Teran-Melo JL, Peña-Sandoval GR, Silva-Jimenez H, Rodriguez C, Alvarez AF, Georgellis D. Routes of phosphoryl group transfer during signal transmission and signal decay in the dimeric sensor histidine kinase ArcB. J Biol Chem 2018; 293:13214-13223. [PMID: 29945971 PMCID: PMC6109937 DOI: 10.1074/jbc.ra118.003910] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 06/14/2018] [Indexed: 11/06/2022] Open
Abstract
The Arc (anoxic redox control) two-component system of Escherichia coli, comprising ArcA as the response regulator and ArcB as the sensor histidine kinase, modulates the expression of numerous genes in response to respiratory growth conditions. Under reducing growth conditions, ArcB autophosphorylates at the expense of ATP, and transphosphorylates ArcA via a His292 → Asp576 → His717 → Asp54 phosphorelay, whereas under oxidizing growth conditions, ArcB catalyzes the dephosphorylation of ArcA-P by a reverse Asp54 → His717 → Asp576 → Pi phosphorelay. However, the exact phosphoryl group transfer routes and the molecular mechanisms determining their directions are unclear. Here, we show that, during signal propagation, the His292 → Asp576 and Asp576 → His717 phosphoryl group transfers within ArcB dimers occur intra- and intermolecularly, respectively. Moreover, we report that, during signal decay, the phosphoryl group transfer from His717 to Asp576 takes place intramolecularly. In conclusion, we present a mechanism that dictates the direction of the phosphoryl group transfer within ArcB dimers and that enables the discrimination of the kinase and phosphatase activities of ArcB.
Collapse
Affiliation(s)
- Juan L Teran-Melo
- From the Departamento de Genética Molecular, Instituto de Fisiología Celular Universidad Nacional Autónoma de México, 04510 Mexico City, Mexico
| | - Gabriela R Peña-Sandoval
- the Unidad Académica de Agricultura, Universidad Autónoma de Nayarit, 63190 Tepic, Nayarit, Mexico, and
| | - Hortencia Silva-Jimenez
- the Area de Oceanografía Química, Instituto de Investigaciones Oceanológicas, Universidad Autónoma de Baja California, 22860 Ensenada, Baja California, Mexico
| | - Claudia Rodriguez
- From the Departamento de Genética Molecular, Instituto de Fisiología Celular Universidad Nacional Autónoma de México, 04510 Mexico City, Mexico
| | - Adrián F Alvarez
- From the Departamento de Genética Molecular, Instituto de Fisiología Celular Universidad Nacional Autónoma de México, 04510 Mexico City, Mexico
| | - Dimitris Georgellis
- From the Departamento de Genética Molecular, Instituto de Fisiología Celular Universidad Nacional Autónoma de México, 04510 Mexico City, Mexico,
| |
Collapse
|
12
|
Activation of Bacterial Histidine Kinases: Insights into the Kinetics of the cis Autophosphorylation Mechanism. mSphere 2018; 3:3/3/e00111-18. [PMID: 29769379 PMCID: PMC5956149 DOI: 10.1128/msphere.00111-18] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Accepted: 04/22/2018] [Indexed: 12/16/2022] Open
Abstract
Two-component signaling systems (TCSs) are central to bacterial adaptation. However, the mechanisms underlying the reactions involving TCS proteins and their reaction rates are largely undetermined. Here, we employed a combined experimental and theoretical approach to elucidate the kinetics of autophosphorylation of three histidine kinases (HKs) of Mycobacterium tuberculosis, viz., MtrB, PrrB, and PhoR, all known to play a role in regulating its virulence. Using wild-type and mutant proteins, we performed dimerization assays, thermophoretic-affinity measurements, and competition-based phosphorylation assays to establish that for HK, MtrB autophosphorylation occurs in cis, similar to what has been proposed for the PhoR and PrrB HKs. Next, to determine the kinetics of cis autophosphorylation, we used a quantitative high-throughput assay and identified a two-step mechanism of HK activation, involving (i) the reversible association of HK with ATP, followed by (ii) its phosphorylation. We developed a mathematical model based on this two-step cis mechanism that captured the experimental data. Best-fit parameter values yielded estimates of the extent of HK-ATP association and the rates of HK autophosphorylation, allowing quantification of the propensity of HK autophosphorylation. Our combined experimental and theoretical approach presents a facile, scalable tool to quantify reactions involving bacterial TCS proteins, useful in antibacterial drug development strategies.IMPORTANCE Two-component systems consisting of an input-sensing histidine kinase (HK) and an output-generating response regulator (RR) are one of the key apparatuses utilized by bacteria for adapting to the extracellular milieu. HK autophosphorylation is shown to occur primarily in trans (intermolecular) and more recently shown to occur in cis (intramolecular). Although the catalysis of HK activation remains universal, the reaction scheme for evaluation of the kinetic parameter differs between these designs and cis mode largely remains unexplored. We combined experimental and theoretical approach to unravel two-step mechanism of activation of three cis mode HKs of M. tuberculosis The new mathematical model yields best-fit parameters to estimate the rates of HK-ATP association and HK autophosphorylation.
Collapse
|
13
|
Zschiedrich CP, Keidel V, Szurmant H. Molecular Mechanisms of Two-Component Signal Transduction. J Mol Biol 2016; 428:3752-75. [PMID: 27519796 DOI: 10.1016/j.jmb.2016.08.003] [Citation(s) in RCA: 376] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Revised: 07/30/2016] [Accepted: 08/01/2016] [Indexed: 02/03/2023]
Abstract
Two-component systems (TCS) comprising sensor histidine kinases and response regulator proteins are among the most important players in bacterial and archaeal signal transduction and also occur in reduced numbers in some eukaryotic organisms. Given their importance to cellular survival, virulence, and cellular development, these systems are among the most scrutinized bacterial proteins. In the recent years, a flurry of bioinformatics, genetic, biochemical, and structural studies have provided detailed insights into many molecular mechanisms that underlie the detection of signals and the generation of the appropriate response by TCS. Importantly, it has become clear that there is significant diversity in the mechanisms employed by individual systems. This review discusses the current knowledge on common themes and divergences from the paradigm of TCS signaling. An emphasis is on the information gained by a flurry of recent structural and bioinformatics studies.
Collapse
Affiliation(s)
- Christopher P Zschiedrich
- Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, 309 E Second Street, Pomona, CA 91766, USA; Department of Molecular and Experimental Medicine, The Scripps Research Institute, 10550 N Torrey Pines Road, La Jolla, CA 92037, USA
| | - Victoria Keidel
- Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, 309 E Second Street, Pomona, CA 91766, USA; Department of Molecular and Experimental Medicine, The Scripps Research Institute, 10550 N Torrey Pines Road, La Jolla, CA 92037, USA
| | - Hendrik Szurmant
- Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, 309 E Second Street, Pomona, CA 91766, USA; Department of Molecular and Experimental Medicine, The Scripps Research Institute, 10550 N Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
14
|
Alvarez AF, Barba-Ostria C, Silva-Jiménez H, Georgellis D. Organization and mode of action of two component system signaling circuits from the various kingdoms of life. Environ Microbiol 2016; 18:3210-3226. [DOI: 10.1111/1462-2920.13397] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 05/17/2016] [Accepted: 05/23/2016] [Indexed: 11/26/2022]
Affiliation(s)
- Adrian F. Alvarez
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México; 04510 México City, México
| | - Carlos Barba-Ostria
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México; 04510 México City, México
| | - Hortencia Silva-Jiménez
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México; 04510 México City, México
| | - Dimitris Georgellis
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México; 04510 México City, México
| |
Collapse
|
15
|
Structural Insights into the HWE Histidine Kinase Family: The Brucella Blue Light-Activated Histidine Kinase Domain. J Mol Biol 2016; 428:1165-1179. [PMID: 26851072 DOI: 10.1016/j.jmb.2016.01.026] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 01/22/2016] [Accepted: 01/27/2016] [Indexed: 01/12/2023]
Abstract
In response to light, as part of a two-component system, the Brucella blue light-activated histidine kinase (LOV-HK) increases its autophosphorylation, modulating the virulence of this microorganism. The Brucella histidine kinase (HK) domain belongs to the HWE family, for which there is no structural information. The HWE family is exclusively present in proteobacteria and usually coupled to a wide diversity of light sensor domains. This work reports the crystal structure of the Brucella HK domain, which presents two different dimeric assemblies in the asymmetric unit: one similar to the already described canonical parallel homodimers (C) and the other, an antiparallel non-canonical (NC) dimer, each with distinct relative subdomain orientations and dimerization interfaces. Contrary to these crystallographic structures and unlike other HKs, in solution, the Brucella HK domain is monomeric and still active, showing an astonishing instability of the dimeric interface. Despite this instability, using cross-linking experiments, we show that the C dimer is the functionally relevant species. Mutational analysis demonstrates that the autophosphorylation activity occurs in cis. The different relative subdomain orientations observed for the NC and C states highlight the large conformational flexibility of the HK domain. Through the analysis of these alternative conformations by means of molecular dynamics simulations, we also propose a catalytic mechanism for Brucella LOV-HK.
Collapse
|
16
|
Visualizing autophosphorylation in histidine kinases. Nat Commun 2015; 5:3258. [PMID: 24500224 DOI: 10.1038/ncomms4258] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 01/14/2014] [Indexed: 12/17/2022] Open
Abstract
Reversible protein phosphorylation is the most widespread regulatory mechanism in signal transduction. Autophosphorylation in a dimeric sensor histidine kinase is the first step in two-component signalling, the predominant signal-transduction device in bacteria. Despite being the most abundant sensor kinases in nature, the molecular bases of the histidine kinase autophosphorylation mechanism are still unknown. Furthermore, it has been demonstrated that autophosphorylation can occur in two directions, cis (intrasubunit) or trans (intersubunit) within the dimeric histidine kinase. Here, we present the crystal structure of the complete catalytic machinery of a chimeric histidine kinase. The structure shows an asymmetric histidine kinase dimer where one subunit is caught performing the autophosphorylation reaction. A structure-guided functional analysis on HK853 and EnvZ, two prototypical cis- and trans-phosphorylating histidine kinases, has allowed us to decipher the catalytic mechanism of histidine kinase autophosphorylation, which seems to be common independently of the reaction directionality.
Collapse
|
17
|
Nguyen MP, Yoon JM, Cho MH, Lee SW. Prokaryotic 2-component systems and the OmpR/PhoB superfamily. Can J Microbiol 2015; 61:799-810. [DOI: 10.1139/cjm-2015-0345] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
In bacteria, 2-component regulatory systems (TCSs) are the critical information-processing pathways that link stimuli to specific adaptive responses. Signals perceived by membrane sensors, which are generally histidine kinases, are transmitted by response regulators (RRs) to allow cells to cope rapidly and effectively with environmental challenges. Over the past few decades, genes encoding components of TCSs and their responsive proteins have been identified, crystal structures have been described, and signaling mechanisms have been elucidated. Here, we review recent findings and interesting breakthroughs in bacterial TCS research. Furthermore, we discuss structural features, mechanisms of activation and regulation, and cross-regulation of RRs, with a focus on the largest RR family, OmpR/PhoB, to provide a comprehensive overview of these critically important signaling molecules.
Collapse
Affiliation(s)
| | - Joo-Mi Yoon
- Crop Biotech Institute, Kyung Hee University, Yongin 446-701, Korea
| | - Man-Ho Cho
- Department of Genetic Engineering and Graduate School of Biotechnology, Kyung Hee University, Yongin 446-701, Korea
| | - Sang-Won Lee
- Crop Biotech Institute, Kyung Hee University, Yongin 446-701, Korea
- Department of Genetic Engineering and Graduate School of Biotechnology, Kyung Hee University, Yongin 446-701, Korea
| |
Collapse
|
18
|
Evidence that Autophosphorylation of the Major Sporulation Kinase in Bacillus subtilis Is Able To Occur in trans. J Bacteriol 2015; 197:2675-84. [PMID: 26055117 DOI: 10.1128/jb.00257-15] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 06/03/2015] [Indexed: 01/05/2023] Open
Abstract
UNLABELLED Entry into sporulation in Bacillus subtilis is governed by a multicomponent phosphorelay, a complex version of a two-component system which includes at least three histidine kinases (KinA to KinC), two phosphotransferases (Spo0F and Spo0B), and a response regulator (Spo0A). Among the three histidine kinases, KinA is known as the major sporulation kinase; it is autophosphorylated with ATP upon starvation and then transfers a phosphoryl group to the downstream components in a His-Asp-His-Asp signaling pathway. Our recent study demonstrated that KinA forms a homotetramer, not a dimer, mediated by the N-terminal domain, as a functional unit. Furthermore, when the N-terminal domain was overexpressed in the starving wild-type strain, sporulation was impaired. We hypothesized that this impairment of sporulation could be explained by the formation of a nonfunctional heterotetramer of KinA, resulting in the reduced level of phosphorylated Spo0A (Spo0A∼P), and thus, autophosphorylation of KinA could occur in trans. To test this hypothesis, we generated a series of B. subtilis strains expressing homo- or heterogeneous KinA protein complexes consisting of various combinations of the phosphoryl-accepting histidine point mutant protein and the catalytic ATP-binding domain point mutant protein. We found that the ATP-binding-deficient protein was phosphorylated when the phosphorylation-deficient protein was present in a 1:1 stoichiometry in the tetramer complex, while each of the mutant homocomplexes was not phosphorylated. These results suggest that ATP initially binds to one protomer within the tetramer complex and then the γ-phosphoryl group is transmitted to another in a trans fashion. We further found that the sporulation defect of each of the mutant proteins is complemented when the proteins are coexpressed in vivo. Taken together, these in vitro and in vivo results reinforce the evidence that KinA autophosphorylation is able to occur in a trans fashion. IMPORTANCE Autophosphorylation of histidine kinases is known to occur by either the cis (one subunit of kinase phosphorylating itself within the multimer) or the trans (one subunit of the multimer phosphorylates the other subunit) mechanism. The present study provided direct in vivo and in vitro evidence that autophosphorylation of the major sporulation histidine kinase (KinA) is able to occur in trans within the homotetramer complex. While the physiological and mechanistic significance of the trans autophosphorylation reaction remains obscure, understanding the detailed reaction mechanism of the sporulation kinase is the first step toward gaining insight into the molecular mechanisms of the initiation of sporulation, which is believed to be triggered by unknown factors produced under conditions of nutrient depletion.
Collapse
|
19
|
Huynh TN, Chen LL, Stewart V. Sensor-response regulator interactions in a cross-regulated signal transduction network. MICROBIOLOGY-SGM 2015; 161:1504-15. [PMID: 25873583 DOI: 10.1099/mic.0.000092] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Two-component signal transduction involves phosphoryl transfer between a histidine kinase sensor and a response regulator effector. The nitrate-responsive two-component signal transduction systems in Escherichia coli represent a paradigm for a cross-regulation network, in which the paralogous sensor-response regulator pairs, NarX-NarL and NarQ-NarP, exhibit both cognate (e.g. NarX-NarL) and non-cognate (e.g. NarQ-NarL) interactions to control output. Here, we describe results from bacterial adenylate cyclase two-hybrid (BACTH) analysis to examine sensor dimerization as well as interaction between sensor-response regulator cognate and non-cognate pairs. Although results from BACTH analysis indicated that the NarX and NarQ sensors interact with each other, results from intragenic complementation tests demonstrate that they do not form functional heterodimers. Additionally, intragenic complementation shows that both NarX and NarQ undergo intermolecular autophosphorylation, deviating from the previously reported correlation between DHp (dimerization and histidyl phosphotransfer) domain loop handedness and autophosphorylation mode. Results from BACTH analysis revealed robust interactions for the NarX-NarL, NarQ-NarL and NarQ-NarP pairs but a much weaker interaction for the NarX-NarP pair. This demonstrates that asymmetrical cross-regulation results from differential binding affinities between different sensor-regulator pairs. Finally, results indicate that the NarL effector (DNA-binding) domain inhibits NarX-NarL interaction. Missense substitutions at receiver domain residue Ser-80 enhanced NarX-NarL interaction, apparently by destabilizing the NarL receiver-effector domain interface.
Collapse
Affiliation(s)
- TuAnh Ngoc Huynh
- 1 Food Science Graduate Group, University of California, Davis, CA, 95616-8665, USA
| | - Li-Ling Chen
- 2 Department of Microbiology & Molecular Genetics, University of California, Davis, CA 95616-8665, USA
| | - Valley Stewart
- 2 Department of Microbiology & Molecular Genetics, University of California, Davis, CA 95616-8665, USA 1 Food Science Graduate Group, University of California, Davis, CA, 95616-8665, USA
| |
Collapse
|
20
|
van Heeswijk WC, Westerhoff HV, Boogerd FC. Nitrogen assimilation in Escherichia coli: putting molecular data into a systems perspective. Microbiol Mol Biol Rev 2013; 77:628-95. [PMID: 24296575 PMCID: PMC3973380 DOI: 10.1128/mmbr.00025-13] [Citation(s) in RCA: 167] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
We present a comprehensive overview of the hierarchical network of intracellular processes revolving around central nitrogen metabolism in Escherichia coli. The hierarchy intertwines transport, metabolism, signaling leading to posttranslational modification, and transcription. The protein components of the network include an ammonium transporter (AmtB), a glutamine transporter (GlnHPQ), two ammonium assimilation pathways (glutamine synthetase [GS]-glutamate synthase [glutamine 2-oxoglutarate amidotransferase {GOGAT}] and glutamate dehydrogenase [GDH]), the two bifunctional enzymes adenylyl transferase/adenylyl-removing enzyme (ATase) and uridylyl transferase/uridylyl-removing enzyme (UTase), the two trimeric signal transduction proteins (GlnB and GlnK), the two-component regulatory system composed of the histidine protein kinase nitrogen regulator II (NRII) and the response nitrogen regulator I (NRI), three global transcriptional regulators called nitrogen assimilation control (Nac) protein, leucine-responsive regulatory protein (Lrp), and cyclic AMP (cAMP) receptor protein (Crp), the glutaminases, and the nitrogen-phosphotransferase system. First, the structural and molecular knowledge on these proteins is reviewed. Thereafter, the activities of the components as they engage together in transport, metabolism, signal transduction, and transcription and their regulation are discussed. Next, old and new molecular data and physiological data are put into a common perspective on integral cellular functioning, especially with the aim of resolving counterintuitive or paradoxical processes featured in nitrogen assimilation. Finally, we articulate what still remains to be discovered and what general lessons can be learned from the vast amounts of data that are available now.
Collapse
|
21
|
Correa F, Ko WH, Ocasio V, Bogomolni RA, Gardner KH. Blue light regulated two-component systems: enzymatic and functional analyses of light-oxygen-voltage (LOV)-histidine kinases and downstream response regulators. Biochemistry 2013; 52:4656-66. [PMID: 23806044 DOI: 10.1021/bi400617y] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Light is an essential environmental cue for diverse organisms. Many prokaryotic blue light photoreceptors use light, oxygen, voltage (LOV) sensory domains to control the activities of diverse output domains, including histidine kinases (HK). Upon activation, these proteins autophosphorylate a histidine residue before subsequently transferring the phosphate to an aspartate residue in the receiver domain of a cognate response regulator (RR). Such phosphorylation activates the output domain of the RR, leading to changes in gene expression, protein-protein interactions, or enzymatic activities. Here, we focus on one such light sensing LOV-HK from the marine bacterium Erythrobacter litoralis HTCC2594 (EL368), seeking to understand how kinase activity and subsequent downstream effects are regulated by light. We found that photoactivation of EL368 led to a significant enhancement in the incorporation of phosphate within the HK domain. Further enzymatic studies showed that the LOV domain affected both the LOV-HK turnover rate (kcat) and Km in a light-dependent manner. Using in vitro phosphotransfer profiling, we identified two target RRs for EL368 and two additional LOV-HKs (EL346 and EL362) encoded within the host genome. The two RRs include a PhyR-type transcriptional regulator (EL_PhyR) and a receiver-only protein (EL_LovR), reminiscent of stress-triggered systems in other bacteria. Taken together, our data provide a biochemical foundation for this light-regulated signaling module of sensors, effectors, and regulators that control bacterial responses to environmental conditions.
Collapse
Affiliation(s)
- Fernando Correa
- Departments of Biophysics and Biochemistry, University of Texas Southwestern Medical Center , Dallas, Texas 75390, United States
| | | | | | | | | |
Collapse
|
22
|
Histidine phosphotransfer proteins in fungal two-component signal transduction pathways. EUKARYOTIC CELL 2013; 12:1052-60. [PMID: 23771905 DOI: 10.1128/ec.00083-13] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The histidine phosphotransfer (HPt) protein Ypd1 is an important participant in the Saccharomyces cerevisiae multistep two-component signal transduction pathway and, unlike the expanded histidine kinase gene family, is encoded by a single gene in nearly all model and pathogenic fungi. Ypd1 is essential for viability in both S. cerevisiae and in Cryptococcus neoformans. These and other aspects of Ypd1 biology, combined with the availability of structural and mutational data in S. cerevisiae, suggest that the essential interactions between Ypd1 and response regulator domains would be a good target for antifungal drug development. The goal of this minireview is to summarize the wealth of data on S. cerevisiae Ypd1 and to consider the potential benefits of conducting related studies in pathogenic fungi.
Collapse
|
23
|
García-Mauriño SM, Pérez-Martínez I, Amador CI, Canosa I, Santero E. Transcriptional activation of the CrcZ and CrcY regulatory RNAs by the CbrB response regulator in Pseudomonas putida. Mol Microbiol 2013; 89:189-205. [PMID: 23692431 DOI: 10.1111/mmi.12270] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2013] [Indexed: 11/30/2022]
Abstract
The CbrAB two-component system has been described as a high-ranked element in the regulatory hierarchy of Pseudomonas putida that controls a variety of metabolic and behavioural traits required for adaptation to changing environmental conditions. We show that the response regulatory protein CbrB, an activator of σ(N) -dependent promoters, directly controls the expression of the small RNAs CrcZ and CrcY in P. putida. These two RNAs sequester the protein Crc, which is a translational repressor of multiple pathways linked to carbon catabolite repression. We characterized the in vivo and in vitro activation by CbrB at both crcZ and crcY promoters, and identified new DNA sequences where the protein binds. IHF, a co-activator at many σ(N) -dependent promoters, also binds to the promoter regions and contributes to the activation of the sRNAs. CbrB phosphorylation is necessary at physiological activation conditions, but a higher dose of the protein allows in vitro transcriptional activation in its non-phosphorylated form. We also show there is some production of CrcY coming from an upstream promoter independent of CbrB. Thus, CbrAB constitute a global signal transduction pathway integrated in a higher regulatory network that also controls catabolite repression through the expression of the two regulatory RNAs CrcZ and CrcY.
Collapse
Affiliation(s)
- Sofía Muñoz García-Mauriño
- Centro Andaluz de Biología del Desarrollo, CSIC, Universidad Pablo de Olavide, Carretera de Utrera, Km. 1, 41013, Seville, Spain
| | | | | | | | | |
Collapse
|
24
|
Huergo LF, Chandra G, Merrick M. PIIsignal transduction proteins: nitrogen regulation and beyond. FEMS Microbiol Rev 2013; 37:251-83. [DOI: 10.1111/j.1574-6976.2012.00351.x] [Citation(s) in RCA: 141] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Revised: 07/26/2012] [Accepted: 07/26/2012] [Indexed: 01/12/2023] Open
|
25
|
Helix bundle loops determine whether histidine kinases autophosphorylate in cis or in trans. J Mol Biol 2013; 425:1198-209. [PMID: 23333741 PMCID: PMC3636764 DOI: 10.1016/j.jmb.2013.01.011] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Revised: 12/19/2012] [Accepted: 01/08/2013] [Indexed: 11/22/2022]
Abstract
Bacteria frequently use two-component signal transduction pathways to sense and respond to environmental and intracellular stimuli. Upon receipt of a stimulus, a homodimeric sensor histidine kinase autophosphorylates and then transfers its phosphoryl group to a cognate response regulator. The autophosphorylation of histidine kinases has been reported to occur both in cis and in trans, but the molecular determinants dictating which mechanism is employed are unknown. Based on structural considerations, one model posits that the handedness of a loop at the base of the helical dimerization domain plays a critical role. Here, we tested this model by replacing the loop from Escherichia coli EnvZ, which autophosphorylates in trans, with the loop from three PhoR orthologs that autophosphorylate in cis. These chimeric kinases autophosphorylated in cis, indicating that this small loop is sufficient to determine autophosphorylation mechanism. Further, we report that the mechanism of autophosphorylation is conserved in orthologous sets of histidine kinases despite highly dissimilar loop sequences. These findings suggest that histidine kinases are under selective pressure to maintain their mode of autophosphorylation, but they can do so with a wide range of sequences.
Collapse
|
26
|
Bellini D, Papiz MZ. Dimerization properties of theRpBphP2 chromophore-binding domain crystallized by homologue-directed mutagenesis. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2012; 68:1058-66. [DOI: 10.1107/s0907444912020537] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Accepted: 05/07/2012] [Indexed: 11/10/2022]
|
27
|
Structural basis of histidine kinase autophosphorylation deduced by integrating genomics, molecular dynamics, and mutagenesis. Proc Natl Acad Sci U S A 2012; 109:E1733-42. [PMID: 22670053 DOI: 10.1073/pnas.1201301109] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Signal transduction proteins such as bacterial sensor histidine kinases, designed to transition between multiple conformations, are often ruled by unstable transient interactions making structural characterization of all functional states difficult. This study explored the inactive and signal-activated conformational states of the two catalytic domains of sensor histidine kinases, HisKA and HATPase. Direct coupling analyses, a global statistical inference approach, was applied to >13,000 such domains from protein databases to identify residue contacts between the two domains. These contacts guided structural assembly of the domains using MAGMA, an advanced molecular dynamics docking method. The active conformation structure generated by MAGMA simultaneously accommodated the sequence derived residue contacts and the ATP-catalytic histidine contact. The validity of this structure was confirmed biologically by mutation of contact positions in the Bacillus subtilis sensor histidine kinase KinA and by restoration of activity in an inactive KinA(HisKA):KinD(HATPase) hybrid protein. These data indicate that signals binding to sensor domains activate sensor histidine kinases by causing localized strain and unwinding at the end of the C-terminal helix of the HisKA domain. This destabilizes the contact positions of the inactive conformation of the two domains, identified by previous crystal structure analyses and by the sequence analysis described here, inducing the formation of the active conformation. This study reveals that structures of unstable transient complexes of interacting proteins and of protein domains are accessible by applying this combination of cross-validating technologies.
Collapse
|
28
|
Expression level of a chimeric kinase governs entry into sporulation in Bacillus subtilis. J Bacteriol 2011; 193:6113-22. [PMID: 21926229 DOI: 10.1128/jb.05920-11] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Upon starvation, Bacillus subtilis cells switch from growth to sporulation. It is believed that the N-terminal sensor domain of the cytoplasmic histidine kinase KinA is responsible for detection of the sporulation-specific signal(s) that appears to be produced only under starvation conditions. Following the sensing of the signal, KinA triggers autophosphorylation of the catalytic histidine residue in the C-terminal domain to transmit the phosphate moiety, via phosphorelay, to the master regulator for sporulation, Spo0A. However, there is no direct evidence to support the function of the sensor domain, because the specific signal(s) has never been found. To investigate the role of the N-terminal sensor domain, we replaced the endogenous three-PAS repeat in the N-terminal domain of KinA with a two-PAS repeat derived from Escherichia coli and examined the function of the resulting chimeric protein. Despite the introduction of a foreign domain, we found that the resulting chimeric protein, in a concentration-dependent manner, triggered sporulation by activating Spo0A through phosphorelay, irrespective of nutrient availability. Further, by using chemical cross-linking, we showed that the chimeric protein exists predominantly as a tetramer, mediated by the N-terminal domain, as was found for KinA. These results suggest that tetramer formation mediated by the N-terminal domain, regardless of the origin of the protein, is important and sufficient for the kinase activity catalyzed by the C-terminal domain. Taken together with our previous observations, we propose that the primary role of the N-terminal domain of KinA is to form a functional tetramer, but not for sensing an unknown signal.
Collapse
|
29
|
Determinants of homodimerization specificity in histidine kinases. J Mol Biol 2011; 413:222-35. [PMID: 21854787 DOI: 10.1016/j.jmb.2011.08.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2011] [Revised: 08/04/2011] [Accepted: 08/05/2011] [Indexed: 12/28/2022]
Abstract
Two-component signal transduction pathways consisting of a histidine kinase and a response regulator are used by prokaryotes to respond to diverse environmental and intracellular stimuli. Most species encode numerous paralogous histidine kinases that exhibit significant structural similarity. Yet in almost all known examples, histidine kinases are thought to function as homodimers. We investigated the molecular basis of dimerization specificity, focusing on the model histidine kinase EnvZ and RstB, its closest paralog in Escherichia coli. Direct binding studies showed that the cytoplasmic domains of these proteins each form specific homodimers in vitro. Using a series of chimeric proteins, we identified specificity determinants at the base of the four-helix bundle in the dimerization and histidine phosphotransfer domain. Guided by molecular coevolution predictions and EnvZ structural information, we identified sets of residues in this region that are sufficient to establish homospecificity. Mutating these residues in EnvZ to the corresponding residues in RstB produced a functional kinase that preferentially homodimerized over interacting with EnvZ. EnvZ and RstB likely diverged following gene duplication to yield two homodimers that cannot heterodimerize, and the mutants we identified represent possible evolutionary intermediates in this process.
Collapse
|
30
|
Krell T, Lacal J, Busch A, Silva-Jiménez H, Guazzaroni ME, Ramos JL. Bacterial sensor kinases: diversity in the recognition of environmental signals. Annu Rev Microbiol 2010; 64:539-59. [PMID: 20825354 DOI: 10.1146/annurev.micro.112408.134054] [Citation(s) in RCA: 264] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Bacteria sense and respond to a wide range of physical and chemical signals. Central to sensing and responding to these signals are two-component systems, which have a sensor histidine kinase (SK) and a response regulator (RR) as basic components. Here we review the different molecular mechanisms by which these signals are integrated and modulate the phosphorylation state of SKs. Apart from the basic mechanism, which consists of signal recognition by the SK that leads to an alteration of its autokinase activity and subsequently a change in the RR phosphorylation state, a variety of alternative modes have evolved. The biochemical data available on SKs, particularly their molecular interactions with signals, nucleotides, and their cognate RRs, are also reviewed.
Collapse
Affiliation(s)
- Tino Krell
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, 18008 Granada, Spain
| | | | | | | | | | | |
Collapse
|
31
|
Casino P, Rubio V, Marina A. The mechanism of signal transduction by two-component systems. Curr Opin Struct Biol 2010; 20:763-71. [DOI: 10.1016/j.sbi.2010.09.010] [Citation(s) in RCA: 180] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Revised: 08/31/2010] [Accepted: 09/17/2010] [Indexed: 11/29/2022]
|
32
|
Trajtenberg F, Graña M, Ruétalo N, Botti H, Buschiazzo A. Structural and enzymatic insights into the ATP binding and autophosphorylation mechanism of a sensor histidine kinase. J Biol Chem 2010; 285:24892-903. [PMID: 20507988 PMCID: PMC2915725 DOI: 10.1074/jbc.m110.147843] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2010] [Indexed: 11/06/2022] Open
Abstract
DesK is a sensor histidine kinase (HK) that allows Bacillus subtilis to respond to cold shock, triggering the adaptation of membrane fluidity via transcriptional control of a fatty acid desaturase. It belongs to the HK family HPK7, which includes the nitrogen metabolism regulators NarX/Q and the antibiotic sensor LiaS among other important sensor kinases. Structural information on different HK families is still scarce and several questions remain, particularly concerning the molecular features that determine HK specificity during its catalytic autophosphorylation and subsequent response-regulator phosphotransfer reactions. To analyze the ATP-binding features of HPK7 HKs and dissect their mechanism of autophosphorylation at the molecular level, we have studied DesK in complex with ATP using high resolution structural approaches in combination with biochemical studies. We report the first crystal structure of an HK in complex with its natural nucleotidic substrate. The general fold of the ATP-binding domain of DesK is conserved, compared with well studied members of other families. Yet, DesK displays a far more compact structure at the ATP-binding pocket: the ATP lid loop is much shorter with no secondary structural organization and becomes ordered upon ATP loading. Sequence conservation mapping onto the molecular surface, semi-flexible protein-protein docking simulations, and structure-based point mutagenesis allow us to propose a specific domain-domain geometry during autophosphorylation catalysis. Supporting our hypotheses, we have been able to trap an autophosphorylating intermediate state, by protein engineering at the predicted domain-domain interaction surface.
Collapse
Affiliation(s)
| | - Martin Graña
- Bioinformatics, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay and
| | | | | | - Alejandro Buschiazzo
- From the Units of Protein Crystallography and
- the Department of Structural Biology and Chemistry, Institut Pasteur, Paris 75015, France
| |
Collapse
|
33
|
Stewart RC. Protein histidine kinases: assembly of active sites and their regulation in signaling pathways. Curr Opin Microbiol 2010; 13:133-41. [PMID: 20117042 PMCID: PMC2847664 DOI: 10.1016/j.mib.2009.12.013] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2009] [Revised: 12/23/2009] [Accepted: 12/29/2009] [Indexed: 10/19/2022]
Abstract
Protein histidine kinases (PHKs) function in Two Component Signaling pathways utilized extensively by bacteria and archaea. Many PHKs participate in three distinct, but interrelated signaling reactions: autophoshorylation, phosphotransfer (to a partner Response Regulator (RR) protein), and dephosphorylation of this RR. Detailed biochemical and structural characterization of several PHKs has revealed how the domains of these proteins can interact to assemble the three active sites that promote the necessary chemistry and how these domain interactions might be regulated in response to sensory input: the relative orientation of helices in the PHK dimerization domain can reorient, via cogwheeling (rotation) and kinking (bending), to effect changes in PHK activities that probably involve sequestration/release of the PHK catalytic domain by the dimerization domain.
Collapse
Affiliation(s)
- Richard C Stewart
- Department of Cell Biology & Molecular Genetics, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
34
|
The ArcB sensor kinase of Escherichia coli autophosphorylates by an intramolecular reaction. J Bacteriol 2010; 192:1735-9. [PMID: 20097862 DOI: 10.1128/jb.01401-09] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The Arc two-component system, comprising the ArcB sensor kinase and the ArcA response regulator, modulates the expression of numerous genes in response to the respiratory conditions of growth. ArcB is a tripartite histidine kinase whose activity is regulated by the oxidation of two cytosol-located redox-active cysteine residues that participate in intermolecular disulfide bond formation. Here we show that ArcB autophosphorylates through an intramolecular reaction which diverges from the usually envisaged intermolecular autophosphorylation of homodimeric histidine kinases.
Collapse
|
35
|
Heermann R, Jung K. The complexity of the 'simple' two-component system KdpD/KdpE in Escherichia coli. FEMS Microbiol Lett 2010; 304:97-106. [PMID: 20146748 DOI: 10.1111/j.1574-6968.2010.01906.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The KdpD/KdpE two-component system of Escherichia coli activates the expression of the kdpFABC operon encoding the high-affinity K(+) uptake system KdpFABC in response to K(+) limitation or salt stress. Earlier, it was proposed that the histidine kinase KdpD is a turgor sensor; recent studies suggest that KdpD integrates three chemical stimuli from the cytoplasm. The histidine kinase KdpD contains several structural features and subdomains that are important for stimulus perception, modulation of the kinase to phosphatase ratio, and signaling. The response regulator KdpE receives the phosphoryl group from KdpD and induces kdpFABC transcription. The three-dimensional structure of the receiver domain was resolved, providing insights into the activation mechanism of this transcriptional regulator. Two accessory components, the universal stress protein UspC and the phosphotransferase system component IIA(Ntr), are known to interact with KdpD, allowing the modulation of kdpFABC expression under certain physiological conditions. Here, we will discuss the complexity of a 'simple' two-component system and its interconnectivity with metabolism and the general stress response.
Collapse
Affiliation(s)
- Ralf Heermann
- Munich Center for integrated Protein Science (CiPSM) at Ludwig-Maximilians-Universität München, Biozentrum, Bereich Mikrobiologie, Martinsried, Germany.
| | | |
Collapse
|
36
|
Casino P, Rubio V, Marina A. Structural insight into partner specificity and phosphoryl transfer in two-component signal transduction. Cell 2009; 139:325-36. [PMID: 19800110 DOI: 10.1016/j.cell.2009.08.032] [Citation(s) in RCA: 308] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2008] [Revised: 03/26/2009] [Accepted: 08/21/2009] [Indexed: 11/25/2022]
Abstract
The chief mechanism used by bacteria for sensing their environment is based on two conserved proteins: a sensor histidine kinase (HK) and an effector response regulator (RR). The signal transduction process involves highly conserved domains of both proteins that mediate autokinase, phosphotransfer, and phosphatase activities whose output is a finely tuned RR phosphorylation level. Here, we report the structure of the complex between the entire cytoplasmic portion of Thermotoga maritima class I HK853 and its cognate, RR468, as well as the structure of the isolated RR468, both free and BeF(3)(-) bound. Our results provide insight into partner specificity in two-component systems, recognition of the phosphorylation state of each partner, and the catalytic mechanism of the phosphatase reaction. Biochemical analysis shows that the HK853-catalyzed autokinase reaction proceeds by a cis autophosphorylation mechanism within the HK subunit. The results suggest a model for the signal transduction mechanism in two-component systems.
Collapse
Affiliation(s)
- Patricia Casino
- Instituto de Biomedicina de Valencia-Consejo Superior de Investigaciones Científicas (IBV-CSIC) and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Jaume Roig 11, 46010 Valencia, Spain
| | | | | |
Collapse
|
37
|
George Cisar EA, Geisinger E, Muir TW, Novick RP. Symmetric signalling within asymmetric dimers of the Staphylococcus aureus receptor histidine kinase AgrC. Mol Microbiol 2009; 74:44-57. [PMID: 19708918 DOI: 10.1111/j.1365-2958.2009.06849.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Virulence in Staphylococcus aureus is largely under control of the accessory gene regulator (agr) quorum-sensing system. The AgrC receptor histidine kinase detects its autoinducing peptide (AIP) ligand and generates an intracellular signal resulting in secretion of virulence factors. Although agr is a well-studied quorum-sensing system, little is known about the mechanism of AgrC activation. By co-immunoprecipitation analysis and intermolecular complementation of receptor mutants, we showed that AgrC forms ligand-independent dimers that undergo trans-autophosphorylation upon interaction with AIP. Remarkably, addition of specific AIPs to AgrC mutant dimers with only one functional sensor domain caused symmetric activation of either kinase domain despite the sensor asymmetry. Furthermore, mutant dimers involving one constitutive protomer demonstrated ligand-independent activity, irrespective of which protomer was kinase deficient. These results demonstrate that signalling through either individual AgrC protomer causes symmetric activation of both kinase domains. We suggest that such signalling across the dimer interface may be an important mechanism for dimeric quorum-sensing receptors to rapidly elicit a response upon signal detection.
Collapse
Affiliation(s)
- Elizabeth A George Cisar
- Laboratory of Synthetic Protein Chemistry, Training Program in Chemical Biology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA.Molecular Pathogenesis Program and Departments of Microbiology and Medicine, the Kimmel Center for Biology and Medicine of the Skirball Institute, New York University School of Medicine, New York, NY 10016, USA
| | - Edward Geisinger
- Laboratory of Synthetic Protein Chemistry, Training Program in Chemical Biology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA.Molecular Pathogenesis Program and Departments of Microbiology and Medicine, the Kimmel Center for Biology and Medicine of the Skirball Institute, New York University School of Medicine, New York, NY 10016, USA
| | - Tom W Muir
- Laboratory of Synthetic Protein Chemistry, Training Program in Chemical Biology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA.Molecular Pathogenesis Program and Departments of Microbiology and Medicine, the Kimmel Center for Biology and Medicine of the Skirball Institute, New York University School of Medicine, New York, NY 10016, USA
| | - Richard P Novick
- Laboratory of Synthetic Protein Chemistry, Training Program in Chemical Biology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA.Molecular Pathogenesis Program and Departments of Microbiology and Medicine, the Kimmel Center for Biology and Medicine of the Skirball Institute, New York University School of Medicine, New York, NY 10016, USA
| |
Collapse
|
38
|
Eaton AK, Stewart RC. The two active sites of Thermotoga maritima CheA dimers bind ATP with dramatically different affinities. Biochemistry 2009; 48:6412-22. [PMID: 19505148 DOI: 10.1021/bi900474g] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
CheA is a central component of the chemotaxis signal transduction pathway that allows prokaryotic cells to control their movements in response to environmental cues. This dimeric protein histidine kinase autophosphorylates via an intersubunit phosphorylation reaction in which each protomer of the dimer binds ATP, at an active site located in its P4 domain and then catalyzes transfer of the gamma-phosphoryl group of ATP to the His(45) side chain within the P1 domain of the trans protomer. Here we utilize the fluorescent nucleotide analogue TNP-ATP [2'(3')-O-(2,4,6-trinitrophenyl)adenosine 5'-triphosphate] to investigate the two ATP-binding sites of the Thermotoga maritima CheA dimer (TmCheA) and the single site of the isolated TmP4 domain (a monomer). We define the affinity of CheA for TNP nucleotides and, by competition, for unmodified ATP. The two ATP-binding sites of the TmCheA dimer exhibit dramatically different affinities for TNP-ATP (K(d1)(TNP) approximately 0.0016 muM and K(d2)(TNP) approximately 22 muM at 4 degrees C in the presence of Mg(2+)) as well as for ATP (K(d1)(ATP) approximately 6 muM and K(d2)(ATP) approximately 5000 muM at 4 degrees C in the presence of Mg(2+)) and in their ability to influence the fluorescence of bound TNP-ATP. The ATP-binding site of the isolated TmP4 domain interacts with ATP and TNP-ATP in a manner similar to that of the high-affinity site of the TmCheA dimer. These results suggest that the two active sites of TmCheA homodimers exhibit large differences in their interactions with ATP. We consider possible implications of these differences for the CheA autophosphorylation mechanism and for CheA function in bacterial cells.
Collapse
Affiliation(s)
- Anna K Eaton
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742, USA
| | | |
Collapse
|
39
|
Characterization of CitA-CitB signal transduction activating genes involved in anaerobic citrate catabolism in Escherichia coli. Biosci Biotechnol Biochem 2009; 73:346-50. [PMID: 19202292 DOI: 10.1271/bbb.80586] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In Escherichia coli, CitA is a membrane-associated sensor histidine kinase that phosphorylates CitB, the response regulator. It is predicated to play a key role in anaerobic citrate catabolism. The citrate-binding site in CitA is located within its periplasmic domain, while the cytoplasmic domain (CitA-C) is involved in autophosphorylation. We found that autophosphorylation in vitro of CitA-C was induced by DTT. Using the whole set of CitA-C derivatives containing Cys-Ala substitution(s), Cys at 529 was found to be essential to the redox-sensing of autophosphorylation. The phosphorylated CitA-C transferred a phosphate to CitB. DNase-I footprinting assay indicated that CitB specifically bound on the intergenic region between the citA and citC genes. These results characterize the molecular mechanism of the CitA-CitB signal transduction system in E. coli.
Collapse
|
40
|
Abstract
Quorum sensing is a cell-cell communication process in which bacteria use the production and detection of extracellular chemicals called autoinducers to monitor cell population density. Quorum sensing allows bacteria to synchronize the gene expression of the group, and thus act in unison. Here, we review the mechanisms involved in quorum sensing with a focus on the Vibrio harveyi and Vibrio cholerae quorum-sensing systems. We discuss the differences between these two quorum-sensing systems and the differences between them and other paradigmatic bacterial signal transduction systems. We argue that the Vibrio quorum-sensing systems are optimally designed to precisely translate extracellular autoinducer information into internal changes in gene expression. We describe how studies of the V. harveyi and V. cholerae quorum-sensing systems have revealed some of the fundamental mechanisms underpinning the evolution of collective behaviors.
Collapse
Affiliation(s)
- Wai-Leung Ng
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544-1014, USA
| | - Bonnie L. Bassler
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544-1014, USA
- Howard Hughes Medical Institute
| |
Collapse
|
41
|
How to switch off a histidine kinase: crystal structure of Geobacillus stearothermophilus KinB with the inhibitor Sda. J Mol Biol 2008; 386:163-77. [PMID: 19101565 DOI: 10.1016/j.jmb.2008.12.006] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2008] [Revised: 12/02/2008] [Accepted: 12/03/2008] [Indexed: 10/21/2022]
Abstract
Entry to sporulation in bacilli is governed by a histidine kinase phosphorelay, a variation of the predominant signal transduction mechanism in prokaryotes. Sda directly inhibits sporulation histidine kinases in response to DNA damage and replication defects. We determined a 2.0-A-resolution X-ray crystal structure of the intact cytoplasmic catalytic core [comprising the dimerization and histidine phosphotransfer domain (DHp domain), connected to the ATP binding catalytic domain] of the Geobacillus stearothermophilus sporulation kinase KinB complexed with Sda. Structural and biochemical analyses reveal that Sda binds to the base of the DHp domain and prevents molecular transactions with the DHp domain to which it is bound by acting as a simple molecular barricade. Sda acts to sterically block communication between the catalytic domain and the DHp domain, which is required for autophosphorylation, as well as to sterically block communication between the response regulator Spo0F and the DHp domain, which is required for phosphotransfer and phosphatase activities.
Collapse
|
42
|
Yamada S, Shiro Y. Structural Basis of the Signal Transduction in the Two-Component System. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 631:22-39. [DOI: 10.1007/978-0-387-78885-2_3] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
43
|
Lin YH, Gao R, Binns AN, Lynn DG. Capturing the VirA/VirG TCS of Agrobacterium tumefaciens. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 631:161-77. [PMID: 18792688 DOI: 10.1007/978-0-387-78885-2_11] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Two-component systems (TCS) regulate pathogenic commitment in many interactions and provide an opportunity for unique therapeutic intervention. The VirA/VirG TCS of Agrobacterium tumefaciens mediates inter-kingdom gene transfer in the development of host tumors and sets in motion the events that underlie the great success of this multi-host plant pathogen. Significant proof for the feasibility of interventions has now emerged with the discovery of a natural product that effectively "blinds" the pathogen to the host via inhibition of VirA/VirG signal transduction. Moreover, the emerging studies on the mechanism of signal perception have revealed general sites suitable for intervention of TCS signaling. Given the extensive functional homology, it should now be possible to transfer the models discovered for VirA/VirG broadly to other pathogenic interactions.
Collapse
Affiliation(s)
- Yi-Han Lin
- Center for Fundamental and Applied Molecular Evolution, Department of Chemistry, Emory University, Atlanta, GA 30322, USA
| | | | | | | |
Collapse
|
44
|
Functional characterization of the histidine kinase of the E. coli two-component signal transduction system AtoS-AtoC. Biochim Biophys Acta Gen Subj 2008; 1780:1023-31. [PMID: 18534200 DOI: 10.1016/j.bbagen.2008.05.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2007] [Revised: 05/05/2008] [Accepted: 05/05/2008] [Indexed: 11/22/2022]
Abstract
The Escherichia coli AtoS-AtoC two-component signal transduction system regulates the expression of the atoDAEB operon genes, whose products are required for short-chain fatty acid catabolism. In this study purified his-tagged wild-type and mutant AtoS proteins were used to prove that these proteins are true sensor kinases. The phosphorylated residue was identified as the histidine-398, which was located in a conserved Eta-box since AtoS carrying a mutation at this site failed to phosphorylate. This inability to phosphorylate was not due to gross structural alterations of AtoS since the H398L mutant retained its capability to bind ATP. Furthermore, the H398L mutant AtoS was competent to catalyze the trans-phosphorylation of an AtoS G-box (G565A) mutant protein which otherwise failed to autophosphorylate due to its inability to bind ATP. The formation of homodimers between the various AtoS proteins was also shown by cross-linking experiments both in vitro and in vivo.
Collapse
|
45
|
Gilles-Gonzalez MA, Gonzalez G, Sousa EHS, Tuckerman J. Oxygen-sensing histidine-protein kinases: assays of ligand binding and turnover of response-regulator substrates. Methods Enzymol 2008; 437:173-89. [PMID: 18433629 DOI: 10.1016/s0076-6879(07)37010-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Heme-based sensors are a recently discovered functional class of heme proteins that serve to detect physiological fluctuations in oxygen (O(2)), carbon monoxide (CO), or nitric oxide (NO). Many of these modular sensors detect heme ligands by coupling a histidine-protein kinase to a heme-binding domain. They typically bind O2, CO, and NO but respond only to one of these ligands. Usually, they are active in the ferrous unliganded state but are switched off by saturation with O2. The heme-binding domains of these kinases are quite varied. They may feature a PAS fold, as in the Bradyrhizobium japonicum and Sinorhizobium melitoti FixL proteins, or a GAF fold, as in the Mycobacterium tuberculosis DevS and DosT proteins. Alternative folds, such as HNOB (also H-NOX), have also been noted for such signal-transducing kinases, although these classes are less well studied. Histidine-protein kinases function in partnership with cognate response-regulator substrate(s): usually transcription factors that they activate by phosphorylation. For example, FixL proteins specifically phosphorylate their FixJ partners, and DevS and DosT proteins phosphorylate DevR in response to hypoxia. We present methods for purifying these sensors and their protein substrates, verifying the quality of the preparations, determining the K(d) values for binding of ligand and preparing sensors of known saturation, and measuring the rates of turnover (k(cat)) of the protein substrate by sensors of known heme status.
Collapse
|
46
|
Vuillet L, Kojadinovic M, Zappa S, Jaubert M, Adriano JM, Fardoux J, Hannibal L, Pignol D, Verméglio A, Giraud E. Evolution of a bacteriophytochrome from light to redox sensor. EMBO J 2007; 26:3322-31. [PMID: 17581629 PMCID: PMC1933401 DOI: 10.1038/sj.emboj.7601770] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2007] [Accepted: 05/29/2007] [Indexed: 11/08/2022] Open
Abstract
Bacteriophytochromes are red/far-red photoreceptors that bacteria use to mediate sensory responses to their light environment. Here, we show that the photosynthetic bacterium Rhodopseudomonas palustris has two distinct types of bacteriophytochrome-related protein (RpBphP4) depending upon the strain considered. The first type binds the chromophore biliverdin and acts as a light-sensitive kinase, thus behaving as a bona fide bacteriophytochrome. However, in most strains, RpBphP4 does not to bind this chromophore. This loss of light sensing is replaced by a redox-sensing ability coupled to kinase activity. Phylogenetic analysis is consistent with an evolutionary scenario, where a bacteriophytochrome ancestor has adapted from light to redox sensing. Both types of RpBphP4 regulate the synthesis of light harvesting (LH2) complexes according to the light or redox conditions, respectively. They modulate the affinity of a transcription factor binding to the promoter regions of LH2 complex genes by controlling its phosphorylation status. This is the first complete description of a bacteriophytochrome signal transduction pathway involving a two-component system.
Collapse
Affiliation(s)
- Laurie Vuillet
- Laboratoire des Symbioses Tropicales et Méditerranéennes, IRD, CIRAD, AGRO-M, INRA, UM2, Campus de Baillarguet, Montpellier Cedex, France
| | - Mila Kojadinovic
- CEA Cadarache, DSV/IBEB/SBVME/LBC, UMR 6191 CNRS/CEA/Université Aix-Marseille, Saint-Paul-lez-Durance, France
| | - Sébastien Zappa
- CEA Cadarache, DSV/IBEB/SBVME/LBC, UMR 6191 CNRS/CEA/Université Aix-Marseille, Saint-Paul-lez-Durance, France
| | - Marianne Jaubert
- Laboratoire des Symbioses Tropicales et Méditerranéennes, IRD, CIRAD, AGRO-M, INRA, UM2, Campus de Baillarguet, Montpellier Cedex, France
| | - Jean-Marc Adriano
- CEA Cadarache, DSV/IBEB/SBVME/LBC, UMR 6191 CNRS/CEA/Université Aix-Marseille, Saint-Paul-lez-Durance, France
| | - Joël Fardoux
- Laboratoire des Symbioses Tropicales et Méditerranéennes, IRD, CIRAD, AGRO-M, INRA, UM2, Campus de Baillarguet, Montpellier Cedex, France
| | - Laure Hannibal
- Laboratoire des Symbioses Tropicales et Méditerranéennes, IRD, CIRAD, AGRO-M, INRA, UM2, Campus de Baillarguet, Montpellier Cedex, France
| | - David Pignol
- CEA Cadarache, DSV/IBEB/SBVME/LBC, UMR 6191 CNRS/CEA/Université Aix-Marseille, Saint-Paul-lez-Durance, France
| | - André Verméglio
- CEA Cadarache, DSV/IBEB/SBVME/LBC, UMR 6191 CNRS/CEA/Université Aix-Marseille, Saint-Paul-lez-Durance, France
- These authors contributed equally to this work
- SBVME-Laboratoire de Bioénergétique Cellulaire, CEA Cadarache bâtment 156, DSV/IBEB/SBVME/LBC, UMR 6191 CNRS/CEA/Université Aix-Marseille, Saint Paul lez Durance 13108, France. Tel.: +33 44225 4630; Fax: +33 4422 54701; E-mail:
| | - Eric Giraud
- Laboratoire des Symbioses Tropicales et Méditerranéennes, IRD, CIRAD, AGRO-M, INRA, UM2, Campus de Baillarguet, Montpellier Cedex, France
- These authors contributed equally to this work
| |
Collapse
|
47
|
|
48
|
Neiditch MB, Federle MJ, Pompeani AJ, Kelly RC, Swem DL, Jeffrey PD, Bassler BL, Hughson FM. Ligand-induced asymmetry in histidine sensor kinase complex regulates quorum sensing. Cell 2006; 126:1095-108. [PMID: 16990134 PMCID: PMC3468944 DOI: 10.1016/j.cell.2006.07.032] [Citation(s) in RCA: 213] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2006] [Revised: 06/11/2006] [Accepted: 07/10/2006] [Indexed: 10/24/2022]
Abstract
Bacteria sense their environment using receptors of the histidine sensor kinase family, but how kinase activity is regulated by ligand binding is not well understood. Autoinducer-2 (AI-2), a secreted signaling molecule originally identified in studies of the marine bacterium Vibrio harveyi, regulates quorum-sensing responses and allows communication between different bacterial species. AI-2 signal transduction in V. harveyi requires the integral membrane receptor LuxPQ, comprised of periplasmic binding protein (LuxP) and histidine sensor kinase (LuxQ) subunits. Combined X-ray crystallographic and functional studies show that AI-2 binding causes a major conformational change within LuxP, which in turn stabilizes a quaternary arrangement in which two LuxPQ monomers are asymmetrically associated. We propose that formation of this asymmetric quaternary structure is responsible for repressing the kinase activity of both LuxQ subunits and triggering the transition of V. harveyi into quorum-sensing mode.
Collapse
Affiliation(s)
- Matthew B. Neiditch
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Michael J. Federle
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
- Howard Hughes Medical Institute, Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Audra J. Pompeani
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Robert C. Kelly
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Danielle L. Swem
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
- Howard Hughes Medical Institute, Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Philip D. Jeffrey
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Bonnie L. Bassler
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
- Howard Hughes Medical Institute, Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Frederick M. Hughson
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
- Contact:
| |
Collapse
|
49
|
Evans K, Grossmann JG, Fordham-Skelton AP, Papiz MZ. Small-angle X-ray scattering reveals the solution structure of a bacteriophytochrome in the catalytically active Pr state. J Mol Biol 2006; 364:655-66. [PMID: 17027028 DOI: 10.1016/j.jmb.2006.09.045] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2006] [Revised: 08/29/2006] [Accepted: 09/05/2006] [Indexed: 11/21/2022]
Abstract
Phytochromes are light-sensing macromolecules that are part of a two component phosphorelay system controlling gene expression. Photoconversion between the Pr and Pfr forms facilitates autophosphorylation of a histidine in the dimerization domain (DHp). We report the low-resolution structure of a bacteriophytochrome (Bph) in the catalytic (CA) Pr form in solution determined by small-angle X-ray scattering (SAXS). Ab initio modeling reveals, for the first time, the domain organization in a typical bacteriophytochrome, comprising an chromophore binding and phytochrome (PHY) N terminal domain followed by a C terminal histidine kinase domain. Homologous high-resolution structures of the light-sensing chromophore binding domain (CBD) and the cytoplasmic part of a histidine kinase sensor allows us to model 75% of the structure with the remainder comprising the phytochrome domain which has no 3D representative in the structural database. The SAXS data reveal a dimeric Y shaped macromolecule and the relative positions of the chromophores (biliverdin), autophosphorylating histidine residues and the ATP molecules in the kinase domain. SAXS data were collected from a sample in the autophosphorylating Pr form and reveal alternate conformational states for the kinase domain that can be modeled in an open (no-catalytic) and closed (catalytic) state. This model suggests how light-induced signal transduction can stimulate autophosphorylation followed by phosphotransfer to a response regulator (RR) in the two-component system.
Collapse
Affiliation(s)
- Katie Evans
- CCLRC Daresbury Laboratory, Keckwick Lane, Warrington, Cheshire, WA4 4AD, UK
| | | | | | | |
Collapse
|
50
|
Yamada S, Akiyama S, Sugimoto H, Kumita H, Ito K, Fujisawa T, Nakamura H, Shiro Y. The Signaling Pathway in Histidine Kinase and the Response Regulator Complex Revealed by X-ray Crystallography and Solution Scattering. J Mol Biol 2006; 362:123-39. [PMID: 16890956 DOI: 10.1016/j.jmb.2006.07.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2006] [Revised: 07/05/2006] [Accepted: 07/06/2006] [Indexed: 11/16/2022]
Abstract
The structure of a histidine kinase (ThkA) complexed with a response regulator (TrrA) in the two-component regulatory system from hyperthermophile Thermotoga maritima was determined by a combination of X-ray crystallography at a resolution of 4.2 A and small-angle X-ray scattering (SAXS). The boundary of the three component domains (PAS-sensor, dimerization and catalytic domains) of ThkA and the bound TrrA molecule were unambiguously assigned in the electron density map at 4.2 A resolution. ThkA forms a dimer with crystallographic 2-fold symmetry and two monomeric TrrAs bind to the ThkA dimer. SAXS experiments also confirmed this association state in solution and specific binding between ThkA and TrrA (Kd=8.2x10(-11) M(-2)). The association interface between ThkA and TrrA contains the phosphotransfer His residue in the ThkA, indicative of an efficient receipt of the phosphoryl group. One Per-Arnt-Sim (PAS) domain does not interact with the other PAS domain, but with the catalytic domain of the same polypeptide chain and with one TrrA molecule. Observed inter-domain and inter-molecular interactions reveal a definite pathway of signal transduction in the kinase/regulator complex. In addition, we propose a responsible role of TrrA for the feedback regulation of sensing and/or kinase activities of ThkA.
Collapse
Affiliation(s)
- Seiji Yamada
- Biometal Science Laboratory, RIKEN SPring-8 Center, Harima Institute, Hyogo 679-5148, Japan
| | | | | | | | | | | | | | | |
Collapse
|