1
|
Lehmann D, Sladek M, Khemmani M, Boone TJ, Rees E, Driks A. Role of novel polysaccharide layers in assembly of the exosporium, the outermost protein layer of the Bacillus anthracis spore. Mol Microbiol 2022; 118:258-277. [PMID: 35900297 PMCID: PMC9549345 DOI: 10.1111/mmi.14966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 07/19/2022] [Accepted: 07/22/2022] [Indexed: 11/30/2022]
Abstract
A fundamental question in cell biology is how cells assemble their outer layers. The bacterial endospore is a well-established model for cell layer assembly. However, the assembly of the exosporium, a complex protein shell comprising the outermost layer in the pathogen Bacillus anthracis, remains poorly understood. Exosporium assembly begins with the deposition of proteins at one side of the spore surface, followed by the progressive encirclement of the spore. We seek to resolve a major open question: the mechanism directing exosporium assembly to the spore, and then into a closed shell. We hypothesized that material directly underneath the exosporium (the interspace) directs exosporium assembly to the spore and drives encirclement. In support of this, we show that the interspace possesses at least two distinct layers of polysaccharide. Secondly, we show that putative polysaccharide biosynthetic genes are required for exosporium encirclement, suggesting a direct role for the interspace. These results not only significantly clarify the mechanism of assembly of the exosporium, an especially widespread bacterial outer layer, but also suggest a novel mechanism in which polysaccharide layers drive the assembly of a protein shell.
Collapse
Affiliation(s)
- Dörte Lehmann
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois, USA
| | - Margaret Sladek
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois, USA
| | - Mark Khemmani
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois, USA
| | - Tyler J Boone
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois, USA
| | - Eric Rees
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, United Kingdom
| | - Adam Driks
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois, USA
| |
Collapse
|
2
|
Delerue T, Anantharaman V, Gilmore MC, Popham DL, Cava F, Aravind L, Ramamurthi KS. Bacterial developmental checkpoint that directly monitors cell surface morphogenesis. Dev Cell 2022; 57:344-360.e6. [PMID: 35065768 PMCID: PMC8991396 DOI: 10.1016/j.devcel.2021.12.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 11/15/2021] [Accepted: 12/20/2021] [Indexed: 01/05/2023]
Abstract
Bacillus subtilis spores are encased in two concentric shells: an outer proteinaceous "coat" and an inner peptidoglycan "cortex," separated by a membrane. Cortex assembly depends on coat assembly initiation, but how cells achieve this coordination across the membrane is unclear. Here, we report that the protein SpoVID monitors the polymerization state of the coat basement layer via an extension to a functional intracellular LysM domain that arrests sporulation when coat assembly is initiated improperly. Whereas extracellular LysM domains bind mature peptidoglycan, SpoVID LysM binds to the membrane-bound lipid II peptidoglycan precursor. We propose that improper coat assembly exposes the SpoVID LysM domain, which then sequesters lipid II and prevents cortex assembly. SpoVID defines a widespread group of firmicute proteins with a characteristic N-terminal domain and C-terminal peptidoglycan-binding domains that might combine coat and cortex assembly roles to mediate a developmental checkpoint linking the morphogenesis of two spatially separated supramolecular structures.
Collapse
Affiliation(s)
- Thomas Delerue
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Vivek Anantharaman
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20892, USA
| | - Michael C. Gilmore
- Laboratory for Molecular Infection Medicine Sweden (MIMS), Department of Molecular Biology, Umeå University, 90187 Umeå, Sweden
| | - David L. Popham
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - Felipe Cava
- Laboratory for Molecular Infection Medicine Sweden (MIMS), Department of Molecular Biology, Umeå University, 90187 Umeå, Sweden
| | - L. Aravind
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kumaran S. Ramamurthi
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA,Lead contact,Correspondence:
| |
Collapse
|
3
|
Tu Z, Setlow P, Brul S, Kramer G. Molecular Physiological Characterization of a High Heat Resistant Spore Forming Bacillus subtilis Food Isolate. Microorganisms 2021; 9:667. [PMID: 33807113 PMCID: PMC8005191 DOI: 10.3390/microorganisms9030667] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/18/2021] [Accepted: 03/20/2021] [Indexed: 02/07/2023] Open
Abstract
Bacterial endospores (spores) are among the most resistant living forms on earth. Spores of Bacillus subtilis A163 show extremely high resistance to wet heat compared to spores of laboratory strains. In this study, we found that spores of B. subtilis A163 were indeed very wet heat resistant and released dipicolinic acid (DPA) very slowly during heat treatment. We also determined the proteome of vegetative cells and spores of B. subtilis A163 and the differences in these proteomes from those of the laboratory strain PY79, spores of which are much less heat resistant. This proteomic characterization identified 2011 proteins in spores and 1901 proteins in vegetative cells of B. subtilis A163. Surprisingly, spore morphogenic protein SpoVM had no homologs in B. subtilis A163. Comparing protein expression between these two strains uncovered 108 proteins that were differentially present in spores and 93 proteins differentially present in cells. In addition, five of the seven proteins on an operon in strain A163, which is thought to be primarily responsible for this strain's spores high heat resistance, were also identified. These findings reveal proteomic differences of the two strains exhibiting different resistance to heat and form a basis for further mechanistic analysis of the high heat resistance of B. subtilis A163 spores.
Collapse
Affiliation(s)
- Zhiwei Tu
- Laboratory for Molecular Biology and Microbial Food Safety, University of Amsterdam, 1098 XH Amsterdam, The Netherlands;
- Laboratory for Mass Spectrometry of Biomolecules, University of Amsterdam, 1098 XH Amsterdam, The Netherlands;
| | - Peter Setlow
- Department of Molecular Biology and Biophysics, UCONN Health, Farmington, CT 06030-3303, USA;
| | - Stanley Brul
- Laboratory for Molecular Biology and Microbial Food Safety, University of Amsterdam, 1098 XH Amsterdam, The Netherlands;
| | - Gertjan Kramer
- Laboratory for Mass Spectrometry of Biomolecules, University of Amsterdam, 1098 XH Amsterdam, The Netherlands;
| |
Collapse
|
4
|
Ugwuodo CJ, Nwagu TN. Stabilizing enzymes by immobilization on bacterial spores: A review of literature. Int J Biol Macromol 2020; 166:238-250. [PMID: 33115650 DOI: 10.1016/j.ijbiomac.2020.10.171] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 10/16/2020] [Accepted: 10/21/2020] [Indexed: 10/23/2022]
Abstract
The ever-increasing applications of enzymes are limited by the relatively poor performance in harsh processing conditions. As a result, there are constant innovations in immobilization protocols for improving biocatalyst activity and stability. Bacterial spores are cheap to generate and highly resistant to environmental stress. The spore core is sheathed by an inner membrane, the germ cell wall, the cortex, outer membrane, spore coat and in some species the exosporium. The spore surface is anion-rich, hydrophobic and contains several reactive groups capable of interacting and stabilizing enzyme molecules through electrostatic forces, hydrophobic interactions and covalent bonding. The probiotic nature of spores obtained from non-toxic bacterial species makes them suitable carriers for the enzyme immobilization, especially food-grade enzymes or those intended for therapeutic use. Immobilization on spores is by direct adsorption, covalent attachment or surface display during the sporulation phase. Hindrances to the immobilization on spore matrix include the production rates, operational instability, and reduced catalytic properties due to conformational changes in enzyme. This paper reviews bacterial spore as a heterofunctional support matrix gives reasons why probiotic bacillus spores are better options and the diverse technologies adopted for spore-enzyme immobilization. It further suggests directions for future use and discusses the commercialization prospects.
Collapse
|
5
|
Role of SpoIVA ATPase Motifs during Clostridioides difficile Sporulation. J Bacteriol 2020; 202:JB.00387-20. [PMID: 32817091 PMCID: PMC7549369 DOI: 10.1128/jb.00387-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 08/04/2020] [Indexed: 01/04/2023] Open
Abstract
The major pathogen Clostridioides difficile depends on its spore form to transmit disease. However, the mechanism by which C. difficile assembles spores remains poorly characterized. We previously showed that binding between the spore morphogenetic proteins SpoIVA and SipL regulates assembly of the protective coat layer around the forespore. In this study, we determined that mutations in the C. difficile SpoIVA ATPase motifs result in relatively minor defects in spore formation, in contrast with Bacillus subtilis. Nevertheless, our data suggest that SipL preferentially recognizes the ATP-bound form of SpoIVA and identify a specific residue in the SipL C-terminal LysM domain that is critical for recognizing the ATP-bound form of SpoIVA. These findings advance our understanding of how SpoIVA-SipL interactions regulate C. difficile spore assembly. The nosocomial pathogen Clostridioides difficile is a spore-forming obligate anaerobe that depends on its aerotolerant spore form to transmit infections. Functional spore formation depends on the assembly of a proteinaceous layer known as the coat around the developing spore. In C. difficile, coat assembly depends on the conserved spore protein SpoIVA and the clostridial-organism-specific spore protein SipL, which directly interact. Mutations that disrupt their interaction cause the coat to mislocalize and impair spore formation. In Bacillus subtilis, SpoIVA is an ATPase that uses ATP hydrolysis to drive its polymerization around the forespore. Loss of SpoIVA ATPase activity impairs B. subtilis SpoIVA encasement of the forespore and activates a quality control mechanism that eliminates these defective cells. Since this mechanism is lacking in C. difficile, we tested whether mutations in the C. difficile SpoIVA ATPase motifs impact functional spore formation. Disrupting C. difficile SpoIVA ATPase motifs resulted in phenotypes that were typically >104-fold less severe than the equivalent mutations in B. subtilis. Interestingly, mutation of ATPase motif residues predicted to abrogate SpoIVA binding to ATP decreased the SpoIVA-SipL interaction, whereas mutation of ATPase motif residues predicted to disrupt ATP hydrolysis but maintain ATP binding enhanced the SpoIVA-SipL interaction. When a sipL mutation known to reduce binding to SpoIVA was combined with a spoIVA mutation predicted to prevent SpoIVA binding to ATP, spore formation was severely exacerbated. Since this phenotype is allele specific, our data imply that SipL recognizes the ATP-bound form of SpoIVA and highlight the importance of this interaction for functional C. difficile spore formation. IMPORTANCE The major pathogen Clostridioides difficile depends on its spore form to transmit disease. However, the mechanism by which C. difficile assembles spores remains poorly characterized. We previously showed that binding between the spore morphogenetic proteins SpoIVA and SipL regulates assembly of the protective coat layer around the forespore. In this study, we determined that mutations in the C. difficile SpoIVA ATPase motifs result in relatively minor defects in spore formation, in contrast with Bacillus subtilis. Nevertheless, our data suggest that SipL preferentially recognizes the ATP-bound form of SpoIVA and identify a specific residue in the SipL C-terminal LysM domain that is critical for recognizing the ATP-bound form of SpoIVA. These findings advance our understanding of how SpoIVA-SipL interactions regulate C. difficile spore assembly.
Collapse
|
6
|
Sayer CV, Barat B, Popham DL. Identification of L-Valine-initiated-germination-active genes in Bacillus subtilis using Tn-seq. PLoS One 2019; 14:e0218220. [PMID: 31199835 PMCID: PMC6568419 DOI: 10.1371/journal.pone.0218220] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 05/28/2019] [Indexed: 11/18/2022] Open
Abstract
Bacterial endospores can survive harsh environmental conditions and long-term dormancy in the absence of nutrients, but can rapidly germinate under favorable conditions. In the present study, we employed transposon sequencing (Tn-seq) to identify genes with previously uncharacterized roles in spore germination. Identified genes that encoded spore inner membrane proteins were chosen for study of defined mutants, which exhibited delayed germination in several assays in response to varying germinants. Significantly slowed release of DPA indicated that mutants were affected in Stage I of germination. Several mutants exhibited phenotypic traits consistent with failure of a GerA germinant receptor-mediated response, while others appeared to have a more general loss of response to varied germinants. Use of a gerA-lacZ transcriptional fusion and quantitative western blotting of GerAC allowed mutants to be classified based upon normal or decreased gerA transcription and normal or reduced GerA accumulation. Fourteen genes were identified to have newly described roles within Bacillus spore germination. A more complete understanding of this process can contribute to the development of better spore decontamination procedures.
Collapse
Affiliation(s)
- Cameron V. Sayer
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, United States of America
| | - Bidisha Barat
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, United States of America
| | - David L. Popham
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, United States of America
- * E-mail:
| |
Collapse
|
7
|
Touchette MH, Benito de la Puebla H, Ravichandran P, Shen A. SpoIVA-SipL Complex Formation Is Essential for Clostridioides difficile Spore Assembly. J Bacteriol 2019; 201:e00042-19. [PMID: 30692174 PMCID: PMC6436350 DOI: 10.1128/jb.00042-19] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 01/23/2019] [Indexed: 01/05/2023] Open
Abstract
Spores are the major infectious particle of the Gram-positive nosocomial pathogen Clostridioides difficile (formerly Clostridium difficile), but the molecular details of how this organism forms these metabolically dormant cells remain poorly characterized. The composition of the spore coat in C. difficile differs markedly from that defined in the well-studied organism Bacillus subtilis, with only 25% of the ∼70 spore coat proteins being conserved between the two organisms and with only 2 of 9 coat assembly (morphogenetic) proteins defined in B. subtilis having homologs in C. difficile We previously identified SipL as a clostridium-specific coat protein essential for functional spore formation. Heterologous expression analyses in Escherichia coli revealed that SipL directly interacts with C. difficile SpoIVA, a coat-morphogenetic protein conserved in all spore-forming organisms, through SipL's C-terminal LysM domain. In this study, we show that SpoIVA-SipL binding is essential for C. difficile spore formation and identify specific residues within the LysM domain that stabilize this interaction. Fluorescence microscopy analyses indicate that binding of SipL's LysM domain to SpoIVA is required for SipL to localize to the forespore while SpoIVA requires SipL to promote encasement of SpoIVA around the forespore. Since we also show that clostridial LysM domains are functionally interchangeable at least in C. difficile, the basic mechanism for SipL-dependent assembly of clostridial spore coats may be conserved.IMPORTANCE The metabolically dormant spore form of the major nosocomial pathogen Clostridioides difficile is its major infectious particle. However, the mechanisms controlling the formation of this resistant cell type are not well understood, particularly with respect to its outermost layer, the spore coat. We previously identified two spore-morphogenetic proteins in C. difficile: SpoIVA, which is conserved in all spore-forming organisms, and SipL, which is conserved only in the clostridia. Both SpoIVA and SipL are essential for heat-resistant spore formation and directly interact through SipL's C-terminal LysM domain. In this study, we demonstrate that the LysM domain is critical for SipL and SpoIVA function, likely by helping recruit SipL to the forespore during spore morphogenesis. We further identified residues within the LysM domain that are important for binding SpoIVA and, thus, functional spore formation. These findings provide important insight into the molecular mechanisms controlling the assembly of infectious C. difficile spores.
Collapse
Affiliation(s)
- Megan H Touchette
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Hector Benito de la Puebla
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Priyanka Ravichandran
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, Vermont, USA
| | - Aimee Shen
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, USA
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, Vermont, USA
| |
Collapse
|
8
|
Alves Feliciano C, Douché T, Giai Gianetto Q, Matondo M, Martin-Verstraete I, Dupuy B. CotL, a new morphogenetic spore coat protein of Clostridium difficile. Environ Microbiol 2019; 21:984-1003. [PMID: 30556639 DOI: 10.1111/1462-2920.14505] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 11/07/2018] [Accepted: 12/13/2018] [Indexed: 01/01/2023]
Abstract
The strict anaerobe Clostridium difficile is the most common cause of antibiotic-associated diarrhoea. The oxygen-resistant C. difficile spores play a central role in the infectious cycle, contributing to transmission, infection and recurrence. The spore surface layers, the coat and exosporium, enable the spores to resist physical and chemical stress. However, little is known about the mechanisms of their assembly. In this study, we characterized a new spore protein, CotL, which is required for the assembly of the spore coat. The cotL gene was expressed in the mother cell compartment under the dual control of the RNA polymerase sigma factors, σE and σK . CotL was localized in the spore coat, and the spores of the cotL mutant had a major morphologic defect at the level of the coat/exosporium layers. Therefore, the mutant spores contained a reduced amount of several coat/exosporium proteins and a defect in their localization in sporulating cells. Finally, cotL mutant spores were more sensitive to lysozyme and were impaired in germination, a phenotype likely to be associated with the structurally altered coat. Collectively, these results strongly suggest that CotL is a morphogenetic protein essential for the assembly of the spore coat in C. difficile.
Collapse
Affiliation(s)
- Carolina Alves Feliciano
- Laboratoire Pathogenèse des Bactéries Anaérobies, Institut Pasteur, Paris, France.,University Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Thibaut Douché
- Plateforme Protéomique, Unité de Spectrométrie de Masse pour La Biologie, CNRS USR 2000, Institut Pasteur, Paris, France
| | - Quentin Giai Gianetto
- Plateforme Protéomique, Unité de Spectrométrie de Masse pour La Biologie, CNRS USR 2000, Institut Pasteur, Paris, France.,Bioinformatics and Biostatistics HUB, C3BI, CNRS USR 3756, Institut Pasteur, Paris, France
| | - Mariette Matondo
- Plateforme Protéomique, Unité de Spectrométrie de Masse pour La Biologie, CNRS USR 2000, Institut Pasteur, Paris, France
| | - Isabelle Martin-Verstraete
- Laboratoire Pathogenèse des Bactéries Anaérobies, Institut Pasteur, Paris, France.,University Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Bruno Dupuy
- Laboratoire Pathogenèse des Bactéries Anaérobies, Institut Pasteur, Paris, France.,University Paris Diderot, Sorbonne Paris Cité, Paris, France
| |
Collapse
|
9
|
A LysM Domain Intervenes in Sequential Protein-Protein and Protein-Peptidoglycan Interactions Important for Spore Coat Assembly in Bacillus subtilis. J Bacteriol 2019; 201:JB.00642-18. [PMID: 30455281 DOI: 10.1128/jb.00642-18] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 11/15/2018] [Indexed: 11/20/2022] Open
Abstract
At a late stage in spore development in Bacillus subtilis, the mother cell directs synthesis of a layer of peptidoglycan known as the cortex between the two forespore membranes, as well as the assembly of a protective protein coat at the surface of the forespore outer membrane. SafA, the key determinant of inner coat assembly, is first recruited to the surface of the developing spore and then encases the spore under the control of the morphogenetic protein SpoVID. SafA has a LysM peptidoglycan-binding domain, SafALysM, and localizes to the cortex-coat interface in mature spores. SafALysM is followed by a region, A, required for an interaction with SpoVID and encasement. We now show that residues D10 and N30 in SafALysM, while involved in the interaction with peptidoglycan, are also required for the interaction with SpoVID and encasement. We further show that single alanine substitutions on residues S11, L12, and I39 of SafALysM that strongly impair binding to purified cortex peptidoglycan affect a later stage in the localization of SafA that is also dependent on the activity of SpoVE, a transglycosylase required for cortex formation. The assembly of SafA thus involves sequential protein-protein and protein-peptidoglycan interactions, mediated by the LysM domain, which are required first for encasement then for the final localization of the protein in mature spores.IMPORTANCE Bacillus subtilis spores are encased in a multiprotein coat that surrounds an underlying peptidoglycan layer, the cortex. How the connection between the two layers is enforced is not well established. Here, we elucidate the role of the peptidoglycan-binding LysM domain, present in two proteins, SafA and SpoVID, that govern the localization of additional proteins to the coat. We found that SafALysM is a protein-protein interaction module during the early stages of coat assembly and a cortex-binding module at late stages in morphogenesis, with the cortex-binding function promoting a tight connection between the cortex and the coat. In contrast, SpoVIDLysM functions only as a protein-protein interaction domain that targets SpoVID to the spore surface at the onset of coat assembly.
Collapse
|
10
|
Nunes F, Fernandes C, Freitas C, Marini E, Serrano M, Moran CP, Eichenberger P, Henriques AO. SpoVID functions as a non-competitive hub that connects the modules for assembly of the inner and outer spore coat layers in Bacillus subtilis. Mol Microbiol 2018; 110:576-595. [PMID: 30168214 PMCID: PMC6282716 DOI: 10.1111/mmi.14116] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Revised: 08/22/2018] [Accepted: 08/27/2018] [Indexed: 01/20/2023]
Abstract
During sporulation in Bacillus subtilis, a group of mother cell‐specific proteins guides the assembly of the coat, a multiprotein structure that protects the spore and influences many of its environmental interactions. SafA and CotE behave as party hubs, governing assembly of the inner and outer coat layers. Targeting of coat proteins to the developing spore is followed by encasement. Encasement by SafA and CotE requires E, a region of 11 amino acids in the encasement protein SpoVID, with which CotE interacts directly. Here, we identified two single alanine substitutions in E that prevent binding of SafA, but not of CotE, to SpoVID, and block encasement. The substitutions result in the accumulation of SafA, CotE and their dependent proteins at the mother cell proximal spore pole, phenocopying a spoVID null mutant and suggesting that mislocalized SafA acts as an attractor for the rest of the coat. The requirement for E in SafA binding is bypassed by a peptide with the sequence of E provided in trans. We suggest that E allows binding of SafA to a second region in SpoVID, enabling CotE to interact with E and SpoVID to function as a non‐competitive hub during spore encasement.
Collapse
Affiliation(s)
- Filipa Nunes
- Microbial Development Laboratory, Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Catarina Fernandes
- Microbial Development Laboratory, Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Carolina Freitas
- Microbial Development Laboratory, Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Eleonora Marini
- Microbial Development Laboratory, Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Mónica Serrano
- Microbial Development Laboratory, Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Charles P Moran
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | | | - Adriano O Henriques
- Microbial Development Laboratory, Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| |
Collapse
|
11
|
The Conserved Spore Coat Protein SpoVM Is Largely Dispensable in Clostridium difficile Spore Formation. mSphere 2017; 2:mSphere00315-17. [PMID: 28959733 PMCID: PMC5607322 DOI: 10.1128/msphere.00315-17] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 08/29/2017] [Indexed: 02/04/2023] Open
Abstract
The spore-forming obligate anaerobe Clostridium difficile is the leading cause of antibiotic-associated diarrheal disease in the United States. When C. difficile spores are ingested by susceptible individuals, they germinate within the gut and transform into vegetative, toxin-secreting cells. During infection, C. difficile must also induce spore formation to survive exit from the host. Since spore formation is essential for transmission, understanding the basic mechanisms underlying sporulation in C. difficile could inform the development of therapeutic strategies targeting spores. In this study, we determine the requirement of the C. difficile homolog of SpoVM, a protein that is essential for spore formation in Bacillus subtilis due to its regulation of coat and cortex formation. We observed that SpoVM plays a minor role in C. difficile spore formation, in contrast with B. subtilis, indicating that this protein would not be a good target for inhibiting spore formation. The spore-forming bacterial pathogen Clostridium difficile is a leading cause of health care-associated infections in the United States. In order for this obligate anaerobe to transmit infection, it must form metabolically dormant spores prior to exiting the host. A key step during this process is the assembly of a protective, multilayered proteinaceous coat around the spore. Coat assembly depends on coat morphogenetic proteins recruiting distinct subsets of coat proteins to the developing spore. While 10 coat morphogenetic proteins have been identified in Bacillus subtilis, only two of these morphogenetic proteins have homologs in the Clostridia: SpoIVA and SpoVM. C. difficile SpoIVA is critical for proper coat assembly and functional spore formation, but the requirement for SpoVM during this process was unknown. Here, we show that SpoVM is largely dispensable for C. difficile spore formation, in contrast with B. subtilis. Loss of C. difficile SpoVM resulted in modest decreases (~3-fold) in heat- and chloroform-resistant spore formation, while morphological defects such as coat detachment from the forespore and abnormal cortex thickness were observed in ~30% of spoVM mutant cells. Biochemical analyses revealed that C. difficile SpoIVA and SpoVM directly interact, similarly to their B. subtilis counterparts. However, in contrast with B. subtilis, C. difficile SpoVM was not essential for SpoIVA to encase the forespore. Since C. difficile coat morphogenesis requires SpoIVA-interacting protein L (SipL), which is conserved exclusively in the Clostridia, but not the more broadly conserved SpoVM, our results reveal another key difference between C. difficile and B. subtilis spore assembly pathways. IMPORTANCE The spore-forming obligate anaerobe Clostridium difficile is the leading cause of antibiotic-associated diarrheal disease in the United States. When C. difficile spores are ingested by susceptible individuals, they germinate within the gut and transform into vegetative, toxin-secreting cells. During infection, C. difficile must also induce spore formation to survive exit from the host. Since spore formation is essential for transmission, understanding the basic mechanisms underlying sporulation in C. difficile could inform the development of therapeutic strategies targeting spores. In this study, we determine the requirement of the C. difficile homolog of SpoVM, a protein that is essential for spore formation in Bacillus subtilis due to its regulation of coat and cortex formation. We observed that SpoVM plays a minor role in C. difficile spore formation, in contrast with B. subtilis, indicating that this protein would not be a good target for inhibiting spore formation.
Collapse
|
12
|
Abstract
Spores of Clostridiales and Bacillales are encased in a complex series of concentric shells that provide protection, facilitate germination, and mediate interactions with the environment. Analysis of diverse spore-forming species by thin-section transmission electron microscopy reveals that the number and morphology of these encasing shells vary greatly. In some species, they appear to be composed of a small number of discrete layers. In other species, they can comprise multiple, morphologically complex layers. In addition, spore surfaces can possess elaborate appendages. For all their variability, there is a consistent architecture to the layers encasing the spore. A hallmark of all Clostridiales and Bacillales spores is the cortex, a layer made of peptidoglycan. In close association with the cortex, all species examined possess, at a minimum, a series of proteinaceous layers, called the coat. In some species, including Bacillus subtilis, only the coat is present. In other species, including Bacillus anthracis, an additional layer, called the exosporium, surrounds the coat. Our goals here are to review the present understanding of the structure, composition, assembly, and functions of the coat, primarily in the model organism B. subtilis, but also in the small but growing number of other spore-forming species where new data are showing that there is much to be learned beyond the relatively well-developed basis of knowledge in B. subtilis. To help summarize this large field and define future directions for research, we will focus on key findings in recent years.
Collapse
|
13
|
Decker AR, Ramamurthi KS. Cell Death Pathway That Monitors Spore Morphogenesis. Trends Microbiol 2017; 25:637-647. [PMID: 28408070 DOI: 10.1016/j.tim.2017.03.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 03/02/2017] [Accepted: 03/06/2017] [Indexed: 12/16/2022]
Abstract
The use of quality control mechanisms to stall developmental pathways or completely remove defective cells from a population is a widespread strategy to ensure the integrity of morphogenetic programs. Endospore formation (sporulation) is a well conserved microbial developmental strategy in the Firmicutes phylum wherein a progenitor cell that faces starvation differentiates to form a dormant spore. Despite the conservation of this strategy, it has been unclear what selective pressure maintains the fitness of this developmental program, composed of hundreds of unique genes, during multiple rounds of vegetative growth when sporulation is not required. Recently, a quality control pathway was discovered in Bacillus subtilis which monitors the assembly of the spore envelope and specifically eliminates, through cell lysis, sporulating cells that assemble the envelope incorrectly. Here, we review the use of checkpoints that govern the entry into sporulation in B. subtilis and discuss how the use of regulated cell death pathways during bacterial development may help maintain the fidelity of the sporulation program in the species.
Collapse
Affiliation(s)
- Amanda R Decker
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kumaran S Ramamurthi
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
14
|
Unraveling the predator-prey relationship of Cupriavidus necator and Bacillus subtilis. Microbiol Res 2016; 192:231-238. [PMID: 27664741 DOI: 10.1016/j.micres.2016.07.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 07/25/2016] [Accepted: 07/28/2016] [Indexed: 01/31/2023]
Abstract
Cupriavidus necator is a non-obligate bacterial predator of Gram-negative and Gram-positive bacteria. In this study, we set out to determine the conditions, which are necessary to observe predatory behavior of C. necator. Using Bacillus subtilis as a prey organism, we confirmed that the predatory performance of C. necator is correlated with the available copper level, and that the killing is mediated, at least in part, by secreted extracellular factors. The predatory activity depends on the nutrition status of C. necator, but does not require a quorum of predator cells. This suggests that C. necator is no group predator. Further analyses revealed that sporulation enables B. subtilis to avoid predation by C. necator. In contrast to the interaction with predatory myxobacteria, however, an intact spore coat is not required for resistance. Instead resistance is possibly mediated by quiescence.
Collapse
|
15
|
Liu H, Krajcikova D, Wang N, Zhang Z, Wang H, Barak I, Tang J. Forces and Kinetics of the Bacillus subtilis Spore Coat Proteins CotY and CotX Binding to CotE Inspected by Single Molecule Force Spectroscopy. J Phys Chem B 2016; 120:1041-7. [DOI: 10.1021/acs.jpcb.5b11344] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Huiqing Liu
- State
Key Laboratory of Electroanalytical Chemistry, Changchun Institute
of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Daniela Krajcikova
- Institute
of Molecular Biology, Slovak Academy of Sciences, Dubravska cesta
21, Bratislava 845 51, Slovakia
| | - Nan Wang
- State
Key Laboratory of Electroanalytical Chemistry, Changchun Institute
of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zhe Zhang
- State
Key Laboratory of Electroanalytical Chemistry, Changchun Institute
of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Hongda Wang
- State
Key Laboratory of Electroanalytical Chemistry, Changchun Institute
of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Imrich Barak
- Institute
of Molecular Biology, Slovak Academy of Sciences, Dubravska cesta
21, Bratislava 845 51, Slovakia
| | - Jilin Tang
- State
Key Laboratory of Electroanalytical Chemistry, Changchun Institute
of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| |
Collapse
|
16
|
Involvement of Coat Proteins in Bacillus subtilis Spore Germination in High-Salinity Environments. Appl Environ Microbiol 2015; 81:6725-35. [PMID: 26187959 DOI: 10.1128/aem.01817-15] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 07/14/2015] [Indexed: 11/20/2022] Open
Abstract
The germination of spore-forming bacteria in high-salinity environments is of applied interest for food microbiology and soil ecology. It has previously been shown that high salt concentrations detrimentally affect Bacillus subtilis spore germination, rendering this process slower and less efficient. The mechanistic details of these salt effects, however, remained obscure. Since initiation of nutrient germination first requires germinant passage through the spores' protective integuments, the aim of this study was to elucidate the role of the proteinaceous spore coat in germination in high-salinity environments. Spores lacking major layers of the coat due to chemical decoating or mutation germinated much worse in the presence of NaCl than untreated wild-type spores at comparable salinities. However, the absence of the crust, the absence of some individual nonmorphogenetic proteins, and the absence of either CwlJ or SleB had no or little effect on germination in high-salinity environments. Although the germination of spores lacking GerP (which is assumed to facilitate germinant flow through the coat) was generally less efficient than the germination of wild-type spores, the presence of up to 2.4 M NaCl enhanced the germination of these mutant spores. Interestingly, nutrient-independent germination by high pressure was also inhibited by NaCl. Taken together, these results suggest that (i) the coat has a protective function during germination in high-salinity environments; (ii) germination inhibition by NaCl is probably not exerted at the level of cortex hydrolysis, germinant accessibility, or germinant-receptor binding; and (iii) the most likely germination processes to be inhibited by NaCl are ion, Ca(2+)-dipicolinic acid, and water fluxes.
Collapse
|
17
|
Pishdadian K, Fimlaid KA, Shen A. SpoIIID-mediated regulation of σK function during Clostridium difficile sporulation. Mol Microbiol 2014; 95:189-208. [PMID: 25393584 DOI: 10.1111/mmi.12856] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/05/2014] [Indexed: 02/04/2023]
Abstract
The spore-forming bacterial pathogen Clostridium difficile is a leading cause of health-care-associated diarrhea worldwide. Although C. difficile spore formation is essential for disease transmission, the regulatory pathways that control this developmental process have only been partially characterized. In the well-studied spore-former Bacillus subtilis, the highly conserved σ(E) , SpoIIID and σ(K) regulatory proteins control gene expression in the mother cell to ensure proper spore formation. To define the precise requirement for SpoIIID and σ(K) during C. difficile sporulation, we analyzed spoIIID and sigK mutants using heterologous expression systems and RNA-Seq transcriptional profiling. These analyses revealed that expression of sigK from a SpoIIID-independent promoter largely bypasses the need for SpoIIID to produce heat-resistant spores. We also observed that σ(K) is active upon translation, suggesting that SpoIIID primarily functions to activate sigK. SpoIIID nevertheless plays auxiliary roles during sporulation, as it enhances levels of the exosporium morphogenetic protein CdeC in a σ(K) -dependent manner. Analyses of purified spores further revealed that SpoIIID and σ(K) control the adherence of the CotB coat protein to C. difficile spores, indicating that these proteins regulate multiple stages of spore formation. Collectively, these results highlight that diverse mechanisms control spore formation in the Firmicutes.
Collapse
Affiliation(s)
- Keyan Pishdadian
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, Vermont, 05405, USA
| | | | | |
Collapse
|
18
|
Plomp M, Carroll AM, Setlow P, Malkin AJ. Architecture and assembly of the Bacillus subtilis spore coat. PLoS One 2014; 9:e108560. [PMID: 25259857 PMCID: PMC4178626 DOI: 10.1371/journal.pone.0108560] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 08/28/2014] [Indexed: 11/30/2022] Open
Abstract
Bacillus spores are encased in a multilayer, proteinaceous self-assembled coat structure that assists in protecting the bacterial genome from stresses and consists of at least 70 proteins. The elucidation of Bacillus spore coat assembly, architecture, and function is critical to determining mechanisms of spore pathogenesis, environmental resistance, immune response, and physicochemical properties. Recently, genetic, biochemical and microscopy methods have provided new insight into spore coat architecture, assembly, structure and function. However, detailed spore coat architecture and assembly, comprehensive understanding of the proteomic composition of coat layers, and specific roles of coat proteins in coat assembly and their precise localization within the coat remain in question. In this study, atomic force microscopy was used to probe the coat structure of Bacillus subtilis wild type and cotA, cotB, safA, cotH, cotO, cotE, gerE, and cotE gerE spores. This approach provided high-resolution visualization of the various spore coat structures, new insight into the function of specific coat proteins, and enabled the development of a detailed model of spore coat architecture. This model is consistent with a recently reported four-layer coat assembly and further adds several coat layers not reported previously. The coat is organized starting from the outside into an outermost amorphous (crust) layer, a rodlet layer, a honeycomb layer, a fibrous layer, a layer of “nanodot” particles, a multilayer assembly, and finally the undercoat/basement layer. We propose that the assembly of the previously unreported fibrous layer, which we link to the darkly stained outer coat seen by electron microscopy, and the nanodot layer are cotH- and cotE- dependent and cotE-specific respectively. We further propose that the inner coat multilayer structure is crystalline with its apparent two-dimensional (2D) nuclei being the first example of a non-mineral 2D nucleation crystallization pattern in a biological organism.
Collapse
Affiliation(s)
- Marco Plomp
- Biosciences and Biotechnology Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California, United States of America
| | - Alicia Monroe Carroll
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, Connecticut, United States of America
| | - Peter Setlow
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, Connecticut, United States of America
- * E-mail: (PS); (AJM)
| | - Alexander J. Malkin
- Biosciences and Biotechnology Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California, United States of America
- * E-mail: (PS); (AJM)
| |
Collapse
|
19
|
Müller JEN, Litsanov B, Bortfeld-Miller M, Trachsel C, Grossmann J, Brautaset T, Vorholt JA. Proteomic analysis of the thermophilic methylotroph Bacillus methanolicus MGA3. Proteomics 2014; 14:725-37. [PMID: 24452867 DOI: 10.1002/pmic.201300515] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 12/21/2013] [Accepted: 12/27/2013] [Indexed: 11/08/2022]
Abstract
Bacillus methanolicus MGA3 is a facultative methylotroph of industrial relevance that is able to grow on methanol as its sole source of carbon and energy. The Gram-positive bacterium possesses a soluble NAD(+) -dependent methanol dehydrogenase and assimilates formaldehyde via the ribulose monophosphate (RuMP) cycle. We used label-free quantitative proteomics to generate reference proteome data for this bacterium and compared the proteome of B. methanolicus MGA3 on two different carbon sources (methanol and mannitol) as well as two different growth temperatures (50°C and 37°C). From a total of approximately 1200 different detected proteins, approximately 1000 of these were used for quantification. While the levels of 213 proteins were significantly different at the two growth temperatures tested, the levels of 109 proteins changed significantly when cells were grown on different carbon sources. The carbon source strongly affected the synthesis of enzymes related to carbon metabolism, and in particular, both dissimilatory and assimilatory RuMP cycle enzyme levels were elevated during growth on methanol compared to mannitol. Our data also indicate that B. methanolicus has a functional tricarboxylic acid cycle, the proteins of which are differentially regulated on mannitol and methanol. Other proteins presumed to be involved in growth on methanol were constitutively expressed under the different growth conditions. All MS data have been deposited in the ProteomeXchange with the identifiers PXD000637 and PXD000638 (http://proteomecentral.proteomexchange.org/dataset/PXD000637, http://proteomecentral.proteomexchange.org/dataset/PXD000638).
Collapse
|
20
|
Abstract
Clostridium difficile is a major nosocomial pathogen whose infections are difficult to treat because of their frequent recurrence. The spores of C. difficile are responsible for these clinical features, as they resist common disinfectants and antibiotic treatment. Although spores are the major transmissive form of C. difficile, little is known about their composition or morphogenesis. Spore morphogenesis has been well characterized for Bacillus sp., but Bacillus sp. spore coat proteins are poorly conserved in Clostridium sp. Of the known spore morphogenetic proteins in Bacillus subtilis, SpoIVA is one of the mostly highly conserved in the Bacilli and the Clostridia. Using genetic analyses, we demonstrate that SpoIVA is required for proper spore morphogenesis in C. difficile. In particular, a spoIVA mutant exhibits defects in spore coat localization but not cortex formation. Our study also identifies SipL, a previously uncharacterized protein found in proteomic studies of C. difficile spores, as another critical spore morphogenetic protein, since a sipL mutant phenocopies a spoIVA mutant. Biochemical analyses and mutational analyses indicate that SpoIVA and SipL directly interact. This interaction depends on the Walker A ATP binding motif of SpoIVA and the LysM domain of SipL. Collectively, these results provide the first insights into spore morphogenesis in C. difficile.
Collapse
|
21
|
McKenney PT, Driks A, Eichenberger P. The Bacillus subtilis endospore: assembly and functions of the multilayered coat. Nat Rev Microbiol 2013; 11:33-44. [PMID: 23202530 PMCID: PMC9910062 DOI: 10.1038/nrmicro2921] [Citation(s) in RCA: 371] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Sporulation in Bacillus subtilis involves an asymmetric cell division followed by differentiation into two cell types, the endospore and the mother cell. The endospore coat is a multilayered shell that protects the bacterial genome during stress conditions and is composed of dozens of proteins. Recently, fluorescence microscopy coupled with high-resolution image analysis has been applied to the dynamic process of coat assembly and has shown that the coat is organized into at least four distinct layers. In this Review, we provide a brief summary of B. subtilis sporulation, describe the function of the spore surface layers and discuss the recent progress that has improved our understanding of the structure of the endospore coat and the mechanisms of coat assembly.
Collapse
Affiliation(s)
- Peter T. McKenney
- Center for Genomics and Systems Biology, Department of
Biology, New York University, New York, New York 10003, USA
| | - Adam Driks
- Department of Microbiology and Immunology, Stritch School
of Medicine, Loyola University Chicago, Maywood, Illinois 60153, USA
| | - Patrick Eichenberger
- Center for Genomics and Systems Biology, Department of
Biology, New York University, New York, New York 10003, USA
| |
Collapse
|
22
|
Qiao H, Krajcikova D, Xing C, Lu B, Hao J, Ke X, Wang H, Barak I, Tang J. Study of the interactions between the key spore coat morphogenetic proteins CotE and SpoVID. J Struct Biol 2012. [PMID: 23178679 DOI: 10.1016/j.jsb.2012.11.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The capability of Bacillus subtilis spores to withstand extreme environmental conditions is thought to be conferred especially by their outermost proteinaceous protective layer, called the spore coat. Of the over 70 proteins that form the spore coat, only a small subset of them affect its morphogenesis, they are referred to as morphogenetic proteins. In this study we investigated the interaction between two spore coat morphogenetic proteins SpoVID and CotE. SpoVID is involved in the process of spore surface encirclement by individual coat proteins, these include CotE, which controls the assembly of the outer coat layer. Both proteins were proposed to be recruited to a common protein scaffold, but their direct association has not been previously shown. Here we studied the interactions between CotE and SpoVID in vitro for the first time by using molecule recognition force spectroscopy, which allows the detection of piconewton forces between conjugated biological pairs and also facilitates the investigation of dynamic processes. The most probable CotE-CotE unbinding force was 49.4±0.1pN at a loading rate of 3.16×10³ pN/s while that of SpoVID-CotE was 26.5±0.6pN at a loading rate of 7.8×10² pN/s. We further analyzed the interactions with the bacterial two hybrid system and pull-down experiments, which also indicate that SpoVID interacts directly with CotE. In combination with the previously identified direct contacts among SpoIVA, SpoVID and SafA, our data imply that the physical association of key morphogenetic proteins forms a basic skeleton where other coat proteins could be attached.
Collapse
Affiliation(s)
- Haiyan Qiao
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Sahin O, Yong EH, Driks A, Mahadevan L. Physical basis for the adaptive flexibility of Bacillus spore coats. J R Soc Interface 2012; 9:3156-60. [PMID: 22859568 DOI: 10.1098/rsif.2012.0470] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Bacillus spores are highly resistant dormant cells formed in response to starvation. The spore is surrounded by a structurally complex protein shell, the coat, which protects the genetic material. In spite of its dormancy, once nutrient is available (or an appropriate physical stimulus is provided) the spore is able to resume metabolic activity and return to vegetative growth, a process requiring the coat to be shed. Spores dynamically expand and contract in response to humidity, demanding that the coat be flexible. Despite the coat's critical biological functions, essentially nothing is known about the design principles that allow the coat to be tough but also flexible and, when metabolic activity resumes, to be efficiently shed. Here, we investigated the hypothesis that these apparently incompatible characteristics derive from an adaptive mechanical response of the coat. We generated a mechanical model predicting the emergence and dynamics of the folding patterns uniformly seen in Bacillus spore coats. According to this model, spores carefully harness mechanical instabilities to fold into a wrinkled pattern during sporulation. Owing to the inherent nonlinearity in their formation, these wrinkles persist during dormancy and allow the spore to accommodate changes in volume without compromising structural and biochemical integrity. This characteristic of the spore and its coat may inspire design of adaptive materials.
Collapse
Affiliation(s)
- Ozgur Sahin
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA.
| | | | | | | |
Collapse
|
24
|
Ebmeier SE, Tan IS, Clapham KR, Ramamurthi KS. Small proteins link coat and cortex assembly during sporulation in Bacillus subtilis. Mol Microbiol 2012; 84:682-96. [PMID: 22463703 DOI: 10.1111/j.1365-2958.2012.08052.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Mature spores of the bacterium Bacillus subtilis are encased by two concentric shells: an inner shell (the 'cortex'), made of peptidoglycan; and an outer proteinaceous shell (the 'coat'), whose basement layer is anchored to the surface of the developing spore via a 26-amino-acid-long protein called SpoVM. During sporulation, initiation of cortex assembly depends on the successful initiation of coat assembly, but the mechanisms that co-ordinate the morphogenesis of both structures are largely unknown. Here, we describe a sporulation pathway involving SpoVM and a 37-amino-acid-long protein named 'CmpA' that is encoded by a previously un-annotated gene and is expressed under control of two sporulation-specific transcription factors (σ(E) and SpoIIID). CmpA localized to the surface of the developing spore and deletion of cmpA resulted in cells progressing through the sporulation programme more quickly. Overproduction of CmpA did not affect normal growth or cell division, but delayed entry into sporulation and abrogated cortex assembly. In those cells that had successfully initiated coat assembly, CmpA was removed by a post-translational mechanism, presumably in order to overcome the sporulation inhibition it imposed. We propose a model in which CmpA participates in a developmental checkpoint that ensures the proper orchestration of coat and cortex morphogenesis by repressing cortex assembly until coat assembly successfully initiates.
Collapse
Affiliation(s)
- Sarah E Ebmeier
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
25
|
Müllerová D, KrajÄÃková D, Barák I. Interactions betweenBacillus subtilisearly spore coat morphogenetic proteins. FEMS Microbiol Lett 2009; 299:74-85. [DOI: 10.1111/j.1574-6968.2009.01737.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
26
|
Wang KH, Isidro AL, Domingues L, Eskandarian HA, McKenney PT, Drew K, Grabowski P, Chua MH, Barry SN, Guan M, Bonneau R, Henriques AO, Eichenberger P. The coat morphogenetic protein SpoVID is necessary for spore encasement in Bacillus subtilis. Mol Microbiol 2009; 74:634-49. [PMID: 19775244 DOI: 10.1111/j.1365-2958.2009.06886.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Endospores formed by Bacillus subtilis are encased in a tough protein shell known as the coat, which consists of at least 70 different proteins. We investigated the process of spore coat morphogenesis using a library of 40 coat proteins fused to green fluorescent protein and demonstrate that two successive steps can be distinguished in coat assembly. The first step, initial localization of proteins to the spore surface, is dependent on the coat morphogenetic proteins SpoIVA and SpoVM. The second step, spore encasement, requires a third protein, SpoVID. We show that in spoVID mutant cells, most coat proteins assembled into a cap at one side of the developing spore but failed to migrate around and encase it. We also found that SpoIVA directly interacts with SpoVID. A domain analysis revealed that the N-terminus of SpoVID is required for encasement and is a structural homologue of a virion protein, whereas the C-terminus is necessary for the interaction with SpoIVA. Thus, SpoVM, SpoIVA and SpoVID are recruited to the spore surface in a concerted manner and form a tripartite machine that drives coat formation and spore encasement.
Collapse
Affiliation(s)
- Katherine H Wang
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY 10003, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Expression of yeeK during Bacillus subtilis sporulation and localization of YeeK to the inner spore coat using fluorescence microscopy. J Bacteriol 2008; 191:1220-9. [PMID: 19060142 DOI: 10.1128/jb.01269-08] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The yeeK gene of Bacillus subtilis is predicted to encode a protein of 145 amino acids composed of 28% glycine, 23% histidine, and 12% tyrosine residues. Previous studies were unable to detect YeeK in wild-type spores; however, the 18-kDa YeeK polypeptide has been identified in yabG mutant spores. In this study, we analyze the expression and localization of YeeK to explore the relationship between YeeK and YabG. Northern hybridization analysis of wild-type RNA indicated that transcription of the yeeK gene, which was initiated 5 h after the onset of sporulation, was dependent on a SigK-containing RNA polymerase and the GerE protein. Genetic disruption of yeeK did not impair vegetative growth, development of resistant spores, or germination. Fluorescent microscopy of in-frame fusions of YeeK with green fluorescent protein (YeeK-GFP) and red fluorescent protein (YeeK-RFP) confirmed that YeeK assembles into the spore integument. CotE, SafA, and SpoVID were required for the proper localization of YeeK-GFP. Comparative analysis of YeeK-RFP and an in-frame GFP fusion of YabG indicated that YeeK colocalized with YabG in the spore coat. This is the first use of fluorescent proteins to show localization to different layers of the spore coat. Immunoblotting with anti-GFP antiserum indicated that YeeK-GFP was primarily synthesized as a 44-kDa molecule, which was then digested into a 29-kDa fragment that corresponded to the molecular size of GFP in wild-type spores. In contrast, a minimal amount of 44-kDa YeeK-GFP was digested in yabG mutant spores. Our findings demonstrate that YeeK is guided into the spore coat by CotE, SafA, and SpoVID. We conclude that YabG is directly or indirectly involved in the digestion of YeeK.
Collapse
|
28
|
Protozoal digestion of coat-defective Bacillus subtilis spores produces "rinds" composed of insoluble coat protein. Appl Environ Microbiol 2008; 74:5875-81. [PMID: 18689521 DOI: 10.1128/aem.01228-08] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Bacillus subtilis spore coat is a multilayer, proteinaceous structure that consists of more than 50 proteins. Located on the surface of the spore, the coat provides resistance to potentially toxic molecules as well as to predation by the protozoan Tetrahymena thermophila. When coat-defective spores are fed to Tetrahymena, the spores are readily digested. However, a residue termed a "rind" that looks like coat material remains. As observed with a phase-contrast microscope, the rinds are spherical or hemispherical structures that appear to be devoid of internal contents. Atomic force microscopy and chemical analyses showed that (i) the rinds are composed of insoluble protein largely derived from both outer and inner spore coat layers, (ii) the amorphous layer of the outer coat is largely responsible for providing spore resistance to protozoal digestion, and (iii) the rinds and intact spores do not contain significant levels of silicon.
Collapse
|
29
|
Abstract
Endospores formed by Bacillus, Clostridia, and related genera are encased in a protein shell called the coat. In many species, including B. subtilis, the coat is the outermost spore structure, and in other species, such as the pathogenic organisms B. anthracis and B. cereus, the spore is encased in an additional layer called the exosporium. Both the coat and the exosporium have roles in protection of the spore and in its environmental interactions. Assembly of both structures is a function of the mother cell, one of two cellular compartments of the developing sporangium. Studies in B. subtilis have revealed that the timing of coat protein production, the guiding role of a small group of morphogenetic proteins, and several types of posttranslational modifications are essential for the fidelity of the assembly process. Assembly of the exosporium requires a set of novel proteins as well as homologues of proteins found in the outermost layers of the coat and of some of the coat morphogenetic factors, suggesting that the exosporium is a more specialized structure of a multifunctional coat. These and other insights into the molecular details of spore surface morphogenesis provide avenues for exploitation of the spore surface layers in applications for biotechnology and medicine.
Collapse
Affiliation(s)
- Adriano O Henriques
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, 2781-901 Oeiras Codex, Portugal.
| | | |
Collapse
|
30
|
Masayama A, Kuwana R, Takamatsu H, Hemmi H, Yoshimura T, Watabe K, Moriyama R. A novel lipolytic enzyme, YcsK (LipC), located in the spore coat of Bacillus subtilis, is involved in spore germination. J Bacteriol 2007; 189:2369-75. [PMID: 17220230 PMCID: PMC1899377 DOI: 10.1128/jb.01527-06] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The predicted amino acid sequence of Bacillus subtilis ycsK exhibits similarity to the GDSL family of lipolytic enzymes. Northern blot analysis showed that ycsK mRNA was first detected from 4 h after the onset of sporulation and that transcription of ycsK was dependent on SigK and GerE. The fluorescence of the YcsK-green fluorescent protein fusion protein produced in sporulating cells was detectable in the mother cell but not in the forespore compartment under fluorescence microscopy, and the fusion protein was localized around the developing spores dependent on CotE, SafA, and SpoVID. Inactivation of the ycsK gene by insertion of an erythromycin resistance gene did not affect vegetative growth or spore resistance to heat, lysozyme, or chloroform. The germination of ycsK spores in a mixture of L-asparagine, D-glucose, D-fructose, and potassium chloride and LB medium was also the same as that of wild-type spores, but the mutant spores were defective in L-alanine-stimulated germination. In addition, zymogram analysis demonstrated that the YcsK protein heterologously expressed in Escherichia coli showed lipolytic activity. We therefore propose that ycsK should be renamed lipC. This is the first study of a bacterial spore germination-related lipase.
Collapse
Affiliation(s)
- Atsushi Masayama
- Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Japan
| | | | | | | | | | | | | |
Collapse
|
31
|
Tengra FK, Dahl JL, Dutton D, Caberoy NB, Coyne L, Garza AG. CbgA, a protein involved in cortex formation and stress resistance in Myxococcus xanthus spores. J Bacteriol 2006; 188:8299-302. [PMID: 16997953 PMCID: PMC1698203 DOI: 10.1128/jb.00578-06] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
CbgA plays a role in cortex formation and the acquisition of a subset of stress resistance properties in Myxococcus xanthus spores. The cbgA mutant produces spores with thin or no cortex layers, and these spores are more sensitive to heat and sodium dodecyl sulfate than their wild-type counterparts.
Collapse
Affiliation(s)
- Farah K Tengra
- Department of Biology, Syracuse University, Syracuse, NY 13244-1220, USA
| | | | | | | | | | | |
Collapse
|
32
|
Kuwana R, Okuda N, Takamatsu H, Watabe K. Modification of GerQ reveals a functional relationship between Tgl and YabG in the coat of Bacillus subtilis spores. J Biochem 2006; 139:887-901. [PMID: 16751597 DOI: 10.1093/jb/mvj096] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Here we describe the functional relationship between YabG and transglutaminase (Tgl), enzymes that modify the spore coat proteins of Bacillus subtilis. In wild-type spores at 37 degrees C, Tgl mediates the crosslinking of GerQ into higher molecular mass forms; however, some GerQ multimers are found in tgl mutant spores, indicating that Tgl is not essential. Immunoblotting showed that spores isolated from a yabG mutant after sporulation at 37 degrees C contain only very low levels of GerQ multimers. Heat treatment for 20 min at 60 degrees C, which maximally activates the enzymatic activity of Tgl, caused crosslinking of GerQ in isolated yabG spores but not in tgl/yabG double-mutant spores. In addition, the germination frequency of the tgl/yabG spores in the presence of l-alanine with or without heat activation at 60 degrees C was lower than that of wild-type spores. These findings suggest that Tgl cooperates with YabG to mediate the temperature-dependent modification of the coat proteins, a process associated with spore germination in B. subtilis.
Collapse
Affiliation(s)
- Ritsuko Kuwana
- Faculty of Pharmaceutical Sciences, Setsunan University, Hirakata, Osaka 573-0101
| | | | | | | |
Collapse
|
33
|
Costa T, Isidro AL, Moran CP, Henriques AO. Interaction between coat morphogenetic proteins SafA and SpoVID. J Bacteriol 2006; 188:7731-41. [PMID: 16950916 PMCID: PMC1636312 DOI: 10.1128/jb.00761-06] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Morphogenetic proteins such as SpoVID and SafA govern assembly of the Bacillus subtilis endospore coat by guiding the various protein structural components to the surface of the developing spore. Previously, a screen for peptides able to interact with SpoVID led to the identification of a PYYH motif present in the C-terminal half of the SafA protein and to the subsequent demonstration that SpoVID and SafA directly interact. spoVID and safA spores show deficiencies in coat assembly and are lysozyme susceptible. Both proteins, orthologs of which are found in all Bacillus species, have LysM domains for peptidoglycan binding and localize to the cortex-coat interface. Here, we show that the interaction between SafA and SpoVID involves the PYYH motif (region B) but also a 13-amino-acid region (region A) just downstream of the N-terminal LysM domain of SafA. We show that deletion of region B does not block the interaction of SafA with SpoVID, nor does it bring about spore susceptibility to lysozyme. Nevertheless, it appears to reduce the interaction and affects the complex. In contrast, lesions in region A impaired the interaction of SafA with SpoVID in vitro and, while not affecting the accumulation of SafA in vivo, interfered with the localization of SafA around the developing spore, causing aberrant assembly of the coat and lysozyme sensitivity. A peptide corresponding to region A interacts with SpoVID, suggesting that residues within this region directly contact SpoVID. Since region A is highly conserved among SafA orthologs, this motif may be an important determinant of coat assembly in the group of Bacillus spore formers.
Collapse
Affiliation(s)
- Teresa Costa
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Avenida da República, EAN, 2781-157 Oeiras, Portugal
| | | | | | | |
Collapse
|
34
|
McPherson DC, Kim H, Hahn M, Wang R, Grabowski P, Eichenberger P, Driks A. Characterization of the Bacillus subtilis spore morphogenetic coat protein CotO. J Bacteriol 2006; 187:8278-90. [PMID: 16321932 PMCID: PMC1317010 DOI: 10.1128/jb.187.24.8278-8290.2005] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacillus spores are protected by a structurally and biochemically complex protein shell composed of over 50 polypeptide species, called the coat. Coat assembly in Bacillus subtilis serves as a relatively tractable model for the study of the formation of more complex macromolecular structures and organelles. It is also a critical model for the discovery of strategies to decontaminate B. anthracis spores. In B. subtilis, a subset of coat proteins is known to have important roles in assembly. Here we show that the recently identified B. subtilis coat protein CotO (YjbX) has an especially important morphogenetic role. We used electron and atomic force microscopy to show that CotO controls assembly of the coat layers and coat surface topography as well as biochemical and cell-biological analyses to identify coat proteins whose assembly is CotO dependent. cotO spores are defective in germination and partially sensitive to lysozyme. As a whole, these phenotypes resemble those resulting from a mutation in the coat protein gene cotH. Nonetheless, the roles of CotH and CotO and the proteins whose assembly they direct are not identical. Based on fluorescence and electron microscopy, we suggest that CotO resides in the outer coat (although not on the coat surface). We propose that CotO and CotH participate in a late phase of coat assembly. We further speculate that an important role of these proteins is ensuring that polymerization of the outer coat layers occurs in such a manner that contiguous shells, and not unproductive aggregates, are formed.
Collapse
Affiliation(s)
- D C McPherson
- Department of Microbiology and Immunology, Loyola University Medical Center, 2160 S. 1st Ave., Maywood, IL 60153, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
Real G, Pinto SM, Schyns G, Costa T, Henriques AO, Moran CP. A gene encoding a holin-like protein involved in spore morphogenesis and spore germination in Bacillus subtilis. J Bacteriol 2005; 187:6443-53. [PMID: 16159778 PMCID: PMC1236627 DOI: 10.1128/jb.187.18.6443-6453.2005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We report here studies of expression and functional analysis of a Bacillus subtilis gene, ywcE, which codes for a product with features of a holin. Primer extension analysis of ywcE transcription revealed that a single transcript accumulated from the onset of sporulation onwards, produced from a sigma(A)-type promoter bearing the TG dinucleotide motif of "extended" -10 promoters. No primer extension product was detected in vivo during growth. However, specific runoff products were produced in vitro from the ywcE promoter by purified sigma(A)-containing RNA polymerase (Esigma(A)), and the in vivo and in vitro transcription start sites were identical. These results suggested that utilization of the ywcE promoter by Esigma(A) during growth was subjected to repression. Studies with a lacZ fusion revealed that the transition-state regulator AbrB repressed the transcription of ywcE during growth. This repression was reversed at the onset of sporulation in a Spo0A-dependent manner, but Spo0A did not appear to contribute otherwise to ywcE transcription. We found ywcE to be required for proper spore morphogenesis. Spores of the ywcE mutant showed a reduced outer coat which lacked the characteristic striated pattern, and the outer coat failed to attach to the underlying inner coat. The mutant spores also accumulated reduced levels of dipicolinic acid. ywcE was also found to be important for spore germination.
Collapse
Affiliation(s)
- Gonçalo Real
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| | | | | | | | | | | |
Collapse
|
36
|
Kim H, Hahn M, Grabowski P, McPherson DC, Otte MM, Wang R, Ferguson CC, Eichenberger P, Driks A. TheBacillus subtilisspore coat protein interaction network. Mol Microbiol 2005; 59:487-502. [PMID: 16390444 DOI: 10.1111/j.1365-2958.2005.04968.x] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Bacterial spores are surrounded by a morphologically complex, mechanically flexible protein coat, which protects the spore from toxic molecules. The interactions among the over 50 proteins that make up the coat remain poorly understood. We have used cell biological and protein biochemical approaches to identify novel coat proteins in Bacillus subtilis and describe the network of their interactions, in order to understand coat assembly and the molecular basis of its protective functions and mechanical properties. Our analysis characterizes the interactions between 32 coat proteins. This detailed view reveals a complex interaction network. A key feature of the network is the importance of a small subset of proteins that direct the assembly of most of the coat. From an analysis of the network topology, we propose a model in which low-affinity interactions are abundant in the coat and account, to a significant degree, for the coat's mechanical properties as well as structural variation between spores.
Collapse
Affiliation(s)
- Hosan Kim
- Department of Microbiology and Immunology, Loyola University Medical Center, Maywood, IL 60153, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Steil L, Serrano M, Henriques AO, Völker U. Genome-wide analysis of temporally regulated and compartment-specific gene expression in sporulating cells of Bacillus subtilis. Microbiology (Reading) 2005; 151:399-420. [PMID: 15699190 DOI: 10.1099/mic.0.27493-0] [Citation(s) in RCA: 139] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Temporal and compartment-specific control of gene expression during sporulation inBacillus subtilisis governed by a cascade of four RNA polymerase subunits.σFin the prespore andσEin the mother cell control early stages of development, and are replaced at later stages byσGandσK, respectively. Ultimately, a comprehensive description of the molecular mechanisms underlying spore morphogenesis requires the knowledge of all the intervening genes and their assignment to specific regulons. Here, in an extension of earlier work, DNA macroarrays have been used, and members of the four compartment-specific sporulation regulons have been identified. Genes were identified and grouped based on: i) their temporal expression profile and ii) the use of mutants for each of the four sigma factors and abofAallele, which allowsσKactivation in the absence ofσG. As a further test, artificial production of active alleles of the sigma factors in non-sporulating cells was employed. A total of 439 genes were found, including previously characterized genes whose transcription is induced during sporulation: 55 in theσFregulon, 154σE-governed genes, 113σG-dependent genes, and 132 genes underσKcontrol. The results strengthen the view that the activities ofσF,σE,σGandσKare largely compartmentalized, both temporally as well as spatially, and that the major vegetative sigma factor (σA) is active throughout sporulation. The results provide a dynamic picture of the changes in the overall pattern of gene expression in the two compartments of the sporulating cell, and offer insight into the roles of the prespore and the mother cell at different times of spore morphogenesis.
Collapse
Affiliation(s)
- Leif Steil
- Ernst-Moritz-Arndt-University, Medical School, Laboratory for Functional Genomics, Walther-Rathenau-Str. 49A, D-17487 Greifswald, Germany
- Max-Planck-Institute for Terrestrial Microbiology, D-35043 Marburg, Germany
- Philipps-University Marburg, Department of Biology, Laboratory for Microbiology, D-35032 Marburg, Germany
| | - Mónica Serrano
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República, Apartado 127, 2781-901 Oeiras Codex, Portugal
| | - Adriano O Henriques
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República, Apartado 127, 2781-901 Oeiras Codex, Portugal
| | - Uwe Völker
- Ernst-Moritz-Arndt-University, Medical School, Laboratory for Functional Genomics, Walther-Rathenau-Str. 49A, D-17487 Greifswald, Germany
- Max-Planck-Institute for Terrestrial Microbiology, D-35043 Marburg, Germany
- Philipps-University Marburg, Department of Biology, Laboratory for Microbiology, D-35032 Marburg, Germany
| |
Collapse
|
38
|
Hilbert DW, Piggot PJ. Compartmentalization of gene expression during Bacillus subtilis spore formation. Microbiol Mol Biol Rev 2004; 68:234-62. [PMID: 15187183 PMCID: PMC419919 DOI: 10.1128/mmbr.68.2.234-262.2004] [Citation(s) in RCA: 252] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Gene expression in members of the family Bacillaceae becomes compartmentalized after the distinctive, asymmetrically located sporulation division. It involves complete compartmentalization of the activities of sporulation-specific sigma factors, sigma(F) in the prespore and then sigma(E) in the mother cell, and then later, following engulfment, sigma(G) in the prespore and then sigma(K) in the mother cell. The coupling of the activation of sigma(F) to septation and sigma(G) to engulfment is clear; the mechanisms are not. The sigma factors provide the bare framework of compartment-specific gene expression. Within each sigma regulon are several temporal classes of genes, and for key regulators, timing is critical. There are also complex intercompartmental regulatory signals. The determinants for sigma(F) regulation are assembled before septation, but activation follows septation. Reversal of the anti-sigma(F) activity of SpoIIAB is critical. Only the origin-proximal 30% of a chromosome is present in the prespore when first formed; it takes approximately 15 min for the rest to be transferred. This transient genetic asymmetry is important for prespore-specific sigma(F) activation. Activation of sigma(E) requires sigma(F) activity and occurs by cleavage of a prosequence. It must occur rapidly to prevent the formation of a second septum. sigma(G) is formed only in the prespore. SpoIIAB can block sigma(G) activity, but SpoIIAB control does not explain why sigma(G) is activated only after engulfment. There is mother cell-specific excision of an insertion element in sigK and sigma(E)-directed transcription of sigK, which encodes pro-sigma(K). Activation requires removal of the prosequence following a sigma(G)-directed signal from the prespore.
Collapse
Affiliation(s)
- David W Hilbert
- Department of Microbiology and Immunology, Temple University School of Medicine, 3400 N. Broad St., Philadelphia, PA 19140, USA
| | | |
Collapse
|
39
|
Costa T, Steil L, Martins LO, Völker U, Henriques AO. Assembly of an oxalate decarboxylase produced under sigmaK control into the Bacillus subtilis spore coat. J Bacteriol 2004; 186:1462-74. [PMID: 14973022 PMCID: PMC344410 DOI: 10.1128/jb.186.5.1462-1474.2004] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Over 30 polypeptides are synthesized at various times during sporulation in Bacillus subtilis, and they are assembled at the surface of the developing spore to form a multilayer protein structure called the coat. The coat consists of three main layers, an amorphous undercoat close to the underlying spore cortex peptidoglycan, a lamellar inner layer, and an electron-dense striated outer layer. The product of the B. subtilis oxdD gene was previously shown to have oxalate decarboxylase activity when it was produced in Escherichia coli and to be a spore constituent. In this study, we found that OxdD specifically associates with the spore coat structure, and in this paper we describe regulation of its synthesis and assembly. We found that transcription of oxdD is induced during sporulation as a monocistronic unit under the control of sigma(K) and is negatively regulated by GerE. We also found that localization of a functional OxdD-green fluorescent protein (GFP) at the surface of the developing spore depends on the SafA morphogenetic protein, which localizes at the interface between the spore cortex and coat layers. OxdD-GFP localizes around the developing spore in a cotE mutant, which does not assemble the spore outer coat layer, but it does not persist in spores produced by the mutant. Together, the data suggest that OxdD-GFP is targeted to the interior layers of the coat. Additionally, we found that expression of a multicopy allele of oxdD resulted in production of spores with increased levels of OxdD that were able to degrade oxalate but were sensitive to lysozyme.
Collapse
Affiliation(s)
- Teresa Costa
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Apartado 127, 2781-901 Oeiras Codex, Portugal
| | | | | | | | | |
Collapse
|
40
|
Kuwana R, Yamamura S, Ikejiri H, Kobayashi K, Ogasawara N, Asai K, Sadaie Y, Takamatsu H, Watabe K. Bacillus subtilis spoVIF (yjcC) gene, involved in coat assembly and spore resistance. MICROBIOLOGY-SGM 2003; 149:3011-3021. [PMID: 14523132 DOI: 10.1099/mic.0.26432-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In systematic screening four sporulation-specific genes, yjcA, yjcB, yjcZ and yjcC, of unknown function were found in Bacillus subtilis. These genes are located just upstream of the cotVWXYZ gene cluster oriented in the opposite direction. Northern blot analysis showed that yjcA was transcribed by the SigE RNA polymerase beginning 2 h (t(2)) after the onset of sporulation, and yjcB, yjcZ and yjcC were transcribed by the SigK RNA polymerase beginning at t(4) of sporulation. The transcription of yjcZ was dependent on SigK and GerE. The consensus sequences of the appropriate sigma factors were found upstream of each gene. There were putative GerE-binding sites upstream of yjcZ. Insertional inactivation of the yjcC gene resulted in a reduction in resistance of the mutant spores to lysozyme and heat. Transmission electron microscopic examination of yjcC spores revealed a defect of sporulation at stage VI, resulting in loss of spore coats. These results suggest that YjcC is involved in assembly of spore coat proteins that have roles in lysozyme resistance. It is proposed that yjcC should be renamed as spoVIF.
Collapse
Affiliation(s)
- Ritsuko Kuwana
- Faculty of Pharmaceutical Sciences, Setsunan University, Hirakata, Osaka 573-0101, Japan
| | - Satoko Yamamura
- Faculty of Pharmaceutical Sciences, Setsunan University, Hirakata, Osaka 573-0101, Japan
| | - Hiromi Ikejiri
- Faculty of Pharmaceutical Sciences, Setsunan University, Hirakata, Osaka 573-0101, Japan
| | - Kazuo Kobayashi
- Nara Institute of Science and Technology, Ikoma, Nara 630-0101, Japan
| | - Naotake Ogasawara
- Nara Institute of Science and Technology, Ikoma, Nara 630-0101, Japan
| | - Kei Asai
- Saitama University, Urawa, Saitama 338-8570, Japan
| | | | - Hiromu Takamatsu
- Faculty of Pharmaceutical Sciences, Setsunan University, Hirakata, Osaka 573-0101, Japan
| | - Kazuhito Watabe
- Faculty of Pharmaceutical Sciences, Setsunan University, Hirakata, Osaka 573-0101, Japan
| |
Collapse
|
41
|
Affiliation(s)
- Adam Driks
- Department of Microbiology and Immunology, Loyola University Medical Center, Maywood, IL 60153, USA.
| |
Collapse
|
42
|
Lai EM, Phadke ND, Kachman MT, Giorno R, Vazquez S, Vazquez JA, Maddock JR, Driks A. Proteomic analysis of the spore coats of Bacillus subtilis and Bacillus anthracis. J Bacteriol 2003; 185:1443-54. [PMID: 12562816 PMCID: PMC142864 DOI: 10.1128/jb.185.4.1443-1454.2003] [Citation(s) in RCA: 148] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The outermost proteinaceous layer of bacterial spores, called the coat, is critical for spore survival, germination, and, for pathogenic spores, disease. To identify novel spore coat proteins, we have carried out a preliminary proteomic analysis of Bacillus subtilis and Bacillus anthracis spores, using a combination of standard sodium dodecyl sulfate-polyacrylamide gel electrophoresis separation and improved two-dimensional electrophoretic separations, followed by matrix-assisted laser desorption ionization-time of flight and/or dual mass spectrometry. We identified 38 B. subtilis spore proteins, 12 of which are known coat proteins. We propose that, of the novel proteins, YtaA, YvdP, and YnzH are bona fide coat proteins, and we have renamed them CotI, CotQ, and CotU, respectively. In addition, we initiated a study of coat proteins in B. anthracis and identified 11 spore proteins, 6 of which are candidate coat or exosporium proteins. We also queried the unfinished B. anthracis genome for potential coat proteins. Our analysis suggests that the B. subtilis and B. anthracis coats have roughly similar numbers of proteins and that a core group of coat protein species is shared between these organisms, including the major morphogenetic proteins. Nonetheless, a significant number of coat proteins are probably unique to each species. These results should accelerate efforts to develop B. anthracis detection methods and understand the ecological role of the coat.
Collapse
Affiliation(s)
- Erh-Min Lai
- Department of Molecular, Cellular and Developmental Biology, University of Michigan. Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
Spores produced by bacilli and clostridia are surrounded by a multilayered protein shell called the coat. As the armor-like appearance of the coat suggests, this structure, along with others within the spore, confers the remarkable resistance properties that make Bacillus anthracis spores such potent biological weapons. Here, I review recent studies of coat assembly in the model organism Bacillus subtilis, and explore the implications of these findings for coat assembly in B. anthracis and for defense against biological weapons.
Collapse
Affiliation(s)
- Adam Driks
- Dept of Microbiology and Immunology, Loyola University Medical Center, 2160 South First Ave, Maywood, IL 60153, USA.
| |
Collapse
|
44
|
Eichenberger P, Fawcett P, Losick R. A three-protein inhibitor of polar septation during sporulation in Bacillus subtilis. Mol Microbiol 2001; 42:1147-62. [PMID: 11886548 DOI: 10.1046/j.1365-2958.2001.02660.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We present evidence for a three-protein inhibitor of polar division that locks in asymmetry after the formation of a polar septum during sporulation in Bacillus subtilis. Asymmetric division involves the formation of cytokinetic Z-rings near both poles of the developing cell. Next, a septum is formed at one of the two polar Z-rings, thereby generating a small, forespore cell and a mother cell. Gene expression under the control of the mother-cell transcription factor sigmaE is needed to block cytokinesis at the pole distal to the newly formed septum. We report that this block in polar cytokinesis is mediated partly by sigmaE-directed transcription of spoIID, spoIIM and spoIIP, sporulation genes that were known to be involved in the subsequent process of forespore engulfment. We find that a spoIID, spoIIM and spoIIP triple mutant substantially mimicked the bipolar division phenotype of a sigmaE mutant and that cells engineered to produce SpoIID, SpoIIM and SpoIIP prematurely were inhibited in septum formation at both poles. Consistent with the hypothesis that SpoIID, SpoIIM and SpoIIP function at both poles of the sporangium, a GFP--SpoIIM fusion localized to the membrane that surrounds the engulfed forespore and to the potential division site at the distal pole.
Collapse
Affiliation(s)
- P Eichenberger
- Department of Molecular and Cellular Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA
| | | | | |
Collapse
|
45
|
Ozin AJ, Samford CS, Henriques AO, Moran CP. SpoVID guides SafA to the spore coat in Bacillus subtilis. J Bacteriol 2001; 183:3041-9. [PMID: 11325931 PMCID: PMC95203 DOI: 10.1128/jb.183.10.3041-3049.2001] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacteria assemble complex structures by targeting proteins to specific subcellular locations. The protein coat that encases Bacillus subtilis spores is an example of a structure that requires coordinated targeting and assembly of more than 24 polypeptides. The earliest stages of coat assembly require the action of three morphogenetic proteins: SpoIVA, CotE, and SpoVID. In the first steps, a basement layer of SpoIVA forms around the surface of the forespore, guiding the subsequent positioning of a ring of CotE protein about 75 nm from the forespore surface. SpoVID localizes near the forespore membrane where it functions to maintain the integrity of the CotE ring and to anchor the nascent coat to the underlying spore structures. However, it is not known which spore coat proteins interact directly with SpoVID. In this study we examined the interaction between SpoVID and another spore coat protein, SafA, in vivo using the yeast two-hybrid system and in vitro. We found evidence that SpoVID and SafA directly interact and that SafA interacts with itself. Immunofluorescence microscopy showed that SafA localized around the forespore early during coat assembly and that this localization of SafA was dependent on SpoVID. Moreover, targeting of SafA to the forespore was also dependent on SpoIVA, as was targeting of SpoVID to the forespore. We suggest that the localization of SafA to the spore coat requires direct interaction with SpoVID.
Collapse
Affiliation(s)
- A J Ozin
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | | | |
Collapse
|
46
|
Hernández A, Figueroa A, Rivas LA, Parro VC, Mellado RP. RT-PCR as a tool for systematic transcriptional analysis of large regions of the Bacillus subtilis genome. MICROBIOLOGY (READING, ENGLAND) 2000; 146 ( Pt 4):823-828. [PMID: 10784040 DOI: 10.1099/00221287-146-4-823] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Transcriptional analysis of five different regions of the Bacillus subtilis 168 genome, comprising a total of 175 kb encoding newly identified genes, was carried out using the RT-PCR technique as part of the functional analysis of the whole genome of this bacterium. Amplification of mRNA fragments allowed the detection of both highly and poorly transcribed genes covering 81% of putative ORFs, and also the monitoring of variations in the expression level among genes differentially expressed during particular bacterial growth phases.
Collapse
Affiliation(s)
- Alicia Hernández
- Centro Nacional de Biotecnologı́a (CSIC), Campus de Universidad Autónoma, Cantoblanco, 28049 Madrid, Spain1
| | - Angélica Figueroa
- Centro Nacional de Biotecnologı́a (CSIC), Campus de Universidad Autónoma, Cantoblanco, 28049 Madrid, Spain1
| | - Luis A Rivas
- Centro Nacional de Biotecnologı́a (CSIC), Campus de Universidad Autónoma, Cantoblanco, 28049 Madrid, Spain1
| | - Vı Ctor Parro
- Centro Nacional de Biotecnologı́a (CSIC), Campus de Universidad Autónoma, Cantoblanco, 28049 Madrid, Spain1
| | - Rafael P Mellado
- Centro Nacional de Biotecnologı́a (CSIC), Campus de Universidad Autónoma, Cantoblanco, 28049 Madrid, Spain1
| |
Collapse
|
47
|
Ozin AJ, Henriques AO, Yi H, Moran CP. Morphogenetic proteins SpoVID and SafA form a complex during assembly of the Bacillus subtilis spore coat. J Bacteriol 2000; 182:1828-33. [PMID: 10714986 PMCID: PMC101864 DOI: 10.1128/jb.182.7.1828-1833.2000] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
During endospore formation in Bacillus subtilis, over two dozen polypeptides are assembled into a multilayered structure known as the spore coat, which protects the cortex peptidoglycan (PG) and permits efficient germination. In the initial stages of coat assembly a protein known as CotE forms a ring around the forespore. A second morphogenetic protein, SpoVID, is required for maintenance of the CotE ring during the later stages, when most of proteins are assembled into the coat. Here, we report on a protein that appears to associate with SpoVID during the early stage of coat assembly. This protein, which we call SafA for SpoVID-associated factor A, is encoded by a locus previously known as yrbA. We confirmed the results of a previous study that showed safA mutant spores have defective coats which are missing several proteins. We have extended these studies with the finding that SafA and SpoVID were coimmunoprecipitated by anti-SafA or anti-SpoVID antiserum from whole-cell extracts 3 and 4 h after the onset of sporulation. Therefore, SafA may associate with SpoVID during the early stage of coat assembly. We used immunogold electron microscopy to localize SafA and found it in the cortex, near the interface with the coat in mature spores. SafA appears to have a modular design. The C-terminal region of SafA is similar to those of several inner spore coat proteins. The N-terminal region contains a sequence that is conserved among proteins that associate with the cell wall. This motif in the N-terminal region may target SafA to the PG-containing regions of the developing spore.
Collapse
Affiliation(s)
- A J Ozin
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta 30322, USA
| | | | | | | |
Collapse
|
48
|
Abstract
Many biological processes are mediated through the action of multiprotein complexes, often assembled at specific cellular locations. Bacterial endospores for example, are encased in a proteinaceous coat, which confers resistance to lysozyme and harsh chemicals and influences the spore response to germinants. In Bacillus subtilis, the coat is composed of more than 20 polypeptides, organized into three main layers: an amorphous undercoat; a lamellar, lightly staining inner structure; and closely apposed to it, a striated electron-dense outer coat. Synthesis of the coat proteins is temporally and spatially governed by a cascade of four mother cell-specific transcription factors. However, the order of assembly and final destination of the coat structural components may rely mainly on specific protein-protein interactions, as well as on the action of accessory morphogenetic proteins. Proteolytic events, protein-protein crosslinking, and protein glycosylation also play a role in the assembly process. These modifications are carried out by enzymes that may themselves be targeted to the coat layers. Coat genes have been identified by reverse genetics or, more recently, by screens for mother cell-specific promoters or for peptide sequences able to interact with certain bait proteins. A role for a given locus in coat assembly is established by a combination of regulatory, functional, morphological, and topological criteria. Because of the amenability of B. subtilis to genetic analysis (now facilitated by the knowledge of its genome sequence), coat formation has become an attractive model for the assembly of complex macromolecular structures during development.
Collapse
Affiliation(s)
- A O Henriques
- School of Medicine, Emory University, 3001 Rollins Research Center, Atlanta, Georgia 30322, USA
| | | |
Collapse
|
49
|
Wade KH, Schyns G, Opdyke JA, Moran CP. A region of sigmaK involved in promoter activation by GerE in Bacillus subtilis. J Bacteriol 1999; 181:4365-73. [PMID: 10400595 PMCID: PMC93939 DOI: 10.1128/jb.181.14.4365-4373.1999] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
During endospore formation in Bacillus subtilis, the DNA binding protein GerE stimulates transcription from several promoters that are used by RNA polymerase containing sigmaK. GerE binds to a site on one of these promoters, cotX, that overlaps its -35 region. We tested the model that GerE interacts with sigmaK at the cotX promoter by seeking amino acid substitutions in sigmaK that interfered with GerE-dependent activation of the cotX promoter but which did not affect utilization of the sigmaK-dependent, GerE-independent promoter gerE. We identified two amino acid substitutions in sigmaK, E216K and H225Y, that decrease cotX promoter utilization but do not affect gerE promoter activity. Alanine substitutions at these positions had similar effects. We also examined the effects of the E216A and H225Y substitutions in sigmaK on transcription in vitro. We found that these substitutions specifically reduced utilization of the cotX promoter. These and other results suggest that the amino acid residues at positions 216 and 225 are required for GerE-dependent cotX promoter activity, that the histidine at position 225 of sigmaK may interact with GerE at the cotX promoter, and that this interaction may facilitate the initial binding of sigmaK RNA polymerase to the cotX promoter. We also found that the alanine substitutions at positions 216 and 225 of sigmaK had no effect on utilization of the GerE-dependent promoter cotD, which contains GerE binding sites that do not overlap with its -35 region.
Collapse
Affiliation(s)
- K H Wade
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | | | | | |
Collapse
|
50
|
Serrano M, Zilhão R, Ricca E, Ozin AJ, Moran CP, Henriques AO. A Bacillus subtilis secreted protein with a role in endospore coat assembly and function. J Bacteriol 1999; 181:3632-43. [PMID: 10368135 PMCID: PMC93838 DOI: 10.1128/jb.181.12.3632-3643.1999] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacterial endospores are encased in a complex protein coat, which confers protection against noxious chemicals and influences the germination response. In Bacillus subtilis, over 20 polypeptides are organized into an amorphous undercoat, a lamellar lightly staining inner structure, and an electron-dense outer coat. Here we report on the identification of a polypeptide of about 30 kDa required for proper coat assembly, which was extracted from spores of a gerE mutant. The N-terminal sequence of this polypeptide matched the deduced product of the tasA gene, after removal of a putative 27-residue signal peptide, and TasA was immunologically detected in material extracted from purified spores. Remarkably, deletion of tasA results in the production of asymmetric spores that accumulate misassembled material in one pole and have a greatly expanded undercoat and an altered outer coat structure. Moreover, we found that tasA and gerE mutations act synergistically to decrease the efficiency of spore germination. We show that tasA is the most distal member of a three-gene operon, which also encodes the type I signal peptidase SipW. Expression of the tasA operon is enhanced 2 h after the onset of sporulation, under the control of sigmaH. When tasA transcription is uncoupled from sipW expression, a presumptive TasA precursor accumulates, suggesting that its maturation depends on SipW. Mature TasA is found in supernatants of sporulating cultures and intracellularly from 2 h of sporulation onward. We suggest that, at an early stage of sporulation, TasA is secreted to the septal compartment. Later, after engulfment of the prespore by the mother cell, TasA acts from the septal-proximal pole of the spore membranes to nucleate the organization of the undercoat region. TasA is the first example of a polypeptide involved in coat assembly whose production is not mother cell specific but rather precedes its formation. Our results implicate secretion as a mechanism to target individual proteins to specific cellular locations during the assembly of the bacterial endospore coat.
Collapse
Affiliation(s)
- M Serrano
- Instituto de Tecnologia Química e Biológica, 2780 Oeiras Codex, Portugal
| | | | | | | | | | | |
Collapse
|