1
|
Chen Y, Lin Y, Zhu J, Zhou J, Lin H, Fu Y, Zhou Y. Transcriptomic analysis of nitrogen metabolism pathways in Klebsiella aerogenes under nitrogen-rich conditions. Front Microbiol 2024; 15:1323160. [PMID: 38500581 PMCID: PMC10945327 DOI: 10.3389/fmicb.2024.1323160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 02/12/2024] [Indexed: 03/20/2024] Open
Abstract
The acceleration of the nitrogen cycle and the nitrogen excess observed in some coastal waters has increased interest into understanding the biochemical and molecular basis of nitrogen metabolism in various microorganisms. To investigate nitrogen metabolism of a novel heterotrophic nitrification and aerobic denitrification bacterium Klebsiella aerogenes strain (B23) under nitrogen-rich conditions, we conducted physiological and transcriptomic high-throughput sequencing analyses on strain B23 cultured on potassium nitrate-free or potassium nitrate-rich media. Overall, K. aerogenes B23 assimilated 82.47% of the nitrate present into cellular nitrogen. Further, 1,195 differentially expressed genes were observed between K. aerogenes B23 cultured on potassium nitrate-free media and those cultured on potassium nitrate-rich media. Gene annotation and metabolic pathway analysis of the transcriptome were performed using a series of bioinformatics tools, including Gene Ontology, Kyoto Encyclopedia of Genes and Genomes, and Non-Redundant Protein Database annotation. Accordingly, the nitrogen metabolism pathway of K. aerogenes B23 was analyzed; overall, 39 genes were determined to be involved in this pathway. Differential expression analysis of the genes involved in the nitrogen metabolism pathway demonstrated that, compared to the control, FNR, NarK/14945, fdx, gshA, proB, proA, gapA, argH, artQ, artJ, artM, ArgR, GAT1, prmB, pyrG, glnS, and Ca1 were significantly upregulated in the nitrogen-treated K. aerogenes B23; these genes have been established to be involved in the regulation of nitrate, arginine, glutamate, and ammonia assimilation. Further, norV, norR, and narI were also upregulated in nitrogen-treated K. aerogenes B23; these genes are involved in the regulation of NO metabolism. These differential expression results are important for understanding the regulation process of key nitrogen metabolism enzyme genes in K. aerogenes B23. Therefore, this study establishes a solid foundation for further research into the expression regulation patterns of nitrogen metabolism-associated genes in K. aerogenes B23 under nitrogen-rich conditions; moreover, this research provides essential insight into how K. aerogenes B23 utilizes nutritional elements.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yan Zhou
- Life Science and Technology School, Lingnan Normal University, Zhanjiang, China
| |
Collapse
|
2
|
Abstract
This review considers the pathways for the degradation of amino acids and a few related compounds (agmatine, putrescine, ornithine, and aminobutyrate), along with their functions and regulation. Nitrogen limitation and an acidic environment are two physiological cues that regulate expression of several amino acid catabolic genes. The review considers Escherichia coli, Salmonella enterica serovar Typhimurium, and Klebsiella species. The latter is included because the pathways in Klebsiella species have often been thoroughly characterized and also because of interesting differences in pathway regulation. These organisms can essentially degrade all the protein amino acids, except for the three branched-chain amino acids. E. coli, Salmonella enterica serovar Typhimurium, and Klebsiella aerogenes can assimilate nitrogen from D- and L-alanine, arginine, asparagine, aspartate, glutamate, glutamine, glycine, proline, and D- and L-serine. There are species differences in the utilization of agmatine, citrulline, cysteine, histidine, the aromatic amino acids, and polyamines (putrescine and spermidine). Regardless of the pathway of glutamate synthesis, nitrogen source catabolism must generate ammonia for glutamine synthesis. Loss of glutamate synthase (glutamineoxoglutarate amidotransferase, or GOGAT) prevents utilization of many organic nitrogen sources. Mutations that create or increase a requirement for ammonia also prevent utilization of most organic nitrogen sources.
Collapse
|
3
|
Dangel AW, Tabita FR. Amino acid substitutions in the transcriptional regulator CbbR lead to constitutively active CbbR proteins that elevate expression of the cbb CO2 fixation operons in Ralstonia eutropha (Cupriavidus necator) and identify regions of CbbR necessary for gene activation. MICROBIOLOGY-SGM 2015; 161:1816-1829. [PMID: 26296349 DOI: 10.1099/mic.0.000131] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
CbbR is a LysR-type transcriptional regulator that activates expression of the operons containing (cbb) genes that encode the CO2 fixation pathway enzymes in Ralstonia eutropha (Cupriavidus necator) under autotrophic growth conditions. The cbb operons are stringently downregulated during chemoheterotrophic growth on organic acids such as malate. CbbR constitutive proteins (CbbR*s), typically with single amino acid substitutions, were selected and isolated that activate expression of the cbb operons under chemoheterotrophic growth conditions. A large set of CbbR*s from all major domains of the CbbR molecule were identified, except for the DNA-binding domain. The level of gene expression conferred for many of these CbbR*s under autotrophic growth was greater than that conferred by wild-type CbbR. Several of these CbbR*s increase transcription two- to threefold more than wild-type CbbR. One particular CbbR*, a truncated protein, was useful in identifying the regions of CbbR that are necessary for transcriptional activation and, by logical extension, necessary for interaction with RNA polymerase. The reductive assimilation of carbon via CO2 fixation is an important step in the cost-effective production of useful biological compounds. Enhancing CO2 fixation in Ralstonia eutropha through greater transcriptional activation of the cbb operons could prove advantageous, and the use of CbbR*s is one way to enhance product formation.
Collapse
Affiliation(s)
- Andrew W Dangel
- Department of Microbiology, The Ohio State University, 484 West 12th Avenue, Columbus, OH 43210-1292, USA
| | - F Robert Tabita
- Department of Microbiology, The Ohio State University, 484 West 12th Avenue, Columbus, OH 43210-1292, USA
| |
Collapse
|
4
|
van Heeswijk WC, Westerhoff HV, Boogerd FC. Nitrogen assimilation in Escherichia coli: putting molecular data into a systems perspective. Microbiol Mol Biol Rev 2013; 77:628-95. [PMID: 24296575 PMCID: PMC3973380 DOI: 10.1128/mmbr.00025-13] [Citation(s) in RCA: 175] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
We present a comprehensive overview of the hierarchical network of intracellular processes revolving around central nitrogen metabolism in Escherichia coli. The hierarchy intertwines transport, metabolism, signaling leading to posttranslational modification, and transcription. The protein components of the network include an ammonium transporter (AmtB), a glutamine transporter (GlnHPQ), two ammonium assimilation pathways (glutamine synthetase [GS]-glutamate synthase [glutamine 2-oxoglutarate amidotransferase {GOGAT}] and glutamate dehydrogenase [GDH]), the two bifunctional enzymes adenylyl transferase/adenylyl-removing enzyme (ATase) and uridylyl transferase/uridylyl-removing enzyme (UTase), the two trimeric signal transduction proteins (GlnB and GlnK), the two-component regulatory system composed of the histidine protein kinase nitrogen regulator II (NRII) and the response nitrogen regulator I (NRI), three global transcriptional regulators called nitrogen assimilation control (Nac) protein, leucine-responsive regulatory protein (Lrp), and cyclic AMP (cAMP) receptor protein (Crp), the glutaminases, and the nitrogen-phosphotransferase system. First, the structural and molecular knowledge on these proteins is reviewed. Thereafter, the activities of the components as they engage together in transport, metabolism, signal transduction, and transcription and their regulation are discussed. Next, old and new molecular data and physiological data are put into a common perspective on integral cellular functioning, especially with the aim of resolving counterintuitive or paradoxical processes featured in nitrogen assimilation. Finally, we articulate what still remains to be discovered and what general lessons can be learned from the vast amounts of data that are available now.
Collapse
|
5
|
Bauer S, Endres M, Lange M, Schmidt T, Schumbrutzki C, Sickmann A, Beier D. Novel function assignment to a member of the essential HP1043 response regulator family of epsilon-proteobacteria. Microbiology (Reading) 2013; 159:880-889. [DOI: 10.1099/mic.0.066548-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Susanne Bauer
- Theodor-Boveri-Institut für Biowissenschaften, Lehrstuhl für Mikrobiologie, Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Michelle Endres
- Theodor-Boveri-Institut für Biowissenschaften, Lehrstuhl für Mikrobiologie, Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Manuel Lange
- Theodor-Boveri-Institut für Biowissenschaften, Lehrstuhl für Mikrobiologie, Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Theresa Schmidt
- Theodor-Boveri-Institut für Biowissenschaften, Lehrstuhl für Mikrobiologie, Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Cornelia Schumbrutzki
- Leibnitz-Institut für Analytische Wissenschaften – ISAS – e.V., Otto-Hahn-Str. 6B, D-44227 Dortmund, Germany
| | - Albert Sickmann
- Leibnitz-Institut für Analytische Wissenschaften – ISAS – e.V., Otto-Hahn-Str. 6B, D-44227 Dortmund, Germany
| | - Dagmar Beier
- Theodor-Boveri-Institut für Biowissenschaften, Lehrstuhl für Mikrobiologie, Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| |
Collapse
|
6
|
|
7
|
Abstract
The ability to degrade the amino acid histidine to ammonia, glutamate, and a one-carbon compound (formate or formamide) is a property that is widely distributed among bacteria. The four or five enzymatic steps of the pathway are highly conserved, and the chemistry of the reactions displays several unusual features, including the rearrangement of a portion of the histidase polypeptide chain to yield an unusual imidazole structure at the active site and the use of a tightly bound NAD molecule as an electrophile rather than a redox-active element in urocanase. Given the importance of this amino acid, it is not surprising that the degradation of histidine is tightly regulated. The study of that regulation led to three central paradigms in bacterial regulation: catabolite repression by glucose and other carbon sources, nitrogen regulation and two-component regulators in general, and autoregulation of bacterial regulators. This review focuses on three groups of organisms for which studies are most complete: the enteric bacteria, for which the regulation is best understood; the pseudomonads, for which the chemistry is best characterized; and Bacillus subtilis, for which the regulatory mechanisms are very different from those of the Gram-negative bacteria. The Hut pathway is fundamentally a catabolic pathway that allows cells to use histidine as a source of carbon, energy, and nitrogen, but other roles for the pathway are also considered briefly here.
Collapse
|
8
|
Transcriptional regulation of the gene cluster encoding allantoinase and guanine deaminase in Klebsiella pneumoniae. J Bacteriol 2011; 193:2197-207. [PMID: 21357483 DOI: 10.1128/jb.01450-10] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Purines can be used as the sole source of nitrogen by several strains of K. pneumoniae under aerobic conditions. The genes responsible for the assimilation of purine nitrogens are distributed in three separated clusters in the K. pneumoniae genome. Here, we characterize the cluster encompassing genes KPN_01787 to KPN_01791, which is involved in the conversion of allantoin into allantoate and in the deamination of guanine to xanthine. These genes are organized in three transcriptional units, hpxSAB, hpxC, and guaD. Gene hpxS encodes a regulatory protein of the GntR family that mediates regulation of this system by growth on allantoin. Proteins encoded by hpxB and guaD display allantoinase and guanine deaminase activity, respectively. In this cluster, hpxSAB is the most tightly regulated unit. This operon was activated by growth on allantoin as a nitrogen source; however, addition of allantoin to nitrogen excess cultures did not result in hpxSAB induction. Neither guaD nor hpxC was induced by allantoin. Expression of guaD is mainly regulated by nitrogen availability through the action of NtrC. Full induction of hpxSAB by allantoin requires both HpxS and NAC. HpxS may have a dual role, acting as a repressor in the absence of allantoin and as an activator in its presence. HpxS binds to tandem sites, S1 and S2, overlapping the -10 and -35 sequences of the hpxSAB promoter, respectively. The NAC binding site is located between S1 and S2 and partially overlaps S2. In the presence of allantoin, interplay between NAC and HpxS is proposed.
Collapse
|
9
|
Genetic analysis of the nitrogen assimilation control protein from Klebsiella pneumoniae. J Bacteriol 2010; 192:4834-46. [PMID: 20693327 DOI: 10.1128/jb.01114-09] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The nitrogen assimilation control protein (NAC) from Klebsiella pneumoniae is a typical LysR-type transcriptional regulator (LTTR) in many ways. However, the lack of a physiologically relevant coeffector for NAC and the fact that NAC can carry out many of its functions as a dimer make NAC unusual among the LTTRs. In the absence of a crystal structure for NAC, we analyzed the effects of amino acid substitutions with a variety of phenotypes in an attempt to identify functionally important features of NAC. A substitution that changed the glutamine at amino acid 29 to alanine (Q29A) resulted in a NAC that was seriously defective in binding to DNA. The H26D substitution resulted in a NAC that could bind and repress transcription but not activate transcription. The I71A substitution resulted in a NAC polypeptide that remained monomeric. NAC tetramers can bind to both long and shorter binding sites (like other LTTRs). However, the absence of a coeffector to induce the conformational change needed for the switch from the former to the latter raised a question. Are there two conformations of NAC, analogous to the other LTTRs? The G217R substitution resulted in a NAC that could bind to the longer sites but had difficulty in binding to the shorter sites, and the I222R and A230R substitutions resulted in a NAC that could bind to the shorter sites but had difficulty in binding properly to the longer sites. Thus, there appear to be two conformations of NAC that can freely interconvert in the absence of a coeffector.
Collapse
|
10
|
A NAC for regulating metabolism: the nitrogen assimilation control protein (NAC) from Klebsiella pneumoniae. J Bacteriol 2010; 192:4801-11. [PMID: 20675498 DOI: 10.1128/jb.00266-10] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The nitrogen assimilation control protein (NAC) is a LysR-type transcriptional regulator (LTTR) that is made under conditions of nitrogen-limited growth. NAC's synthesis is entirely dependent on phosphorylated NtrC from the two-component Ntr system and requires the unusual sigma factor σ54 for transcription of the nac gene. NAC activates the transcription of σ70-dependent genes whose products provide the cell with ammonia or glutamate. NAC represses genes whose products use ammonia and also represses its own transcription. In addition, NAC also subtly adjusts other cellular functions to keep pace with the supply of biosynthetically available nitrogen.
Collapse
|
11
|
Properties of the NAC (nitrogen assimilation control protein)-binding site within the ureD promoter of Klebsiella pneumoniae. J Bacteriol 2010; 192:4821-6. [PMID: 20622063 DOI: 10.1128/jb.00883-09] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The nitrogen assimilation control protein (NAC) of Klebsiella pneumoniae is a LysR-type transcriptional regulator that activates transcription when bound to a DNA site (ATAA-N5-TnGTAT) centered at a variety of distances from the start of transcription. The NAC-binding site from the hutU promoter (NBShutU) is centered at -64 relative to the start of transcription but can activate the lacZ promoter from sites at -64, -54, -52, and -42 but not from sites at -47 or -59. However, the NBSs from the ureD promoter (ureDp) and codB promoter (codBp) are centered at -47 and -59, respectively, and NAC is fully functional at these promoters. Therefore, we compared the activities of the NBShutU and NBSureD within the context of ureDp as well as within codBp. The NBShutU functioned at both of these sites. The NBSureD has the same asymmetric core as the NBShutU. Inverting the NBSureD abolished more than 99% of NAC's ability to activate ureDp. The key to the activation lies in the TnG segment of the TnGTAT half of the NBSureD. Changing TnG to GnT, TnT, or GnG drastically reduced ureDp activation (to 0.5%, 6%, or 15% of wild-type activation, respectively). The function of the NBSureD, like that of the NBShutU, requires that the TnGTAT half of the NBS be on the promoter-proximal (downstream) side of the NBS. Taken together, our data suggest that the positional specificity of an NBS is dependent on the promoter in question and is more flexible than previously thought, allowing considerable latitude both in distance and on the face of the DNA helix for the NBS relative to that of RNA polymerase.
Collapse
|
12
|
Harper CJ, Hayward D, Kidd M, Wiid I, van Helden P. Glutamate dehydrogenase and glutamine synthetase are regulated in response to nitrogen availability in Myocbacterium smegmatis. BMC Microbiol 2010; 10:138. [PMID: 20459763 PMCID: PMC2881912 DOI: 10.1186/1471-2180-10-138] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2010] [Accepted: 05/11/2010] [Indexed: 11/21/2022] Open
Abstract
Background The assimilation of nitrogen is an essential process in all prokaryotes, yet a relatively limited amount of information is available on nitrogen metabolism in the mycobacteria. The physiological role and pathogenic properties of glutamine synthetase (GS) have been extensively investigated in Mycobacterium tuberculosis. However, little is known about this enzyme in other mycobacterial species, or the role of an additional nitrogen assimilatory pathway via glutamate dehydrogenase (GDH), in the mycobacteria as a whole. We investigated specific enzyme activity and transcription of GS and as well as both possible isoforms of GDH (NAD+- and NADP+-specific GDH) under varying conditions of nitrogen availability in Mycobacterium smegmatis as a model for the mycobacteria. Results It was found that the specific activity of the aminating NADP+-GDH reaction and the deaminating NAD+-GDH reaction did not change appreciably in response to nitrogen availability. However, GS activity as well as the deaminating NADP+-GDH and aminating NAD+-GDH reactions were indeed significantly altered in response to exogenous nitrogen concentrations. Transcription of genes encoding for GS and the GDH isoforms were also found to be regulated under our experimental conditions. Conclusions The physiological role and regulation of GS in M. smegmatis was similar to that which has been described for other mycobacteria, however, in our study the regulation of both NADP+- and NAD+-GDH specific activity in M. smegmatis appeared to be different to that of other Actinomycetales. It was found that NAD+-GDH played an important role in nitrogen assimilation rather than glutamate catabolism as was previously thought, and is it's activity appeared to be regulated in response to nitrogen availability. Transcription of the genes encoding for NAD+-GDH enzymes seem to be regulated in M. smegmatis under the conditions tested and may contribute to the changes in enzyme activity observed, however, our results indicate that an additional regulatory mechanism may be involved. NADP+-GDH seemed to be involved in nitrogen assimilation due to a constitutive aminating activity. The deaminating reaction, however was observed to change in response to varying ammonium concentrations which suggests that NADP+-GDH is also regulated in response to nitrogen availability. The regulation of NADP+-GDH activity was not reflected at the level of gene transcription thereby implicating post-transcriptional modification as a regulatory mechanism in response to nitrogen availability.
Collapse
Affiliation(s)
- Catriona J Harper
- DST/NRF Centre of Excellence for Biomedical TB Research, Department of Molecular Biology and Human Genetics, Faculty of Health Sciences, University of Stellenbosch, Tygerberg, South Africa.
| | | | | | | | | |
Collapse
|
13
|
The LysR-type nitrogen assimilation control protein forms complexes with both long and short DNA binding sites in the absence of coeffectors. J Bacteriol 2010; 192:4827-33. [PMID: 20363946 DOI: 10.1128/jb.00968-09] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Most LysR-type transcriptional regulators (LTTRs) function as tetramers when regulating gene expression. The nitrogen assimilation control protein (NAC) generally functions as a dimer when binding to DNA and activating transcription. However, at some sites, NAC binds as a tetramer. Like many LTTRs, NAC tetramers can recognize sites with long footprints (74 bp for the site at nac) with a substantial DNA bend or short footprints (56 bp for the site at cod) with less DNA bending. However, unlike other LTTRs, NAC can recognize both types of sites in the absence of physiologically relevant coeffectors, suggesting that the two conformers of the NAC tetramer (extended and compact) are interchangeable without the need for any modification to induce or stabilize the change. In order for NAC to bind as a tetramer, three interactions must exist: an interaction between the two NAC dimers and an interaction between each NAC dimer and its corresponding binding site. The interaction between one dimer and its DNA site can be weak (recognizing a half-site rather than a full dimer-binding site), but the other two interactions must be strong. Since the conformation of the NAC tetramer (extended or compact) is determined by the nature of the DNA site without the intervention of a small molecule, we argue that the coeffector that determines the conformation of the NAC tetramer is the DNA site to which it binds.
Collapse
|
14
|
The hpx genetic system for hypoxanthine assimilation as a nitrogen source in Klebsiella pneumoniae: gene organization and transcriptional regulation. J Bacteriol 2008; 190:7892-903. [PMID: 18849434 DOI: 10.1128/jb.01022-08] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Growth experiments showed that adenine and hypoxanthine can be used as nitrogen sources by several strains of K. pneumoniae under aerobic conditions. The assimilation of all nitrogens from these purines indicates that the catabolic pathway is complete and proceeds past allantoin. Here we identify the genetic system responsible for the oxidation of hypoxanthine to allantoin in K. pneumoniae. The hpx cluster consists of seven genes, for which an organization in four transcriptional units, hpxDE, hpxR, hpxO, and hpxPQT, is proposed. The proteins involved in the oxidation of hypoxanthine (HpxDE) or uric acid (HpxO) did not display any similarity to other reported enzymes known to catalyze these reactions but instead are similar to oxygenases acting on aromatic compounds. Expression of the hpx system is activated by nitrogen limitation and by the presence of specific substrates, with hpxDE and hpxPQT controlled by both signals. Nitrogen control of hpxPQT transcription, which depends on sigma(54), is mediated by the Ntr system. In contrast, neither NtrC nor the nitrogen assimilation control protein is involved in the nitrogen control of hpxDE, which is dependent on sigma(70) for transcription. Activation of these operons by the specific substrates is also mediated by different effectors and regulatory proteins. Induction of hpxPQT requires uric acid formation, whereas expression of hpxDE is induced by the presence of hypoxanthine through the regulatory protein HpxR. This LysR-type regulator binds to a TCTGC-N(4)-GCAAA site in the intergenic hpxD-hpxR region. When bound to this site for hpxDE activation, HpxR negatively controls its own transcription.
Collapse
|
15
|
Axler-Diperte GL, Miller VL, Darwin AJ. YtxR, a conserved LysR-like regulator that induces expression of genes encoding a putative ADP-ribosyltransferase toxin homologue in Yersinia enterocolitica. J Bacteriol 2006; 188:8033-43. [PMID: 16997967 PMCID: PMC1698212 DOI: 10.1128/jb.01159-06] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Yersinia enterocolitica causes human gastroenteritis, and many isolates have been classified as either "American" or "non-American" strains based on their geographic prevalence and virulence properties. In this study we describe identification of a transcriptional regulator that controls expression of the Y. enterocolitica ytxAB genes. The ytxAB genes have the potential to encode an ADP-ribosylating toxin with similarity to pertussis toxin. However, a ytxAB null mutation did not affect virulence in mice. Nevertheless, the ytxAB genes are conserved in many Y. enterocolitica strains. Interestingly, American and non-American strains have different ytxAB alleles encoding proteins that are only 50 to 60% identical. To obtain further insight into the ytxAB locus, we investigated whether it is regulated as part of a known or novel regulon. Transposon mutagenesis identified a LysR-like regulator, which we designated YtxR. Expression of ytxR from a nonnative promoter increased Phi(ytxA-lacZ) operon fusion expression up to 35-fold. YtxR also activated expression of its own promoter. DNase I footprinting showed that a His(6)-YtxR fusion protein directly interacted with the ytxA and ytxR control regions at similar distances upstream of their probable transcription initiation sites, identified by primer extension. Deletion analysis demonstrated that removal of the regions protected by His(6)-YtxR in vitro eliminated YtxR-dependent induction in vivo. The ytxAB locus is not present in most Yersinia species. In contrast, ytxR is conserved in multiple Yersinia species, as well as in the closely related organisms Photorhabdus luminescens and Photorhabdus asymbiotica. These observations suggest that YtxR may play a conserved role involving regulation of other genes besides ytxAB.
Collapse
Affiliation(s)
- Grace L Axler-Diperte
- Department of Microbiology, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA
| | | | | |
Collapse
|
16
|
Zhang Y, Pohlmann EL, Conrad MC, Roberts GP. The poor growth of Rhodospirillum rubrum mutants lacking PII proteins is due to an excess of glutamine synthetase activity. Mol Microbiol 2006; 61:497-510. [PMID: 16762025 DOI: 10.1111/j.1365-2958.2006.05251.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The P(II) family of proteins is found in all three domains of life and serves as a central regulator of the function of proteins involved in nitrogen metabolism, reflecting the nitrogen and carbon balance in the cell. The genetic elimination of the genes encoding these proteins typically leads to severe growth problems, but the basis of this effect has been unknown except with Escherichia coli. We have analysed a number of the suppressor mutations that correct such growth problems in Rhodospirillum rubrum mutants lacking P(II) proteins. These suppressors map to nifR3, ntrB, ntrC, amtB(1) and the glnA region and all have the common property of decreasing total activity of glutamine synthetase (GS). We also show that GS activity is very high in the poorly growing parental strains lacking P(II) proteins. Consistent with this, overexpression of GS in glnE mutants (lacking adenylyltransferase activity) also causes poor growth. All of these results strongly imply that elevated GS activity is the causative basis for the poor growth seen in R. rubrum mutants lacking P(II) and presumably in mutants of some other organisms with similar genotypes. The result underscores the importance of proper regulation of GS activity for cell growth.
Collapse
Affiliation(s)
- Yaoping Zhang
- Department of Bacteriology, Center for the Study of Nitrogen Fixation, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | | | | | |
Collapse
|
17
|
Rosario CJ, Bender RA. Importance of tetramer formation by the nitrogen assimilation control protein for strong repression of glutamate dehydrogenase formation in Klebsiella pneumoniae. J Bacteriol 2006; 187:8291-9. [PMID: 16321933 PMCID: PMC1317014 DOI: 10.1128/jb.187.24.8291-8299.2005] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The nitrogen assimilation control protein (NAC) from Klebsiella pneumoniae is a very versatile regulatory protein. NAC activates transcription of operons such as hut (histidine utilization) and ure (urea utilization), whose products generate ammonia. NAC also represses the transcription of genes such as gdhA, whose products use ammonia. NAC exerts a weak repression at gdhA by competing with the binding of a lysine-sensitive activator. NAC also strongly represses transcription of gdhA (about 20-fold) by binding to two separated sites, suggesting a model involving DNA looping. We have identified negative control mutants that are unable to exert this strong repression of gdhA expression but still activate hut and ure expression normally. Some of these negative control mutants (e.g., NAC(86ter) and NAC(132ter)) delete the C-terminal domain, thought to be required for tetramerization. Other negative control mutants (e.g., NAC(L111K) and NAC(L125R)) alter single amino acids involved in tetramerization. In this work we used gel filtration to show that NAC(86ter) and NAC(L111K) are dimers in solution, even at high concentration (NAC(WT) is a tetramer). Moreover, using a combination of DNase I footprints and gel mobility shifts assays, we showed that when NAC(WT) binds to two adjacent sites on a DNA fragment, NAC(WT) binds as a tetramer that bends the DNA fragment significantly. NAC(L111K) binds to such a fragment as two independent dimers without inducing the strong bend. Thus, NAC(L111K) is a dimer in solution or when bound to DNA. NAC(L111K) (typical of the negative control mutants) is wild type for every other property tested: (i) it activates transcription at hut and ure; (ii) it competes with the lysine-sensitive activator for binding at gdhA; (iii) it binds to the same sites at the hut, ure, nac, and gdhA promoters as NAC(WT); (iv) the relative affinity of NAC(L111K) for these sites follows the same order as NAC(WT) (ure > gdhA > nac > hut); (v) it induces the same slight bend as dimers of NAC(WT); and (vi) its DNase I footprints at these sites are indistinguishable from those of NAC(WT) (except for features ascribed to tetramer formation). The only two phenotypes we know for negative control mutants of NAC are their inability to tetramerize and their inability to cause the strong repression of gdhA. Thus, we propose that in order for NAC(WT) to exert the strong repression, it must form a tetramer that bridges the two sites at gdhA (similar to other DNA looping models) and that the negative control mutants of NAC, which fail to tetramerize, cannot form this loop and thus fail to exert the strong repression at gdhA.
Collapse
Affiliation(s)
- Christopher J Rosario
- Department of Molecular Cellular and Developmental Biology, The University of Michigan, Ann Arbor, MI 48109-1048, USA
| | | |
Collapse
|
18
|
Burguière P, Fert J, Guillouard I, Auger S, Danchin A, Martin-Verstraete I. Regulation of the Bacillus subtilis ytmI operon, involved in sulfur metabolism. J Bacteriol 2005; 187:6019-30. [PMID: 16109943 PMCID: PMC1196162 DOI: 10.1128/jb.187.17.6019-6030.2005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The YtlI regulator of Bacillus subtilis activates the transcription of the ytmI operon encoding an l-cystine ABC transporter, a riboflavin kinase, and proteins of unknown function. The expression of the ytlI gene and the ytmI operon was high with methionine and reduced with sulfate. Using deletions and site-directed mutagenesis, a cis-acting DNA sequence important for YtlI-dependent regulation was identified upstream from the -35 box of ytmI. Gel mobility shift assays confirmed that YtlI specifically interacted with this sequence. The replacement of the sulfur-regulated ytlI promoter by the xylA promoter led to constitutive expression of a ytmI'-lacZ fusion in a ytlI mutant, suggesting that the repression of ytmI expression by sulfate was mainly at the level of YtlI synthesis. We further showed that the YrzC regulator negatively controlled ytlI expression while this repressor also acted on ytmI expression via YtlI. The cascade of regulation observed in B. subtilis is conserved in Listeria spp. Both a YtlI-like regulator and a ytmI-type operon are present in Listeria spp. Indeed, the Lmo2352 protein from Listeria monocytogenes was able to replace YtlI for the activation of ytmI expression and a lmo2352'-lacZ fusion was repressed in the presence of sulfate via YrzC in B. subtilis. A common motif, AT(A/T)ATTCCTAT, was found in the promoter region of the ytlI and lmo2352 genes. Deletion of part of this motif or the introduction of point mutations in this sequence confirmed its involvement in ytlI regulation.
Collapse
Affiliation(s)
- Pierre Burguière
- Unité de Génétique des Génomes Bactériens, 28 rue du Docteur Roux, 75724 Paris Cedex 15, France
| | | | | | | | | | | |
Collapse
|
19
|
Maroncle N, Rich C, Forestier C. The role of Klebsiella pneumoniae urease in intestinal colonization and resistance to gastrointestinal stress. Res Microbiol 2005; 157:184-93. [PMID: 16139482 DOI: 10.1016/j.resmic.2005.06.006] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2005] [Revised: 05/27/2005] [Accepted: 06/09/2005] [Indexed: 11/15/2022]
Abstract
The first step in nosocomial infections due to Klebsiella pneumoniae is colonization of the patient's gastrointestinal (GI) tract. In a previous work, signature-tagged mutagenesis was used in a murine model to identify 13 genes required for efficient colonization, two of which were involved in urea metabolism. The role of urease was further investigated by the construction and analysis of an isogenic urease-deficient mutant. The behavior of both the wild-type strain and the urease-deficient mutant was tested under hostile conditions, reproducing stresses encountered in the GI environment. The wild-type strain had an acid tolerance response (ATR) to inorganic acid, was resistant to organic acids (38.5% survival) and was able to survive concentrations of bile encountered in vivo. The absence of urease did not affect the resistance of K. pneumoniae to acid and bile stresses, but the enhanced adhesion response to Int-407 cells after exposure to bile observed with the wild-type strain was no longer detected with the urease mutant. When tested in the murine intestinal colonization model, both strains were mainly recovered in the large intestine parts, and the mutant was impaired in its colonization capacities, but only when tested in competition with the wild-type strain. These findings emphasize the prominent role played by metabolic function in the colonization process of such a complex ecosystem as the host GI tract.
Collapse
Affiliation(s)
- Nathalie Maroncle
- Laboratoire de Bactériologie, Université d'Auvergne, Faculté de Pharmacie, 28 place H. Dunant, 63000 Clermont-Ferrand, France
| | | | | |
Collapse
|
20
|
Reitzer L. Biosynthesis of Glutamate, Aspartate, Asparagine, L-Alanine, and D-Alanine. EcoSal Plus 2004; 1. [PMID: 26443364 DOI: 10.1128/ecosalplus.3.6.1.3] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2003] [Indexed: 06/05/2023]
Abstract
Glutamate, aspartate, asparagine, L-alanine, and D-alanine are derived from intermediates of central metabolism, mostly the citric acid cycle, in one or two steps. While the pathways are short, the importance and complexity of the functions of these amino acids befit their proximity to central metabolism. Inorganic nitrogen (ammonia) is assimilated into glutamate, which is the major intracellular nitrogen donor. Glutamate is a precursor for arginine, glutamine, proline, and the polyamines. Glutamate degradation is also important for survival in acidic environments, and changes in glutamate concentration accompany changes in osmolarity. Aspartate is a precursor for asparagine, isoleucine, methionine, lysine, threonine, pyrimidines, NAD, and pantothenate; a nitrogen donor for arginine and purine synthesis; and an important metabolic effector controlling the interconversion of C3 and C4 intermediates and the activity of the DcuS-DcuR two-component system. Finally, L- and D-alanine are components of the peptide of peptidoglycan, and L-alanine is an effector of the leucine responsive regulatory protein and an inhibitor of glutamine synthetase (GS). This review summarizes the genes and enzymes of glutamate, aspartate, asparagine, L-alanine, and D-alanine synthesis and the regulators and environmental factors that control the expression of these genes. Glutamate dehydrogenase (GDH) deficient strains of E. coli, K. aerogenes, and S. enterica serovar Typhimurium grow normally in glucose containing (energy-rich) minimal medium but are at a competitive disadvantage in energy limited medium. Glutamate, aspartate, asparagine, L-alanine, and D-alanine have multiple transport systems.
Collapse
|
21
|
Dymov SI, Meek DJJ, Steven B, Driscoll BT. Insertion of transposon Tn5tac1 in the Sinorhizobium meliloti malate dehydrogenase (mdh) gene results in conditional polar effects on downstream TCA cycle genes. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2004; 17:1318-1327. [PMID: 15597737 DOI: 10.1094/mpmi.2004.17.12.1318] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
To isolate Sinorhizobium meliloti mutants deficient in malate dehydrogenase (MDH) activity, random transposon Tn5tac1 insertion mutants were screened for conditional lethal phenotypes on complex medium. Tn5tac1 has an outward-oriented isopropyl-beta-D-thiogalactopyranoside (IPTG)-inducible promoter (Ptac). The insertion in strain Rm30049 was mapped to the mdh gene, which was found to lie directly upstream of the genes encoding succinyl-CoA synthetase (sucCD) and 2-oxoglutarate dehydrogenase (sucAB and lpdA). Rm30049 required IPTG for wild-type growth in complex media, and had a complex growth phenotype in minimal media with different carbon sources. The mdh:: Tn5tacl insertion eliminated MDH activity under all growth conditions, and activities of succinyl-CoA synthetase, 2-oxoglutarate dehydrogenase, and succinate dehydrogenase were affected by the addition of IPTG. Reverse-transcriptase polymerase chain reaction (RT-PCR) studies confirmed that expression from Ptac was induced by IPTG and leaky in its absence. Alfalfa plants inoculated with Rm30049 were chlorotic and stunted, with small white root nodules, and had shoot dry weight and percent-N content values similar to those of uninoculated plants. Cosmid clone pDS15 restored MDH activity to Rm30049, complemented both the mutant growth and symbiotic phenotypes, and was found to carry six complete (sdhB, mdh, sucCDAB) and two partial (IpdA, sdhA) tricarboxylic acid cycle genes.
Collapse
Affiliation(s)
- Sergiy I Dymov
- Department of Natural Resource Sciences, McGill University, QC, Canada
| | | | | | | |
Collapse
|
22
|
Pagliarulo C, Salvatore P, De Vitis LR, Colicchio R, Monaco C, Tredici M, Talà A, Bardaro M, Lavitola A, Bruni CB, Alifano P. Regulation and differential expression of gdhA encoding NADP-specific glutamate dehydrogenase in Neisseria meningitidis clinical isolates. Mol Microbiol 2004; 51:1757-72. [PMID: 15009900 DOI: 10.1111/j.1365-2958.2003.03947.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Meningococcal gdhA, encoding the NADP-specific l-glutamate dehydrogenase (NADP-GDH), is essential for systemic infection in an infant rat model. In this paper, a limited transcriptional analysis detected differences in gdhA expression among clinical isolates. In strains expressing high levels of gdhA mRNA, two promoters, gdhA P1 and gdhA P2, initiated transcription of gdhA. In contrast, in strains expressing low mRNA levels, gdhA P2 was not active because of weak expression of gdhR, an associated regulatory gene. Gene knock-out and complementation of a gdhR-defective mutant confirmed that GdhR is a positive regulator for gdhA P2. Trans-activation of gdhA P2 was maximal in complex medium during late logarithmic growth phase and in chemical defined medium (MCDA) when glucose (MCDA-glucose) instead of lactate (MCDA-lactate) was used as a carbon source in the presence of glutamate. gdhR knock-out mutants lost both growth phase and carbon source regulation, and exhibited a growth defect more severe in MCDA-glucose than in MCDA-lactate. DNA-protein interaction studies demonstrated that 2-oxoglutarate, a product of the catabolic reaction of the NADP-GDH and an intermediate of the tricarboxylic acid (TCA) cycle, inhibits binding of GdhR to gdhA P2.
Collapse
Affiliation(s)
- Caterina Pagliarulo
- Dipartimento di Biologia e Patologia Cellulare e Molecolare L Califano, Università degli Studi di Napoli Federico II, Naples, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Tralau T, Mampel J, Cook AM, Ruff J. Characterization of TsaR, an oxygen-sensitive LysR-type regulator for the degradation of p-toluenesulfonate in Comamonas testosteroni T-2. Appl Environ Microbiol 2003; 69:2298-305. [PMID: 12676713 PMCID: PMC154824 DOI: 10.1128/aem.69.4.2298-2305.2003] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2002] [Accepted: 01/23/2003] [Indexed: 11/20/2022] Open
Abstract
TsaR is the putative LysR-type regulator of the tsa operon (tsaMBCD) which encodes the first steps in the degradation of p-toluenesulfonate (TSA) in Comamonas testosteroni T-2. Transposon mutagenesis was used to knock out tsaR. The resulting mutant lacked the ability to grow with TSA and p-toluenecarboxylate (TCA). Reintroduction of tsaR in trans on an expression vector reconstituted growth with TSA and TCA. The tsaR gene was cloned into Escherichia coli with a C-terminal His tag and overexpressed as TsaR(His). TsaR(His) was subject to reversible inactivation by oxygen, which markedly influenced the experimental approaches used. Gel filtration showed TsaR(His) to be a monomer in solution. Overexpressed TsaR(His) bound specifically to three regions within the promoter between the divergently transcribed tsaR and tsaMBCD. The dissociation constant (K(D)) for the whole promoter region was about 0.9 micro M, and the interaction was a function of the concentration of the ligand TSA. A regulatory model for this LysR-type regulator is proposed on the basis of these data.
Collapse
Affiliation(s)
- Tewes Tralau
- Department of Biology, The University of Konstanz, Germany
| | | | | | | |
Collapse
|
24
|
Janes BK, Rosario CJ, Bender RA. Isolation of a negative control mutant of the nitrogen assimilation control protein, NAC, in Klebsiella aerogenes. J Bacteriol 2003; 185:688-92. [PMID: 12511519 PMCID: PMC145345 DOI: 10.1128/jb.185.2.688-692.2003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A negative control mutant of the nitrogen assimilation control protein, NAC, has been isolated. Mutants with the leucine at position 111 changed to a nonhydrophobic residue activate transcription from hut and ure promoters, but fail to repress gdhA expression. This failure does not result from failure to bind to either of the two sites required for gdhA repression, but the binding at those sites is altered in the mutant. It appears that the NAC negative control mutants fail to form the complex structures (probably tetramers) formed by wild-type NAC at the gdhA promoter.
Collapse
Affiliation(s)
- Brian K Janes
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor 48109-1048, USA
| | | | | |
Collapse
|
25
|
Goss TJ, Janes BK, Bender RA. Repression of glutamate dehydrogenase formation in Klebsiella aerogenes requires two binding sites for the nitrogen assimilation control protein, NAC. J Bacteriol 2002; 184:6966-75. [PMID: 12446647 PMCID: PMC135459 DOI: 10.1128/jb.184.24.6966-6975.2002] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Klebsiella aerogenes, the gdhA gene codes for glutamate dehydrogenase, one of the enzymes responsible for assimilating ammonia into glutamate. Expression of a gdhAp-lacZ transcriptional fusion was strongly repressed by the nitrogen assimilation control protein, NAC. This strong repression (>50-fold under conditions of severe nitrogen limitation) required the presence of two separate NAC binding sites centered at -89 and +57 relative to the start of gdhA transcription. Mutants lacking either or both of these sites lost the strong repression. The distance between the two sites was less important than the face of the helix on which they lay. Insertion or deletion of 10 bp between the sites had little effect on the strong repression, but insertion of 5 bp or deletion of either 5 or 15 bp decreased the repression significantly. We propose that the strong repression of gdhAp-lacZ expression requires an interaction between the NAC molecules bound at the two sites. A weaker repression of gdhAp-lacZ expression (about threefold) required only the NAC site centered at -89. This weaker repression appears to result from NAC's ability to prevent the action of a positive effector the target of which overlaps the NAC binding site centered at -89. Point mutations and deletions of this region result in the same threefold reduction in gdhAp-lacZ expression as the presence of NAC at this site.
Collapse
Affiliation(s)
- Thomas J Goss
- Department of Molecular Cellular and Developmental Biology, University of Michigan, Ann Arbor 48109-1048, USA
| | | | | |
Collapse
|
26
|
Schneider BL, Ruback S, Kiupakis AK, Kasbarian H, Pybus C, Reitzer L. The Escherichia coli gabDTPC operon: specific gamma-aminobutyrate catabolism and nonspecific induction. J Bacteriol 2002; 184:6976-86. [PMID: 12446648 PMCID: PMC135471 DOI: 10.1128/jb.184.24.6976-6986.2002] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nitrogen limitation induces the nitrogen-regulated (Ntr) response, which includes proteins that assimilate ammonia and scavenge nitrogen. Nitrogen limitation also induces catabolic pathways that degrade four metabolically related compounds: putrescine, arginine, ornithine, and gamma-aminobutyrate (GABA). We analyzed the structure, function, and regulation of the gab operon, whose products degrade GABA, a proposed intermediate in putrescine catabolism. We showed that the gabDTPC gene cluster constitutes an operon based partially on coregulation of GabT and GabD activities and the polarity of an insertion in gabT on gabC. A DeltagabDT mutant grew normally on all of the nitrogen sources tested except GABA. The unexpected growth with putrescine resulted from specific induction of gab-independent enzymes. Nac was required for gab transcription in vivo and in vitro. Ntr induction did not require GABA, but various nitrogen sources did not induce enzyme activity equally. A gabC (formerly ygaE) mutant grew faster with GABA and had elevated levels of gab operon products, which suggests that GabC is a repressor. GabC is proposed to reduce nitrogen source-specific modulation of expression. Unlike a wild-type strain, a gabC mutant utilized GABA as a carbon source and such growth required sigma(S). Previous studies showing sigma(S)-dependent gab expression in stationary phase involved gabC mutants, which suggests that such expression does not occur in wild-type strains. The seemingly narrow catabolic function of the gab operon is contrasted with the nonspecific (nitrogen source-independent) induction. We propose that the gab operon and the Ntr response itself contribute to putrescine and polyamine homeostasis.
Collapse
Affiliation(s)
- Barbara L Schneider
- Department of Molecular and Cell Biology, The University of Texas at Dallas, Richardson 75083-0688, USA
| | | | | | | | | | | |
Collapse
|
27
|
Abstract
Escherichia coli and related bacteria contain two paralogous PII-like proteins involved in nitrogen regulation, the glnB product, PII, and the glnK product, GlnK. Previous studies have shown that cells lacking both PII and GlnK have a severe growth defect on minimal media, resulting from elevated expression of the Ntr regulon. Here, we show that this growth defect is caused by activity of the nac product, Nac, a LysR-type transcription factor that is part of the Ntr regulon. Cells with elevated Ntr expression that also contain a null mutation in nac displayed growth rates on minimal medium similar to the wild type. When expressed from high-copy plasmids, Nac imparts a growth defect to wild-type cells in an expression level-dependent manner. Neither expression of Nac nor lack thereof significantly affected Ntr gene expression, suggesting that the activity of Nac at one or more promoters outside the Ntr regulon was responsible for its effects. The growth defect of cells lacking both PII and GlnK was also eliminated upon supplementation of minimal medium with serine or glycine for solid medium or with serine or glycine and glutamine for liquid medium. These observations suggest that high Nac expression results in a reduction in serine biosynthesis. beta-Galactosidase activity expressed from a Mu d1 insertion in serA was reduced approximately 10-fold in cells with high Nac expression. We hypothesize that one role of Nac is to limit serine biosynthesis as part of a cellular mechanism to reduce metabolism in a co-ordinated manner when cells become starved for nitrogen.
Collapse
Affiliation(s)
- Timothy A Blauwkamp
- Department of Biological Chemistry, University of Michigan Medical School, 1301 E. Catherine, Ann Arbor, MI 48109-0606, USA
| | | |
Collapse
|
28
|
Janiyani KL, Ray MK. Cloning, sequencing, and expression of the cold-inducible hutU gene from the antarctic psychrotrophic bacterium Pseudomonas syringae. Appl Environ Microbiol 2002; 68:1-10. [PMID: 11772602 PMCID: PMC126550 DOI: 10.1128/aem.68.1.1-10.2002] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A promoter-fusion study with a Tn 5-based promoter probe vector had earlier found that the hutU gene which encodes the enzyme urocanase for the histidine utilization pathway is upregulated at a lower temperature (4 degrees C) in the Antarctic psychrotrophic bacterium Pseudomonas syringae. To examine the characteristics of the urocanase gene and its promoter elements from the psychrotroph, the complete hutU and its upstream region from P. syringae were cloned, sequenced, and analyzed in the present study. Northern blot and primer extension analyses suggested that the hutU gene is inducible upon a downshift of temperature (22 to 4 degrees C) and that there is more than one transcription initiation site. One of the initiation sites was specific to the cells grown at 4 degrees C, which was different from the common initiation sites observed at both 4 and 22 degrees C. Although no typical promoter consensus sequences were observed in the flanking region of the transcription initiation sites, there was a characteristic CAAAA sequence at the -10 position of the promoters. Additionally, the location of the transcription and translation initiation sites suggested that the hutU mRNA contains a long 5'-untranslated region, a characteristic feature of many cold-inducible genes of mesophilic bacteria. A comparison of deduced amino acid sequences of urocanase from various bacteria, including the mesophilic and psychrotrophic Pseudomonas spp., suggests that there is a high degree of similarity between the enzymes. The enzyme sequence contains a signature motif (GXGX(2)GX(10)G) of the Rossmann fold for dinucleotide (NAD(+)) binding and two conserved cysteine residues in and around the active site. The psychrotrophic enzyme, however, has an extended N-terminal end.
Collapse
|
29
|
Milcamps A, Struffi P, de Bruijn FJ. The Sinorhizobium meliloti nutrient-deprivation-induced tyrosine degradation gene hmgA is controlled by a novel member of the arsR family of regulatory genes. Appl Environ Microbiol 2001; 67:2641-8. [PMID: 11375175 PMCID: PMC92919 DOI: 10.1128/aem.67.6.2641-2648.2001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2000] [Accepted: 03/24/2001] [Indexed: 11/20/2022] Open
Abstract
The regulation of the nutrient-deprivation-induced Sinorhizobium meliloti homogentisate dioxygenase (hmgA) gene, involved in tyrosine degradation, was examined. hmgA expression was found to be independent of the canonical nitrogen regulation (ntr) system. To identify regulators of hmgA, secondary mutagenesis of an S. meliloti strain harboring a hmgA-luxAB reporter gene fusion (N4) was carried out using transposon Tn1721. Two independent Tn1721 insertions were found to be located in a positive regulatory gene (nitR), encoding a protein sharing amino acid sequence similarity with proteins of the ArsR family of regulators. NitR was found to be a regulator of S. meliloti hmgA expression under nitrogen deprivation conditions, suggesting the presence of a ntr-independent nitrogen deprivation regulatory system. nitR insertion mutations were shown not to affect bacterial growth, nodulation of Medicago sativa (alfalfa) plants, or symbiotic nitrogen fixation under the physiological conditions examined. Further analysis of the nitR locus revealed the presence of open reading frames encoding proteins sharing amino acid sequence similarities with an ATP-binding phosphonate transport protein (PhnN), as well as transmembrane efflux proteins.
Collapse
Affiliation(s)
- A Milcamps
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824, USA.
| | | | | |
Collapse
|
30
|
Janes BK, Pomposiello PJ, Perez-Matos A, Najarian DJ, Goss TJ, Bender RA. Growth inhibition caused by overexpression of the structural gene for glutamate dehydrogenase (gdhA) from Klebsiella aerogenes. J Bacteriol 2001; 183:2709-14. [PMID: 11274137 PMCID: PMC95194 DOI: 10.1128/jb.183.8.2709-2714.2001] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Two linked mutations affecting glutamate dehydrogenase (GDH) formation (gdh-1 and rev-2) had been isolated at a locus near the trp cluster in Klebsiella aerogenes. The properties of these two mutations were consistent with those of a locus containing either a regulatory gene or a structural gene. The gdhA gene from K. aerogenes was cloned and sequenced, and an insertion mutation was generated and shown to be linked to trp. A region of gdhA from a strain bearing gdh-1 was sequenced and shown to have a single-base-pair change, confirming that the locus defined by gdh-1 is the structural gene for GDH. Mutants with the same phenotype as rev-2 were isolated, and their sequences showed that the mutations were located in the promoter region of the gdhA gene. The linkage of gdhA to trp in K. aerogenes was explained by postulating an inversion of the genetic map relative to other enteric bacteria. Strains that bore high-copy-number clones of gdhA displayed an auxotrophy that was interpreted as a limitation for alpha-ketoglutarate and consequently for succinyl-coenzyme A (CoA). Three lines of evidence supported this interpretation: high-copy-number clones of the enzymatically inactive gdhA1 allele showed no auxotrophy, repression of GDH expression by the nitrogen assimilation control protein (NAC) relieved the auxotrophy, and addition of compounds that could increase the alpha-ketoglutarate supply or reduce the succinyl-CoA requirement relieved the auxotrophy.
Collapse
Affiliation(s)
- B K Janes
- Department of Biology, The University of Michigan, Ann Arbor, Michigan 48109-1048, USA
| | | | | | | | | | | |
Collapse
|
31
|
Ninfa AJ, Jiang P, Atkinson MR, Peliska JA. Integration of antagonistic signals in the regulation of nitrogen assimilation in Escherichia coli. CURRENT TOPICS IN CELLULAR REGULATION 2000; 36:31-75. [PMID: 10842746 DOI: 10.1016/s0070-2137(01)80002-9] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Affiliation(s)
- A J Ninfa
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor 48109-0606, USA
| | | | | | | |
Collapse
|
32
|
Abstract
Ureases are multi-subunit, nickel-containing enzymes that catalyze the hydrolysis of urea to carbon dioxide and ammonia. This brief review discusses the biochemistry and genetics of bacterial ureases and outlines the roles of urea metabolism in microbial ecology and pathogenesis of some of the principle ureolytic species affecting human health.
Collapse
Affiliation(s)
- R A Burne
- Department of Microbiology and Immunology, Center for Oral Biology, University of Rochester School of Medicine and Dentistry, 601 Elmwood Ave, Rochester, NY, USA
| | | |
Collapse
|
33
|
Wu SQ, Chai W, Lin JT, Stewart V. General nitrogen regulation of nitrate assimilation regulatory gene nasR expression in Klebsiella oxytoca M5al. J Bacteriol 1999; 181:7274-84. [PMID: 10572131 PMCID: PMC103690 DOI: 10.1128/jb.181.23.7274-7284.1999] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Klebsiella oxytoca can assimilate nitrate and nitrite by using enzymes encoded by the nasFEDCBA operon. Expression of the nasF operon is controlled by general nitrogen regulation (Ntr) via the NtrC transcription activator and by pathway-specific nitrate and nitrite induction via the NasR transcription antiterminator. This paper reports our analysis of nasR gene expression. We constructed strains bearing single-copy Phi(nasR-lacZ) operon fusions within the chromosomal rhaBAD-rhaSR locus. The expression of DeltarhaBS::[Phi(nasR-lacZ)] operon fusions was induced about 10-fold during nitrogen-limited growth. Induction was reduced in both ntrC and rpoN null mutants, indicating that Ntr control of nasR gene expression requires the NtrC and sigma(N) (sigma(54)) proteins. Sequence inspection of the nasR control region reveals an apparent sigma(N)-dependent promoter but no apparent NtrC protein binding sites. Analysis of site-specific mutations coupled with primer extension analysis authenticated the sigma(N)-dependent nasR promoter. Fusion constructs with only about 70 nucleotides (nt) upstream of the transcription initiation site exhibited patterns of beta-galactosidase expression indistinguishable from Phi(nasR-lacZ) constructs with about 470 nt upstream. Expression was independent of the Nac protein, implying that NtrC is a direct activator of nasR transcription. Together, these results indicate that nasR gene expression does not require specific upstream NtrC-binding sequences, as previously noted for argT gene expression in Salmonella typhimurium (G. Schmitz, K. Nikaido, and G. F.-L. Ames, Mol. Gen. Genet. 215:107-117, 1988).
Collapse
Affiliation(s)
- S Q Wu
- Section of Microbiology, Cornell University, Ithaca, New York 14853-8101, USA
| | | | | | | |
Collapse
|
34
|
Muse WB, Bender RA. The amino-terminal 100 residues of the nitrogen assimilation control protein (NAC) encode all known properties of NAC from Klebsiella aerogenes and Escherichia coli. J Bacteriol 1999; 181:934-40. [PMID: 9922258 PMCID: PMC93461 DOI: 10.1128/jb.181.3.934-940.1999] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/1998] [Accepted: 11/21/1998] [Indexed: 11/20/2022] Open
Abstract
The nitrogen assimilation control protein (NAC) from Klebsiella aerogenes or Escherichia coli (NACK or NACE, respectively) is a transcriptional regulator that is both necessary and sufficient to activate transcription of the histidine utilization (hut) operon and to repress transcription of the glutamate dehydrogenase (gdh) operon in K. aerogenes. Truncated NAC polypeptides, generated by the introduction of stop codons within the nac open reading frame, were tested for the ability to activate hut and repress gdh in vivo. Most of the NACK and NACE fragments with 100 or more amino acids (wild-type NACK and NACE both have 305 amino acids) were functional in activating hut and repressing gdh expression in vivo. Full-length NACK and NACE were isolated as chimeric proteins with the maltose-binding protein (MBP). NACK and NACE released from such chimeras were able to activate hut transcription in a purified system in vitro, as were NACK129 and NACE100 (a NACK fragment of 129 amino acids and a NACE fragment of 100 amino acids) released from comparable chimeras. A set of NACE and NACK fragments carrying nickel-binding histidine tags (his6) at their C termini were also generated. All such constructs derived from NACE were insoluble, as was NACE itself. Of the his6-tagged constructs derived from NACK, NACK100 was inactive, but NACK120 was active. Several NAC fragments were tested for dimerization. NACK120-his6 and NACK100-his6 were dimers in solution. MBP-NACK and MBP-NACK129 were monomers in solution but dimerized when the MBP was released by cleavage with factor Xa. MBP-NACE was readily cleaved by factor Xa, but the resulting NACE was also degraded by the protease. However, MBP-NACE-his6 was completely resistant to cleavage by factor Xa, suggesting an interaction between the C and N termini of this protein.
Collapse
Affiliation(s)
- W B Muse
- Department of Biology, The University of Michigan, Ann Arbor, Michigan 48109-1048, USA
| | | |
Collapse
|
35
|
Abstract
The nitrogen assimilation control gene, nac, was detected in Escherichia coli but not in Salmonella typhimurium by Southern blotting, using a probe from the Klebsiella aerogenes nac (nacK) gene. The E. coli nac gene (nacE) was isolated from a cosmid clone by complementation of a nac mutation in K. aerogenes. nacE was fully functional in this complementation assay. DNA sequence analysis showed considerable divergence between nacE and nacK, with a predicted amino acid sequence identity of only 79% and most of the divergence in the C-terminal half of the protein sequence. The total predicted size of NAC(E) is 305 amino acids, the same as for NAC(K). A null mutation, nac-28, was generated by reverse genetics. Mutants bearing nac-28 have a variety of phenotypes related to nitrogen metabolism, including slower growth on cytosine, faster growth on arginine, and suppression of the failure of an Ntr-constitutive mutant to grow with serine as sole nitrogen source. In addition to a loss of nitrogen regulation of histidase formation, nac-28 mutants also showed a loss of a weak repression of glutamate dehydrogenase formation. This repression was unexpected because it is balanced by a NAC-independent activation of glutamate dehydrogenase formation during nitrogen-limited growth. Attempts to purify NAC(E) by using methods established for NAC(K) failed, and NAC(E) appears to be degraded with a half-life at 30 degrees C as short as 15 min during inhibition of protein synthesis.
Collapse
Affiliation(s)
- W B Muse
- Department of Biology, The University of Michigan, Ann Arbor 48109-1048, USA.
| | | |
Collapse
|
36
|
Chen LM, Goss TJ, Bender RA, Swift S, Maloy S. Genetic analysis, using P22 challenge phage, of the nitrogen activator protein DNA-binding site in the Klebsiella aerogenes put operon. J Bacteriol 1998; 180:571-7. [PMID: 9457859 PMCID: PMC106923 DOI: 10.1128/jb.180.3.571-577.1998] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The nac gene product is a LysR regulatory protein required for nitrogen regulation of several operons from Klebsiella aerogenes and Escherichia coli. We used P22 challenge phage carrying the put control region from K. aerogenes to identify the nucleotide residues important for nitrogen assimilation control protein (NAC) binding in vivo. Mutations in an asymmetric 30-bp region prevented DNA binding by NAC. Gel retardation experiments confirmed that NAC specifically binds to this sequence in vitro, but NAC does not bind to the corresponding region from the put operon of Salmonella typhimurium, which is not regulated by NAC.
Collapse
Affiliation(s)
- L M Chen
- Department of Microbiology, University of Illinois, Urbana 61801, USA
| | | | | | | | | |
Collapse
|
37
|
Pomposiello PJ, Janes BK, Bender RA. Two roles for the DNA recognition site of the Klebsiella aerogenes nitrogen assimilation control protein. J Bacteriol 1998; 180:578-85. [PMID: 9457860 PMCID: PMC106924 DOI: 10.1128/jb.180.3.578-585.1998] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/1997] [Accepted: 11/04/1997] [Indexed: 02/06/2023] Open
Abstract
The nitrogen assimilation control protein (NAC) binds to a site within the promoter region of the histidine utilization operon (hutUH) of Klebsiella aerogenes, and NAC bound at this site activates transcription of hutUH. This NAC-binding site was characterized by a combination of random and directed DNA mutagenesis. Mutations that abolished or diminished in vivo transcriptional activation by NAC were found to lie within a 15-bp region contained within the 26-bp region protected by NAC from DNase I digestion. This 15-bp core has the palindromic ends ATA and TAT, and it matches the consensus for LysR family transcriptional regulators. Protein-binding experiments showed that transcriptional activation in vivo decreased with decreasing binding in vitro. In contrast to the NAC-binding site from hutUH, the NAC-binding site from the gdhA promoter failed to activate transcription from a semisynthetic promoter, and this failure was not due to weak binding or greatly distorted protein-DNA structure. Mutations in the promoter-proximal half-site of the NAC-binding site from gdhA allowed this site to activate transcription. Similar studies using the NAC-binding site from hut showed that two mutations in the promoter proximal half-site increased binding but abolished transcriptional activation. Interestingly, for symmetric mutations in the promoter-distal half-site, loss of transcriptional activation was always correlated with a decrease in binding. We conclude from these observations that if the binding in vitro reflects the binding in vivo, then binding of NAC to DNA is not sufficient for transcriptional activation and that the NAC-binding site can be functionally divided in two half-sites, with related but different functions.
Collapse
Affiliation(s)
- P J Pomposiello
- Department of Biology, The University of Michigan, Ann Arbor 48109-1048, USA
| | | | | |
Collapse
|
38
|
Janes BK, Bender RA. Alanine catabolism in Klebsiella aerogenes: molecular characterization of the dadAB operon and its regulation by the nitrogen assimilation control protein. J Bacteriol 1998; 180:563-70. [PMID: 9457858 PMCID: PMC106922 DOI: 10.1128/jb.180.3.563-570.1998] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/1997] [Accepted: 11/20/1997] [Indexed: 02/06/2023] Open
Abstract
Klebsiella aerogenes strains with reduced levels of D-amino acid dehydrogenase not only fail to use alanine as a growth substrate but also become sensitive to alanine in minimal media supplemented with glucose and ammonium. The inability of these mutant strains to catabolize the alanine provided in the medium interferes with both pathways of glutamate production. Alanine derepresses the nitrogen regulatory system (Ntr), which in turn represses glutamate dehydrogenase, one pathway of glutamate production. Alanine also inhibits the enzyme glutamine synthetase, the first enzyme in the other pathway of glutamate production. Therefore, in the presence of alanine, strains with mutations in dadA (the gene that codes for a subunit of the dehydrogenase) exhibit a glutamate auxotrophy when ammonium is the sole source of nitrogen. The alanine catabolic operon of Klebsiella aerogenes, dadAB, was cloned, and its DNA sequence was determined. The clone complemented the alanine defects of dadA strains. The operon has a high similarity to the dadAB operon of Salmonella typhimurium and the dadAX operon of Escherichia coli, each of which codes for the smaller subunit of D-amino acid dehydrogenase and the catabolic alanine racemase. Unlike the cases for E. coli and S. typhimurium, the dad operon of K. aerogenes is activated by the Ntr system, mediated in this case by the nitrogen assimilation control protein (NAC). A sequence matching the DNA consensus for NAC-binding sites is located centered at position -44 with respect to the start of transcription. The promoter of this operon also contains consensus binding sites for the catabolite activator protein and the leucine-responsive regulatory protein.
Collapse
Affiliation(s)
- B K Janes
- Department of Biology, The University of Michigan, Ann Arbor 48109-1048, USA
| | | |
Collapse
|
39
|
Baggio L, Morrison M. The NAD(P)H-utilizing glutamate dehydrogenase of Bacteroides thetaiotaomicron belongs to enzyme family I, and its activity is affected by trans-acting gene(s) positioned downstream of gdhA. J Bacteriol 1996; 178:7212-20. [PMID: 8955404 PMCID: PMC178635 DOI: 10.1128/jb.178.24.7212-7220.1996] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Previous studies have suggested that regulation of the enzymes of ammonia assimilation in human colonic Bacteroides species is coordinated differently than in other eubacteria. The gene encoding an NAD(P)H-dependent glutamate dehydrogenase (gdhA) in Bacteroides thetaiotaomicron was cloned and expressed in Escherichia coli by mutant complementation from the recombinant plasmid pANS100. Examination of the predicted GdhA amino acid sequence revealed that this enzyme possesses motifs typical of the family I-type hexameric GDH proteins. Northern blot analysis with a gdhA-specific probe indicated that a single transcript with an electrophoretic mobility of approximately 1.6 kb was produced in both B. thetaiotaomicron and E. coli gdhA+ transformants. Although gdhA transcription was unaffected, no GdhA enzyme activity could be detected in E. coli transformants when smaller DNA fragments from pANS100, which contained the entire gdhA gene, were analyzed. Enzyme activity was restored if these E. coli strains were cotransformed with a second plasmid, which contained a 3-kb segment of DNA located downstream of the gdhA coding region. Frameshift mutagenesis within the DNA downstream of gdhA in pANS100 also resulted in the loss of GdhA enzyme activity. Collectively, these results are interpreted as evidence for the role of an additional gene product(s) in modulating the activity of GDH enzyme activity. Insertional mutagenesis experiments which led to disruption of the gdhA gene on the B. thetaiotaomicron chromosome indicated that gdhA mutants were not glutamate auxotrophs, but attempts to isolate similar mutants with insertion mutations in the region downstream of the gdhA gene were unsuccessful.
Collapse
Affiliation(s)
- L Baggio
- Department of Animal Sciences, University of Nebraska, Lincoln 68583, USA
| | | |
Collapse
|
40
|
Grob P, Guiney DG. In vitro binding of the Salmonella dublin virulence plasmid regulatory protein SpvR to the promoter regions of spvA and spvR. J Bacteriol 1996; 178:1813-20. [PMID: 8606153 PMCID: PMC177874 DOI: 10.1128/jb.178.7.1813-1820.1996] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The spv regulon of Salmonella dublin is essential for virulence in mice. SpvR, a LysR-type regulator, induces the expression of the spvABCD operon and its own expression in the stationary phase of bacterial growth and in macrophages. We constructed fusion proteins to the maltose-binding protein (MBP) and a His tag peptide (His) to overcome the insolubility and to facilitate purification of SpvR. We demonstrated that both fusion proteins, MBP-SpvR and His-SpvR, were able to induce spvA expression in vivo. MBP-SpvR was produced as soluble protein, whereas His-SpvR was only marginally present in the soluble cell fraction. Affinity chromatography resulted in at least 95% pure MBP-SpvR protein and in an enrichment of His-SpvR. Gel mobility shift assay revealed that the SpvR fusion proteins were able to bind to 125-and 147-bp DNA fragments of the spvA and spvR promoter regions, respectively. DNase I footprint experiments showed that the fusion proteins protected DNA regions of 54 and 50 bp within the spvA and spvR promoter regions, respectively.
Collapse
Affiliation(s)
- P Grob
- Department of Medicine, School of Medicine, University of California at San Diego, La Jolla, California 92093-0640, USA
| | | |
Collapse
|
41
|
Rkenes TP, Lamark T, Strøm AR. DNA-binding properties of the BetI repressor protein of Escherichia coli: the inducer choline stimulates BetI-DNA complex formation. J Bacteriol 1996; 178:1663-70. [PMID: 8626295 PMCID: PMC177852 DOI: 10.1128/jb.178.6.1663-1670.1996] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The betT and betIBA genes govern glycine betaine synthesis from choline in Escherichia coli. In an accompanying paper we report that the betT and betI promoters are divergently organized and partially overlapping and that both are negatively regulated by BetI in response to choline. (T. Lamark, T.P. Rokenes, J. McDougall, and A.R. Strom, J. Bacteriol. 178:1655-1662, 1996). In this paper, we report that the in vivo synthesis rate of the BetI protein constituted only 10% of that of BetA and BetB dehydrogenase proteins, indicating the existence of a posttranscriptional control of the betIBA operon. A genetically modified BetI protein called BetI*, which carries 7 extra N-terminal amino acids, was purified as a glutathione S-transferase fusion protein. Gel mobility shift assays showed that BetI* formed a complex with a 41-bp DNA fragment containing the -10 and -35 regions of both promoters. Only one stable complex was detected with the 41-bp fragment and all larger promoter-containing fragments tested. In DNase I footprinting, BetI* protected a region of 21 nucleotides covering both the -35 boxes. Choline stimulated complex formation but did not change the binding site of BetI*. We conclude that in vivo BetI is bound to its operator in both repressed and induced cells and that BetI represents a new type of repressor.
Collapse
Affiliation(s)
- T P Rkenes
- Norwegian College of Fishery Science, University of Tromsø, Norway
| | | | | |
Collapse
|
42
|
Abstract
Nitrogen metabolism in prokaryotes involves the coordinated expression of a large number of enzymes concerned with both utilization of extracellular nitrogen sources and intracellular biosynthesis of nitrogen-containing compounds. The control of this expression is determined by the availability of fixed nitrogen to the cell and is effected by complex regulatory networks involving regulation at both the transcriptional and posttranslational levels. While the most detailed studies to date have been carried out with enteric bacteria, there is a considerable body of evidence to show that the nitrogen regulation (ntr) systems described in the enterics extend to many other genera. Furthermore, as the range of bacteria in which the phenomenon of nitrogen control is examined is being extended, new regulatory mechanisms are also being discovered. In this review, we have attempted to summarize recent research in prokaryotic nitrogen control; to show the ubiquity of the ntr system, at least in gram-negative organisms; and to identify those areas and groups of organisms about which there is much still to learn.
Collapse
Affiliation(s)
- M J Merrick
- Nitrogen Fixation Laboratory, John Innes Centre, Norwich, United Kingdom
| | | |
Collapse
|
43
|
Feng J, Goss TJ, Bender RA, Ninfa AJ. Activation of transcription initiation from the nac promoter of Klebsiella aerogenes. J Bacteriol 1995; 177:5523-34. [PMID: 7559338 PMCID: PMC177360 DOI: 10.1128/jb.177.19.5523-5534.1995] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The nac gene of Klebsiella aerogenes encodes a bifunctional transcription factor that activates or represses the expression of several operons under conditions of nitrogen limitation. In experiments with purified components, transcription from the nac promoter was initiated by sigma 54 RNA polymerase and was activated by the phosphorylated form of nitrogen regulator I (NRI) (NtrC). The activation of the nac promoter required a higher concentration of NRI approximately P than did the activation of the Escherichia coli glnAp2 promoter, and both the promoter and upstream enhancer element contributed to this difference. The nac promoter had a lower affinity for sigma 54 RNA polymerase than did glnAp2, and uninitiated competitor-resistant transcription complexes formed at the nac promoter decayed to competitor-sensitive complexes at a greater rate than did similar complexes formed at the glnAp2 promoter. The nac enhancer, consisting of a single high-affinity NRI-binding site and an adjacent site with low affinity for NRI, was less efficient in stimulating transcription than was the glnA enhancer, which consists of two adjacent high-affinity NRI-binding sites. When these binding sites were exchanged, transcription from the nac promoter was increased and transcription from the glnAp2 promoter was decreased at low concentrations of NRI approximately P. Another indication of the difference in the efficiency of these enhancers is that although activation of a nac promoter construct containing the glnA enhancer was relatively insensitive to subtle alterations in the position of these sites relative to the position of the promoter, activation of the natural nac promoter or a nac promoter construct containing only a single high-affinity NRI approximately P binding site was strongly affected by subtle alterations in the position of the NRI approximately P binding site(s), indicating a face-of-the-helix dependency for activation.
Collapse
Affiliation(s)
- J Feng
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor 48109, USA
| | | | | | | |
Collapse
|
44
|
Abstract
Urease (urea amidohydrolase; EC 3.5.1.5) catalyzes the hydrolysis of urea to yield ammonia and carbamate. The latter compound spontaneously decomposes to yield another molecule of ammonia and carbonic acid. The urease phenotype is widely distributed across the bacterial kingdom, and the gene clusters encoding this enzyme have been cloned from numerous bacterial species. The complete nucleotide sequence, ranging from 5.15 to 6.45 kb, has been determined for five species including Bacillus sp. strain TB-90, Klebsiella aerogenes, Proteus mirabilis, Helicobacter pylori, and Yersinia enterocolitica. Sequences for selected genes have been determined for at least 10 other bacterial species and the jack bean enzyme. Urease synthesis can be nitrogen regulated, urea inducible, or constitutive. The crystal structure of the K. aerogenes enzyme has been determined. When combined with chemical modification studies, biophysical and spectroscopic analyses, site-directed mutagenesis results, and kinetic inhibition experiments, the structure provides important insight into the mechanism of catalysis. Synthesis of active enzyme requires incorporation of both carbon dioxide and nickel ions into the protein. Accessory genes have been shown to be required for activation of urease apoprotein, and roles for the accessory proteins in metallocenter assembly have been proposed. Urease is central to the virulence of P. mirabilis and H. pylori. Urea hydrolysis by P. mirabilis in the urinary tract leads directly to urolithiasis (stone formation) and contributes to the development of acute pyelonephritis. The urease of H. pylori is necessary for colonization of the gastric mucosa in experimental animal models of gastritis and serves as the major antigen and diagnostic marker for gastritis and peptic ulcer disease in humans. In addition, the urease of Y. enterocolitica has been implicated as an arthritogenic factor in the development of infection-induced reactive arthritis. The significant progress in our understanding of the molecular biology of microbial ureases is reviewed.
Collapse
Affiliation(s)
- H L Mobley
- Division of Infectious Diseases, University of Maryland School of Medicine, Baltimore 21201, USA
| | | | | |
Collapse
|
45
|
Pomposiello PJ, Bender RA. Activation of the Escherichia coli lacZ promoter by the Klebsiella aerogenes nitrogen assimilation control protein (NAC), a LysR family transcription factor. J Bacteriol 1995; 177:4820-4. [PMID: 7642513 PMCID: PMC177252 DOI: 10.1128/jb.177.16.4820-4824.1995] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
A chimeric promoter with the nitrogen assimilation control protein binding site from hutUp of Klebsiella aerogenes fused to the lacZ core promoter from Escherichia coli was built and cloned in a lacZ reporter plasmid. This construct showed a 14-fold increase of beta-galactosidase activity upon nitrogen limitation. Primer extension experiments showed that the nitrogen assimilation control protein activates lacZp1 in a position-dependent manner.
Collapse
Affiliation(s)
- P J Pomposiello
- Department of Biology, University of Michigan, Ann Arbor 48109-1048, USA
| | | |
Collapse
|
46
|
Goss TJ, Bender RA. The nitrogen assimilation control protein, NAC, is a DNA binding transcription activator in Klebsiella aerogenes. J Bacteriol 1995; 177:3546-55. [PMID: 7768865 PMCID: PMC177061 DOI: 10.1128/jb.177.12.3546-3555.1995] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
A 32-kDa polypeptide corresponding to NAC, the product of the Klebsiella aerogenes nac gene, was overexpressed from a plasmid carrying a tac'-'nac operon fusion and purified to near homogeneity by taking advantage of its unusual solubility properties. NAC was able to shift the electrophoretic migration of DNA fragments carrying the NAC-sensitive promoters hutUp, putPp1, and ureDp. The interaction between NAC and hutUp was localized to a 26-bp region centered approximately 64 bp upstream of the hutUp transcription initiation site. Moreover, NAC protected this region from DNase I digestion. Mobility shift and DNase I protection studies utilizing the putP and ureD promoter regions identified NAC-binding regions of sizes and locations similar to those found in hutUp. Comparison of the DNA sequences which were protected from DNase I digestion by NAC suggests a minimal NAC-binding consensus sequence: 5'-ATA-N9-TAT-3'. In vitro transcription assays demonstrated that NAC was capable of activating the transcription of hutUp by sigma 70-RNA polymerase holoenzyme when this promoter was presented as either a linear or supercoiled DNA molecule. Thus, NAC displays the in vitro DNA-binding and transcription activation properties which have been predicted for the product of the nac gene.
Collapse
Affiliation(s)
- T J Goss
- Department of Biology, University of Michigan, Ann-Arbor 48109-1048, USA
| | | |
Collapse
|
47
|
Xu HH, Tabita FR. Positive and negative regulation of sequences upstream of the form II cbb CO2 fixation operon of Rhodobacter sphaeroides. J Bacteriol 1994; 176:7299-308. [PMID: 7961502 PMCID: PMC197119 DOI: 10.1128/jb.176.23.7299-7308.1994] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The unlinked form I and form II Calvin cycle CO2 fixation (cbb) operons of the photosynthetic bacterium Rhodobacter sphaeroides are located on different genetic elements, yet both operons are positively regulated by the transcription activator protein CbbR, the product of the cbbR gene located immediately upstream of the form I operon. By employing deletion mutagenesis, and a newly constructed promoter probe vector, the form II operon promoter (cbbFIIp) and three other promoters (Up, Vp, and Wp) were localized within 2.1 kb upstream of the form II operon. Mutations in both cbbR and the first gene of the form I operon (cbbFI) elicited both positive and negative responses when transcriptional fusions controlled by these four promoters were examined. With the exception of Wp, all these upstream promoters were repressed by oxygen. In addition, these promoters were associated with open reading frames of unknown function whose deduced amino acid sequences showed no significant relationship to proteins in current databases. The results of these experiments suggest that the promoter sequences and genes upstream of the form II cbb operon may be intimately involved with control of the cbb regulon of this photosynthetic organism.
Collapse
Affiliation(s)
- H H Xu
- Department of Microbiology, Ohio State University, Columbus 43210-1292
| | | |
Collapse
|
48
|
Wray LV, Fisher SH. Analysis of Bacillus subtilis hut operon expression indicates that histidine-dependent induction is mediated primarily by transcriptional antitermination and that amino acid repression is mediated by two mechanisms: regulation of transcription initiation and inhibition of histidine transport. J Bacteriol 1994; 176:5466-73. [PMID: 8071225 PMCID: PMC196735 DOI: 10.1128/jb.176.17.5466-5473.1994] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Expression of the Bacillus subtilis hut operon is induced by histidine and subject to regulation by carbon catabolite repression and amino acid repression. A set of hut-lacZ transcriptional fusions was constructed and used to identify the cis-acting sites required for histidine induction and amino acid repression. Histidine induction was found to be primarily mediated by transcriptional antitermination at a palindromic sequence located immediately downstream of the first structural gene in the hut operon, hutP. High levels of histidine induction were observed only in hut-lacZ fusions which contained this palindromic sequence. The hutC1 mutation, which results in constitutive expression of the hut operon, was sequenced and found to contain a GC to TA transversion located within the stem-loop structure. Transcription of hut DNA in vitro revealed that the palindromic structure functions as a transcriptional terminator with wild-type hut DNA but not with hutC1 DNA. Two sites were found to be involved in amino acid repression of hut expression: (i) an operator, hutOA, which lies downstream of the hut promoter, and (ii) the hut terminator. The rate of [14C]histidine uptake in amino acid-grown cells was sixfold lower than that seen in cells grown without amino acids. Thus, inhibition of histidine transport in amino acid-grown cells indirectly regulates hut expression by interfering with histidine induction at the hut terminator.
Collapse
Affiliation(s)
- L V Wray
- Department of Microbiology, Boston University School of Medicine, Massachusetts 02118
| | | |
Collapse
|
49
|
Osuna R, Janes BK, Bender RA. Roles of catabolite activator protein sites centered at -81.5 and -41.5 in the activation of the Klebsiella aerogenes histidine utilization operon hutUH. J Bacteriol 1994; 176:5513-24. [PMID: 8071230 PMCID: PMC196740 DOI: 10.1128/jb.176.17.5513-5524.1994] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The Klebsiella aerogenes hutUH operon is preceded by a promoter region, hut(P), that contains two divergent promoters (hutUp and Pc) which overlap and are alternately expressed. In the absence of the catabolite gene activator protein-cyclic AMP (CAP-cAMP) complex, Pc is predominantly expressed while hutUp is largely repressed. CAP-cAMP has the dual effect of repressing transcription from Pc while simultaneously activating transcription from hutUp. DNA deletion mutations in this region were used to identify DNA sequences required for transcription of these two promoters. We showed that inactivation of Pc by DNA deletion did not result in activation of hutUp in vitro or in vivo. In addition, Escherichia coli CAP mutants that are known to bind and bend DNA normally but are unable to activate various CAP-dependent promoters were also unable to activate hutUp in vivo. These results invalidate an indirect activation model by which CAP-mediated repression of Pc in itself would led to activation of hutUp. Gel retardation asays with various deletion mutations of hut(P) and DNase I protection analyses revealed a high-affinity CAP binding site (CAP site 1) centered at -81.5 relative to the hutUp start of transcription and a second low-affinity CAP site (CAP site 2) centered at about -41.5. CAP site 1 is essential for activation of hutUp. Although CAP site 2 by itself is unable to activate hutUp in vivo under catabolite-activating conditions, it appears to be required for maximal transcription from a site centered at -41.5, does not activate hutUp suggests that the role of CAP-cAMP at the weaker CAP site may be different from that of other promoters containing a similarly positioned site. We propose that CAP directly stimulates the activity of RNA polymerase at hutUp and that this reaction is completely dependent on a naturally occurring CAP site centered at -81.5 and also involves a second CAP site centered at about -41.5 for maximal activation.
Collapse
Affiliation(s)
- R Osuna
- Department of Biology, University of Michigan, Ann Arbor 48109-1048
| | | | | |
Collapse
|
50
|
Abstract
The Klebsiella aerogenes nac gene, whose product is necessary for nitrogen regulation of a number of operons, was identified and its DNA sequence determined. The nac sequence predicted a protein a 305 amino acids with a strong similarity to members of the LysR family of regulatory proteins, especially OxyR from Escherichia coli. Analysis of proteins expressed in minicells showed that nac is a single-gene operon whose product has an apparent molecular weight of about 32 kDa as measured in sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Immediately downstream from nac is a two-gene operon, the first gene of which encodes another member of the LysR family. Upstream from nac is a tRNAAsn gene transcribed divergently from nac. About 60 bp upstream from the nac open reading frame lies a sequence nearly identical to the consensus for sigma 54-dependent promoters, with the conserved GG and GC nucleotides at -26 and -14 relative to the start of transcription. About 130 bp farther upstream (at -153 relative to the start of transcription) is a sequence nearly identical to the transcriptional activator NTRC-responsive enhancer consensus. Another weaker NTRC-binding site is located adjacent to this site (at -133 relative to the start of transcription). Thus, we propose that nac is transcribed by RNA polymerase carrying sigma 54 in response to the nitrogen regulatory (NTR) system. A transposon located between the promoter and the nac ORF prevented NTR-mediated expression of nac, supporting this identification of the promoter sequence. The insertion of over 5 kb of transposon DNA between the enhancer and its target promoter had only a weak effect on enhancer-mediated regulation, suggesting that enhancers may be able to act at a considerable distance on the bacterial chromosome.
Collapse
Affiliation(s)
- A Schwacha
- Department of Biology, University of Michigan, Ann Arbor 48109-1048
| | | |
Collapse
|