1
|
Lee SD, Yang HL, Kim IS. Microbacterium algihabitans sp. nov., Microbacterium phycohabitans sp. nov., and Microbacterium galbum sp. nov., isolated from dried beach seaweeds. Int J Syst Evol Microbiol 2024; 74. [PMID: 38995183 DOI: 10.1099/ijsem.0.006443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024] Open
Abstract
Three actinobacterial strains, KSW2-21T, KSW2-29T and KSW4-17T, were isolated from dried seaweeds collected around Gwakji Beach in Jeju, Republic of Korea. Their taxonomic positions were determined based on genomic, physiological and morphological characteristics. The isolates were Gram-positive, aerobic, non-motile, rod-shaped bacteria characterized by the following chemotaxonomic features: ornithine as the cell wall diamino acid, the N-glycolyl type of murein, MK-11 as the predominant menaquinone, polar lipids including diphosphatidylglycerol, phosphatidylglycerol, two unidentified glycolipids and four unidentified phospholipids, with anteiso-C15 : 0, iso-C16 : 0 and anteiso-C17 : 0 as the the major fatty acids. The 16S rRNA gene phylogeny showed that the novel strains formed three distinct sublines within the genus Microbacterium. Strain KSW4-17T formed a tight cluster with the type strain of Microbacterium hydrothermale, while strains KSW2-21T and KSW2-29T occupied distinct positions between the type strains of M. hydrothermale and Microbacterium testaceum. Strains KSW4-17T and KSW2-29T showed 99.9 % rRNA gene sequence similarity to M. hydrothermale CGMCC 1.12512T, while strain KSW2-21T revealed 99.4 % 16S rRNA gene sequence similarity to the type strains of M. hydrothermale and M. testaceum. The genome sizes and genomic G+C contents of the three isolates ranged from 3.44 to 3.74 Mbp and from 70.3 to 70.8 mol%, respectively. The phylogenomic tree based on 92 core gene sequences exhibited similar topologies to the 16S rRNA gene phylogeny. The comparison of overall genomic relatedness indices, such as average nucleotide indentity and digital DNA-DNA hybridization, supported that the isolates represent three new species of the genus Microbacterium. Based on the results obtained here, Microbacterium algihabitans sp. nov. (type strain, KSW2-21T=KACC 23322T=DSM 116381T), Microbacterium phycohabitans sp. nov. (type strain KSW2-29T=KACC 22350T=NBRC 115221T) and Microbacterium galbum sp. nov. (type strain, KSW4-17T=KACC 23323T=DSM 116383T) are proposed.
Collapse
Affiliation(s)
- Soon Dong Lee
- Institute of Jeju Microbial Resources, BioPS Co., Ltd., Jeju 63243, Republic of Korea
| | - Hong Lim Yang
- Institute of Jeju Microbial Resources, BioPS Co., Ltd., Jeju 63243, Republic of Korea
| | - In Seop Kim
- Department of Biological Sciences and Biotechnology, Hannam University, Daejon 34054, Republic of Korea
- BioPS Co., Ltd., Daejon 34054, Republic of Korea
| |
Collapse
|
2
|
Hegemann JD, Süssmuth RD. Matters of class: coming of age of class III and IV lanthipeptides. RSC Chem Biol 2020; 1:110-127. [PMID: 34458752 PMCID: PMC8341899 DOI: 10.1039/d0cb00073f] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 07/08/2020] [Indexed: 12/13/2022] Open
Abstract
Lanthipeptides belong to the superfamily of ribosomally-synthesized and posttranslationally-modified peptides (RiPPs). Despite the fact that they represent one of the longest known RiPP subfamilies, their youngest members, classes III and IV, have only been described more recently. Since then, a plethora of studies furthered the understanding of their biosynthesis. While there are commonalities between classes III and IV due to the similar domain architectures of their processing enzymes, there are also striking differences that allow their discrimination. In this concise review article, we summarize what is known about the underlying biosynthetic principles of these lanthipeptides and discuss open questions for future research.
Collapse
Affiliation(s)
- Julian D Hegemann
- Institute of Chemistry, Technische Universität Berlin, Straße des 17. Juni 124 10623 Berlin Germany
| | - Roderich D Süssmuth
- Institute of Chemistry, Technische Universität Berlin, Straße des 17. Juni 124 10623 Berlin Germany
| |
Collapse
|
3
|
Repka LM, Chekan JR, Nair SK, van der Donk WA. Mechanistic Understanding of Lanthipeptide Biosynthetic Enzymes. Chem Rev 2017; 117:5457-5520. [PMID: 28135077 PMCID: PMC5408752 DOI: 10.1021/acs.chemrev.6b00591] [Citation(s) in RCA: 373] [Impact Index Per Article: 46.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
![]()
Lanthipeptides
are ribosomally synthesized and post-translationally
modified peptides (RiPPs) that display a wide variety of biological
activities, from antimicrobial to antiallodynic. Lanthipeptides that
display antimicrobial activity are called lantibiotics. The post-translational
modification reactions of lanthipeptides include dehydration of Ser
and Thr residues to dehydroalanine and dehydrobutyrine, a transformation
that is carried out in three unique ways in different classes of lanthipeptides.
In a cyclization process, Cys residues then attack the dehydrated
residues to generate the lanthionine and methyllanthionine thioether
cross-linked amino acids from which lanthipeptides derive their name.
The resulting polycyclic peptides have constrained conformations that
confer their biological activities. After installation of the characteristic
thioether cross-links, tailoring enzymes introduce additional post-translational
modifications that are unique to each lanthipeptide and that fine-tune
their activities and/or stability. This review focuses on studies
published over the past decade that have provided much insight into
the mechanisms of the enzymes that carry out the post-translational
modifications.
Collapse
Affiliation(s)
- Lindsay M Repka
- Howard Hughes Medical Institute and Department of Chemistry, ‡Department of Biochemistry, and §Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign , 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Jonathan R Chekan
- Howard Hughes Medical Institute and Department of Chemistry, ‡Department of Biochemistry, and §Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign , 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Satish K Nair
- Howard Hughes Medical Institute and Department of Chemistry, ‡Department of Biochemistry, and §Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign , 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Wilfred A van der Donk
- Howard Hughes Medical Institute and Department of Chemistry, ‡Department of Biochemistry, and §Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign , 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| |
Collapse
|
4
|
Takano H, Matsui Y, Nomura J, Fujimoto M, Katsumata N, Koyama T, Mizuno I, Amano S, Shiratori-Takano H, Komatsu M, Ikeda H, Ueda K. High production of a class III lantipeptide AmfS in Streptomyces griseus. Biosci Biotechnol Biochem 2017; 81:153-164. [DOI: 10.1080/09168451.2016.1238297] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Abstract
AmfS, a class III lantipeptide serves as a morphogen in Streptomyces griseus. Here, we constructed a high production system of AmfS in S. griseus. We isolated S. griseus Grd1 strain defective in glucose repression of aerial mycelium formation and found it suitable for the overproduction of AmfS. Two expression vectors carrying the strong and constitutive ermE2 promoter were constructed using a multicopy number plasmid, pIJ702. The use of the Grd1 strain combined with the expression vectors enabled high production of AmfS by S. griseus into its culture broth. The expression system was also effective for the generation of abundant AmfS derived from Streptomyces avermitilis. In addition, site-directed mutagenesis revealed the amino acid residues essential for the morphogen activity of AmfS. These results indicate that the constructed system enables efficient production of class III lantipeptides by Streptomyces.
Collapse
Affiliation(s)
- Hideaki Takano
- Life Science Research Center, College of Bioresource Sciences, Nihon University, Fujisawa, Japan
| | - Yuhei Matsui
- Life Science Research Center, College of Bioresource Sciences, Nihon University, Fujisawa, Japan
| | - Junpei Nomura
- Life Science Research Center, College of Bioresource Sciences, Nihon University, Fujisawa, Japan
| | - Masahiro Fujimoto
- Life Science Research Center, College of Bioresource Sciences, Nihon University, Fujisawa, Japan
| | - Naoto Katsumata
- Life Science Research Center, College of Bioresource Sciences, Nihon University, Fujisawa, Japan
| | - Takafumi Koyama
- Life Science Research Center, College of Bioresource Sciences, Nihon University, Fujisawa, Japan
| | - Isamu Mizuno
- Life Science Research Center, College of Bioresource Sciences, Nihon University, Fujisawa, Japan
| | - Shoichi Amano
- Life Science Research Center, College of Bioresource Sciences, Nihon University, Fujisawa, Japan
| | - Hatsumi Shiratori-Takano
- Life Science Research Center, College of Bioresource Sciences, Nihon University, Fujisawa, Japan
| | - Mamoru Komatsu
- Laboratory of Microbial Engineering, Kitasato Institute for Life Sciences, Kitasato University, Sagamihara, Japan
| | - Haruo Ikeda
- Laboratory of Microbial Engineering, Kitasato Institute for Life Sciences, Kitasato University, Sagamihara, Japan
| | - Kenji Ueda
- Life Science Research Center, College of Bioresource Sciences, Nihon University, Fujisawa, Japan
| |
Collapse
|
5
|
Takano H, Toriumi N, Hirata M, Amano T, Ohya T, Shimada R, Kusada H, Amano SI, Matsuda KI, Beppu T, Ueda K. An ABC transporter involved in the control of streptomycin production in Streptomyces griseus. FEMS Microbiol Lett 2016; 363:fnw149. [PMID: 27268270 DOI: 10.1093/femsle/fnw149] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/28/2016] [Indexed: 01/24/2023] Open
Abstract
We screened for a gene that inhibits streptomycin production in Streptomyces griseus when it is introduced on a high-copy-number plasmid pIJ702, and obtained a plasmid pKM545. The introduction of pKM545 abolished streptomycin production on all media tested including YMP-sugar and Nutrient broth. S1 protection analysis demonstrated that the introduction of this plasmid downregulated the transcriptional activity of the promoter preceding strR, the pathway-specific transcriptional regulator for streptomycin biosynthesis. The 2.8-kb BamHI fragment cloned onto pKM545 contained two coding sequences SGR_5442 and 5443. These coding sequences and the two downstream ones (SGR_5444 and 5445) constituted a possible operon structure designated to be rspABCD (regulation of streptomycin production). RspB and RspC exhibited a marked similarity with an ATP-binding domain and a membrane-associating domain of an ABC-2 type transporter, respectively, suggesting that the Rsp proteins comprise a membrane exporter. The gene cluster consisting of the rsp operon and the upstream divergent small coding sequence (SGR_5441) was widely distributed to Streptomyces genome. An rspB mutant of S. griseus produced 3-fold streptomycin of the parental strain in YMP liquid medium. The evidence implies that the Rsp translocator is involved in the export of a substance that specifies the expression level of streptomycin biosynthesis genes in S. griseus.
Collapse
Affiliation(s)
- Hideaki Takano
- Life Science Research Center, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa 252-0880, Japan
| | - Naoe Toriumi
- Life Science Research Center, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa 252-0880, Japan
| | - Mariko Hirata
- Life Science Research Center, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa 252-0880, Japan
| | - Taisuke Amano
- Life Science Research Center, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa 252-0880, Japan
| | - Takaaki Ohya
- Life Science Research Center, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa 252-0880, Japan
| | - Reona Shimada
- Life Science Research Center, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa 252-0880, Japan
| | - Hiroyuki Kusada
- Life Science Research Center, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa 252-0880, Japan
| | - Sho-Ichi Amano
- Life Science Research Center, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa 252-0880, Japan
| | - Ko-Ichi Matsuda
- Life Science Research Center, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa 252-0880, Japan
| | - Teruhiko Beppu
- Life Science Research Center, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa 252-0880, Japan
| | - Kenji Ueda
- Life Science Research Center, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa 252-0880, Japan
| |
Collapse
|
6
|
Müller WM, Ensle P, Krawczyk B, Süssmuth RD. Leader Peptide-Directed Processing of Labyrinthopeptin A2 Precursor Peptide by the Modifying Enzyme LabKC. Biochemistry 2011; 50:8362-73. [DOI: 10.1021/bi200526q] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Wolfgang M. Müller
- Fakultät II-Institut
für Chemie, Technische Universität Berlin, Strasse des 17. Juni 124,
10623 Berlin, Germany
| | - Paul Ensle
- Fakultät II-Institut
für Chemie, Technische Universität Berlin, Strasse des 17. Juni 124,
10623 Berlin, Germany
| | - Bartlomiej Krawczyk
- Fakultät II-Institut
für Chemie, Technische Universität Berlin, Strasse des 17. Juni 124,
10623 Berlin, Germany
| | - Roderich D. Süssmuth
- Fakultät II-Institut
für Chemie, Technische Universität Berlin, Strasse des 17. Juni 124,
10623 Berlin, Germany
| |
Collapse
|
7
|
Higo A, Horinouchi S, Ohnishi Y. Strict regulation of morphological differentiation and secondary metabolism by a positive feedback loop between two global regulators AdpA and BldA in Streptomyces griseus. Mol Microbiol 2011; 81:1607-22. [PMID: 21883521 DOI: 10.1111/j.1365-2958.2011.07795.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
AdpA is a global transcriptional regulator that is induced by the microbial hormone A-factor and activates many genes required for morphological differentiation and secondary metabolism in Streptomyces griseus. We confirmed that the regulatory tRNA gene bldA was required for translation of TTA-containing adpA. We also demonstrated that AdpA bound two sites upstream of the bldA promoter and activated transcription of bldA. Thus, we revealed a unique positive feedback loop between AdpA and BldA in S. griseus. Forced expression of bldA in an A-factor-deficient mutant resulted in the partial restoration of aerial mycelium formation and streptomycin production, suggesting that the positive feedback loop could prevent premature transcriptional activation of the AdpA-target genes in the wild-type strain. We revealed that the morphological defect of the bldA mutant could be attributed mainly to the TTA codons of only two genes: adpA and amfR. amfR encodes a transcriptional activator essential for aerial mycelium formation and is a member of the AdpA regulon. Thus, amfR is regulated by a feedforward mechanism involving AdpA and BldA. We concluded that the central regulatory unit composed of AdpA and BldA plays important roles in the initiation of morphological differentiation and secondary metabolism triggered by A-factor.
Collapse
Affiliation(s)
- Akiyoshi Higo
- Department of Biotechnology, Graduate School of Agriculture and Life Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | | | | |
Collapse
|
8
|
Willey JM, Gaskell AA. Morphogenetic Signaling Molecules of the Streptomycetes. Chem Rev 2010; 111:174-87. [DOI: 10.1021/cr1000404] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Joanne M. Willey
- Department of Biology, Hofstra University, Hempstead, New York 11549, United States, and Hofstra University-North Shore-Long Island Jewish School of Medicine, Hempstead, New York 11549, United States
| | - Alisa A. Gaskell
- Department of Biology, Hofstra University, Hempstead, New York 11549, United States, and Hofstra University-North Shore-Long Island Jewish School of Medicine, Hempstead, New York 11549, United States
| |
Collapse
|
9
|
Capstick DS, Willey JM, Buttner MJ, Elliot MA. SapB and the chaplins: connections between morphogenetic proteins in Streptomyces coelicolor. Mol Microbiol 2007; 64:602-13. [PMID: 17462011 DOI: 10.1111/j.1365-2958.2007.05674.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Morphogenesis in the streptomycetes features the differentiation of substrate-associated vegetative hyphae into upwardly growing aerial filaments. This transition requires the activity of bld genes and the secretion of biosurfactants that reduce the surface tension at the colony-air interface enabling the emergence of nascent aerial hyphae. Streptomyces coelicolor produces two classes of surface-active molecules, SapB and the chaplins. While both molecules are important for aerial development, nothing is known about the functional redundancy or interaction of these surfactants apart from the observation that aerial hyphae formation can proceed via one of two pathways: a SapB-dependent pathway when cells are grown on rich medium and a SapB-independent pathway on poorly utilized carbon sources such as mannitol. We used mutant analysis to show that while the chaplins are important, but not required, for development on rich medium, they are essential for differentiation on MS (soy flour mannitol) medium, and the corresponding developmental defects could be suppressed by the presence of SapB. Furthermore, the chaplins are produced by conditional bld mutants during aerial hyphae formation when grown on the permissive medium, MS, suggesting that the previously uncharacterized SapB-independent pathway is chaplin dependent. In contrast, a bld mutant blocked in aerial morphogenesis on all media makes neither SapB nor chaplins. Finally, we show that a constructed null mutant that lacks all chaplin and SapB biosynthetic genes fails to differentiate in any growth condition. We propose that the biosurfactant activities of both SapB and the chaplins are essential for normal aerial hyphae formation on rich medium, while chaplin biosynthesis and secretion alone drives aerial morphogenesis on MS medium.
Collapse
Affiliation(s)
- David S Capstick
- Department of Biology, McMaster University, Hamilton, Ontario L8S4K1, Canada
| | | | | | | |
Collapse
|
10
|
Komatsu M, Takano H, Hiratsuka T, Ishigaki Y, Shimada K, Beppu T, Ueda K. Proteins encoded by the conservon of Streptomyces coelicolor A3(2) comprise a membrane-associated heterocomplex that resembles eukaryotic G protein-coupled regulatory system. Mol Microbiol 2007; 62:1534-46. [PMID: 17083469 DOI: 10.1111/j.1365-2958.2006.05461.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Streptomyces coelicolor A3(2) retains unique conserved operons termed conservons. Here, one of the conservons (cvn9), which encodes five proteins (A9-E9), was characterized. Mutants for cvnA9 and cvnAlO conditionally overproduced actinorhodin and performed precocious aerial growth, while a cvnE9 mutant showed the parental phenotype. Transcription of bidG, adpA and bldN was upregulated in the cvnA9 mutant. A9-D9 were detected in the insoluble fraction of cell-free extract of S. coelicolor by Western analysis. Biochemical analyses revealed that A9 has ATP-hydrolysing and adenine nucleotide-binding activities; D9 has GTP-hydrolysing and guanine nucleotide-binding activities; and E9 shows a typical spectrum similar to cytochrome P450. The comprehensive interaction assays demonstrated the occurrence of specific interactions between A9 and B9, A9 and C9, B9 and B9, B9 and D9, and C9 and D9. A9 associated with and dissociated from B9 (and C9) when ATP and ATP-gamma-S were supplied in the reaction respectively. Similarly, D9 associated with and dissociated from B9 (and C9) when GTP and GTP-gamma-S were supplied respectively. A9 and B9 were also shown for the occurrence as homocomplexes. Probably, Cvn9 proteins comprise a membrane-associated heterocomplex resembling the eukaryotic G-protein-coupled receptor system, which may serve as a signal transducer that connects to the bld cascade.
Collapse
Affiliation(s)
- Mamoru Komatsu
- Life Science Research Center, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa 252-8510, Japan
| | | | | | | | | | | | | |
Collapse
|
11
|
Gao R, Mukhopadhyay A, Fang F, Lynn DG. Constitutive activation of two-component response regulators: characterization of VirG activation in Agrobacterium tumefaciens. J Bacteriol 2006; 188:5204-11. [PMID: 16816192 PMCID: PMC1539974 DOI: 10.1128/jb.00387-06] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Response regulators are the ultimate modulators in two-component signal transduction pathways. The N-terminal receiver domains generally accept phosphates from cognate histidine kinases to control output. VirG for example, the response regulator of the VirA/VirG two-component system in Agrobacterium tumefaciens, mediates the expression of virulence genes in response to plant host signals. Response regulators have a highly conserved structure and share a similar conformational activation upon phosphorylation, yet the sequence and structural features that determine or perturb the cooperative activation events are ill defined. Here we use VirG and the unique features of the Agrobacterium system to extend our understanding of the response regulator activation. Two previously isolated constitutive VirG mutants, VirGN54D and VirGI77V/D52E, provide the foundation for our studies. In vivo phosphorylation patterns establish that VirGN54D is able to accumulate phosphates from small-molecule phosphate donors, such as acetyl phosphate, while the VirGI77V/D52E allele carries conformational changes mimicking the active conformation. Further structural alterations on these two alleles begin to reveal the changes necessary for response regulator activation.
Collapse
Affiliation(s)
- Rong Gao
- Center for Fundamental and Applied Molecular Evolution, Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, GA 30322, USA
| | | | | | | |
Collapse
|
12
|
Willey JM, Willems A, Kodani S, Nodwell JR. Morphogenetic surfactants and their role in the formation of aerial hyphae in Streptomyces coelicolor. Mol Microbiol 2006; 59:731-42. [PMID: 16420347 DOI: 10.1111/j.1365-2958.2005.05018.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Withstanding environmental adversity and seeking optimal conditions for reproduction are basic requirements for the survival of all organisms. Filamentous bacteria of the genus Streptomyces produce a remarkable cell type called the aerial hyphae that is central to its ability to meet both of these challenges. Recent advances have brought about a major shift in our understanding of the cell surface proteins that play important roles in the generation of these cells. Here we review our current understanding of one of these groups of proteins, the morphogenetic surfactants, with emphasis on the SapB protein of Streptomyces coelicolor.
Collapse
Affiliation(s)
- Joanne M Willey
- Department of Biology, Hofstra University, Hempstead, NY 11549, USA.
| | | | | | | |
Collapse
|
13
|
Elliot MA, Talbot NJ. Building filaments in the air: aerial morphogenesis in bacteria and fungi. Curr Opin Microbiol 2005; 7:594-601. [PMID: 15556031 DOI: 10.1016/j.mib.2004.10.013] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
To disperse their spores to new sites, filamentous fungi and bacteria need to erect aerial filaments, which develop into fruiting bodies and spore-bearing structures. The first challenge to aerial development is breaking surface tension at an aqueous-air interface, and in both groups of microorganisms, surface-active proteins take part in the initiation of aerial morphogenesis. Comparative analysis of fungi and bacteria is providing new insights into the means by which aerial filamentation is accomplished.
Collapse
Affiliation(s)
- Marie A Elliot
- Department of Molecular Microbiology, John Innes Centre, Colney Lane, Norwich, NR4 7UH, UK.
| | | |
Collapse
|
14
|
Ueda K, Takano H, Nishimoto M, Inaba H, Beppu T. Dual transcriptional control of amfTSBA, which regulates the onset of cellular differentiation in Streptomyces griseus. J Bacteriol 2005; 187:135-42. [PMID: 15601697 PMCID: PMC538820 DOI: 10.1128/jb.187.1.135-142.2005] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The amf gene cluster encodes a probable secretion system for a peptidic morphogen, AmfS, which induces aerial mycelium formation in Streptomyces griseus. Here we examined the transcriptional control mechanism for the promoter preceding amfT (PamfT) directing the transcription of the amfTSBA operon. High-resolution S1 analysis mapped a transcriptional start point at 31 nucleotides upstream of the translational start codon of amfT. Low-resolution analysis showed that PamfT is developmentally regulated in the wild type and completely abolished in an amfR mutant. The -35 region of PamfT contained the consensus sequence for the binding of BldD, a pleiotropic negative regulator for morphological and physiological development in Streptomyces coelicolor A3(2). The cloned bldD locus of S. griseus showed high sequence similarity to the S. coelicolor counterpart. Transcription of bldD occurred constitutively in both the wild type and an A-factor-deficient mutant of S. griseus, which suggests that the regulatory role of BldD is independent of A-factor. The gel retardation assay revealed that purified BldD and AmfR recombinant proteins specifically bind PamfT. Overproduction of BldD in the wild-type cell conferred a bald phenotype (defective in aerial growth and streptomycin production) and caused marked repression of PamfT activity. An amfT-depleted mutant also showed a bald phenotype but PamfT activity was not affected. Both the bldD-overproducing wild-type strain and the amfT mutant were unable to induce aerial growth of an amfS mutant in a cross-feeding assay, which indicates that these strains are defective in the production of an active AmfS peptide. The results overall suggests that two independent regulators, AmfR and BldD, control PamfT activity via direct binding to determine the transcriptional level of the amf operon responsible for the production and secretion of AmfS peptide, which induces the erection of aerial hyphae in S. griseus.
Collapse
Affiliation(s)
- Kenji Ueda
- Life Science Research Center, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa 252-8510, Japan.
| | | | | | | | | |
Collapse
|
15
|
Shi L, Zhang W. Comparative analysis of eukaryotic-type protein phosphatases in two streptomycete genomes. MICROBIOLOGY-SGM 2004; 150:2247-2256. [PMID: 15256567 DOI: 10.1099/mic.0.27057-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Inspection of the genomes of Streptomyces coelicolor A3(2) and Streptomyces avermitilis reveals that each contains 55 putative eukaryotic-type protein phosphatases (PPs), the largest number ever identified from any single prokaryotic organism. Unlike most other prokaryotic genomes that have only one or two superfamilies of eukaryotic-type PPs, the streptomycete genomes possess the eukaryotic-type PPs that belong to four superfamilies: 2 phosphoprotein phosphatases and 2 low-molecular-mass protein tyrosine phosphatases in each species, 49 Mg(2+)- or Mn(2+)-dependent protein phosphatases (PPMs) and 2 conventional protein tyrosine phosphatases (CPTPs) in S. coelicolor A3(2), and 48 PPMs and 3 CPTPs in S. avermitilis. Sixty-four percent of the PPs found in S. coelicolor A3(2) have orthologues in S. avermitilis, indicating that they originated from a common ancestor and might be involved in the regulation of more conserved metabolic activities. The genes of eukaryotic-type PP unique to each surveyed streptomycete genome are mainly located in two arms of the linear chromosomes and their evolution might be involved in gene acquisition or duplication to adapt to the extremely variable soil environments where these organisms live. In addition, 56 % of the PPs from S. coelicolor A3(2) and 65 % of the PPs from S. avermitilis possess at least one additional domain having a putative biological function. These include the domains involved in the detection of redox potential, the binding of cyclic nucleotides, mRNA, DNA and ATP, and the catalysis of phosphorylation reactions. Because they contained multiple functional domains, most of them were assigned functions other than PPs in previous annotations. Although few studies have been conducted on the physiological functions of the PPs in streptomycetes, the existence of large numbers of putative PPs in these two streptomycete genomes strongly suggests that eukaryotic-type PPs play important regulatory roles in primary or secondary metabolic pathways. The identification and analysis of such a large number of putative eukaryotic-type PPs from S. coelicolor A3(2) and S. avermitilis constitute a basis for further exploration of the signal transduction pathways mediated by these phosphatases in industrially important strains of streptomycetes.
Collapse
Affiliation(s)
- Liang Shi
- Microbiology Group, Pacific Northwest National Laboratory, 902 Battelle Blvd, PO Box 999, MSIN: P7-50, Richland, WA 99352, USA
| | - Weiwen Zhang
- Microbiology Group, Pacific Northwest National Laboratory, 902 Battelle Blvd, PO Box 999, MSIN: P7-50, Richland, WA 99352, USA
| |
Collapse
|
16
|
Hutchings MI, Hoskisson PA, Chandra G, Buttner MJ. Sensing and responding to diverse extracellular signals? Analysis of the sensor kinases and response regulators of Streptomyces coelicolor A3(2). Microbiology (Reading) 2004; 150:2795-2806. [PMID: 15347739 DOI: 10.1099/mic.0.27181-0] [Citation(s) in RCA: 126] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Streptomyces coelicolor is a Gram-positive soil bacterium that undergoes a complex developmental life cycle. The genome sequence of this organism was recently completed and has revealed the presence of over 60 sigma factors and a multitude of other transcriptional regulators, with a significant number of these being putative two-component signal transduction proteins. The authors have used the criteria established by Hoch and co-workers (Fabret et al., 1999, J Bacteriol 181, 1975-1983) to identify sensor kinase and response regulator genes encoded within the S. coelicolor genome. This analysis has revealed the presence of 84 sensor kinase genes, 67 of which lie adjacent to genes encoding response regulators. This strongly suggests that these paired genes encode two-component systems. In addition there are 13 orphan response regulators encoded in the genome, several of which have already been characterized and are implicated in development and antibiotic production, and 17 unpaired and as yet uncharacterized sensor kinases. This article attempts to infer useful information from sequence analysis and reviews what is currently known about the two-component systems, unpaired sensor kinases and orphan response regulators of S. coelicolor from both published reports and the authors' own unpublished data.
Collapse
Affiliation(s)
- Matthew I Hutchings
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Colney, Norwich NR4 7UH, UK
| | - Paul A Hoskisson
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Colney, Norwich NR4 7UH, UK
| | - Govind Chandra
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Colney, Norwich NR4 7UH, UK
| | - Mark J Buttner
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Colney, Norwich NR4 7UH, UK
| |
Collapse
|
17
|
Kodani S, Hudson ME, Durrant MC, Buttner MJ, Nodwell JR, Willey JM. The SapB morphogen is a lantibiotic-like peptide derived from the product of the developmental gene ramS in Streptomyces coelicolor. Proc Natl Acad Sci U S A 2004; 101:11448-53. [PMID: 15277670 PMCID: PMC509221 DOI: 10.1073/pnas.0404220101] [Citation(s) in RCA: 223] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
SapB is a morphogenetic peptide that is important for aerial mycelium formation by the filamentous bacterium Streptomyces coelicolor. Production of SapB commences during aerial mycelium formation and depends on most of the genes known to be required for the morphogenesis of aerial hyphae. Furthermore, the application of purified SapB to mutants blocked in morphogenesis restores their capacity to form aerial hyphae. Here, we present evidence that SapB is a lantibiotic-like peptide that is derived by posttranslational modification from the product of a gene (ramS) in the four-gene ram operon, which is under the control of the regulatory gene ramR. We show that the product of another gene in the operon (ramC) contains a region that is similar to enzymes involved in the biosynthesis of lantibiotics, suggesting that it might be involved in the posttranslational processing of RamS. We conclude that SapB is derived from RamS through proteolytic cleavage and the introduction of four dehydroalanine residues and two lanthionine bridges. We provide an example of a morphogenetic role for an antibiotic-like molecule.
Collapse
Affiliation(s)
- Shinya Kodani
- Department of Biology, Hofstra University, Hempstead, NY 11549, USA
| | | | | | | | | | | |
Collapse
|
18
|
Abstract
RamC is required for the formation of spore-forming cells called aerial hyphae by the bacterium Streptomyces coelicolor. This protein is membrane associated and has an amino-terminal protein kinase-like domain, but little is known about its mechanism of action. In this study we found that the presence of multiple copies of a defective allele of ramC inhibits morphogenesis in S. coelicolor, consistent with either titration of a target or formation of inactive RamC multimers. We identified a domain in RamC that is C terminal to the putative kinase domain and forms a dimer with a K(d) of approximately 0.1 micro M. These data suggest that RamC acts as a dimer in vivo.
Collapse
Affiliation(s)
- Michael E Hudson
- Department of Biochemistry, Health Sciences Centre, McMaster University, Hamilton, Ontario, Canada L8N 3Z5
| | | |
Collapse
|
19
|
van Wezel GP, Vijgenboom E. Novel Aspects of Signaling in Streptomyces Development. ADVANCES IN APPLIED MICROBIOLOGY 2004; 56:65-88. [PMID: 15566976 DOI: 10.1016/s0065-2164(04)56002-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Gilles P van Wezel
- Department of Biochemistry, Leiden Institute of Chemistry 2300RA Leiden, The Netherlands.
| | | |
Collapse
|
20
|
Yamazaki H, Takano Y, Ohnishi Y, Horinouchi S. amfR, an essential gene for aerial mycelium formation, is a member of the AdpA regulon in the A-factor regulatory cascade in Streptomyces griseus. Mol Microbiol 2003; 50:1173-87. [PMID: 14622407 DOI: 10.1046/j.1365-2958.2003.03760.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In Streptomyces griseus, A-factor (2-isocapryloyl-3R-hydroxymethyl-gamma-butyrolactone) acts as a chemical signalling molecule that triggers morphological differentiation and secondary metabolism. A transcriptional activator, AdpA, in the A-factor regulatory cascade switches on a number of genes required for both processes, thus forming an AdpA regulon. amfR encoding a regulatory protein similar to response regulators of bacterial two-component regulatory systems and essential for aerial mycelium formation was found to be a member of the AdpA regulon. AdpA bound two sites at nucleotide positions approximately -200 (site 1) and -60 (site 2), with respect to the major transcriptional start point of amfR, and accelerated the transcription of amfR by assisting RNA polymerase in forming an open complex at an appropriate region including the transcriptional start point. Site 2 contributed more to the transcriptional activation of amfR by AdpA than site 1, although AdpA showed a much lower affinity to site 2 than to site 1. The amfR transcription enhanced by AdpA subsequently ceased at day 2 when aerial hyphae began to be formed in the wild-type strain, whereas in an adsA null mutant amfR was continuously transcribed even until day 3. This implied that amfR was repressed growth dependently by a gene product under the control of sigma-AdsA. Transcription of the promoter upstream of amfT depended on amfR, which is consistent with the idea that AmfR serves as an activator for amfTSBA in the amf operon. The observations that the amfR gene contains a TTA codon, a potential target for bldA-mediated regulation, and a conserved Asp-54 residue, which might be phosphorylated by a sensor kinase, suggest that the amf operon is under transcriptional, translational and post-translational control systems.
Collapse
Affiliation(s)
- Haruka Yamazaki
- Department of Biotechnology, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | | | | | | |
Collapse
|
21
|
Chater KF, Horinouchi S. Signalling early developmental events in two highly diverged Streptomyces species. Mol Microbiol 2003; 48:9-15. [PMID: 12657041 DOI: 10.1046/j.1365-2958.2003.03476.x] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We review three main aspects of extracellular signalling in the initiation of aerial mycelium formation in two phylogenetically distant streptomycetes, S. coelicolor A3(2) and S. griseus: (1) gamma -butyrolactones; (2) a complex cascade of mostly undefined signals; and (3) progress towards defining an integrating endpoint of all this signalling. Although apparent orthologues of many of the genes involved are found in both species, some of the connectivities are different. Moreover, some of the genes involved in signalling have diverged more rapidly than known housekeeping genes. We propose that that this may be an important aspect of speciation, and that the differences in gene interactions may reflect the diverse soil microecologies to which different streptomycetes are adapted.
Collapse
Affiliation(s)
- Keith F Chater
- John Innes Centre, Norwich Research Park, Colney, Norwich NR4 7UH, UK.
| | | |
Collapse
|
22
|
Komatsu M, Kuwahara Y, Hiroishi A, Hosono K, Beppu T, Ueda K. Cloning of the conserved regulatory operon by its aerial mycelium-inducing activity in an amfR mutant of Streptomyces griseus. Gene 2003; 306:79-89. [PMID: 12657469 DOI: 10.1016/s0378-1119(03)00405-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
We report cloning and characterization of a 2.8 kb DNA fragment that suppressed the aerial mycelium-deficient phenotype of an amfR mutant of Streptomyces griseus when it was introduced on a high-copy-number plasmid. Nucleotide sequencing revealed that the cloned DNA fragment contained a part of a regulatory operon homologous to one of the conserved operons identified in the genome of Streptomyces coelicolor A3(2). The operon appeared to consist of 5 CDSs (rarA-E; restoration of aerial mycelium formation in an amfR mutant): rarA encoded a membrane protein with weak similarity to the histidine kinase of the two-component regulatory system; rarB and rarC products did not show marked similarity to other proteins with known function; rarD encoded a G-protein carrying two GTP-binding consensus sequences conserved in the eukaryotic Ras-like proteins; rarE product showed end-to-end homology to cytochrome P450. The 2.8 kb fragment contained a 5'-end incomplete rarA and complete rarB-D in the downstream from the promoter region of mel operon of the vector plasmid. Subcloning showed that the region containing rarA only is sufficient for the aerial mycelium-inducing activity. The truncation of rarA at its 5' terminus was essential for the restoration activity, which implied that the mutated rarA product causes unusual signaling that directs the onset of morphogenesis without amfR function. Inactivation of both rarA in Streptomyces griseus and cvnD9, a rarD ortholog in S. coelicolor resulted in precocious and glucose-resistant formation of aerial mycelium and secondary metabolites, which suggested that the operon negatively regulates the onset of differentiation. S1 nuclease protection analysis showed that the transcriptional activity of the promoter preceding rarA is developmentally regulated in an amfR- and glucose-dependent manner.
Collapse
Affiliation(s)
- Mamoru Komatsu
- Life Science Research Center, College of Bioresource Sciences, Nihon University, Fujisawa, Japan
| | | | | | | | | | | |
Collapse
|
23
|
Nguyen KT, Willey JM, Nguyen LD, Nguyen LT, Viollier PH, Thompson CJ. A central regulator of morphological differentiation in the multicellular bacterium Streptomyces coelicolor. Mol Microbiol 2002; 46:1223-38. [PMID: 12453210 DOI: 10.1046/j.1365-2958.2002.03255.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In the multicellular bacterium Streptomyces coelicolor, functions of developmental (bald) genes are required for the biosynthesis of SapB, a hydrophobic peptidic morphogen that facilitates aerial hyphae formation. Here, we show that aerial hyphal growth and SapB biosynthesis could be activated independently from the normal developmental cascade by providing unprogrammed expression of functionally interactive genes within the ram cluster. ramC, ramS and ramR were essential for normal growth of aerial hyphae, and ramR, a response regulator gene, was a key activator of development. The ramR gene restored growth of aerial hyphae and SapB formation in all bald strains tested (albeit only weakly in the bldC mutant), many of which are characterized by physiological defects. Disruption of the ramR gene abolished SapB biosynthesis and severely delayed growth of aerial hyphae. Transcription of ramR was developmentally controlled, and RamR function in vivo depended on its putative phosphorylation site (D53). We identified and mapped RamR targets immediately upstream of the region encoding ramC and ramS, a putative operon. Overexpression of ramR in the wild-type strain increased SapB levels and caused a distinctive wrinkled surface topology. Based on these results, we propose that phenotypes of bald mutations reflect an early stage in the Streptomyces developmental programme similar to the spo0 mutations in the unicellular bacterium Bacillus subtilis, and that RamR has analogies to Spo0A, the Bacillus response regulator that integrates physiological signals before triggering endospore formation.
Collapse
Affiliation(s)
- Kien T Nguyen
- Department of Molecular Microbiology, Biozentrum, Universität Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland
| | | | | | | | | | | |
Collapse
|
24
|
Abstract
The bacterial genus Streptomyces forms chains of spores by septation at intervals in aerial hyphae and subsequent maturation on solid medium. Substrate hyphae undergo extensive lysis, liberating nutrients on which aerial hyphae develop. Some mutant strains, however, ectopically form spores by septation in substrate hyphae on solid medium or in vegetative hyphae in liquid medium, which suggests that all hyphae have the potential to differentiate into spores. A Streptomyces griseus mutant strain NP4, which has a mutation in the regulatory system for an ATP-binding cassette (ABC) transporter gene, forms ectopic spores in substrate hyphae only on glucose-containing medium. In addition, overexpression of a substrate-binding protein of the ABC transporter in the wild-type strain causes ectopic septation in very young substrate hyphae and subsequent sporulation in response to glucose. These ectopic spores germinate normally. The ectopic sporulation is independent of A-factor, a microbial hormone that determines the timing of aerial mycelium formation during normal development. Thus, substrate hyphae of Streptomyces have a potential to develop into spores without formation of aerial hyphae. For programmed development, therefore, the strict repression of septum formation in substrate mycelium should be necessary, as well as the positive signal relay leading to aerial mycelium formation followed by septation and sporulation.
Collapse
Affiliation(s)
- Yasuo Ohnishi
- Department of Biotechnology, Graduate School of Agriculture and Life Sciences, University of Tokyo, Japan
| | | | | |
Collapse
|
25
|
Hudson ME, Zhang D, Nodwell JR. Membrane association and kinase-like motifs of the RamC protein of Streptomyces coelicolor. J Bacteriol 2002; 184:4920-4. [PMID: 12169618 PMCID: PMC135280 DOI: 10.1128/jb.184.17.4920-4924.2002] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2002] [Accepted: 06/10/2002] [Indexed: 11/20/2022] Open
Abstract
The protein RamC is required for the production of the spore-forming cells called aerial hyphae by the filamentous bacterium Streptomyces coelicolor. We showed that RamC, which contains several weakly predicted membrane-spanning sequences, is located exclusively in the S. coelicolor membrane. By constructing site-directed mutants in the cloned ramC gene and complementing a ramC null mutant, we showed that protein kinase-like sequence motifs in the amino-terminal half of the protein are required for function in vivo. These data suggest that RamC is a membrane-associated receptor kinase.
Collapse
Affiliation(s)
- Michael E Hudson
- Department of Biochemistry and Antimicrobial Research Centre, McMaster University, 200 Main Street West, Hamilton, Ontario L8N 3Z5, Canada
| | | | | |
Collapse
|
26
|
Keijser BJF, van Wezel GP, Canters GW, Vijgenboom E. Developmental regulation of the Streptomyces lividans ram genes: involvement of RamR in regulation of the ramCSAB operon. J Bacteriol 2002; 184:4420-9. [PMID: 12142412 PMCID: PMC135246 DOI: 10.1128/jb.184.16.4420-4429.2002] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2002] [Accepted: 05/03/2002] [Indexed: 11/20/2022] Open
Abstract
Streptomycetes are filamentous soil bacteria that produce spores through a complex process of morphological differentiation. The ram cluster plays an important part during the development. The ram genes encode a membrane-bound kinase (RamC), a small protein (RamS), components of an ABC transporter (RamAB), and a response regulator (RamR). While the introduction of an extra copy of the ram cluster accelerates development in Streptomyces lividans, ramABR disruption mutants are unable to produce aerial hyphae and spores. The developmental regulation of ram gene transcription was analyzed. Transcription of the ram genes occurred only on solid rich media and not on minimal media. The ramR gene is transcribed from a single promoter during all growth stages, with the highest levels during aerial growth. The ramCSAB genes comprise one operon and are transcribed from one principal promoter, P1, directly upstream of ramC. Transcription of ramCSAB was already observed during vegetative growth, but was strongly upregulated upon initiation of formation of aerial hyphae and was decreased during late stages of development. A large inverted repeat located downstream of ramS terminated the majority of transcripts. The introduction of ramR on a multicopy vector in S. lividans strongly induced P1 activity, while disruption of this regulator eliminated all P1 promoter activity. This shows that ramR is a crucial activator of ramCSAB transcription. Importantly, in bldA, bldB, bldD, or bldH mutants, ramR and ramCSAB are not transcribed, while ram gene transcription was observed in the earliest whi mutant, whiG. This indicates that the transcription of the ram genes marks the transition from vegetative to aerial growth.
Collapse
Affiliation(s)
- Bart J F Keijser
- Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, 2300 RA Leiden, The Netherlands
| | | | | | | |
Collapse
|
27
|
Endo K, Hosono K, Beppu T, Ueda K. A novel extracytoplasmic phenol oxidase of Streptomyces: its possible involvement in the onset of morphogenesis. MICROBIOLOGY (READING, ENGLAND) 2002; 148:1767-1776. [PMID: 12055296 DOI: 10.1099/00221287-148-6-1767] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Exogenous addition of copper stimulates cellular differentiation in Streptomyces spp. Several lines of evidence suggested a parallel correlation between the stimulatory effect of copper and phenol-oxidizing enzyme activities in Streptomyces griseus. Here a novel extracytoplasmic phenol oxidase (EpoA) associated with cellular development of this organism was identified and characterized. EpoA activity, examined by an in-gel stain procedure with N,N'-dimethyl-p-phenylenediamine sulfate as a substrate, was repressed by glucose and induced by copper supplied in the medium. The enzyme activity was abolished and markedly reduced in the mutants forA-factor biosynthesis and amfR, respectively, which suggested that the activity of the enzyme depends on those essential regulators for morphogenesis in S. griseus. EpoA protein was purified to homogeneity and the N-terminal amino acid sequence was determined. A homologous sequence identified in the genomic database of Streptomyces coelicolorA3(2) was used as a probe to clone the complete epoA gene of S. griseus. The deduced amino acid sequence of EpoA revealed that the mature protein with a molecular mass of 34 kDa was preceded by a signal peptide consisting of 34 aa, consistent with EpoA being a secreted enzyme. EpoA was predicted to be a laccase-type oxidase by not only the sequence similarity, but its substrate selectivity, oxidizing not tyrosine but dihydroxyphenylalanine (DOPA) to generate melanin pigment. Introduction of epoA on a plasmid partially restored both the EpoA activity and aerial mycelium productivity in an A-factor-deficient mutant. Exogenous supplementation of a substance synthesized by purified EpoA from DOPA stimulated cellular differentiation in S. griseus and several other species. Ultrafiltration indicated that the molecular mass of the putative stimulant synthesized by EpoA is between 500 and 1000 Da.
Collapse
Affiliation(s)
- Kohki Endo
- Department of Applied Biological Sciences, Nihon University, 1866 Kameino, Fujisawa, 252-8510, Japan1
| | - Kuniaki Hosono
- Department of Applied Biological Sciences, Nihon University, 1866 Kameino, Fujisawa, 252-8510, Japan1
| | - Teruhiko Beppu
- Department of Applied Biological Sciences, Nihon University, 1866 Kameino, Fujisawa, 252-8510, Japan1
| | - Kenji Ueda
- Department of Applied Biological Sciences, Nihon University, 1866 Kameino, Fujisawa, 252-8510, Japan1
| |
Collapse
|
28
|
Ueda K, Oinuma KI, Ikeda G, Hosono K, Ohnishi Y, Horinouchi S, Beppu T. AmfS, an extracellular peptidic morphogen in Streptomyces griseus. J Bacteriol 2002; 184:1488-92. [PMID: 11844785 PMCID: PMC134859 DOI: 10.1128/jb.184.5.1488-1492.2002] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The amf gene cluster was previously identified as a regulator for the onset of aerial-mycelium formation in Streptomyces griseus. The nucleotide sequences of amf and its counterparts in other species revealed a conserved gene organization consisting of five open reading frames. A nonsense mutation in amfS, encoding a 43-amino-acid peptide, caused significant blocking of aerial-mycelium formation and streptomycin production, suggesting its role as a regulatory molecule. Extracellular-complementation tests for the aerial-mycelium-deficient phenotype of the amfS mutant demonstrated that AmfS was secreted by the wild-type strain. A null mutation in amfBA, encoding HlyB-like membrane translocators, abolished the extracellular AmfS activity without affecting the wild-type morphology, which suggests that AmfBA is involved not in production but in export of AmfS. A synthetic C-terminal octapeptide partially induced aerial-mycelium formation in the amfS mutant, which suggests that an AmfS derivative, but not AmfS itself, serves as an extracellular morphogen.
Collapse
Affiliation(s)
- Kenji Ueda
- Department of Applied Biological Sciences, Nihon University, 1866 Kameino, Fujisawa-shi, Kanagawa 252-8510, Japan.
| | | | | | | | | | | | | |
Collapse
|
29
|
Seo JW, Ohnishi Y, Hirata A, Horinouchi S. ATP-binding cassette transport system involved in regulation of morphological differentiation in response to glucose in Streptomyces griseus. J Bacteriol 2002; 184:91-103. [PMID: 11741848 PMCID: PMC134767 DOI: 10.1128/jb.184.1.91-103.2002] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Streptomyces griseus NP4, which was derived by UV mutagenesis from strain IFO13350, showed a bald and wrinkled colony morphology in response to glucose. Mutant NP4 formed ectopic septa at intervals along substrate hyphae, and each of the compartments developed into a spore which was indistinguishable from an aerial spore in size, shape, and thickness of the spore wall and in susceptibility to lysozyme and heat. The ectopic spores of NP4 formed in liquid medium differed from "submerged spores" in lysozyme sensitivity. Shotgun cloning experiments with a library of the chromosomal DNA of the parental strain and mutant NP4 as the host gave rise to DNA fragments giving two different phenotypes; one complementing the bald phenotype of the host, and the other causing much severe wrinkled morphology in the host. Subcloning identified a gene (dasR) encoding a transcriptional repressor belonging to the GntR family that was responsible for the reversal of the bald phenotype and a gene (dasA) encoding a lipoprotein probably serving as a substrate-binding protein in an ATP-binding cassette (ABC) transport system that was responsible for the severe wrinkled morphology. These genes were adjacent but divergently encoded. Two genes, named dasB and dasC, encoding a membrane-spanning protein were present downstream of dasA, which suggested that dasRABC comprises a gene cluster for an ABC transporter, probably for sugar import. dasR was transcribed actively during vegetative growth, and dasA was transcribed just after commencement of aerial hypha formation and during sporulation, indicating that both were developmentally regulated. Transcriptional analysis and direct sequencing of dasRA in mutant NP4 suggested a defect of this mutant in the regulatory system to control the expression of these genes. Introduction of multicopies of dasA into the wild-type strain caused ectopic septation in very young substrate hyphae after only 1 day of growth and subsequent sporulation in response to glucose. The ectopic spores of the wild type had a thinner wall than those of mutant NP4, in agreement with the observation that the former was sensitive to lysozyme and heat. Disruption of the chromosomal dasA or dasR in the wild-type strain resulted in growth as substrate mycelium, suggesting an additional role of these genes in aerial mycelium formation. The ectopic septation and sporulation in mutant NP4 and the wild-type strain carrying multicopies of dasA were independent of a microbial hormone, A-factor (2-isocapryloyl-3R-hydroxymethyl-gamma-butyrolactone), that acts as a master switch of aerial mycelium formation and secondary metabolism.
Collapse
Affiliation(s)
- Jeong-Woo Seo
- Department of Biotechnology, Graduate School of Agriculture and Life Sciences. Institute of Molecular and Cellular Biosciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | | | | | | |
Collapse
|
30
|
Yang K, Han L, He J, Wang L, Vining LC. A repressor-response regulator gene pair controlling jadomycin B production in Streptomyces venezuelae ISP5230. Gene 2001; 279:165-73. [PMID: 11733141 DOI: 10.1016/s0378-1119(01)00723-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
A second regulatory gene (jadR(1)) is located immediately upstream of the putative repressor gene (jadR(2)) in the jad cluster for biosynthesis of the antibiotic jadomycin B in Streptomyces venezuelae ISP5230. It encodes a 234-amino acid polypeptide with a sequence resembling those of response regulator proteins in two-component control systems. Features in the conserved C-terminal domain of JadR(1) place the protein in the OmpR-PhoB subfamily of response regulators. In mutants where jadR(1) was deleted or disrupted, jadomycin B was not produced, implying that the gene has an essential role in biosynthesis of the antibiotic. Cloning jadR(1) from S. venezuelae in pJV73A, and introducing additional copies of the gene into the wild-type parent by plasmid transformation gave unstable strains with pJV73A integrated into the chromosome. The transformants initially showed increased production of jadomycin B but gave lower titers as excess copies of jadR(1) were lost; mature cultures stabilized with a wild-type level of antibiotic production. The mutant from which jadR(1) had been deleted could not be transformed with pJV73A. Altering the composition of jadR genes in the chromosome by integration of vectors carrying intact and disrupted copies of jadR(1) and jadR(2) provided evidence that the two genes form a regulatory pair different in function from previously reported two-component systems controlling antibiotic biosynthesis in streptomycetes.
Collapse
Affiliation(s)
- K Yang
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4J1
| | | | | | | | | |
Collapse
|
31
|
Ohnishi Y, Kameyama S, Onaka H, Horinouchi S. The A-factor regulatory cascade leading to streptomycin biosynthesis in Streptomyces griseus : identification of a target gene of the A-factor receptor. Mol Microbiol 1999; 34:102-11. [PMID: 10540289 DOI: 10.1046/j.1365-2958.1999.01579.x] [Citation(s) in RCA: 186] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In Streptomyces griseus, A-factor (2-isocapryloyl-3R-hydroxymethyl-gamma-butyrolactone) at an extremely low concentration triggers streptomycin biosynthesis and cell differentiation by binding a repressor-type receptor protein (ArpA) and dissociating it from DNA. An A-factor-responsive transcriptional activator (AdpA) able to bind the promoter of strR, a pathway-specific regulatory gene responsible for transcription of other streptomycin biosynthetic genes, was purified to homogeneity and adpA was cloned by PCR on the basis of amino acid sequences of purified AdpA. adpA encoding a 405-amino-acid protein containing a helix-turn-helix DNA-binding motif at the central region showed sequence similarity to transcriptional regulators in the AraC/XylS family. The -35 and -10 regions of the adpA promoter were found to be a target of ArpA; ArpA bound the promoter region in the absence of A-factor and exogenous addition of A-factor to the DNA-ArpA complex immediately released ArpA from the DNA. Consistent with this, S1 nuclease mapping showed that adpA was transcribed only in the presence of A-factor and strR was transcribed only in the presence of intact adpA. Furthermore, adpA disruptants produced no streptomycin and overexpression of adpA caused the wild-type S. griseus strain to produce streptomycin at an earlier growth stage in a larger amount. On the basis of these findings, we propose here a model to demonstrate how A-factor triggers streptomycin biosynthesis at a late exponential growth stage.
Collapse
Affiliation(s)
- Y Ohnishi
- Department of Biotechnology, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | | | | | | |
Collapse
|
32
|
Ueda K, Matsuda K, Takano H, Beppu T. A putative regulatory element for carbon-source-dependent differentiation in Streptomyces griseus. MICROBIOLOGY (READING, ENGLAND) 1999; 145 ( Pt 9):2265-2271. [PMID: 10517579 DOI: 10.1099/00221287-145-9-2265] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
To identify negative regulatory genes for cellular differentiation in Streptomyces griseus, DNA fragments repressing the normal developmental processes were cloned on a high-copy-number plasmid. One of these DNA fragments markedly repressed aerial mycelium and spore formation on solid media containing glucose or galactose, but not on media containing maltose or mannitol. The fragment contained three complete ORFs; precise subcloning revealed that a 249 bp fragment located in the promoter region between ORF1 and ORF3 was sufficient for repression. Quantification of the promoter activities by using a thermostable malate dehydrogenase gene as a reporter showed that the promoter for ORF3 (P(ORF3)) maintained high activity in mycelia grown in the presence of glucose but lost activity rapidly in maltose medium. P(ORF3) activity increased markedly when the promoter sequence was introduced on a high-copy-number plasmid. The results suggested that carbon-source-dependent deactivation of P(ORF3) mediated by a transcriptional repressor may initiate differentiation in S. griseus.
Collapse
Affiliation(s)
- Kenji Ueda
- Department of Applied Biological Sciences, Nihon University, 1866 Kameino, Fujisawa-shi, Kanagawa 252-8510, Japan1
| | - Kouichi Matsuda
- Department of Applied Biological Sciences, Nihon University, 1866 Kameino, Fujisawa-shi, Kanagawa 252-8510, Japan1
| | - Hideaki Takano
- Department of Applied Biological Sciences, Nihon University, 1866 Kameino, Fujisawa-shi, Kanagawa 252-8510, Japan1
| | - Teruhiko Beppu
- Department of Applied Biological Sciences, Nihon University, 1866 Kameino, Fujisawa-shi, Kanagawa 252-8510, Japan1
| |
Collapse
|
33
|
Yonekawa T, Ohnishi Y, Horinouchi S. Involvement of amfC in physiological and morphological development in Streptomyces coelicolor A3(2). MICROBIOLOGY (READING, ENGLAND) 1999; 145 ( Pt 9):2273-2280. [PMID: 10517580 DOI: 10.1099/00221287-145-9-2273] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
amfC plays a regulatory role in aerial mycelium formation in Streptomyces griseus and is distributed widely among Streptomyces species. Disruption of the chromosomal amfC gene in Streptomyces coelicolor A3(2) severely reduced formation of aerial hyphae, indicating that amfC is important in morphological development. In addition, the disruption caused S. coelicolor A3(2) M130 to produce much less actinorhodin, and to produce undecylprodigiosin at a later stage of growth, indicating that amfC also regulates secondary metabolism. S1 nuclease mapping showed that transcription of actII-ORF4, the pathway-specific transcriptional activator in the act gene cluster, was greatly reduced in the amfC disruptants. The defect in secondary metabolite formation was suppressed or overcome by a mutation in sre-1. Consequently, an amfC-disrupted strain derived from S. coelicolor A3(2) M145, an actinorhodin-overproducing strain due to the sre-1 mutation, still produced a large amount of actinorhodin. Extra copies of amfC in strains M130 and M145 did not change spore-chain morphology or secondary metabolite formation. However, the spores in these strains remained white even after prolonged incubation. Since only spore pigmentation was affected, all known whi genes, except whiE, responsible for the polyketide spore pigment formation, were assumed to function normally. S1 nuclease mapping showed that transcription of whiEP1, one of the promoters in the whiE locus, was reduced in S. coelicolor A3(2) containing extra copies of amfC. Introducing amfC into several other Streptomyces species, such as Streptomyces lividans, Streptomyces lavendulae and Streptomyces lipmanii, also abolished spore pigment formation. An increase in the amount of AmfC appeared to disturb the maturation of spores.
Collapse
Affiliation(s)
- Tohru Yonekawa
- Department of Biotechnology, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Bunkyo-ku,Tokyo 113-8657, Japan1
| | - Yasuo Ohnishi
- Department of Biotechnology, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Bunkyo-ku,Tokyo 113-8657, Japan1
| | - Sueharu Horinouchi
- Department of Biotechnology, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Bunkyo-ku,Tokyo 113-8657, Japan1
| |
Collapse
|
34
|
Abstract
In the past two years, the isolation of extracellular factors involved in the initiation of aerial mycelium formation, the identification of metabolic defects in certain developmental mutants, and the characterisation of three further bld genes and several gamma-butyrolactone receptor genes have led to new ideas about the mechanisms that initiate aerial mycelium formation in Streptomyces. The emerging picture suggests the integration of numerous signals from both inside and outside the cell.
Collapse
Affiliation(s)
- G H Kelemen
- John Innes Centre, Colney, Norwich NR4 7UH, UK.
| | | |
Collapse
|
35
|
Ueda K, Hsheh CW, Tosaki T, Shinkawa H, Beppu T, Horinouchi S. Characterization of an A-factor-responsive repressor for amfR essential for onset of aerial mycelium formation in Streptomyces griseus. J Bacteriol 1998; 180:5085-93. [PMID: 9748440 PMCID: PMC107543 DOI: 10.1128/jb.180.19.5085-5093.1998] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/1998] [Accepted: 08/06/1998] [Indexed: 11/20/2022] Open
Abstract
A-factor (2-isocapryloyl-3R-hydroxymethyl-gamma-butyrolactone) is essential for the initiation of aerial mycelium formation in Streptomyces griseus. amfR is one of the genes which, when cloned on a low-copy-number plasmid, suppresses the aerial mycelium-negative phenotype of an A-factor-deficient mutant of S. griseus. Disruption of the chromosomal amfR gene resulted in complete abolition of aerial mycelium formation, indicating that amfR is essential for the onset of morphogenesis. Cloning and nucleotide sequencing of the region upstream of amfR predicted an operon consisting of orf5, orf4, and amfR. Consistent with this idea, Northern blotting and S1 mapping analyses suggested that these three genes were cotranscribed mainly by a promoter (PORF5) in front of orf5. Furthermore, PORF5 was active only in the presence of A-factor, indicating that it is A-factor dependent. Gel mobility shift assays showed the presence of a protein (AdpB) able to bind PORF5 in the cell extract from an A-factor-deficient mutant but not from the wild-type strain. AdpB was purified to homogeneity and found to bind specifically to the region from -72 to -44 bp with respect to the transcriptional start point. Runoff transcriptional analysis of PORF5 with purified AdpB and an RNA polymerase complex isolated from vegetative mycelium showed that AdpB repressed the transcription in a concentration-dependent manner. It is thus apparent that AmfR as a switch for aerial mycelium formation and AdpB as a repressor for amfR are members in the A-factor regulatory cascade, leading to morphogenesis.
Collapse
Affiliation(s)
- K Ueda
- Department of Applied Biological Sciences, Nihon University, Fujisawa-shi, Kanagawa 252-8510, Japan
| | | | | | | | | | | |
Collapse
|
36
|
Abstract
1997 Fred Griffith Review Lecture
(Delivered at the 138th Meeting of the Society for General Microbiology, 2 September 1977)
Collapse
Affiliation(s)
- Keith F. Chater
- John Innes Centre, Norwich Research Park, Colney, Norwich NR7 4UH, UK
| |
Collapse
|
37
|
Mikulík K. The role of GTP-binding proteins in mechanochemical movements of microorganisms and their potential to form filamentous structures. Folia Microbiol (Praha) 1998; 43:339-52. [PMID: 9821287 DOI: 10.1007/bf02818572] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Prokaryotic cells contain proteins which form extended chains or multimers that oscillate between monomers and oligomers of varying length. Hydrolysis of nucleoside triphosphates combined with site-specific disposition of substrates and products to monomers and multimers is the driving force of dynamic instability of these molecules. Polymeric structures are connected in some manner to a variety of signaling systems that adhere to the polymeric matrix, including the GTP-binding protein(s), protein kinases and phosphatases, and other proteins or systems that communicate between the cytoplasmic membrane and the cytosol. Flexible organization allowing regulated dynamic movement is one of the key elements in all living cells. In eukaryotic cells actin and tubulin are the two main components of dynamically controlled spatial system. These proteins are noteworthy for their ability to polymerize, reversibly, into filaments or microtubules in association with hydrolysis of ATP or GTP, respectively. As such, they regulate most of the mechanics of cell movement including cell division, cell differentiation, phagocytosis and other dynamic phenomena. Recent evidence revealed that microbial cells create functional domains at specific sites of the cells and can form cytoplasmic tubules and fibers.
Collapse
Affiliation(s)
- K Mikulík
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| |
Collapse
|
38
|
Zhang H, Shinkawa H, Ishikawa J, Kinashi H, Nimi O. Improvement of transformation system in Streptomyces using a modified regeneration medium. ACTA ACUST UNITED AC 1997. [DOI: 10.1016/s0922-338x(97)80982-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
39
|
Abstract
Heterocysts are microaerobic, N2-fixing cells that form in a patterned array within O2-producing filamentous cyanobacteria. Structural features of heterocysts can be predicted from consideration of their physiology. This review focuses on the spacing mechanism that determines which cells will differentiate, and on the regulation of the progression of the differentiation process. Applicable genetic tools, developed primarily using Anabaena PCC 7120, but employed also with Nostoc spp., are reviewed. These tools include localization of transcription using fusions to lux, lac, and gfp, and mutagenesis with oriV-containing derivatives of transposon Tn5. Mature and developing heterocysts inhibit nearby vegetative cells from differentiating; genes patA, devA, hetC, and the hetMNI locus may hold keys to understanding intercellular interactions that influence heterocyst formation. Regulatory and other genes that are transcriptionally activated at different times after nitrogen stepdown have been identified, and should permit analysis of mechanisms that underlie the progression of heterocyst differentiation.
Collapse
Affiliation(s)
- C P Wolk
- MSU-DOE Plant Research Laboratory, East Lansing 48824, USA
| |
Collapse
|
40
|
Furuya K, Hutchinson CR. The DnrN protein of Streptomyces peucetius, a pseudo-response regulator, is a DNA-binding protein involved in the regulation of daunorubicin biosynthesis. J Bacteriol 1996; 178:6310-8. [PMID: 8892835 PMCID: PMC178506 DOI: 10.1128/jb.178.21.6310-6318.1996] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
DnrN, a protein essential for the transcription of the dnrI gene, which in turn activates transcription of the daunorubicin biosynthesis genes in Streptomyces peucetius, was overproduced in Escherichia coli and S. peucetius. The cell-free extract from E. coli was used to conduct DNA-binding assays. The results of gel mobility shift analysis showed that DnrN binds specifically to the dnrI promoter region with a high affinity (Kd = 50 nM). Neither acetyl phosphate nor ATP affected the binding ability, and there was no difference in binding between wild-type DnrN and a mutant form (D-55-->N) lacking the putative phosphorylation site (aspartate 55) of a response regulator protein. Therefore, phosphorylation of DnrN apparently is not necessary for DNA binding. DNase I footprinting analysis indicated binding regions at 37 to 55 bp and 62 to 100 bp upstream of the transcriptional start point of dnrI. Interestingly, the sequence of these regions includes consecutive overlapping triplets [5'-(A/T)GC, 5'-(A/T)CG, 5'-(A/T)C(A/T)] that have been shown to be the preferential binding site of daunorubicin (J. B. Chaires and J. E. Herrera, Biochemistry 29:6145-6153, 1990). This may explain why daunorubicin appeared to inhibit the binding of DnrN to the dnrI promoter, which could result in feedback repression of daunorubicin production. The results of Western blotting (immunoblotting) analysis with His-tagged DnrN antiserum showed that dnrN expression is coincident with daunorubicin production and that the maximum level of DnrN is 0.01% of total protein in the wild-type S. peucetius strain. Since the level of DnrN was lowered in mutant strains that do not produce daunorubicin, we speculate that dnrN and dnrI expression are regulated by daunorubicin.
Collapse
Affiliation(s)
- K Furuya
- School of Pharmacy, University of Wisconsin, Madison 53706, USA
| | | |
Collapse
|
41
|
|
42
|
Beppu T. Genes, enzymes and secondary metabolites in industrial microorganisms. The 1995 Thom Award Lecture. JOURNAL OF INDUSTRIAL MICROBIOLOGY 1996; 16:360-3. [PMID: 8987494 DOI: 10.1007/bf01570116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Apparently contrasting approaches, ie genetic engineering and screening of new microorganisms, play essential complementary roles to develop current industrial microbiology. Three topics, production and modification of milk-clotting proteinases by genetic engineering, hormonal control of secondary metabolism in streptomycetes, and screening of bioactive metabolites, are introduced as cases of such a hybrid approach, while symbiotic microorganisms are discussed as an example of the vast terra incognita still remaining for the future microbiology.
Collapse
Affiliation(s)
- T Beppu
- Department of Applied Biological Science, College of Veterinary Medicine, Nihon University, Kanagawa, Japan
| |
Collapse
|
43
|
Abstract
The bldA gene (encoding tRNA(UUA)Leu) from Streptomyces griseus (Sg) was cloned by hybridization with bldA from Streptomyces coelicolor (Sc). Introduction of Sg bldA into Sc bldA mutants restored sporulation and actinorhodin production. Sporulation of a subset of Sg bald mutants, which produce no aerial mycelium or spores, was restored in the presence of bldA from Sc or Sg. The nucleotide sequences of the bldA alleles from two such bald mutants revealed point mutations in the anticodon stem and the T psi C stem.
Collapse
Affiliation(s)
- J Kwak
- Department of Microbiology, Ohio State University, Columbus 43210, USA
| | | | | |
Collapse
|
44
|
McCue LA, Kwak J, Wang J, Kendrick KE. Analysis of a gene that suppresses the morphological defect of bald mutants of Streptomyces griseus. J Bacteriol 1996; 178:2867-75. [PMID: 8631675 PMCID: PMC178022 DOI: 10.1128/jb.178.10.2867-2875.1996] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
When present in multiple copies, orf1590 restored sporulation to class IIIA bald mutants of Streptomyces griseus, which form sporulation septa and thick spore walls prematurely. The orf1590 alleles from class IIIA bald mutants restored sporulation upon introduction at a high copy number into those same mutants, and the nucleotide sequence of one of these alleles was identical to that of the wild-type strain. We conclude that overexpression of orf1590 suppresses the defect in class IIIA bald mutants. Previous nucleotide sequence and transcript analyses suggested that orf1590 could encode two related proteins, P56 and P49.5, from nested coding sequences. A mutation that prevented the synthesis of P56 without altering the coding sequence for P49.5 eliminated the function of orf1590, as did amino acid substitutions in the putative helix-turn-helix domain located at the N terminus of P56 and absent from P49.5. To determine the coding capacity of orf1590, we analyzed translational fusions between orf1590 and the neo gene from Tn5. Measurement of the expression of fusions to the wild-type and mutant alleles of orf1590 indicated that P56 was the sole product of orf1590 during vegetative growth. Attempts to generate a nonfunctional frameshift mutation in orf1590 were unsuccessful in the absence of a second-site bald mutation, suggesting that orf1590 may be required during vegetative growth by preventing early sporulation. Our results are consistent with the hypothesis that P56 at a high level delays the premature synthesis of sporulation septa and spore walls in class IIIA mutants.
Collapse
MESH Headings
- Amino Acid Sequence
- Base Sequence
- Genes, Bacterial
- Models, Genetic
- Molecular Sequence Data
- Morphogenesis/genetics
- Mutation
- Protein Biosynthesis
- Protein Structure, Secondary
- RNA, Bacterial/genetics
- RNA, Messenger/genetics
- Sequence Analysis, DNA
- Spores, Bacterial
- Streptomyces griseus/cytology
- Streptomyces griseus/genetics
- Streptomyces griseus/physiology
- Suppression, Genetic
- Transcription, Genetic
- Transformation, Genetic
Collapse
Affiliation(s)
- L A McCue
- Department of Microbiology, Ohio State University, Columbus 43210, USA
| | | | | | | |
Collapse
|
45
|
Ueda K, Umeyama T, Beppu T, Horinouchi S. The aerial mycelium-defective phenotype of Streptomyces griseus resulting from A-factor deficiency is suppressed by a Ser/Thr kinase of S. coelicolor A3(2). Gene X 1996; 169:91-5. [PMID: 8635757 DOI: 10.1016/0378-1119(95)00771-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
A-factor (2-isocapryloyl-3R-hydroxymethyl-gamma-butyrolactone) is essential for aerial mycelium formation and streptomycin (Sm) production in Streptomyces griseus. A protein Ser/Thr kinase (AfsK), the product of the Streptomyces coelicolor A3(2) afsK gene, controlling secondary metabolism in this strain, reversed the aerial mycelium-negative phenotype of an A-factor-deficient mutant strain, S. griseus HH1, and induced sporulation without affecting A-factor productivity or Sm production. A mutant AfsK protein lacking kinase activity failed to induce aerial mycelium formation which indicates the importance of the kinase activity for suppression in S. griseus. These data suggest that a Ser/Thr kinase functionally similar to S. coelicolor A3(2) AfsK plays a regulatory role in aerial mycelium formation in S. griseus, either as a member in the A-factor regulatory network or independently of this network.
Collapse
Affiliation(s)
- K Ueda
- Department of Biotechnology, The University of Tokyo, Japan
| | | | | | | |
Collapse
|
46
|
Affiliation(s)
- R C Roberts
- Department of Developmental Biology, Stanford University School of Medicine, California 94305, USA
| | | | | |
Collapse
|
47
|
Kudo N, Kimura M, Beppu T, Horinouchi S. Cloning and characterization of a gene involved in aerial mycelium formation in Streptomyces griseus. J Bacteriol 1995; 177:6401-10. [PMID: 7592414 PMCID: PMC177489 DOI: 10.1128/jb.177.22.6401-6410.1995] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
A-factor (2-isocapryloyl-3R-hydroxymethyl-gamma-butyrolactone) is essentially required for aerial mycelium formation and streptomycin production in Streptomyces griseus. A DNA fragment which induced aerial mycelium formation and sporulation in an A-factor-deficient mutant strain, S. griseus HH1, was cloned from this strain on a high-copy-number plasmid. Subcloning and nucleotide sequencing revealed that one open reading frame with 218 amino acids, named AmfC, served as a multicopy suppressor of the aerial mycelium-defective phenotype of the A-factor-deficient strain. The amfC gene did not restore A-factor or streptomycin production, indicating that amfC is involved in aerial mycelium formation independently of secondary metabolic function. Disruption of the chromosomal amfC gene in the wild-type S. griseus strain caused a severe reduction in the abundance of spores but no effect on the shape or size of the spores. The infrequent sporulation of the amfC disruptant was reversed by introduction of amfC on a plasmid. The amfC-defective phenotype was also restored by the orf1590 gene but not by the amfR-amfA-amfB gene cluster. Nucleotide sequences homologous to the amfC gene were distributed in all of 12 Streptomyces species tested, including Streptomyces coelicolor A3(2). The amfC homolog of S. coelicolor A3(2) was cloned and its nucleotide sequence was determined. The AmfC products of S. griseus and S. coelicolor A3(2) showed a 60% identity in their amino acid sequences. Introduction of the amfC gene of S. coelicolor A3(2) into strain HH1 induced aerial mycelium formation and sporulation, which suggests that both play the same functional role in morphogenesis in the strains.
Collapse
Affiliation(s)
- N Kudo
- Department of Biotechnology, University of Tokyo, Japan
| | | | | | | |
Collapse
|
48
|
Abstract
Evidence is accumulating that demonstrates the key roles played by diffusible molecules in regulating cellular differentiation, even among prokaryotic microorganisms. This is exemplified by A-factor and its analogues, which act as autoregulators for morphological differentiation and secondary metabolism in Streptomyces. The identification of a specific receptor for A-factor and an A-factor-controlled promoter sequence in S. griseus indicate the close similarity of this system to eukaryotic hormonal control. The involvement of prokaryotic homologues of the eukaryotic Ser/Thr-kinases in the regulation of differentiation processes seems to be another characteristic feature of this group of bacteria. Recent evidence for the presence of these molecular signalling systems in Streptomyces is reviewed, along with the inherent implications.
Collapse
Affiliation(s)
- T Beppu
- Department of Applied Biological Science, College of Agriculture and Veterinary Medicine, Nihon University, Fujisawa, Japan
| |
Collapse
|
49
|
Otten SL, Ferguson J, Hutchinson CR. Regulation of daunorubicin production in Streptomyces peucetius by the dnrR2 locus. J Bacteriol 1995; 177:1216-24. [PMID: 7868594 PMCID: PMC176726 DOI: 10.1128/jb.177.5.1216-1224.1995] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Sequence analysis of the dnrR2 locus from the cluster of daunorubicin biosynthesis genes in Streptomyces peucetius ATCC 29050 has revealed the presence of two divergently transcribed open reading frames, dnrN and dnrO. The dnrN gene appears to encode a response regulator protein on the basis of conservation of the deduced amino acid sequence relative to those of known response regulators and the properties of the dnrN::aphII mutant. Surprisingly, amino acid substitutions (glutamate and asparagine) at the putative site of phosphorylation (aspartate 55) resulted in a reduction rather than a complete loss of DnrN activity. The deduced DnrO protein was found to be similar to the Streptomyces glaucescens tetracenomycin C resistance gene repressor (TcmR) and to two Escherichia coli repressors, the biotin operon repressor (BirA) and the tetracycline resistance gene repressor (TetR). The dnrN::aphII mutation was suppressed by introduction of the dnrI gene on a plasmid. Since the introduction of dnrN failed to restore antibiotic production to a dnrI::aphII mutant, these data suggest the presence of a regulatory cascade in which dnrN activates the transcription of dnrI, which in turn activates transcription of the daunorubicin biosynthesis genes.
Collapse
Affiliation(s)
- S L Otten
- School of Pharmacy, University of Wisconsin, Madison 53706
| | | | | |
Collapse
|
50
|
Urabe H, Ogawara H. Cloning, sequencing and expression of serine/threonine kinase-encoding genes from Streptomyces coelicolor A3(2). Gene 1995; 153:99-104. [PMID: 7883195 DOI: 10.1016/0378-1119(94)00789-u] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A 6.3-kb DNA fragment encoding two eukaryotic-type serine/threonine protein kinases (Ser/Thr PK) was cloned from Streptomyces coelicolor A3(2) by using a PCR product obtained with primers based on highly conserved regions of eukaryotic Ser/Thr PK. The nucleotide (nt) sequence of the essential 4.4-kb fragment contained two possible ORFs. One ORF (PkaA) contained 543 amino acids (aa), while another (PkaB) consisted of 417 aa. The N-terminal half of both proteins showed significant similarity with the catalytic domain of eukaryotic Ser/Thr PK. On the other hand, the C-terminal region of PkaA, but not of PkaB, is rich in Pro and Gln residues, indicating that PkaA works as a PK as well as a transcription factor. The pkaB gene was overexpressed in Escherichia coli, and the gene product (PkaB) was found to be phosphorylated mainly at Thr. The pkaA gene was also overexpressed in E. coli, and the gene product (PkaA) was found to be phosphorylated mainly at Thr and slightly at Ser. In the case of PkaA, at least 100 aa residues from the C terminus were not essential for the PK activity. When the PCR product was used as a probe, it hybridized to DNA fragments from all the Streptomyces species tested, indicating that these types of Ser/Thr PK are distributed ubiquitously and play significant physiological roles in the various species of Streptomyces.
Collapse
Affiliation(s)
- H Urabe
- Department of Biochemistry, Meiji College of Pharmacy, Tokyo, Japan
| | | |
Collapse
|