1
|
Aquino P, Honda B, Jaini S, Lyubetskaya A, Hosur K, Chiu JG, Ekladious I, Hu D, Jin L, Sayeg MK, Stettner AI, Wang J, Wong BG, Wong WS, Alexander SL, Ba C, Bensussen SI, Bernstein DB, Braff D, Cha S, Cheng DI, Cho JH, Chou K, Chuang J, Gastler DE, Grasso DJ, Greifenberger JS, Guo C, Hawes AK, Israni DV, Jain SR, Kim J, Lei J, Li H, Li D, Li Q, Mancuso CP, Mao N, Masud SF, Meisel CL, Mi J, Nykyforchyn CS, Park M, Peterson HM, Ramirez AK, Reynolds DS, Rim NG, Saffie JC, Su H, Su WR, Su Y, Sun M, Thommes MM, Tu T, Varongchayakul N, Wagner TE, Weinberg BH, Yang R, Yaroslavsky A, Yoon C, Zhao Y, Zollinger AJ, Stringer AM, Foster JW, Wade J, Raman S, Broude N, Wong WW, Galagan JE. Coordinated regulation of acid resistance in Escherichia coli. BMC SYSTEMS BIOLOGY 2017; 11:1. [PMID: 28061857 PMCID: PMC5217608 DOI: 10.1186/s12918-016-0376-y] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Accepted: 12/07/2016] [Indexed: 12/29/2022]
Abstract
Background Enteric Escherichia coli survives the highly acidic environment of the stomach through multiple acid resistance (AR) mechanisms. The most effective system, AR2, decarboxylates externally-derived glutamate to remove cytoplasmic protons and excrete GABA. The first described system, AR1, does not require an external amino acid. Its mechanism has not been determined. The regulation of the multiple AR systems and their coordination with broader cellular metabolism has not been fully explored. Results We utilized a combination of ChIP-Seq and gene expression analysis to experimentally map the regulatory interactions of four TFs: nac, ntrC, ompR, and csiR. Our data identified all previously in vivo confirmed direct interactions and revealed several others previously inferred from gene expression data. Our data demonstrate that nac and csiR directly modulate AR, and leads to a regulatory network model in which all four TFs participate in coordinating acid resistance, glutamate metabolism, and nitrogen metabolism. This model predicts a novel mechanism for AR1 by which the decarboxylation enzymes of AR2 are used with internally derived glutamate. This hypothesis makes several testable predictions that we confirmed experimentally. Conclusions Our data suggest that the regulatory network underlying AR is complex and deeply interconnected with the regulation of GABA and glutamate metabolism, nitrogen metabolism. These connections underlie and experimentally validated model of AR1 in which the decarboxylation enzymes of AR2 are used with internally derived glutamate. Electronic supplementary material The online version of this article (doi:10.1186/s12918-016-0376-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Patricia Aquino
- Department of Biomedical Engineering, Boston University, Boston, USA.,BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Brent Honda
- Department of Biomedical Engineering, Boston University, Boston, USA
| | - Suma Jaini
- Department of Biomedical Engineering, Boston University, Boston, USA
| | | | - Krutika Hosur
- Department of Biomedical Engineering, Boston University, Boston, USA.,BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Joanna G Chiu
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Iriny Ekladious
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Dongjian Hu
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Lin Jin
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Marianna K Sayeg
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Arion I Stettner
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Julia Wang
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Brandon G Wong
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Winnie S Wong
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | | | - Cong Ba
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Seth I Bensussen
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - David B Bernstein
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Dana Braff
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Susie Cha
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Daniel I Cheng
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Jang Hwan Cho
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Kenny Chou
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - James Chuang
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Daniel E Gastler
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Daniel J Grasso
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | | | - Chen Guo
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Anna K Hawes
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Divya V Israni
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Saloni R Jain
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Jessica Kim
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Junyu Lei
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Hao Li
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - David Li
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Qian Li
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | | | - Ning Mao
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Salwa F Masud
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Cari L Meisel
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Jing Mi
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | | | - Minhee Park
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Hannah M Peterson
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Alfred K Ramirez
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Daniel S Reynolds
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Nae Gyune Rim
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Jared C Saffie
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Hang Su
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Wendell R Su
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Yaqing Su
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Meng Sun
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Meghan M Thommes
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Tao Tu
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | | | - Tyler E Wagner
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | | | - Rouhui Yang
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | | | - Christine Yoon
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Yanyu Zhao
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | | | - Anne M Stringer
- Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | - John W Foster
- Department of Microbiology and Immunology, University of South Alabama College of Medicine, Mobile, AL, 36688, USA
| | - Joseph Wade
- Wadsworth Center, New York State Department of Health, Albany, NY, USA.,Department of Biomedical Sciences, University at Albany, Albany, NY, USA
| | - Sahadaven Raman
- Department of Microbiology and Immunology, University of South Alabama College of Medicine, Mobile, AL, 36688, USA
| | - Natasha Broude
- Department of Biomedical Engineering, Boston University, Boston, USA
| | - Wilson W Wong
- Department of Biomedical Engineering, Boston University, Boston, USA
| | - James E Galagan
- Department of Biomedical Engineering, Boston University, Boston, USA. .,Bioinformatics program, Boston University, Boston, USA. .,National Emerging Infectious Diseases Laboratory, Boston University, Boston, USA.
| |
Collapse
|
2
|
Abstract
Transcription factors (TFs) play a central role in regulating gene expression in all bacteria. Yet until recently, studies of TF binding were limited to a small number of factors at a few genomic locations. Chromatin immunoprecipitation followed by sequencing (ChIP-Seq) provides the ability to map binding sites globally for TFs, and the scalability of the technology enables the ability to map binding sites for every DNA binding protein in a prokaryotic organism. We have developed a protocol for ChIP-Seq tailored for use with mycobacteria and an analysis pipeline for processing the resulting data. The protocol and pipeline have been used to map over 100 TFs from Mycobacterium tuberculosis, as well as numerous TFs from related mycobacteria and other bacteria. The resulting data provide evidence that the long-accepted spatial relationship between TF binding site, promoter motif, and the corresponding regulated gene may be too simple a paradigm, failing to adequately capture the variety of TF binding sites found in prokaryotes. In this article we describe the protocol and analysis pipeline, the validation of these methods, and the results of applying these methods to M. tuberculosis.
Collapse
|
3
|
Activation of gab cluster transcription in Bacillus thuringiensis by γ-aminobutyric acid or succinic semialdehyde is mediated by the Sigma 54-dependent transcriptional activator GabR. BMC Microbiol 2014; 14:306. [PMID: 25527261 PMCID: PMC4279683 DOI: 10.1186/s12866-014-0306-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 11/24/2014] [Indexed: 11/17/2022] Open
Abstract
Background Bacillus thuringiensis GabR is a Sigma 54-dependent transcriptional activator containing three typical domains, an N-terminal regulatory domain Per-ARNT-Sim (PAS), a central AAA+ (ATPases associated with different cellular activities) domain and a C-terminal helix-turn-helix (HTH) DNA binding domain. GabR positively regulates the expression of the gabT gene of the gab gene cluster, which is responsible for the γ-aminobutyric acid (GABA) shunt. Results Purified GabR was shown to specifically bind to a repeat region that mapped 58 bp upstream of the gabT start codon. The specific signal factors GABA and succinic semialdehyde (SSA) activated gabT expression, whereas GABA- and SSA-inducible gabT transcription was abolished in sigL and gabR mutants. GABA and SSA did not induce the expression of either SigL or GabR. Deletion of the PAS domain of GabR resulted in increased gabT transcriptional activity, both in the presence and absence of GABA. Conclusions This study identified the GabR-binding site on the gabT promoter; however, GabR does not bind to its own promoter. gabT transcription is induced by GABA and SSA, and inducible expression is dependent on SigL and activated by GabR. The PAS domain in GabR is repressing its enhancer transcriptional activity on the gabT promoter. Repression is released upon GABA addition, whereupon transcription is induced. Electronic supplementary material The online version of this article (doi:10.1186/s12866-014-0306-3) contains supplementary material, which is available to authorized users.
Collapse
|
4
|
Galagan J, Lyubetskaya A, Gomes A. ChIP-Seq and the complexity of bacterial transcriptional regulation. Curr Top Microbiol Immunol 2012; 363:43-68. [PMID: 22983621 DOI: 10.1007/82_2012_257] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Transcription factors (TFs) play a central role in regulating gene expression in all bacteria. Yet, until recently, studies of TF binding were limited to a small number of factors at a few genomic locations. Chromatin immunoprecipitation followed by sequencing enables mapping of binding sites for TFs in a global and high-throughput fashion. The NIAID funded TB systems biology project http://www.broadinstitute.org/annotation/tbsysbio/home.html aims to map the binding sites for every transcription factor in the genome of Mycobacterium tuberculosis (MTB), the causative agent of human TB. ChIP-Seq data already released through TBDB.org have provided new insight into the mechanisms of TB pathogenesis. But in addition, data from MTB are beginning to challenge many simplifying assumptions associated with gene regulation in all bacteria. In this chapter, we review the global aspects of TF binding in MTB and discuss the implications of these data for our understanding of bacterial gene regulation. We begin by reviewing the canonical model of bacterial transcriptional regulation using the lac operon as the standard paradigm. We then review the use of ChIP-Seq to map the binding sites of DNA-binding proteins and the application of this method to mapping TF binding sites in MTB. Finally, we discuss two aspects of the binding discovered by ChIP-Seq that were unexpected given the canonical model: the substantial binding outside the proximal promoter region and the large number of weak binding sites.
Collapse
Affiliation(s)
- James Galagan
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA.
| | | | | |
Collapse
|
5
|
Direct interaction of FliX and FlbD is required for their regulatory activity in Caulobacter crescentus. BMC Microbiol 2011; 11:89. [PMID: 21535897 PMCID: PMC3096577 DOI: 10.1186/1471-2180-11-89] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Accepted: 05/02/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The temporal and spatial expression of late flagellar genes in Caulobacter crescentus is activated by the transcription factor FlbD and its partner trans-acting factor FliX. The physical interaction of these two proteins represents an alternative mechanism for regulating the activity of σ54 transcription factors. This study is to characterize the interaction of the two proteins and the consequences of the interaction on their regulatory activity. RESULTS FliX and FlbD form stable complexes, which can stand the interference of 2.65 M NaCl. The stability of FliX and FlbD was affected by the co-existence of each other. Five FliX mutants (R71A, L85K, Δ117-118, T130L, and L136K) were created by site-directed mutagenesis in conserved regions of the protein. All mutants were successfully expressed in both wild-type and ΔfliX Caulobacter strains. All but FliXL85K could rescue the motility and cell division defects of a ΔfliX mutant strain. The ability of FliX to regulate the transcription of class II and class III/IV flagellar promoters was fully diminished due to the L85K mutation. Co-immunoprecipitation experiment revealed that FliXL85K was unable to physically interact with FlbD. CONCLUSIONS FliX interacts with FlbD and thereby directly regulates the activity of FlbD in response to flagellar assembly. Mutations in highly conserved regions of FliX could severely affect the recognition between FliX and FlbD and hence interrupt the normal progression of flagellar synthesis and other developmental events in Caulobacter.
Collapse
|
6
|
Abstract
Mutations within the -12 and -24 elements provide evidence that the act promoter is recognized by sigma-54 RNA polymerase. Deletion of the -20 base pair, which lies between the two conserved elements of sigma-54 promoters, decreased expression by 90%. In addition, mutation of a potential enhancer sequence, around -120, led to an 80% reduction in act gene expression. actB, the second gene in the act operon, encodes a sigma-54 activator protein that is proposed to be an enhancer-binding protein for the act operon. All act genes, actA to actE, are expressed together and constitute an operon, because an in-frame deletion of actB decreased expression of actA and actE to the same extent. After an initially slow phase of act operon expression, which depends on FruA, there is a rapid phase. The rapid phase is shown to be due to the activation of the operon expression by ActB, which completes a positive feedback loop. That loop appears to be nested within a larger positive loop in which ActB is activated by the C signal via ActA, and the act operon activates transcription of the csgA gene. We propose that, as cells engage in more C signaling, positive feedback raises the number of C-signal molecules per cell and drives the process of fruiting body development forward.
Collapse
Affiliation(s)
- Thomas M A Gronewold
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305-5329, USA
| | | |
Collapse
|
7
|
Smith AH, Blevins JS, Bachlani GN, Yang XF, Norgard MV. Evidence that RpoS (sigmaS) in Borrelia burgdorferi is controlled directly by RpoN (sigma54/sigmaN). J Bacteriol 2006; 189:2139-44. [PMID: 17158681 PMCID: PMC1855718 DOI: 10.1128/jb.01653-06] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The alternative sigma factor (RpoN-RpoS) pathway controls the expression of key virulence factors in Borrelia burgdorferi. However, evidence to support whether RpoN controls rpoS directly or, perhaps, indirectly via a transactivator has been lacking. Herein we provide biochemical and genetic evidence that RpoN directly controls rpoS in B. burgdorferi.
Collapse
Affiliation(s)
- Alexandra H Smith
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9048, USA
| | | | | | | | | |
Collapse
|
8
|
Jenal U, Stephens C, Shapiro L. Regulation of asymmetry and polarity during the Caulobacter cell cycle. ADVANCES IN ENZYMOLOGY AND RELATED AREAS OF MOLECULAR BIOLOGY 2006; 71:1-39. [PMID: 8644489 DOI: 10.1002/9780470123171.ch1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- U Jenal
- Department of Developmental Biology, Beckman Center for Molecular and Genetic Medicine, Stanford University School of Medicine, Stanford University, California 94305, USA
| | | | | |
Collapse
|
9
|
Mitra R, Das HK, Dixit A. Identification of a positive transcription regulatory element within the coding region of the nifLA operon in Azotobacter vinelandii. Appl Environ Microbiol 2005; 71:3716-24. [PMID: 16000781 PMCID: PMC1169038 DOI: 10.1128/aem.71.7.3716-3724.2005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nitrogen fixation in Azotobacter vinelandii is regulated by the nifLA operon. NifA activates the transcription of nif genes, while NifL antagonizes the transcriptional activator NifA in response to fixed nitrogen and molecular oxygen levels. However, transcriptional regulation of the nifLA operon of A. vinelandii itself is not fully understood. Using the S1 nuclease assay, we mapped the transcription start site of the nifLA operon, showing it to be similar to the sigma54-dependent promoters. We also identified a positive cis-acting regulatory element (+134 to +790) of the nifLA operon within the coding region of the nifL gene of A. vinelandii. Deletion of this element results in complete loss of promoter activity. Several protein factors bind to this region, and the specific binding sites have been mapped by DNase I foot printing. Two of these sites, namely dR1 (+134 to +204) and dR2 (+745 to +765), are involved in regulating the nifLA promoter activity. The absence of NtrC-like binding sites in the upstream region of the nifLA operon in A. vinelandii makes the identification of these downstream elements a highly significant finding. The interaction of the promoter with the proteins binding to the dR2 region spanning +745 to +765 appears to be dependent on the face of the helix as introduction of 4 bases just before this region completely disrupts promoter activity. Thus, the positive regulatory element present within the BglII-BglII fragment may play, in part; an important role in nifLA regulation in A. vinelandii.
Collapse
Affiliation(s)
- Ranjana Mitra
- Gene Regulation Laboratory, Centre for Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India.
| | | | | |
Collapse
|
10
|
Muir RE, Gober JW. Role of integration host factor in the transcriptional activation of flagellar gene expression in Caulobacter crescentus. J Bacteriol 2005; 187:949-60. [PMID: 15659673 PMCID: PMC545733 DOI: 10.1128/jb.187.3.949-960.2005] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In the Caulobacter crescentus predivisional cell, class III and IV flagellar genes, encoding the extracytoplasmic components of the flagellum, are transcribed in the nascent swarmer compartment. This asymmetric expression pattern is attributable to the compartmentalized activity of the sigma54-dependent transcriptional activator FlbD. Additionally, these temporally transcribed flagellar promoters possess a consensus sequence for the DNA-binding protein integration host factor (IHF), located between the upstream FlbD binding site and the promoter sequences. Here, we deleted the C. crescentus gene encoding the beta-subunit of the IHF, ihfB (himD), and examined the effect on flagellar gene expression. The DeltaihfB strain exhibited a mild defect in cell morphology and impaired motility. Using flagellar promoter reporter fusions, we observed that expression levels of a subset of class III flagellar promoters were decreased by the loss of IHF. However, one of these promoters, fliK-lacZ, exhibited a wild-type cell cycle-regulated pattern of expression in the absence of IHF. Thus, IHF is required for maximal transcription of several late flagellar genes. The DeltaihfB strain was found to express significantly reduced amounts of the class IV flagellin, FljL, as a consequence of reduced transcriptional activity. Our results indicate that the motility defect exhibited by the DeltaihfB strain is most likely attributable to its failure to accumulate the class IV-encoded 27-kDa flagellin subunit, FljL.
Collapse
Affiliation(s)
- Rachel E Muir
- Department of Chemistry and Biochemistry and Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095-1569, USA
| | | |
Collapse
|
11
|
Stein T, Heinzmann S, Kiesau P, Himmel B, Entian KD. The spa-box for transcriptional activation of subtilin biosynthesis and immunity in Bacillus subtilis. Mol Microbiol 2003; 47:1627-36. [PMID: 12622817 DOI: 10.1046/j.1365-2958.2003.03374.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The subtilin gene cluster (spa) of Bacillus subtilis ATCC 6633 is organized in transcriptional units spaBTC, spaS, spaIFEG and spaRK. Specific binding of the response regulator protein SpaR to spaB, spaS and spaI DNA promoter fragments was shown by means of electromobility shift assays. A repeated pentanucleotide sequence spaced by six nucleotides was identified as SpaR binding motif (spa-box). Saturating mutational analysis of the spa-box by single- and multiple-base-pair substitutions revealed the consensus motif (A/T)TGAT for optimal SpaR binding with the second, third and fifth position being absolutely conservative. Variations in the spacer size between the two pentanucleotide repeats revealed a strong conservation of their relative location. Only DNA with a proximal arrangement of two pentanucleotide repeats showed affinity to SpaR. A 2:1 stoichiometry between SpaR and DNA was obtained by optical biosensor analyses, which corresponds to the binding of two SpaR proteins per spa-box.
Collapse
Affiliation(s)
- Torsten Stein
- Institut für Mikrobiologie, Johann Wolfgang Goethe-Universität, Marie-Curie-Str. 9, 60439 Frankfurt am Main, Germany
| | | | | | | | | |
Collapse
|
12
|
Versteeg S, Escher A, Wende A, Wiegert T, Schumann W. Regulation of the Bacillus subtilis heat shock gene htpG is under positive control. J Bacteriol 2003; 185:466-74. [PMID: 12511492 PMCID: PMC145321 DOI: 10.1128/jb.185.2.466-474.2003] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2002] [Accepted: 10/24/2002] [Indexed: 11/20/2022] Open
Abstract
The heat shock genes of Bacillus subtilis are assigned to four classes on the basis of their regulation mechanisms. While classes I and III are negatively controlled by two different transcriptional repressors, class II is regulated by the alternative sigma factor sigma(B). All heat shock genes with unidentified regulatory mechanisms, among them htpG, constitute class IV. Here, we show that expression of htpG is under positive control. We identified a DNA sequence (GAAAAGG) located downstream of the sigma(A)-dependent promoter of htpG. The heat inducibility of the promoter could be destroyed by inversion, nucleotide replacements, or removal of this DNA sequence. Fusion of this sequence to the vegetative lepA promoter conferred heat inducibility. Furthermore, we were able to show that the heat induction factor is dependent on the absolute temperature rather than the temperature increment and that nonnative proteins within the cytoplasm fail to induce htpG.
Collapse
|
13
|
Muir RE, Gober JW. Mutations in FlbD that relieve the dependency on flagellum assembly alter the temporal and spatial pattern of developmental transcription in Caulobacter crescentus. Mol Microbiol 2002; 43:597-615. [PMID: 11929518 DOI: 10.1046/j.1365-2958.2002.02728.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The transcription factor FlbD regulates the temporal and spatial transcription of flagellar genes in the bacterium Caulobacter crescentus. Activation of FlbD requires cell cycle progression and the assembly of an early (class II) flagellum structure. In this report, we identify 20 independent gain-of-function mutations in flbD that relieve regulation by flagellar assembly. One of these, flbD-1204, contained a mutation in the receiver domain (V17M) and another, flbD-1231, in the DNA binding domain (V451G). Both of these mutations resulted in an aberrant pattern of cell cycle transcription. The presence of the FlbD-1204 allele also resulted in a loss of swarmer-pole-specific transcription. These results indicate that temporal and spatial transcription is influenced by the assembly of the nascent flagellar structure. The trans-acting positive and negative regulatory factor, FliX, couples flagellar assembly to the activation of FlbD and, as we show here, also influences temporal transcription. Furthermore, we show that FliX can suppress the activity of FlbD mutants that cannot be phosphorylated, and that FliX is required for FlbD stability, and vice versa. These results indicate that FliX may interact directly with FlbD to regulate its activity.
Collapse
Affiliation(s)
- Rachel E Muir
- Department of Chemistry and Biochemistry, and Molecular Biology Institute, University of California, Los Angeles, CA 90095-1569, USA
| | | |
Collapse
|
14
|
Muir RE, Gober JW. Regulation of late flagellar gene transcription and cell division by flagellum assembly in Caulobacter crescentus. Mol Microbiol 2001; 41:117-30. [PMID: 11454205 DOI: 10.1046/j.1365-2958.2001.02506.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Biogenesis of the single polar flagellum of Caulobacter crescentus is regulated by a complex interplay of cell cycle events and the progression of flagellum assembly. The expression of class III/IV flagellar genes requires the assembly of an early flagellar basal body structure, encoded by class II genes, and is activated by the transcription factor FlbD. Previous experiments indicated that the class II flagellar gene, flbE, encoded a trans-acting factor that was required for FlbD activity. Here, using mutant alleles of flbE we have determined that FlbE is either a structural component of the flagellum or is required for flagellar assembly and does not, as originally proposed, function as a trans-acting factor. We also demonstrate that two deleted derivatives of flbE have a dominant negative effect on the transcriptional activation of class III/IV flagellar genes that can be relieved by a gain-of-function mutation in flbD called bfa. This same mutation in flbD has been shown to restore class III/IV transcription in the absence of early class II flagellar assembly. These deleted mutants of flbE also exhibited a filamentous cell phenotype that was indistinguishable from that previously observed in class II flagellar mutants. Introduction of a flbD-bfa mutation into these cells expressing the deleted alleles of flbE, as well as several class II mutant strains, restored normal cell division and FtsZ localization. These results suggest that class III/IV transcription and a step in cell division are coupled to flagellar assembly by the same genetic pathway.
Collapse
Affiliation(s)
- R E Muir
- Department of Chemistry and Biochemistry and, Molecular Biology Institute, University of California, Los Angeles, CA 90095-1569 USA
| | | |
Collapse
|
15
|
Jones SE, Ferguson NL, Alley MRK. New members of the ctrA regulon: the major chemotaxis operon in Caulobacter is CtrA dependent. MICROBIOLOGY (READING, ENGLAND) 2001; 147:949-958. [PMID: 11283290 DOI: 10.1099/00221287-147-4-949] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The Caulobacter crescentus che promoter region consists of two divergent promoters, directing expression of the major chemotaxis operon and a novel gene cagA (chemotaxis associated gene A). Analyses of start sites by primer extension and alignment of the divergent promoters revealed significant similarities between them at the -35 promoter region. Both mcpA and cagA are differentially expressed in the cell cycle, with maximal activation of transcription in predivisional cells. The main difference between the mcpA and cagA promoters is that, in common with the fljK flagellin, cagA is expressed in swarmer cells. A cagA--lacZ promoter fusion that contains 36 bases of untranslated mRNA has sufficient information to segregate the lacZ transcript to swarmer cells. Expression of mcpA and cagA was dependent on DNA replication. Transcriptional epistasis experiments were performed to identify potential regulators in the flagellar hierarchy. The sigma factor RpoN, which is required for flagellar biogenesis, is not required for mcpA and cagA expression. Mutations in the genes for the MS-ring and the switch complex (flagellar class II mutants) do not affect expression of mcpA and cagA. However, CtrA, an essential response regulator of flagellar gene transcription, is required.
Collapse
Affiliation(s)
- Susan E Jones
- Department of Biochemistry, Imperial College of Science, Technology and Medicine, London SW7 2AY, UK1
| | - N L Ferguson
- Department of Biochemistry, Imperial College of Science, Technology and Medicine, London SW7 2AY, UK1
| | - M R K Alley
- Department of Biochemistry, Imperial College of Science, Technology and Medicine, London SW7 2AY, UK1
| |
Collapse
|
16
|
Boyd CH, Gober JW. Temporal regulation of genes encoding the flagellar proximal rod in Caulobacter crescentus. J Bacteriol 2001; 183:725-35. [PMID: 11133968 PMCID: PMC94930 DOI: 10.1128/jb.183.2.725-735.2001] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The gram-negative bacterium Caulobacter crescentus has a life cycle that includes two distinct and separable developmental stages, a motile swarmer phase and a sessile stalked phase. The cell cycle-controlled biogenesis of the single polar flagellum of the swarmer cell is the best-studied aspect of this developmental program. The flagellar regulon is arranged into a rigid trans-acting hierarchy of gene expression in which successful expression of early genes is required for the expression of genes that are later in the hierarchy and in which the order of gene expression mirrors the order of assembly of gene products into the completed flagellum. The flgBC-fliE genes were identified as a result of the C. crescentus genome sequencing project and encode the homologues of two flagellar proximal rod proteins, FlgB and FlgC, and one conserved protein, FliE, that is of unknown function. Footprint assays on a DNA fragment containing the operon promoter as well as in vivo mutant suppressor analysis of promoter mutations indicate that this operon is controlled by the cell cycle response regulator CtrA, which with sigma(70) is responsible for regulating transcription of other early flagellar genes in C. crescentus. Promoter analysis, timing of expression, and epistasis experiments place these genes outside of the flagellar regulatory hierarchy; they are expressed in class II mutants, and flgB deletions do not prevent class III gene expression. This operon is also unusual in that it is expressed from a promoter that is divergent from the class II operon containing fliP, which encodes a member of the flagellum-specific protein export apparatus.
Collapse
Affiliation(s)
- C H Boyd
- Department of Chemistry and Biochemistry and the Molecular Biology Institute, University of California at Los Angeles, Los Angeles, California 90095-1569, USA
| | | |
Collapse
|
17
|
Jenal U. Signal transduction mechanisms inCaulobacter crescentusdevelopment and cell cycle control. FEMS Microbiol Rev 2000. [DOI: 10.1111/j.1574-6976.2000.tb00538.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
18
|
Barrios H, Valderrama B, Morett E. Compilation and analysis of sigma(54)-dependent promoter sequences. Nucleic Acids Res 1999; 27:4305-13. [PMID: 10536136 PMCID: PMC148710 DOI: 10.1093/nar/27.22.4305] [Citation(s) in RCA: 300] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Promoters recognized by the RNA-polymerase with the alternative sigma factor sigma(54) (Esigma54) are unique in having conserved positions around -24 and -12 nucleotides upstream from the transcriptional start site, instead of the typical -35 and -10 boxes. Here we compile 186 -24/-12 promoter sequences reported in the literature and generate an updated and extended consensus sequence. The use of the extended consensus increases the probability of identifying genuine -24/-12 promoters. The effect of several reported mutations at the -24/-12 elements on RNA-polymerase binding and promoter strength is discussed in the light of the updated consensus.
Collapse
Affiliation(s)
- H Barrios
- Departamento de Reconocimiento Molecular y Bioestructura, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62271, México
| | | | | |
Collapse
|
19
|
Mangan EK, Malakooti J, Caballero A, Anderson P, Ely B, Gober JW. FlbT couples flagellum assembly to gene expression in Caulobacter crescentus. J Bacteriol 1999; 181:6160-70. [PMID: 10498731 PMCID: PMC103646 DOI: 10.1128/jb.181.19.6160-6170.1999] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The biogenesis of the polar flagellum of Caulobacter crescentus is regulated by the cell cycle as well as by a trans-acting regulatory hierarchy that functions to couple flagellum assembly to gene expression. The assembly of early flagellar structures (MS ring, switch, and flagellum-specific secretory system) is required for the transcription of class III genes, which encode the remainder of the basal body and the external hook structure. Similarly, the assembly of class III gene-encoded structures is required for the expression of the class IV flagellins, which are incorporated into the flagellar filament. Here, we demonstrate that mutations in flbT, a flagellar gene of unknown function, can restore flagellin protein synthesis and the expression of fljK::lacZ (25-kDa flagellin) protein fusions in class III flagellar mutants. These results suggest that FlbT functions to negatively regulate flagellin expression in the absence of flagellum assembly. Deletion analysis shows that sequences within the 5' untranslated region of the fljK transcript are sufficient for FlbT regulation. To determine the mechanism of FlbT-mediated regulation, we assayed the stability of fljK mRNA. The half-life (t(1/2)) of fljK mRNA in wild-type cells was approximately 11 min and was reduced to less than 1.5 min in a flgE (hook) mutant. A flgE flbT double mutant exhibited an mRNA t(1/2) of greater than 30 min. This suggests that the primary effect of FlbT regulation is an increased turnover of flagellin mRNA. The increased t(1/2) of fljK mRNA in a flbT mutant has consequences for the temporal expression of fljK. In contrast to the case for wild-type cells, fljK::lacZ protein fusions in the mutant are expressed almost continuously throughout the C. crescentus cell cycle, suggesting that coupling of flagellin gene expression to assembly has a critical influence on regulating cell cycle expression.
Collapse
Affiliation(s)
- E K Mangan
- Department of Chemistry and Biochemistry and Molecular Biology Institute, University of California-Los Angeles, Los Angeles, California 90095-1569, USA
| | | | | | | | | | | |
Collapse
|
20
|
Anderson DK, Newton A. Posttranscriptional regulation of Caulobacter flagellin genes by a late flagellum assembly checkpoint. J Bacteriol 1997; 179:2281-8. [PMID: 9079914 PMCID: PMC178965 DOI: 10.1128/jb.179.7.2281-2288.1997] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Flagellum formation in Caulobacter crescentus requires ca. 50 flagellar genes, most of which belong to one of three classes (II, III, or IV). Epistasis experiments suggest that flagellar gene expression is coordinated with flagellum biosynthesis by two assembly checkpoints. Completion of the M/S ring-switch complex is required for the transition from class II to class III gene expression, and completion of the basal body-hook structure is required for the transition from class III to class IV gene expression. In studies focused on regulation of the class IV flagellin genes, we have examined fljK and fljL expression in a large number of flagellar mutants by using transcription and translation fusions to lacZ, nuclease S1 assays, and measurements of protein stability. The fljK-lacZ and fljL-lacZ transcription fusions were expressed in all class III flagellar mutants, although these strains do not make detectable 25- or 27-kDa flagellins. The finding that the fljK-lacZ translation fusion was not expressed in the same collection of class III mutants confirmed that fljK is regulated posttranscriptionally. The requirement of multiple class III genes for expression of the fljK-lacZ fusion suggests that completion of the basal body-hook is an assembly checkpoint for the posttranscriptional regulation of this flagellin gene. Deletion analysis within the 5' untranslated region of fljK identified a sequence between +24 and +38 required for regulation of the fljK-lacZ fusion by class III genes, which implicates an imperfect 14-bp direct repeat in the posttranscriptional regulation of fljK. Our results show that fljL is also regulated posttranscriptionally by class III and unclassified flagellar genes, apparently by a mechanism different from the one regulating fljK.
Collapse
Affiliation(s)
- D K Anderson
- Department of Molecular Biology, Princeton University, New Jersey 08544, USA
| | | |
Collapse
|
21
|
Mohr CD, Jenal U, Shapiro L. Flagellar assembly in Caulobacter crescentus: a basal body P-ring null mutation affects stability of the L-ring protein. J Bacteriol 1996; 178:675-82. [PMID: 8550499 PMCID: PMC177711 DOI: 10.1128/jb.178.3.675-682.1996] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The P- and L-rings are structural components of the flagellar basal body that are positioned in the periplasmic space and outer membrane, respectively. In order to explore the mechanism of P- and L-ring assembly, we examined the effect of a null mutation in the gene encoding the P-ring subunit, FlgI, on the expression, stability, and subcellular localization of the L-ring subunit, FlgH, in Caulobacter crescentus. Transcription of the L-ring gene and synthesis of the L-ring protein were both increased in the P-ring null mutant. However, steady-state L-ring protein levels were dramatically reduced compared with those of wild type. This reduction, which was not observed in flagellar hook mutants, was due to a decreased stability of the L-ring protein. The instability of the L-ring protein was apparent throughout the cell cycle of the P-ring mutant and contrasted with the fairly constant level of L-ring protein during the cell cycle of wild-type cells. Low levels of the L-ring protein were detected exclusively in the cell envelope of cells lacking the P-ring, suggesting that, in the absence of P-ring assembly, L-ring monomers are unable to form multimeric rings and are thus subject to proteolysis in the periplasm.
Collapse
Affiliation(s)
- C D Mohr
- Department of Developmental Biology, Beckman Center, Stanford University School of Medicine, California 94305-5427, USA
| | | | | |
Collapse
|
22
|
Affiliation(s)
- R C Roberts
- Department of Developmental Biology, Stanford University School of Medicine, California 94305, USA
| | | | | |
Collapse
|
23
|
Gober JW, Boyd CH, Jarvis M, Mangan EK, Rizzo MF, Wingrove JA. Temporal and spatial regulation of fliP, an early flagellar gene of Caulobacter crescentus that is required for motility and normal cell division. J Bacteriol 1995; 177:3656-67. [PMID: 7601828 PMCID: PMC177080 DOI: 10.1128/jb.177.13.3656-3667.1995] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
In Caulobacter crescentus, the genes encoding a single polar flagellum are expressed under cell cycle control. In this report, we describe the characterization of two early class II flagellar genes contained in the orfX-fliP locus. Strains containing mutations in this locus exhibit a filamentous growth phenotype and fail to express class III and IV flagellar genes. A complementing DNA fragment was sequenced and found to contain two potential open reading frames. The first, orfX, is predicted to encode a 105-amino-acid polypeptide that is similar to MopB, a protein which is required for both motility and virulence in Erwinia carotovora. The deduced amino acid sequence of the second open reading frame, fliP, is 264 amino acids in length and shows significant sequence identity with the FliP protein of Escherichia coli as well as virulence proteins of several plant and mammalian pathogens. The FliP homolog in pathogenic organisms has been implicated in the secretion of virulence factors, suggesting that the export of virulence proteins and some flagellar proteins share a common mechanism. The 5' end of orfX-fliP mRNA was determined and revealed an upstream promoter sequence that shares few conserved features with that of other early Caulobacter flagellar genes, suggesting that transcription of orfX-fliP may require a different complement of trans-acting factors. In C. crescentus, orfX-fliP is transcribed under cell cycle control, with a peak of transcriptional activity in the middle portion of the cell cycle. Later in the cell cycle, orfX-fliP expression occurs in both poles of the predivisional cell. Protein fusions to a lacZ reporter gene indicate that FliP is specifically targeted to the swarmer compartment of the predivisional cell.
Collapse
Affiliation(s)
- J W Gober
- Department of Chemistry and Biochemistry, University of California, Los Angeles 90095-1569, USA
| | | | | | | | | | | |
Collapse
|
24
|
Wu J, Benson AK, Newton A. Global regulation of a sigma 54-dependent flagellar gene family in Caulobacter crescentus by the transcriptional activator FlbD. J Bacteriol 1995; 177:3241-50. [PMID: 7768824 PMCID: PMC177017 DOI: 10.1128/jb.177.11.3241-3250.1995] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Biosynthesis of the Caulobacter crescentus polar flagellum requires the expression of a large number of flagellar (fla) genes that are organized in a regulatory hierarchy of four classes (I to IV). The timing of fla gene expression in the cell cycle is determined by specialized forms of RNA polymerase and the appearance and/or activation of regulatory proteins. Here we report an investigation of the role of the C. crescentus transcriptional regulatory protein FlbD in the activation of sigma 54-dependent class III and class IV fla genes of the hierarchy by reconstituting transcription from these promoters in vitro. Our results demonstrate that transcription from promoters of the class III genes flbG, flgF, and flgI and the class IV gene fliK by Escherichia coli E sigma 54 is activated by FlbD or the mutant protein FlbDS140F (where S140F denotes an S-to-F mutation at position 140), which we show here has a higher potential for transcriptional activation. In vitro studies of the flbG promoter have shown previously that transcriptional activation by the FlbD protein requires ftr (ftr for flagellar transcription regulation) sequence elements. We have now identified multiple ftr sequences that are conserved in both sequence and spatial architecture in all known class III and class IV promoters. These newly identified ftr elements are positioned ca. 100 bp from the transcription start sites of each sigma 54-dependent fla gene promoter, and our studies indicate that they play an important role in controlling the levels of transcription from different class III and class IV promoters. We have also used mutational analysis to show that the ftr sequences are required for full activation by the FlbD protein both in vitro and in vivo. Thus, our results suggest that FlbD, which is encoded by the class II flbD gene, is a global regulator that activates the cell cycle-regulated transcription from all identified sigma 54-dependent promoters in the C. crescentus fla gene hierarchy.
Collapse
Affiliation(s)
- J Wu
- Department of Molecular Biology, Princeton University, New Jersey 08544-1014, USA
| | | | | |
Collapse
|
25
|
Mangan EK, Bartamian M, Gober JW. A mutation that uncouples flagellum assembly from transcription alters the temporal pattern of flagellar gene expression in Caulobacter crescentus. J Bacteriol 1995; 177:3176-84. [PMID: 7768816 PMCID: PMC177008 DOI: 10.1128/jb.177.11.3176-3184.1995] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The transcription of flagellar genes in Caulobacter crescentus is regulated by cell cycle events that culminate in the synthesis of a new flagellum once every cell division. Early flagellar gene products regulate the expression of late flagellar genes at two distinct stages of the flagellar trans-acting hierarchy. Here we investigate the coupling of early flagellar biogenesis with middle and late flagellar gene expression. We have isolated mutants (bfa) that do not require early class II flagellar gene products for the transcription of middle or late flagellar genes. bfa mutant strains are apparently defective in a negative regulatory pathway that couples early flagellar biogenesis to late flagellar gene expression. The bfa regulatory pathway functions solely at the level of transcription. Although flagellin promoters are transcribed in class II/bfa double mutants, there is no detectable flagellin protein on immunoblots prepared from mutant cell extracts. This finding suggests that early flagellar biogenesis is coupled to gene expression by two distinct mechanisms: one that negatively regulates transcription, mediated by bfa, and another that functions posttranscriptionally. To determine whether bfa affects the temporal pattern of late flagellar gene expression, cell cycle experiments were performed in bfa mutant strains. In a bfa mutant strain, flagellin expression fails to shut off at its normal time in the cell division cycle. This experimental result indicates that bfa may function as a regulator of flagellar gene transcription late in the cell cycle, after early flagellar structures have been assembled.
Collapse
Affiliation(s)
- E K Mangan
- Department of Chemistry and Biochemistry, University of California, Los Angeles 90095-1569, USA
| | | | | |
Collapse
|
26
|
Marczynski GT, Shapiro L. The control of asymmetric gene expression during Caulobacter cell differentiation. Arch Microbiol 1995; 163:313-21. [PMID: 7794099 DOI: 10.1007/bf00404203] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The dimorphic bacterium Caulobacter crescentus provides a simple model for cellular differentiation. Each cell division produces two distinct cell types: a swarmer cell and a stalked cell. These cells possess distinct functional morphologies and differential programs of transcription and DNA replication. The synthesis of a single polar flagellum is restricted to the swarmer pole of the predivisional cell by a genetic hierarchy comprising at least 50 genes whose transcription is regulated by novel and ubiquitous promoters, cognate sigma factors, and auxiliary transcriptional regulators. Chromosome replication is restricted to the stalked cell by a unique chromosome origin of replication that may be regulated by a novel cell-specific transcriptional control system. Phosphorylation signals, DNA methylation, differential chromosome structures, protein targeting, and selective protein degradation are also involved in establishing and maintaining cellular asymmetry. The molecular details of these universal cellular processes in C. crescentus will provide paradigms applicable to many general aspects of cellular differentiation.
Collapse
Affiliation(s)
- G T Marczynski
- Department of Developmental Biology, Beckman Center, Stanford University School of Medicine, CA 94305-5427, USA
| | | |
Collapse
|
27
|
Marques MV, Gober JW. Activation of a temporally regulated Caulobacter promoter by upstream and downstream sequence elements. Mol Microbiol 1995; 16:279-89. [PMID: 7565090 DOI: 10.1111/j.1365-2958.1995.tb02300.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The flagellar genes of Caulobacter crescentus are expressed under cell-cycle control. Expression is regulated by both flagellar assembly cues and cell-cycle events. In this paper we define the sequences required for the expression of the flgF operon, a new class of sigma 54 flagellar promoter. This promoter type is expressed in the middle portion of the cell cycle and regulates the expression of basal-body genes. DNase I footprinting and mutagenesis demonstrates that an integration host factor (IHF)-binding site is required for maximal levels of transcription of the flgF promoter. In addition to containing a conventional upstream enhancer element (RE-1), this promoter is unusual in that it also requires sequences (element RE-2) immediately downstream of the transcriptional start site for maximal levels of gene expression. Cell-cycle experiments indicate that RE-1 and RE-2 contribute equally to the regulation of temporal transcription. The presence of two intact elements in the promoter results in a fourfold increase in promoter activity compared with a promoter containing only one intact element, suggesting that these two elements may function synergistically to activate transcription.
Collapse
Affiliation(s)
- M V Marques
- Department of Chemistry and Biochemistry, University of California, Los Angeles 90024-1569, USA
| | | |
Collapse
|
28
|
Anderson DK, Ohta N, Wu J, Newton A. Regulation of the Caulobacter crescentus rpoN gene and function of the purified sigma 54 in flagellar gene transcription. MOLECULAR & GENERAL GENETICS : MGG 1995; 246:697-706. [PMID: 7898437 DOI: 10.1007/bf00290715] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The sequential transcription of flagellar (fla) genes in the Caulobacter crescentus cell cycle is controlled by the organization of these genes in a regulatory hierarchy of four levels (I-IV). Level III and level IV genes at the bottom of the hierarchy are dependent on level II genes and are transcribed late in the cell cycle from sigma 54-dependent promoters. To study the regulation of genes at levels III and IV, we have isolated and sequenced the rpoN gene in order to analyze its expression, purified the rpoN gene product, and examined the role of the RpoN protein in initiation of transcription from sigma 54-dependent promoters. We report here epistasis experiments that show rpoN is required for transcription of level III genes, but that the expression of the rpoN gene itself is not dependent on any of the fla genes examined; these results place rpoN at level II near the top of the hierarchy. Consistent with this conclusion were nuclease S1 assays that mapped the rpoN transcription start site and identified a sequence centered at -24, GTTA/TACCA/TT, which is similar to the core consensus sequence of the level IIB fliF, fliL, and fliQ promoters. We purified the full-length rpoN gene product to near homogeneity and demonstrated that the RpoN protein is required for transcription from the well-characterized sigma 54-dependent glnAp2 promoter of Escherichia coli and specifically recognizes the level III flbG gene promoter of C. crescentus. These last results confirm that rpoN encodes the C. crescentus sigma 54 factor and opens the way for the biochemical analysis of transcriptional regulation of level III and IV fla genes.
Collapse
Affiliation(s)
- D K Anderson
- Department of Molecular Biology, Princeton University, NJ 08544-1014, USA
| | | | | | | |
Collapse
|
29
|
Abstract
In Caulobacter crescentus, asymmetry is generated in the predivisional cell, resulting in the formation of two distinct cell types upon cell division: a motile swarmer cell and a sessile stalked cell. These progeny cell types differ in their relative programs of gene expression and DNA replication. In progeny swarmer cells, DNA replication is silenced for a defined period, but stalked cells reinitiate chromosomal DNA replication immediately following cell division. The establishment of these differential programs of DNA replication may be due to the polar localization of DNA replication proteins, differences in chromosome higher-order structure, or pole-specific transcription. The best-understood aspect of Caulobacter development is biogenesis of the polar flagellum. The genes encoding the flagellum are expressed under cell cycle control predominantly in the predivisional cell type. Transcription of flagellar genes is regulated by a trans-acting hierarchy that responds to both flagellar assembly and cell cycle cues. As the flagellar genes are expressed, their products are targeted to the swarmer pole of the predivisional cell, where assembly occurs. Specific protein targeting and compartmentalized transcription are two mechanisms that contribute to the positioning of flagellar gene products at the swarmer pole of the predivisional cell.
Collapse
Affiliation(s)
- J W Gober
- Department of Chemistry and Biochemistry, University of California, Los Angeles 90024-1569
| | | |
Collapse
|
30
|
|
31
|
Ramakrishnan G, Zhao JL, Newton A. Multiple structural proteins are required for both transcriptional activation and negative autoregulation of Caulobacter crescentus flagellar genes. J Bacteriol 1994; 176:7587-600. [PMID: 8002583 PMCID: PMC197216 DOI: 10.1128/jb.176.24.7587-7600.1994] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The periodic and sequential expression of flagellar (fla) genes in the Caulobacter crescentus cell cycle depends on their organization into levels I to IV of a regulatory hierarchy in which genes at the top of the hierarchy are expressed early in the cell cycle and are required for the later expression of genes below them. In these studies, we have examined the regulatory role of level II fliF operon, which is located near the top of the hierarchy. The last gene in the fliF operon, flbD, encodes a transcriptional factor required for activation of sigma 54-dependent promoters at levels III and IV and negative autoregulation of the level II fliF promoter. We have physically mapped the fliF operon, identified four new genes in the transcription unit, and determined that the organization of these genes is 5'-fliF-fliG-flbE-fliN-flbD-3'. Three of the genes encode homologs of the MS ring protein (FliF) and two switch proteins (FliG and FliN) of enteric bacteria, and the fourth encodes a predicted protein (FlbE) without obvious similarities to known bacterial proteins. We have introduced nonpolar mutations in each of the open reading frames and shown that all of the newly identified genes (fliF, fliG, flbE, and fliN) are required in addition to flbD for activation of the sigma 54-dependent flgK and flbG promoters at level III. In contrast, fliF, fliG, and flbE, but not fliN, are required in addition to flbD for negative autoregulation of the level II fliF promoter. The simplest interpretation of these results is that the requirements of FlbD in transcriptional activation and repression are not identical, and we speculate that FlbD function is subject to dual or overlapping controls. We also discuss the requirement of multiple structural genes for regulation of levels II and III genes and suggest that fla gene expression in C. crescentus may be coupled to two checkpoints in flagellum assembly.
Collapse
Affiliation(s)
- G Ramakrishnan
- Department of Molecular Biology, Princeton University, New Jersey 08544-1014
| | | | | |
Collapse
|
32
|
Mullin DA, Van Way SM, Blankenship CA, Mullin AH. FlbD has a DNA-binding activity near its carboxy terminus that recognizes ftr sequences involved in positive and negative regulation of flagellar gene transcription in Caulobacter crescentus. J Bacteriol 1994; 176:5971-81. [PMID: 7928958 PMCID: PMC196814 DOI: 10.1128/jb.176.19.5971-5981.1994] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
FlbD is a transcriptional regulatory protein that negatively autoregulates fliF, and it is required for expression of other Caulobacter crescentus flagellar genes, including flaN and flbG. In this report we have investigated the interaction between carboxy-terminal fragments of FlbD protein and enhancer-like ftr sequences in the promoter regions of fliF, flaN, and flbG. FlbDc87 is a glutathione S-transferase (GST)-FlbD fusion protein that carries the carboxy-terminal 87 amino acids of FlbD, and FlbDc87 binds to restriction fragments containing the promoter regions of fliF, flaN, and flbG, whereas a GST-FlbD fusion protein carrying the last 48 amino acids of FlbD failed to bind to these promoter regions. DNA footprint analysis demonstrated that FlbDc87 is a sequence-specific DNA-binding protein that makes close contact with 11 nucleotides in ftr4, and 6 of these nucleotides were shown previously to function in negative regulation of fliF transcription in vivo (S. M. Van Way, A. Newton, A. H. Mullin, and D. A. Mullin, J. Bacteriol. 175:367-376, 1993). Three DNA fragments, each carrying an ftr4 mutation that resulted in elevated fliF transcript levels in vivo, were defective in binding to FlbDc87 in vitro. We also found that a missense mutation in the recognition helix of the putative helix-turn-helix DNA-binding motif of FlbDc87 resulted in defective binding to ftr4 in vitro. These data suggest that the binding of FlbDc87 to ftr4 is relevant to negative transcriptional regulation of fliF and that FlbD functions directly as a repressor. Footprint analysis showed that FlbDc87 also makes close contacts with specific nucleotides in ftr1, ftr2, and ftr3 in the flaN-flbG promoter region, and some of these nucleotides were shown previously to be required for regulated transcription of flaN and flbG (D. A. Mullin and A. Newton, J. Bacteriol. 175:2067-2076, 1993). Footprint analysis also revealed a new ftr-like sequence, ftr5, at -136 from the transcription start site of flbG. Our results demonstrate that FlbD contains a sequence-specific DNA-binding activity within the 87 amino acids at its carboxy terminus, and the results suggest that FlbD exerts its effect as a positive and negative regulator of C. crescentus flagellar genes by binding to ftr sequences.
Collapse
Affiliation(s)
- D A Mullin
- Department of Cell and Molecular Biology, Tulane University, New Orleans, Louisiana 70118-5698
| | | | | | | |
Collapse
|
33
|
Geometry of the process of transcription activation at the sigma 54-dependent nifH promoter of Klebsiella pneumoniae. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(18)47266-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
34
|
Wozniak DJ. Integration host factor and sequences downstream of the Pseudomonas aeruginosa algD transcription start site are required for expression. J Bacteriol 1994; 176:5068-76. [PMID: 8051019 PMCID: PMC196346 DOI: 10.1128/jb.176.16.5068-5076.1994] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Pseudomonas aeruginosa is an extremely important opportunistic pathogen in immunocompromised individuals. Strains of P. aeruginosa isolated from chronic lung infections in patients with the genetic disease cystic fibrosis have a mucoid colony morphology. This phenotype is due to overproduction of the exopolysaccharide alginate, which is believed to confer a selective advantage on P. aeruginosa in cystic fibrosis lungs. Alginate biosynthesis is controlled by a complex regulatory mechanism. Genes located in the 34-min region of the P. aeruginosa chromosome form an operon which encodes most of the biosynthetic enzymes necessary for alginate production. algD, the first gene in the operon and a critical point for the transcriptional regulation of alginate biosynthesis, is controlled by several trans, cis, and environmental factors. In this study, the involvement of the histone-like protein integration host factor (IHF) in algD expression was examined. Sequences with similarity to consensus IHF-binding sites of Escherichia coli were identified 75 bp upstream (site 1) and 90 bp downstream (site 2) of the start of algD transcription. In gel band mobility shift assays, DNA fragments containing either site bind IHF but site 2 has an approximately 90-fold higher affinity for IHF. Mutations in each of the elements were generated, and they resulted in the reduction or loss of in vitro IHF binding and a three- to fourfold decrease in algD-cat expression. This indicates that IHF binding is necessary for high-level algD transcription. The presence of a high-affinity IHF-binding site located 3' of the algD transcription start site suggested that sequences further downstream of this element are involved in algD expression. When a fragment located downstream of site 2 and upstream of the promoterless cat gene (+110 to +835) was deleted, algD-cat expression was reduced 10-fold supporting the notion that 3' enhancer elements are required for algD transcription. This is the first direct evidence of a 3' element involved in the control of a P. aeruginosa gene. It is postulated that IHF mediates the formation of a higher-order looped structure which is necessary for efficient algD transcription.
Collapse
Affiliation(s)
- D J Wozniak
- Department of Microbiology and Immunology, Bowman Gray School of Medicine, Wake Forest University, Winston-Salem, North Carolina 27157-1064
| |
Collapse
|
35
|
Benson AK, Wu J, Newton A. The role of FlbD in regulation of flagellar gene transcription in Caulobacter crescentus. Res Microbiol 1994; 145:420-30. [PMID: 7855428 DOI: 10.1016/0923-2508(94)90090-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The flagellar (fla) genes in Caulobacter crescentus are organized into a regulatory hierarchy of four levels (I-IV) in which transcription of the class III and class IV genes late in the cell cycle from sigma 54-dependent promoters depends on expression of the class II genes above them. The periodicity of fla gene expression has been attributed to sequential activation and repression by specific transcription factors. We have been particularly interested in understanding the function and regulation of one such transcription factor, FlbD. FlbD belongs to the NtrC family of bacterial response regulators that catalyse the initiation of transcription by sigma 54 RNA polymerase (E sigma 54) and its function is required for transcription of the class III and IV fla genes. Here we show that purified FlbD binds to ftr elements that are required for transcription from the sigma 54-dependent class III flbG promoter (ftr1) and repression of transcription from the class II fliF promoter (ftr4). Dimethylsulphate footprinting assays demonstrated that FlbD makes base-specific contacts at highly conserved guanine nucleotides in each half site of the ftr sequences. In a reconstituted in vitro transcription system using E. coli E sigma 54, we found that FlbD was clearly capable of driving transcriptional initiation from the flbG promoter and that this activity relied on the ftr1 binding site. Several observations suggest that phosphorylation plays a role in the regulation of FlbD activity. First, we found that a mutant form of FlbD (FlbDS140F) corresponding to the substitution found in a constitutively active NtrC protein (NtrCS160F), displayed a greater potential for activating E sigma 54-dependent transcription that the wildtype protein. We also observed that high energy-phosphate-containing molecules stimulate transcription activation by the wild type FlbD. Together, these results suggest that FlbD is responsible for mediating fla gene transcription initiation by E sigma 54 and that covalent modification is likely to play a role in governing FlbD activity during the cell cycle.
Collapse
Affiliation(s)
- A K Benson
- Department of Molecular Biology, Princeton University, New Jersey 08540
| | | | | |
Collapse
|
36
|
Benson AK, Ramakrishnan G, Ohta N, Feng J, Ninfa AJ, Newton A. The Caulobacter crescentus FlbD protein acts at ftr sequence elements both to activate and to repress transcription of cell cycle-regulated flagellar genes. Proc Natl Acad Sci U S A 1994; 91:4989-93. [PMID: 8197169 PMCID: PMC43915 DOI: 10.1073/pnas.91.11.4989] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The flagellar genes (fla genes) in Caulobacter crescentus are organized into a regulatory hierarchy of four levels, I-IV, in which transcription of the class III and class IV genes late in the cell cycle from sigma 54-dependent promoters depends on expression of the class II genes above them. Timing of fla gene expression has been attributed to sequential activation and repression by specific transcription factors. Here we report that purified FlbD activates transcription in vitro from the sigma 54-dependent class III flbG promoter and repress transcription from the class II fliF promoter by binding to ftr (flagellar transcription regulator) sequence elements required for their transcriptional regulation in vivo. The FlbD protein makes symmetrical base-specific contacts at three highly conserved guanine nucleotides in each half site of ftr1 and ftr1* at flbG and the single ftr4 site at fliF. The dual function of FlbD in activation of class III genes and repression of the class II fliF promoter is consistent with a central role of FlbD as a switch protein mediating the transition from level II to level III fla gene expression.
Collapse
Affiliation(s)
- A K Benson
- Department of Molecular Biology, Princeton University, NJ 08544
| | | | | | | | | | | |
Collapse
|