1
|
Allen WJ, Collinson I. A unifying mechanism for protein transport through the core bacterial Sec machinery. Open Biol 2023; 13:230166. [PMID: 37643640 PMCID: PMC10465204 DOI: 10.1098/rsob.230166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 07/21/2023] [Indexed: 08/31/2023] Open
Abstract
Encapsulation and compartmentalization are fundamental to the evolution of cellular life, but they also pose a challenge: how to partition the molecules that perform biological functions-the proteins-across impermeable barriers into sub-cellular organelles, and to the outside. The solution lies in the evolution of specialized machines, translocons, found in every biological membrane, which act both as gate and gatekeeper across and into membrane bilayers. Understanding how these translocons operate at the molecular level has been a long-standing ambition of cell biology, and one that is approaching its denouement; particularly in the case of the ubiquitous Sec system. In this review, we highlight the fruits of recent game-changing technical innovations in structural biology, biophysics and biochemistry to present a largely complete mechanism for the bacterial version of the core Sec machinery. We discuss the merits of our model over alternative proposals and identify the remaining open questions. The template laid out by the study of the Sec system will be of immense value for probing the many other translocons found in diverse biological membranes, towards the ultimate goal of altering or impeding their functions for pharmaceutical or biotechnological purposes.
Collapse
Affiliation(s)
- William J. Allen
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK
| | - Ian Collinson
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK
| |
Collapse
|
2
|
Eismann L, Fijalkowski I, Galmozzi CV, Koubek J, Tippmann F, Van Damme P, Kramer G. Selective ribosome profiling reveals a role for SecB in the co-translational inner membrane protein biogenesis. Cell Rep 2022; 41:111776. [PMID: 36476862 DOI: 10.1016/j.celrep.2022.111776] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 10/04/2022] [Accepted: 11/11/2022] [Indexed: 12/12/2022] Open
Abstract
The chaperone SecB has been implicated in de novo protein folding and translocation across the membrane, but it remains unclear which nascent polypeptides SecB binds, when during translation SecB acts, how SecB function is coordinated with other chaperones and targeting factors, and how polypeptide engagement contributes to protein biogenesis. Using selective ribosome profiling, we show that SecB binds many nascent cytoplasmic and translocated proteins generally late during translation and controlled by the chaperone trigger factor. Revealing an uncharted role in co-translational translocation, inner membrane proteins (IMPs) are the most prominent nascent SecB interactors. Unlike other substrates, IMPs are bound early during translation, following the membrane targeting by the signal recognition particle. SecB remains bound until translation is terminated, and contributes to membrane insertion. Our study establishes a role of SecB in the co-translational maturation of proteins from all cellular compartments and functionally implicates cytosolic chaperones in membrane protein biogenesis.
Collapse
Affiliation(s)
- Lena Eismann
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany
| | - Igor Fijalkowski
- iRIP Unit, Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, 9000 Ghent, Belgium
| | - Carla Verónica Galmozzi
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, 41012 Seville, Spain; Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/ Universidad de Sevilla, 41013 Seville, Spain
| | - Jiří Koubek
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany
| | - Frank Tippmann
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany
| | - Petra Van Damme
- iRIP Unit, Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, 9000 Ghent, Belgium
| | - Günter Kramer
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany.
| |
Collapse
|
3
|
Kaushik S, He H, Dalbey RE. Bacterial Signal Peptides- Navigating the Journey of Proteins. Front Physiol 2022; 13:933153. [PMID: 35957980 PMCID: PMC9360617 DOI: 10.3389/fphys.2022.933153] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 06/21/2022] [Indexed: 11/18/2022] Open
Abstract
In 1971, Blobel proposed the first statement of the Signal Hypothesis which suggested that proteins have amino-terminal sequences that dictate their export and localization in the cell. A cytosolic binding factor was predicted, and later the protein conducting channel was discovered that was proposed in 1975 to align with the large ribosomal tunnel. The 1975 Signal Hypothesis also predicted that proteins targeted to different intracellular membranes would possess distinct signals and integral membrane proteins contained uncleaved signal sequences which initiate translocation of the polypeptide chain. This review summarizes the central role that the signal peptides play as address codes for proteins, their decisive role as targeting factors for delivery to the membrane and their function to activate the translocation machinery for export and membrane protein insertion. After shedding light on the navigation of proteins, the importance of removal of signal peptide and their degradation are addressed. Furthermore, the emerging work on signal peptidases as novel targets for antibiotic development is described.
Collapse
|
4
|
Zhu Z, Wang S, Shan SO. Ribosome profiling reveals multiple roles of SecA in cotranslational protein export. Nat Commun 2022; 13:3393. [PMID: 35697696 PMCID: PMC9192764 DOI: 10.1038/s41467-022-31061-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 05/26/2022] [Indexed: 11/18/2022] Open
Abstract
SecA, an ATPase known to posttranslationally translocate secretory proteins across the bacterial plasma membrane, also binds ribosomes, but the role of SecA’s ribosome interaction has been unclear. Here, we used a combination of ribosome profiling methods to investigate the cotranslational actions of SecA. Our data reveal the widespread accumulation of large periplasmic loops of inner membrane proteins in the cytoplasm during their cotranslational translocation, which are specifically recognized and resolved by SecA in coordination with the proton motive force (PMF). Furthermore, SecA associates with 25% of secretory proteins with highly hydrophobic signal sequences at an early stage of translation and mediates their cotranslational transport. In contrast, the chaperone trigger factor (TF) delays SecA engagement on secretory proteins with weakly hydrophobic signal sequences, thus enforcing a posttranslational mode of their translocation. Our results elucidate the principles of SecA-driven cotranslational protein translocation and reveal a hierarchical network of protein export pathways in bacteria. Using a combination of ribosome profiling methods, Zhu et al. investigate the principles governing the cotranslational interaction of SecA with nascent proteins and reveal a hierarchical organization of protein export pathways in bacteria.
Collapse
Affiliation(s)
- Zikun Zhu
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Shuai Wang
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA.,Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, 94305, USA
| | - Shu-Ou Shan
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA.
| |
Collapse
|
5
|
Jiang C, Wynne M, Huber D. How Quality Control Systems AID Sec-Dependent Protein Translocation. Front Mol Biosci 2021; 8:669376. [PMID: 33928127 PMCID: PMC8076867 DOI: 10.3389/fmolb.2021.669376] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 03/17/2021] [Indexed: 02/01/2023] Open
Abstract
The evolutionarily conserved Sec machinery is responsible for transporting proteins across the cytoplasmic membrane. Protein substrates of the Sec machinery must be in an unfolded conformation in order to be translocated across (or inserted into) the cytoplasmic membrane. In bacteria, the requirement for unfolded proteins is strict: substrate proteins that fold (or misfold) prematurely in the cytoplasm prior to translocation become irreversibly trapped in the cytoplasm. Partially folded Sec substrate proteins and stalled ribosomes containing nascent Sec substrates can also inhibit translocation by blocking (i.e., “jamming”) the membrane-embedded Sec machinery. To avoid these issues, bacteria have evolved a complex network of quality control systems to ensure that Sec substrate proteins do not fold in the cytoplasm. This quality control network can be broken into three branches, for which we have defined the acronym “AID”: (i) avoidance of cytoplasmic intermediates through cotranslationally channeling newly synthesized Sec substrates to the Sec machinery; (ii) inhibition of folding Sec substrate proteins that transiently reside in the cytoplasm by molecular chaperones and the requirement for posttranslational modifications; (iii) destruction of products that could potentially inhibit translocation. In addition, several stress response pathways help to restore protein-folding homeostasis when environmental conditions that inhibit translocation overcome the AID quality control systems.
Collapse
Affiliation(s)
- Chen Jiang
- School of Biosciences and the Institute for Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom
| | - Max Wynne
- School of Biosciences and the Institute for Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom
| | - Damon Huber
- School of Biosciences and the Institute for Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
6
|
Cranford-Smith T, Huber D. The way is the goal: how SecA transports proteins across the cytoplasmic membrane in bacteria. FEMS Microbiol Lett 2019; 365:4969678. [PMID: 29790985 PMCID: PMC5963308 DOI: 10.1093/femsle/fny093] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 04/10/2018] [Indexed: 02/06/2023] Open
Abstract
In bacteria, translocation of most soluble secreted proteins (and outer membrane proteins in Gram-negative bacteria) across the cytoplasmic membrane by the Sec machinery is mediated by the essential ATPase SecA. At its core, this machinery consists of SecA and the integral membrane proteins SecYEG, which form a protein conducting channel in the membrane. Proteins are recognised by the Sec machinery by virtue of an internally encoded targeting signal, which usually takes the form of an N-terminal signal sequence. In addition, substrate proteins must be maintained in an unfolded conformation in the cytoplasm, prior to translocation, in order to be competent for translocation through SecYEG. Recognition of substrate proteins occurs via SecA—either through direct recognition by SecA or through secondary recognition by a molecular chaperone that delivers proteins to SecA. Substrate proteins are then screened for the presence of a functional signal sequence by SecYEG. Proteins with functional signal sequences are translocated across the membrane in an ATP-dependent fashion. The current research investigating each of these steps is reviewed here.
Collapse
Affiliation(s)
- Tamar Cranford-Smith
- Institute for Microbiology and Infection School of Biosciences University of Birmingham Edgbaston Birmingham B15 2TT, UK
| | - Damon Huber
- Institute for Microbiology and Infection School of Biosciences University of Birmingham Edgbaston Birmingham B15 2TT, UK
| |
Collapse
|
7
|
Substrate Proteins Take Shape at an Improved Bacterial Translocon. J Bacteriol 2018; 201:JB.00618-18. [PMID: 30322856 DOI: 10.1128/jb.00618-18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 10/12/2018] [Indexed: 11/20/2022] Open
Abstract
Characterization of Sec-dependent bacterial protein transport has often relied on an in vitro protein translocation system comprised in part of Escherichia coli inverted inner membrane vesicles or, more recently, purified SecYEG translocons reconstituted into liposomes using mostly a single substrate (proOmpA). A paper published in this issue (P. Bariya and L. Randall, J Bacteriol 201:e00493-18, 2019, https://doi.org/10.1128/JB.00493-18) finds that inclusion of SecA protein during SecYEG proteoliposome reconstitution dramatically improves the number of active translocons. This experimentally useful and intriguing result that may arise from SecA membrane integration properties is discussed here. Furthermore, determination of the rate-limiting transport step for nine different substrates implicates the mature region distal to the signal peptide in the observed rate constant differences, indicating that more nuanced transport models that respond to differences in protein sequence and structure are needed.
Collapse
|
8
|
Crane JM, Randall LL. The Sec System: Protein Export in Escherichia coli. EcoSal Plus 2017; 7:10.1128/ecosalplus.ESP-0002-2017. [PMID: 29165233 PMCID: PMC5807066 DOI: 10.1128/ecosalplus.esp-0002-2017] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Indexed: 11/20/2022]
Abstract
In Escherichia coli, proteins found in the periplasm or the outer membrane are exported from the cytoplasm by the general secretory, Sec, system before they acquire stably folded structure. This dynamic process involves intricate interactions among cytoplasmic and membrane proteins, both peripheral and integral, as well as lipids. In vivo, both ATP hydrolysis and proton motive force are required. Here, we review the Sec system from the inception of the field through early 2016, including biochemical, genetic, and structural data.
Collapse
Affiliation(s)
- Jennine M Crane
- Department of Biochemistry, University of Missouri, Columbia, MO 65201
| | - Linda L Randall
- Department of Biochemistry, University of Missouri, Columbia, MO 65201
| |
Collapse
|
9
|
Abstract
A paper published in this issue of the Journal of Bacteriology (D. Huber, M. Jamshad, R. Hanmer, D. Schibich, K. Döring, I. Marcomini, G. Kramer, and B. Bukau, J Bacteriol 199:e0622-16, 2017, https://doi.org/10.1128/JB.00622-16) provides us with a timely reminder that all is not as clear as we had previously thought in the general bacterial secretion system. The paper describes a new mode of secretion through the Sec system—“uncoupled cotranslocation”—for the passage of proteins across the bacterial inner membrane and suggests that we might rethink the nature and mechanism of the targeting and transport steps toward protein export.
Collapse
|
10
|
SecA Cotranslationally Interacts with Nascent Substrate Proteins In Vivo. J Bacteriol 2016; 199:JB.00622-16. [PMID: 27795329 PMCID: PMC5198489 DOI: 10.1128/jb.00622-16] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 10/03/2016] [Indexed: 12/22/2022] Open
Abstract
SecA is an essential component of the Sec machinery in bacteria, which is responsible for transporting proteins across the cytoplasmic membrane. Recent work from our laboratory indicates that SecA binds to ribosomes. Here, we used two different approaches to demonstrate that SecA also interacts with nascent polypeptides in vivo and that these polypeptides are Sec substrates. First, we photo-cross-linked SecA to ribosomes in vivo and identified mRNAs that copurify with SecA. Microarray analysis of the copurifying mRNAs indicated a strong enrichment for proteins containing Sec-targeting sequences. Second, we used a 2-dimensional (2-D) gel approach to analyze radioactively labeled nascent polypeptides that copurify with SecA, including maltose binding protein, a well-characterized SecA substrate. The interaction of SecA with nascent chains was not strongly affected in cells lacking SecB or trigger factor, both of which also interact with nascent Sec substrates. Indeed, the ability of SecB to interact with nascent chains was disrupted in strains in which the interaction between SecA and the ribosome was defective. Analysis of the interaction of SecA with purified ribosomes containing arrested nascent chains in vitro indicates that SecA can begin to interact with a variety of nascent chains when they reach a length of ∼110 amino acids, which is considerably shorter than the length required for interaction with SecB. Our results suggest that SecA cotranslationally recognizes nascent Sec substrates and that this recognition could be required for the efficient delivery of these proteins to the membrane-embedded Sec machinery. IMPORTANCE SecA is an ATPase that provides the energy for the translocation of proteins across the cytoplasmic membrane by the Sec machinery in bacteria. The translocation of most of these proteins is uncoupled from protein synthesis and is frequently described as “posttranslational.” Here, we show that SecA interacts with nascent Sec substrates. This interaction is not dependent on SecB or trigger factor, which also interact with nascent Sec substrates. Moreover, the interaction of SecB with nascent polypeptides is dependent on the interaction of SecA with the ribosome, suggesting that interaction of the nascent chain with SecA precedes interaction with SecB. Our results suggest that SecA could recognize substrate proteins cotranslationally in order to efficiently target them for uncoupled protein translocation.
Collapse
|
11
|
Yan S, Wu G. Large-scale evolutionary analyses on SecB subunits of bacterial sec system. PLoS One 2015; 10:e0120417. [PMID: 25775430 PMCID: PMC4361572 DOI: 10.1371/journal.pone.0120417] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 01/21/2015] [Indexed: 01/10/2023] Open
Abstract
Protein secretion systems are extremely important in bacteria because they are involved in many fundamental cellular processes. Of the various secretion systems, the Sec system is composed of seven different subunits in bacteria, and subunit SecB brings secreted preproteins to subunit SecA, which with SecYEG and SecDF forms a complex for the translocation of secreted preproteins through the inner membrane. Because of the wide existence of Sec system across bacteria, eukaryota, and archaea, each subunit of the Sec system has a complicated evolutionary relationship. Until very recently, 5,162 SecB sequences have been documented in UniProtKB, however no phylogenetic study has been conducted on a large sampling of SecBs from bacterial Sec secretion system, and no statistical study has been conducted on such size of SecBs in order to exhaustively investigate their variances of pairwise p-distance along taxonomic lineage from kingdom to phylum, to class, to order, to family, to genus and to organism. To fill in these knowledge gaps, 3,813 bacterial SecB sequences with full taxonomic lineage from kingdom to organism covering 4 phyla, 11 classes, 41 orders, 82 families, 269 genera, and 3,744 organisms were studied. Phylogenetic analysis revealed how the SecBs evolved without compromising their function with examples of 3-D structure comparison of two SecBs from Proteobacteria, and possible factors that affected the SecB evolution were considered. The average pairwise p-distances showed that the variance varied greatly in each taxonomic group. Finally, the variance was further partitioned into inter- and intra-clan variances, which could correspond to vertical and horizontal gene transfers, with relevance for Achromobacter, Brevundimonas, Ochrobactrum, and Pseudoxanthomonas.
Collapse
Affiliation(s)
- Shaomin Yan
- State Key Laboratory of Non-food Biomass Enzyme Technology, National Engineering Research Center for Non-food Biorefinery, Guangxi Biomass Industrialization Engineering Institute, Guangxi Key Laboratory of Biorefinery, Guangxi Academy of Sciences, 98 Daling Road, Nanning, Guangxi, 530007, China
| | - Guang Wu
- State Key Laboratory of Non-food Biomass Enzyme Technology, National Engineering Research Center for Non-food Biorefinery, Guangxi Biomass Industrialization Engineering Institute, Guangxi Key Laboratory of Biorefinery, Guangxi Academy of Sciences, 98 Daling Road, Nanning, Guangxi, 530007, China
- * E-mail:
| |
Collapse
|
12
|
Schneewind O, Missiakas D. Sec-secretion and sortase-mediated anchoring of proteins in Gram-positive bacteria. BIOCHIMICA ET BIOPHYSICA ACTA 2014; 1843:1687-97. [PMID: 24269844 PMCID: PMC4031296 DOI: 10.1016/j.bbamcr.2013.11.009] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 11/01/2013] [Accepted: 11/13/2013] [Indexed: 01/17/2023]
Abstract
Signal peptide-driven secretion of precursor proteins directs polypeptides across the plasma membrane of bacteria. Two pathways, Sec- and SRP-dependent, converge at the SecYEG translocon to thread unfolded precursor proteins across the membrane, whereas folded preproteins are routed via the Tat secretion pathway. Gram-positive bacteria lack an outer membrane and are surrounded by a rigid layer of peptidoglycan. Interactions with their environment are mediated by proteins that are retained in the cell wall, often through covalent attachment to the peptidoglycan. In this review, we describe the mechanisms for both Sec-dependent secretion and sortase-dependent assembly of proteins in the envelope of Gram-positive bacteria. This article is part of a Special Issue entitled: Protein trafficking and secretion in bacteria. Guest Editors: Anastassios Economou and Ross Dalbey.
Collapse
Affiliation(s)
- Olaf Schneewind
- Department of Microbiology, University of Chicago, Chicago, IL 60637, USA.
| | | |
Collapse
|
13
|
Optimizing heterologous protein production in the periplasm of E. coli by regulating gene expression levels. Microb Cell Fact 2013; 12:24. [PMID: 23497240 PMCID: PMC3605120 DOI: 10.1186/1475-2859-12-24] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Accepted: 03/05/2013] [Indexed: 11/10/2022] Open
Abstract
Background In Escherichia coli many heterologous proteins are produced in the periplasm. To direct these proteins to the periplasm, they are equipped with an N-terminal signal sequence so that they can traverse the cytoplasmic membrane via the protein-conducting Sec-translocon. For poorly understood reasons, the production of heterologous secretory proteins is often toxic to the cell thereby limiting yields. To gain insight into the mechanism(s) that underlie this toxicity we produced two secretory heterologous proteins, super folder green fluorescent protein and a single-chain variable antibody fragment, in the Lemo21(DE3) strain. In this strain, the expression intensity of the gene encoding the target protein can be precisely controlled. Results Both SFGFP and the single-chain variable antibody fragment were equipped with a DsbA-derived signal sequence. Producing these proteins following different gene expression levels in Lemo21(DE3) allowed us to identify the optimal expression level for each target gene. Too high gene expression levels resulted in saturation of the Sec-translocon capacity as shown by hampered translocation of endogenous secretory proteins and a protein misfolding/aggregation problem in the cytoplasm. At the optimal gene expression levels, the negative effects of the production of the heterologous secretory proteins were minimized and yields in the periplasm were optimized. Conclusions Saturating the Sec-translocon capacity can be a major bottleneck hampering heterologous protein production in the periplasm. This bottleneck can be alleviated by harmonizing expression levels of the genes encoding the heterologous secretory proteins with the Sec-translocon capacity. Mechanistic insight into the production of proteins in the periplasm is key to optimizing yields in this compartment.
Collapse
|
14
|
Liechti G, Goldberg JB. Outer membrane biogenesis in Escherichia coli, Neisseria meningitidis, and Helicobacter pylori: paradigm deviations in H. pylori. Front Cell Infect Microbiol 2012; 2:29. [PMID: 22919621 PMCID: PMC3417575 DOI: 10.3389/fcimb.2012.00029] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Accepted: 02/28/2012] [Indexed: 12/16/2022] Open
Abstract
The bacterial pathogen Helicobacter pylori is capable of colonizing the gastric mucosa of the human stomach using a variety of factors associated with or secreted from its outer membrane (OM). Lipopolysaccharide (LPS) and numerous OM proteins have been shown to be involved in adhesion and immune stimulation/evasion. Many of these factors are essential for colonization and/or pathogenesis in a variety of animal models. Despite this wide array of potential targets present on the bacterial surface, the ability of H. pylori to vary its OM profile limits the effectiveness of vaccines or therapeutics that target any single one of these components. However, it has become evident that the proteins comprising the complexes that transport the majority of these molecules to the OM are highly conserved and often essential. The field of membrane biogenesis has progressed remarkably in the last few years, and the possibility now exists for targeting the mechanisms by which β-barrel proteins, lipoproteins, and LPS are transported to the OM, resulting in loss of bacterial fitness and significant altering of membrane permeability. In this review, the OM transport machinery for LPS, lipoproteins, and outer membrane proteins (OMPs) are discussed. While the principal investigations of these transport mechanisms have been conducted in Escherichia coli and Neisseria meningitidis, here these systems will be presented in the genetic context of ε proteobacteria. Bioinformatic analysis reveals that minimalist genomes, such as that of Helicobacter pylori, offer insight into the smallest number of components required for these essential pathways to function. Interestingly, in the majority of ε proteobacteria, while the inner and OM associated apparatus of LPS, lipoprotein, and OMP transport pathways appear to all be intact, most of the components associated with the periplasmic compartment are either missing or are almost unrecognizable when compared to their E. coli counterparts. Eventual targeting of these pathways would have the net effect of severely limiting the delivery/transport of components to the OM and preventing the bacterium's ability to infect its human host.
Collapse
Affiliation(s)
- George Liechti
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia Health System, Charlottesville VA, USA
| | | |
Collapse
|
15
|
Abstract
SecA signal peptide interaction is critical for initiating protein translocation in the bacterial Sec-dependent pathway. Here, we have utilized the recent nuclear magnetic resonance (NMR) and Förster resonance energy transfer studies that mapped the location of the SecA signal peptide-binding site to design and isolate signal peptide-binding-defective secA mutants. Biochemical characterization of the mutant SecA proteins showed that Ser226, Val310, Ile789, Glu806, and Phe808 are important for signal peptide binding. A genetic system utilizing alkaline phosphatase secretion driven by different signal peptides was employed to demonstrate that both the PhoA and LamB signal peptides appear to recognize a common set of residues at the SecA signal peptide-binding site. A similar system containing either SecA-dependent or signal recognition particle (SRP)-dependent signal peptides along with the prlA suppressor mutation that is defective in signal peptide proofreading activity were employed to distinguish between SecA residues that are utilized more exclusively for signal peptide recognition or those that also participate in the proofreading and translocation functions of SecA. Collectively, our data allowed us to propose a model for the location of the SecA signal peptide-binding site that is more consistent with recent structural insights into this protein translocation system.
Collapse
|
16
|
Zalucki YM, Beacham IR, Jennings MP. Coupling between codon usage, translation and protein export in Escherichia coli. Biotechnol J 2011; 6:660-7. [PMID: 21567959 DOI: 10.1002/biot.201000334] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Revised: 04/11/2011] [Accepted: 04/12/2011] [Indexed: 11/07/2022]
Abstract
Proteins destined for export via the Sec-dependent pathway are synthesized with a short N-terminal signal peptide. A requirement for export is that the proteins are in a translocationally competent state. This is a loosely folded state that allows the protein to pass through the SecYEG apparatus and pass into the periplasm. In order to maintain pre-secretory proteins in an export-competent state, there are many factors that slow the folding of the pre-secretory protein in the cytoplasm. These include cytoplasmic chaperones, such as SecB, and the signal recognition particle, which bind the pre-secretory protein and direct it to the cytoplasmic membrane for export. Recently, evidence has been published that non-optimal codons in the signal sequence are important for a time-critical early event to allow the correct folding of pre-secretory proteins. This review details the recent developments in folding of the signal peptide and the pre-secretory protein.
Collapse
Affiliation(s)
- Yaramah M Zalucki
- Department of Microbiology and Immunology, Emory University, Atlanta, GA, USA
| | | | | |
Collapse
|
17
|
SecA interacts with ribosomes in order to facilitate posttranslational translocation in bacteria. Mol Cell 2011; 41:343-53. [PMID: 21292166 DOI: 10.1016/j.molcel.2010.12.028] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2010] [Revised: 08/06/2010] [Accepted: 12/10/2010] [Indexed: 11/21/2022]
Abstract
In Escherichia coli, translocation of exported proteins across the cytoplasmic membrane is dependent on the motor protein SecA and typically begins only after synthesis of the substrate has already been completed (i.e., posttranslationally). Thus, it has generally been assumed that the translocation machinery also recognizes its protein substrates posttranslationally. Here we report a specific interaction between SecA and the ribosome at a site near the polypeptide exit channel. This interaction is mediated by conserved motifs in SecA and ribosomal protein L23, and partial disruption of this interaction in vivo by introducing mutations into the genes encoding SecA or L23 affects the efficiency of translocation by the posttranslational pathway. Based on these findings, we propose that SecA could interact with its nascent substrates during translation in order to efficiently channel them into the "posttranslational" translocation pathway.
Collapse
|
18
|
Krishnan B, Kulothungan SR, Patra AK, Udgaonkar JB, Varadarajan R. SecB-mediated protein export need not occur via kinetic partitioning. J Mol Biol 2008; 385:1243-56. [PMID: 19028503 DOI: 10.1016/j.jmb.2008.10.094] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2008] [Revised: 10/29/2008] [Accepted: 10/31/2008] [Indexed: 11/16/2022]
Abstract
In Escherichia coli, the cytosolic chaperone SecB is responsible for the selective entry of a subset of precursor proteins into the Sec pathway. In vitro, SecB binds to a variety of unfolded substrates without apparent sequence specificity, but not native proteins. Selectivity has therefore been suggested to occur by kinetic partitioning of substrates between protein folding and SecB association. Evidence for kinetic partitioning is based on earlier observations that SecB blocks the refolding of the precursor form of maltose-binding protein (preMBP)(5) and slow-folding maltose-binding protein (MBP) mutants, but not faster-folding mature wild-type MBP. In order to quantitatively validate the kinetic partitioning model, we have independently measured each of the rate constants involved in the interaction of SecB with refolding preMBP (a physiological substrate of SecB) and mature MBP. The measured rate constants correctly predict substrate folding kinetics over a wide range of SecB, MBP, and preMBP concentrations. Analysis of the data reveals that, for many substrates, kinetic partitioning is unlikely to be responsible for SecB-mediated protein export. Instead, the ability of SecB-bound substrates to continue folding while bound to SecB and their ability to interact with other components of the secretory machinery such as SecA may be key opposing determinants that inhibit and promote protein export, respectively.
Collapse
Affiliation(s)
- Beena Krishnan
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012, India
| | | | | | | | | |
Collapse
|
19
|
Dempsey BR, Wrona M, Moulin JM, Gloor GB, Jalilehvand F, Lajoie G, Shaw GS, Shilton BH. Solution NMR structure and X-ray absorption analysis of the C-terminal zinc-binding domain of the SecA ATPase. Biochemistry 2004; 43:9361-71. [PMID: 15260479 DOI: 10.1021/bi0493057] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The solution NMR structure of a 22-residue Zn(2+)-binding domain (ZBD) from Esherichia coli preprotein translocase subunit SecA is presented. In conjunction with X-ray absorption analysis, the NMR structure shows that three cysteines and a histidine in the sequence CXCXSGX(8)CH assume a tetrahedral arrangement around the Zn(2+) atom, with an average Zn(2+)-S bond distance of 2.30 A and a Zn(2+)-N bond distance of 2.03 A. The NMR structure shows that ND1 of His20 binds to the Zn(2+) atom. The ND1-Zn(2+) bond is somewhat strained: it makes an angle of approximately 17 degrees with the plane of the ring, and it also shows a significant "in-plane" distortion of 13 degrees. A comprehensive sequence alignment of the SecA-ZBD from many different organisms shows that, along with the four Zn(2+) ligands, there is a serine residue (Ser12) that is completely conserved. The NMR structure indicates that the side chain of this serine residue forms a strong hydrogen bond with the thiolate of the third cysteine residue (Cys19); therefore, the conserved serine appears to have a critical role in the structure. SecB, an export-specific chaperone, is the only known binding partner for the SecA-ZBD. A phylogenetic analysis using 86 microbial genomes shows that 59 of the organisms carry SecA with a ZBD, but only 31 of these organisms also possess a gene for SecB, indicating that there may be uncharacterized binding partners for the SecA-ZBD.
Collapse
Affiliation(s)
- Brian R Dempsey
- Department of Biochemistry, University of Western Ontario, London ON N6A 5C1, Ontario, Canada
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Wolff N, Sapriel G, Bodenreider C, Chaffotte A, Delepelaire P. Antifolding activity of the SecB chaperone is essential for secretion of HasA, a quickly folding ABC pathway substrate. J Biol Chem 2003; 278:38247-53. [PMID: 12829711 DOI: 10.1074/jbc.m302322200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have previously shown that SecB, the ATP-independent chaperone of the Sec pathway, is required for the secretion of the HasA hemophore from Serratia marcescens via its type I secretion pathway, both in the reconstituted system in Escherichia coli and in the original host. The refolding of apo-HasA after denaturation with guanidine HCl was followed by stopped-flow measurements of fluorescence of its single tryptophan, both in the absence and presence of SecB. In the absence of SecB, HasA folds very quickly with one main phase (45 s(-1)) accounting for 92% of the signal. SecB considerably slows down HasA folding. At stoichiometric amounts of SecB and HasA, a single phase (0.014 s(-1)) of refolding is observed. Two double point mutants of HasA were made, abolishing two hydrogen bonds between N-terminal and C-terminal side chain residues. In both cases, the mutants essentially maintained the same secondary and tertiary structure as wild-type HasA and were fully functional. Refolding of both mutants was much slower than that of wild-type HasA and they were secreted essentially independently of SecB. We conclude that SecB has mainly an antifolding function in the HasA ABC secretion pathway.
Collapse
Affiliation(s)
- Nicolas Wolff
- Unité de Résonance Magnétique Nucléaire des Biomolécules, Institut Pasteur, Paris, France
| | | | | | | | | |
Collapse
|
21
|
Mallik I, Smith MA, Flower AM. Recognition of secretory proteins in Escherichia coli requires signals in addition to the signal sequence and slow folding. BMC Microbiol 2002; 2:32. [PMID: 12427258 PMCID: PMC137694 DOI: 10.1186/1471-2180-2-32] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2002] [Accepted: 11/11/2002] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND The Sec-dependent protein export apparatus of Escherichia coli is very efficient at correctly identifying proteins to be exported from the cytoplasm. Even bacterial strains that carry prl mutations, which allow export of signal sequence-defective precursors, accurately differentiate between cytoplasmic and mutant secretory proteins. It was proposed previously that the basis for this precise discrimination is the slow folding rate of secretory proteins, resulting in binding by the secretory chaperone, SecB, and subsequent targeting to translocase. Based on this proposal, we hypothesized that a cytoplasmic protein containing a mutation that slows its rate of folding would be recognized by SecB and therefore targeted to the Sec pathway. In a Prl suppressor strain the mutant protein would be exported to the periplasm due to loss of ability to reject non-secretory proteins from the pathway. RESULTS In the current work, we tested this hypothesis using a mutant form of lambda repressor that folds slowly. No export of the mutant protein was observed, even in a prl strain. We then examined binding of the mutant lambda repressor to SecB. We did not observe interaction by either of two assays, indicating that slow folding is not sufficient for SecB binding and targeting to translocase. CONCLUSIONS These results strongly suggest that to be targeted to the export pathway, secretory proteins contain signals in addition to the canonical signal sequence and the rate of folding.
Collapse
Affiliation(s)
- Ipsita Mallik
- Department of Microbiology and Immunology, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58202-9037
| | - Margaret A Smith
- Department of Microbiology and Immunology, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58202-9037
| | - Ann M Flower
- Department of Microbiology and Immunology, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58202-9037
| |
Collapse
|
22
|
Abstract
Trigger factor (TF) is a ribosome-associated protein that interacts with a wide variety of nascent polypeptides in Escherichia coli. Previous studies have indicated that TF cooperates with DnaK to facilitate protein folding, but the basis of this cooperation is unclear. In this study we monitored protein export in E. coli that lack or overproduce TF to obtain further insights into its function. Whereas inactivation of genes encoding most molecular chaperones (including dnaK) impairs protein export, inactivation of the TF gene accelerated protein export and suppressed the need for targeting factors to maintain the translocation competence of presecretory proteins. Furthermore, overproduction of TF (but not DnaK) markedly retarded protein export. Manipulation of TF levels produced similar effects on the export of a cytosolic enzyme fused to a signal peptide. The data strongly suggest that TF has a unique ability to sequester nascent polypeptides for a relatively prolonged period. Based on our results, we propose that TF and DnaK promote protein folding by distinct (but complementary) mechanisms.
Collapse
Affiliation(s)
- Hin C Lee
- Genetics and Biochemistry Branch, NIDDK, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | |
Collapse
|
23
|
Abstract
Protein folding in the cell, long thought to be a spontaneous process, in fact often requires the assistance of molecular chaperones. This is thought to be largely because of the danger of incorrect folding and aggregation of proteins, which is a particular problem in the crowded environment of the cell. Molecular chaperones are involved in numerous processes in bacterial cells, including assisting the folding of newly synthesized proteins, both during and after translation; assisting in protein secretion, preventing aggregation of proteins on heat shock, and repairing proteins that have been damaged or misfolded by stresses such as a heat shock. Within the cell, a balance has to be found between refolding of proteins and their proteolytic degradation, and molecular chaperones play a key role in this. In this review, the evidence for the existence and role of the major cytoplasmic molecular chaperones will be discussed, mainly from the physiological point of view but also in relationship to their known structure, function and mechanism of action. The two major chaperone systems in bacterial cells (as typified by Escherichia coli) are the GroE and DnaK chaperones, and the contrasting roles and mechanisms of these chaperones will be presented. The GroE chaperone machine acts by providing a protected environment in which protein folding of individual protein molecules can proceed, whereas the DnaK chaperones act by binding and protecting exposed regions on unfolded or partially folded protein chains. DnaK chaperones interact with trigger factor in protein translation and with ClpB in reactivating proteins which have become aggregated after heat shock. The nature of the other cytoplasmic chaperones in the cell will also be reviewed, including those for which a clear function has not yet been determined, and those where an in vivo chaperone function has still to be proven, such as the small heat shock proteins IbpA and IbpB. The regulation of expression of the genes of the heat shock response will also be discussed, particularly in the light of the signals that are needed to induce the response. The major signals for induction of the heat shock response are elevated temperature and the presence of unfolded protein within the cell, but these are sensed and transduced differently by different bacteria. The best characterized example is the sigma 32 subunit of RNA polymerase from E. coli, which is both more efficiently translated and also transiently stabilized following heat shock. The DnaK chaperones modulate this effect. However, a more widely conserved system appears to be typified by the HrcA repressor in Bacillus subtilis, the activity of which is modulated by the GroE chaperone machine. Other examples of regulation of molecular chaperones will also be discussed. Finally, the likely future research directions for molecular chaperone biology in the post-genomic era will be briefly evaluated.
Collapse
Affiliation(s)
- P A Lund
- School of BioSciences, University of Birmingham, Birmingham B15 2TT, UK
| |
Collapse
|
24
|
Abstract
Cellular membranes act as semipermeable barriers to ions and macromolecules. Specialized mechanisms of transport of proteins across membranes have been developed during evolution. There are common mechanistic themes among protein translocation systems in bacteria and in eukaryotic cells. Here we review current understanding of mechanisms of protein transport across the bacterial plasma membrane as well as across several organelle membranes of yeast and mammalian cells. We consider a variety of organelles including the endoplasmic reticulum, outer and inner membranes of mitochondria, outer, inner, and thylakoid membranes of chloroplasts, peroxisomes, and lysosomes. Several common principles are evident: (a) multiple pathways of protein translocation across membranes exist, (b) molecular chaperones are required in the cytosol, inside the organelle, and often within the organelle membrane, (c) ATP and/or GTP hydrolysis is required, (d) a proton-motive force across the membrane is often required, and (e) protein translocation occurs through gated, aqueous channels. There are exceptions to each of these common principles indicating that our knowledge of how proteins translocate across membranes is not yet complete.
Collapse
Affiliation(s)
- F A Agarraberes
- Department of Cellular and Molecular Physiology, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111, USA
| | | |
Collapse
|
25
|
Müller M, Koch HG, Beck K, Schäfer U. Protein traffic in bacteria: multiple routes from the ribosome to and across the membrane. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2001; 66:107-57. [PMID: 11051763 DOI: 10.1016/s0079-6603(00)66028-2] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Bacteria use several routes to target their exported proteins to the plasma membrane. The majority are exported through pores formed by SecY and SecE. Two different molecular machineries are used to target proteins to the SecYE translocon. Translocated proteins, synthesized as precursors with cleavable signal sequences, require cytoplasmic chaperones, such as SecB, to remain competent for posttranslational transport. In concert with SecB, SecA targets the precursors to SecY and energizes their translocation by its ATPase activity. The latter function involves a partial insertion of SecA itself into the SecYE translocon, a process that is strongly assisted by a couple of membrane proteins, SecG, SecD, SecF, YajC, and the proton gradient across the membrane. Integral membrane proteins, however, are specifically recognized by a direct interaction between their noncleaved signal anchor sequences and the bacterial signal recognition particle (SRP) consisting of Ffh and 4.5S RNA. Recognition occurs during synthesis at the ribosome and leads to a cotranslational targeting to SecYE that is mediated by FtsY and the hydrolysis of GTP. No other Sec protein is required for integration unless the membrane protein also contains long translocated domains that engage the SecA machinery. Discrimination between SecA/SecB- and SRP-dependent targeting involves the specificity of SRP for hydrophobic signal anchor sequences and the exclusion of SRP from nascent chains of translocated proteins by trigger factor, a ribosome-associated chaperone. The SecYE pore accepts only unfolded proteins. In contrast, a class of redox factor-containing proteins leaves the cell only as completely folded proteins. They are distinguished by a twin arginine motif of their signal sequences that by an unknown mechanism targets them to specific pores. A few membrane proteins insert spontaneously into the bacterial plasma membrane without the need for targeting factors and SecYE. Insertion depends only on hydrophobic interactions between their transmembrane segments and the lipid bilayer and on the transmembrane potential. Finally, outer membrane proteins of Gram-negative bacteria after having crossed the plasma membrane are released into the periplasm, where they undergo distinct folding events until they insert as trimers into the outer membrane. These folding processes require distinct molecular chaperones of the periplasm, such as Skp, SurA, and PpiD.
Collapse
Affiliation(s)
- M Müller
- Institute of Biochemistry and Molecular Biology, University of Freiburg, Germany
| | | | | | | |
Collapse
|
26
|
Kawaguchi S, Müller J, Linde D, Kuramitsu S, Shibata T, Inoue Y, Vassylyev DG, Yokoyama S. The crystal structure of the ttCsaA protein: an export-related chaperone from Thermus thermophilus. EMBO J 2001; 20:562-9. [PMID: 11157762 PMCID: PMC133483 DOI: 10.1093/emboj/20.3.562] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2000] [Revised: 12/07/2000] [Accepted: 12/08/2000] [Indexed: 11/13/2022] Open
Abstract
The CsaA protein was first characterized in Bacillus subtilis as a molecular chaperone with export-related activities. Here we report the 2.0 Angstrom-resolution crystal structure of the Thermus thermophilus CsaA protein, designated ttCsaA. Atomic structure and experiments in solution revealed a homodimer as the functional unit. The structure of the ttCsaA monomer is reminiscent of the well known oligonucleotide-binding fold, with the addition of extensions at the N- and C-termini that form an extensive dimer interface. The two identical, large, hydrophobic cavities on the protein surface are likely to constitute the substrate binding sites. The CsaA proteins share essential sequence similarity with the tRNA-binding protein Trbp111. Structure-based sequence analysis suggests a close structural resemblance between these proteins, which may extend to the architecture of the binding sites at the atomic level. These results raise the intriguing possibility that CsaA proteins possess a second, tRNA-binding activity in addition to their export-related function.
Collapse
Affiliation(s)
- S Kawaguchi
- RIKEN Harima Institute at SPring-8, 1-1-1 Kouto, Mikazuki-cho, Sayo-Gun, Hyogo 679-5148, Japan
| | | | | | | | | | | | | | | |
Collapse
|
27
|
van Wely KHM, Swaving J, Klein M, Freudl R, Driessen AJM. The carboxyl terminus of the Bacillus subtilis SecA is dispensable for protein secretion and viability. MICROBIOLOGY (READING, ENGLAND) 2000; 146 ( Pt 10):2573-2581. [PMID: 11021932 DOI: 10.1099/00221287-146-10-2573] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The Escherichia coli secretion-dedicated chaperone SecB targets a subset of proteins to the translocase by interacting with the carboxyl (C-) terminus of SecA. This region of SecA is highly conserved in Eubacteria, but despite its presence in the Bacillus subtilis SecA, the B. subtilis genome does not appear to contain a gene for a clear homologue of SecB. Deletion of the C-terminus of the B. subtilis SecA yields cells that have normal viability, but that exhibit a response reminiscent of oxidative stress and the loss of a number of secretory proteins from the culture supernatant. Semi-quantitative RT-PCR demonstrates that these proteins are expressed at lower levels. The C-terminus of SecA fused to glutathione S:-transferase (GST) specifically binds a cytosolic protein, termed MrgA. This protein has been reported to function in relation to oxidative stress, but deletion of the mrgA gene does not result in a secretion defect nor does it cause an oxidative stress response. It is concluded that the C-terminus of the B. subtilis SecA is not essential for secretion and viability.
Collapse
Affiliation(s)
- Karel H M van Wely
- Department of Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Kerklaan 30, 9751 NN Haren, The Netherlands1
| | - Jelto Swaving
- Department of Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Kerklaan 30, 9751 NN Haren, The Netherlands1
| | - Michael Klein
- Institut für Biotechnologie 1, Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany2
| | - Roland Freudl
- Institut für Biotechnologie 1, Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany2
| | - Arnold J M Driessen
- Department of Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Kerklaan 30, 9751 NN Haren, The Netherlands1
| |
Collapse
|
28
|
Tjalsma H, Bolhuis A, Jongbloed JD, Bron S, van Dijl JM. Signal peptide-dependent protein transport in Bacillus subtilis: a genome-based survey of the secretome. Microbiol Mol Biol Rev 2000; 64:515-47. [PMID: 10974125 PMCID: PMC99003 DOI: 10.1128/mmbr.64.3.515-547.2000] [Citation(s) in RCA: 601] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
One of the most salient features of Bacillus subtilis and related bacilli is their natural capacity to secrete a variety of proteins into their environment, frequently to high concentrations. This has led to the commercial exploitation of bacilli as major "cell factories" for secreted enzymes. The recent sequencing of the genome of B. subtilis has provided major new impulse for analysis of the molecular mechanisms underlying protein secretion by this organism. Most importantly, the genome sequence has allowed predictions about the composition of the secretome, which includes both the pathways for protein transport and the secreted proteins. The present survey of the secretome describes four distinct pathways for protein export from the cytoplasm and approximately 300 proteins with the potential to be exported. By far the largest number of exported proteins are predicted to follow the major "Sec" pathway for protein secretion. In contrast, the twin-arginine translocation "Tat" pathway, a type IV prepilin-like export pathway for competence development, and ATP-binding cassette transporters can be regarded as "special-purpose" pathways, through which only a few proteins are transported. The properties of distinct classes of amino-terminal signal peptides, directing proteins into the various protein transport pathways, as well as the major components of each pathway are discussed. The predictions and comparisons in this review pinpoint important differences as well as similarities between protein transport systems in B. subtilis and other well-studied organisms, such as Escherichia coli and the yeast Saccharomyces cerevisiae. Thus, they may serve as a lead for future research and applications.
Collapse
Affiliation(s)
- H Tjalsma
- Department of Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, 9750 AA Haren, The Netherlands
| | | | | | | | | |
Collapse
|
29
|
Weinglass AB, Kaback HR. The central cytoplasmic loop of the major facilitator superfamily of transport proteins governs efficient membrane insertion. Proc Natl Acad Sci U S A 2000; 97:8938-43. [PMID: 10880570 PMCID: PMC16800 DOI: 10.1073/pnas.140224497] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Deletion of 5 residues (Delta5) from the central cytoplasmic loop of the lactose permease of Escherichia coli has no significant effect on expression or activity, whereas Delta12 leads to increased rates of permease turnover after membrane insertion and decreased transport activity, and Delta20 abolishes insertion and activity. By expressing Delta12 or Delta20 in two halves, both expression and activity are restored to levels approximating wild type. Replacing deleted residues with random hydrophilic amino acids also leads to full recovery. However, introduction of hydrophobic residues decreases expression and activity in a context-dependent manner. Thus, a minimum length of the central cytoplasmic loop is vital for proper insertion, stability, and efficient transport activity, because of constraints at the cytoplasmic ends of helices VI and VII. Furthermore, the results are consistent with the idea that the middle cytoplasmic loop provides a temporal delay between insertion of the first six helices into the membrane before insertion of the second six helices.
Collapse
Affiliation(s)
- A B Weinglass
- Howard Hughes Medical Institute, Departments of Physiology and Microbiology and Molecular Genetics, Molecular Biology Institute, University of California, Los Angeles, CA 90095-1662, USA
| | | |
Collapse
|
30
|
Müller JP, Ozegowski J, Vettermann S, Swaving J, Van Wely KH, Driessen AJ. Interaction of Bacillus subtilis CsaA with SecA and precursor proteins. Biochem J 2000; 348 Pt 2:367-73. [PMID: 10816431 PMCID: PMC1221075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
CsaA from the Gram-positive bacterium Bacillus subtilis has been identified previously as a suppressor of the growth and protein-export defect of Escherichia coli secA(Ts) mutants. CsaA has chaperone-like activities in vivo and in vitro. To examine the role of CsaA in protein export in B. subtilis, expression of the csaA gene was repressed. While export of most proteins remained unaffected, export of at least two proteins was significantly reduced upon CsaA depletion. CsaA co-immunoprecipitates and co-purifies with the SecA proteins of E. coli and B. subtilis, and binds the B. subtilis preprotein prePhoB. Purified CsaA stimulates the translocation of prePhoB into E. coli membrane vesicles bearing the B. subtilis translocase, whereas it interferes with the SecB-mediated translocation of proOmpA into membrane vesicles of E. coli. The specific interaction with the SecA translocation ATPase and preproteins suggests that CsaA acts as a chaperone that promotes the export of a subset of preproteins in B. subtilis.
Collapse
Affiliation(s)
- J P Müller
- Institute for Molecular Biology, Jena University, Winzerlaer Strasse 10, D-07745 Jena, Germany.
| | | | | | | | | | | |
Collapse
|
31
|
Knoblauch NT, Rüdiger S, Schönfeld HJ, Driessen AJ, Schneider-Mergener J, Bukau B. Substrate specificity of the SecB chaperone. J Biol Chem 1999; 274:34219-25. [PMID: 10567394 DOI: 10.1074/jbc.274.48.34219] [Citation(s) in RCA: 124] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The bacterial chaperone SecB assists translocation of proteins across the inner membrane. The mechanism by which it differentiates between secretory and cytosolic proteins is poorly understood. To identify its binding motif, we screened 2688 peptides covering sequences of 23 proteins for SecB binding. The motif is approximately 9 residues long and is enriched in aromatic and basic residues, whereas acidic residues are disfavored. Its identification allows the prediction of binding regions within protein sequences with up to 87% accuracy. SecB-binding regions occur statistically every 20-30 residues. The occurrence and affinity of binding regions are similar in SecB-dependent and -independent secretory proteins and in cytosolic proteins, and SecB lacks specificity toward signal sequences. SecB cannot thus differentiate between secretory and non-secretory proteins via its binding specificity. This conclusion is supported by the finding that SecB binds denatured luciferase, thereby allowing subsequent refolding by the DnaK system. SecB may rather be a general chaperone whose involvement in translocation is mediated by interactions of SecB and signal sequences of SecB-bound preproteins with the translocation apparatus.
Collapse
Affiliation(s)
- N T Knoblauch
- Institut für Biochemie und Molekularbiologie, Universität Freiburg, Hermann-Herder-Strasse 7, D-79104 Freiburg, Germany
| | | | | | | | | | | |
Collapse
|
32
|
Volkert TL, Baleja JD, Kumamoto CA. A highly mobile C-terminal tail of the Escherichia coli protein export chaperone SecB. Biochem Biophys Res Commun 1999; 264:949-54. [PMID: 10544036 DOI: 10.1006/bbrc.1999.1590] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The Escherichia coli export chaperone SecB binds nascent precursors of certain periplasmic and outer membrane proteins and prevents them from folding or aggregating in the cytoplasm. In this study, we demonstrate that the C-terminal 13 residues of SecB were highly mobile using (1)H NMR spectroscopy. A protein lacking the C-terminal 13 amino acids of wild-type SecB was found to retain the ability to bind unfolded maltose-binding protein (MBP) in vitro but to interfere with the normal kinetics of pre-MBP export when overexpressed in vivo. The defect in export was reversed by overproduction of the peripheral membrane ATPase SecA. Therefore, deletion of the mobile region of SecB may alter the interactions of SecB with SecA.
Collapse
Affiliation(s)
- T L Volkert
- Department of Molecular Biology, Department of Biochemistry, Tufts University, 136 Harrison Avenue, Boston, Massachusetts, 02111, USA
| | | | | |
Collapse
|
33
|
Scotti PA, Valent QA, Manting EH, Urbanus ML, Driessen AJ, Oudega B, Luirink J. SecA is not required for signal recognition particle-mediated targeting and initial membrane insertion of a nascent inner membrane protein. J Biol Chem 1999; 274:29883-8. [PMID: 10514469 DOI: 10.1074/jbc.274.42.29883] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In Escherichia coli, signal recognition particle (SRP)-dependent targeting of inner membrane proteins has been described. In vitro cross-linking studies have demonstrated that short nascent chains exposing a highly hydrophobic targeting signal interact with the SRP. This SRP, assisted by its receptor, FtsY, mediates the transfer to a common translocation site in the inner membrane that contains SecA, SecG, and SecY. Here we describe a further in vitro reconstitution of SRP-mediated membrane insertion in which purified ribosome-nascent chain-SRP complexes are targeted to the purified SecYEG complex contained in proteoliposomes in a process that requires the SRP-receptor FtsY and GTP. We found that in this system SecA and ATP are dispensable for both the transfer of the nascent inner membrane protein FtsQ to SecY and its stable membrane insertion. Release of the SRP from nascent FtsQ also occurred in the absence of SecYEG complex indicating a functional interaction of FtsY with lipids. These data suggest that SRP/FtsY and SecB/SecA constitute distinct targeting routes.
Collapse
Affiliation(s)
- P A Scotti
- Department of Microbiology, Institute of Molecular Biological Sciences, Biocentrum Amsterdam, De Boelelaan 1087, 1081 HV Amsterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
Protein translocation through the cytoplasmic membrane of Escherichia coli involves cytosolic chaperones. The export-dedicated chaperone SecB mediates targeting of a subset of pre-proteins. In this report, synthesis of SecB in response to plasmid-mediated overexpression of pre-proteins was studied. Overexpression of SecB-dependent pre-proteins stimulated synthesis of SecB under conditions where the cellular export capacity was saturated or uncomplexed SecB was trapped. On the contrary, overexpression of SecB-independent pre-beta-lactamase reduced the promoter activity of secB. The results suggest that uncomplexed SecB can be sequestered by synthesis of SecB-dependent pre-proteins. Furthermore, these data demonstrate the distinct action of the SecB- and signal recognition particle-dependent protein targeting pathways.
Collapse
Affiliation(s)
- J P Müller
- Institute for Molecular Biology, Jena University, Germany.
| |
Collapse
|
35
|
Cook HA, Kumamoto CA. Overproduction of SecA suppresses the export defect caused by a mutation in the gene encoding the Escherichia coli export chaperone secB. J Bacteriol 1999; 181:3010-7. [PMID: 10322000 PMCID: PMC93754 DOI: 10.1128/jb.181.10.3010-3017.1999] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/1998] [Accepted: 03/01/1999] [Indexed: 11/20/2022] Open
Abstract
SecB is a cytosolic protein required for rapid and efficient export of particular periplasmic and outer membrane proteins in Escherichia coli. SecB promotes export by stabilizing newly synthesized precursor proteins in a nonnative conformation and by targeting the precursors to the inner membrane. Biochemical studies suggest that SecB facilitates precursor targeting by binding to the SecA protein, a component of the membrane-embedded translocation apparatus. To gain more insight into the functional interaction of SecB and SecA, in vivo, mutations in the secA locus that compensate for the export defect caused by the secB missense mutation secBL75Q were isolated. Two suppressors were isolated, both of which led to the overproduction of wild-type SecA protein. In vivo studies demonstrated that the SecBL75Q mutant protein releases precursor proteins at a lower rate than does wild-type SecB. Increasing the level of SecA protein in the cell was found to reverse this slow-release defect, indicating that overproduction of SecA stimulates the turnover of SecBL75Q-precursor complexes. These findings lend additional support to the proposed pathway for precursor targeting in which SecB promotes targeting to the translocation apparatus by binding to the SecA protein.
Collapse
Affiliation(s)
- H A Cook
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | | |
Collapse
|
36
|
Fekkes P, de Wit JG, Boorsma A, Friesen RH, Driessen AJ. Zinc stabilizes the SecB binding site of SecA. Biochemistry 1999; 38:5111-6. [PMID: 10213615 DOI: 10.1021/bi982818r] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The molecular chaperone SecB targets preproteins to SecA at the translocation sites in the cytoplasmic membrane of Escherichia coli. SecA recognizes SecB via its carboxyl-terminal 22 aminoacyl residues, a highly conserved domain that contains 3 cysteines and 1 histidine residue that could potentially be involved in the coordination of a metal ion. Treatment of SecA with a zinc chelator resulted in a loss of the stimulatory effect of SecB on the SecA translocation ATPase activity, while the activity could be restored by the addition of ZnCl2. Interaction of SecB with the SecB binding domain of SecA is disrupted by chelators of divalent cations, and could be restored by the addition of Cu2+ or Zn2+. Atomic absorption and electrospray mass spectrometry revealed the presence of one zinc atom per monomeric carboxyl terminus of SecA. It is concluded that the SecB binding domain of SecA is stabilized by a zinc ion that promotes the functional binding of SecB to SecA.
Collapse
Affiliation(s)
- P Fekkes
- Department of Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Goningen, The Netherlands
| | | | | | | | | |
Collapse
|
37
|
Navarre WW, Schneewind O. Surface proteins of gram-positive bacteria and mechanisms of their targeting to the cell wall envelope. Microbiol Mol Biol Rev 1999; 63:174-229. [PMID: 10066836 PMCID: PMC98962 DOI: 10.1128/mmbr.63.1.174-229.1999] [Citation(s) in RCA: 935] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The cell wall envelope of gram-positive bacteria is a macromolecular, exoskeletal organelle that is assembled and turned over at designated sites. The cell wall also functions as a surface organelle that allows gram-positive pathogens to interact with their environment, in particular the tissues of the infected host. All of these functions require that surface proteins and enzymes be properly targeted to the cell wall envelope. Two basic mechanisms, cell wall sorting and targeting, have been identified. Cell well sorting is the covalent attachment of surface proteins to the peptidoglycan via a C-terminal sorting signal that contains a consensus LPXTG sequence. More than 100 proteins that possess cell wall-sorting signals, including the M proteins of Streptococcus pyogenes, protein A of Staphylococcus aureus, and several internalins of Listeria monocytogenes, have been identified. Cell wall targeting involves the noncovalent attachment of proteins to the cell surface via specialized binding domains. Several of these wall-binding domains appear to interact with secondary wall polymers that are associated with the peptidoglycan, for example teichoic acids and polysaccharides. Proteins that are targeted to the cell surface include muralytic enzymes such as autolysins, lysostaphin, and phage lytic enzymes. Other examples for targeted proteins are the surface S-layer proteins of bacilli and clostridia, as well as virulence factors required for the pathogenesis of L. monocytogenes (internalin B) and Streptococcus pneumoniae (PspA) infections. In this review we describe the mechanisms for both sorting and targeting of proteins to the envelope of gram-positive bacteria and review the functions of known surface proteins.
Collapse
Affiliation(s)
- W W Navarre
- Department of Microbiology & Immunology, UCLA School of Medicine, Los Angeles, California 90095, USA
| | | |
Collapse
|
38
|
Abstract
Proteins that perform their activity within the cytoplasmic membrane or outside this cell boundary must be targeted to the translocation site prior to their insertion and/or translocation. In bacteria, several targeting routes are known; the SecB- and the signal recognition particle-dependent pathways are the best characterized. Recently, evidence for the existence of a third major route, the twin-Arg pathway, was gathered. Proteins that use either one of these three different pathways possess special features that enable their specific interaction with the components of the targeting routes. Such targeting information is often contained in an N-terminal extension, the signal sequence, but can also be found within the mature domain of the targeted protein. Once the nascent chain starts to emerge from the ribosome, competition for the protein between different targeting factors begins. After recognition and binding, the targeting factor delivers the protein to the translocation sites at the cytoplasmic membrane. Only by means of a specific interaction between the targeting component and its receptor is the cargo released for further processing and translocation. This mechanism ensures the high-fidelity targeting of premembrane and membrane proteins to the translocation site.
Collapse
Affiliation(s)
- P Fekkes
- Department of Microbiology and Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9751 NN Haren, The Netherlands
| | | |
Collapse
|
39
|
Danese PN, Silhavy TJ. Targeting and assembly of periplasmic and outer-membrane proteins in Escherichia coli. Annu Rev Genet 1999; 32:59-94. [PMID: 9928475 DOI: 10.1146/annurev.genet.32.1.59] [Citation(s) in RCA: 184] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Escherichia coli must actively transport many of its proteins to extracytoplasmic compartments such as the periplasm and outer membrane. To perform this duty, E. coli employs a collection of Sec (secretion) proteins that catalyze the translocation of various polypeptides through the inner membrane. After translocation across the inner membrane, periplasmic and outer-membrane proteins are folded and targeted to their appropriate destinations. Here we review our knowledge of protein translocation across the inner membrane. We also discuss the various signal transduction systems that monitor extracytoplasmic protein folding and targeting, and we consider how these signal transduction systems may ultimately control these processes.
Collapse
Affiliation(s)
- P N Danese
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138, USA.
| | | |
Collapse
|
40
|
Fekkes P, de Wit JG, van der Wolk JP, Kimsey HH, Kumamoto CA, Driessen AJ. Preprotein transfer to the Escherichia coli translocase requires the co-operative binding of SecB and the signal sequence to SecA. Mol Microbiol 1998; 29:1179-90. [PMID: 9767586 DOI: 10.1046/j.1365-2958.1998.00997.x] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In Escherichia coli, precursor proteins are targeted to the membrane-bound translocase by the cytosolic chaperone SecB. SecB binds to the extreme carboxy-terminus of the SecA ATPase translocase subunit, and this interaction is promoted by preproteins. The mutant SecB proteins, L75Q and E77K, which interfere with preprotein translocation in vivo, are unable to stimulate in vitro translocation. Both mutants bind proOmpA but fail to support the SecA-dependent membrane binding of proOmpA because of a marked reduction in their binding affinities for SecA. The stimulatory effect of preproteins on the interaction between SecB and SecA exclusively involves the signal sequence domain of the preprotein, as it can be mimicked by a synthetic signal peptide and is not observed with a mutant preprotein (delta8proOmpA) bearing a non-functional signal sequence. Delta8proOmpA is not translocated across wild-type membranes, but the translocation defect is suppressed in inner membrane vesicles derived from a prIA4 strain. SecB reduces the translocation of delta8proOmpA into these vesicles and almost completely prevents translocation when, in addition, the SecB binding site on SecA is removed. These data demonstrate that efficient targeting of preproteins by SecB requires both a functional signal sequence and a SecB binding domain on SecA. It is concluded that the SecB-SecA interaction is needed to dissociate the mature preprotein domain from SecB and that binding of the signal sequence domain to SecA is required to ensure efficient transfer of the preprotein to the translocase.
Collapse
Affiliation(s)
- P Fekkes
- Department of Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, The Netherlands
| | | | | | | | | | | |
Collapse
|
41
|
Behrmann M, Koch HG, Hengelage T, Wieseler B, Hoffschulte HK, Müller M. Requirements for the translocation of elongation-arrested, ribosome-associated OmpA across the plasma membrane of Escherichia coli. J Biol Chem 1998; 273:13898-904. [PMID: 9593737 DOI: 10.1074/jbc.273.22.13898] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
An oligodeoxynucleotide-dependent method to generate nascent polypeptide chains was adopted for use in a cell-free translation system prepared from Escherichia coli. In this way, NH2-terminal pOmpA fragments of distinct sizes were synthesized. Because most of these pOmpA fragments could be covalently linked to puromycin, precipitated with cetyltrimethylammonium bromide, and were enriched by sedimentation, they represent a population of elongation-arrested, ribosome-associated nascent chains. Translocation of these nascent pOmpA chains into inside-out membrane vesicles of E. coli required SecA and (depending on size) SecB. Whereas their translocation was strictly dependent on the H+-motive force of the vesicles, no indication for the involvement of the bacterial signal recognition particle was obtained. SecA and SecB, although required for translocation, did not mediate binding of the ribosome-associated pOmpA to membrane vesicles. However, SecA and SecB cotranslationally associated with nascent pOmpA, since they could be co-isolated with the ribosome-associated nascent chains and as such catalyzed translocation subsequent to the release of the ribosome. These results indicate that in E. coli, SecA also functionally interacts with preproteins before they are targeted to the translocase of the plasma membrane.
Collapse
Affiliation(s)
- M Behrmann
- Adolf Butenandt Institut für Physikalische Biochemie, Ludwig-Maximilians-Universität München, D-80336 München, Germany
| | | | | | | | | | | |
Collapse
|
42
|
Valent QA, Scotti PA, High S, de Gier JW, von Heijne G, Lentzen G, Wintermeyer W, Oudega B, Luirink J. The Escherichia coli SRP and SecB targeting pathways converge at the translocon. EMBO J 1998; 17:2504-12. [PMID: 9564033 PMCID: PMC1170592 DOI: 10.1093/emboj/17.9.2504] [Citation(s) in RCA: 226] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Two distinct protein targeting pathways can direct proteins to the Escherichia coli inner membrane. The Sec pathway involves the cytosolic chaperone SecB that binds to the mature region of pre-proteins. SecB targets the pre-protein to SecA that mediates pre-protein translocation through the SecYEG translocon. The SRP pathway is probably used primarily for the targeting and assembly of inner membrane proteins. It involves the signal recognition particle (SRP) that interacts with the hydrophobic targeting signal of nascent proteins. By using a protein cross-linking approach, we demonstrate here that the SRP pathway delivers nascent inner membrane proteins at the membrane. The SRP receptor FtsY, GTP and inner membranes are required for release of the nascent proteins from the SRP. Upon release of the SRP at the membrane, the targeted nascent proteins insert into a translocon that contains at least SecA, SecY and SecG. Hence, as appears to be the case for several other translocation systems, multiple targeting mechanisms deliver a variety of precursor proteins to a common membrane translocation complex of the E.coli inner membrane.
Collapse
Affiliation(s)
- Q A Valent
- Department of Microbiology, Institute of Molecular Biological Sciences, Biocentrum Amsterdam, De Boelelaan 1087, 1081 HV Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
Proteins designated to be secreted by Escherichia coli are synthesized with an amino-terminal signal peptide and associate as nascent chains with the export-specific chaperone SecB. Translocation occurs at a multisubunit membrane-bound enzyme termed translocase, which consists of a peripheral preprotein-binding site and an ATPase domain termed SecA, a core heterotrimeric integral membrane protein complex with SecY, SecE and SecG as subunits, and an accessory integral membrane protein complex containing SecD and SecF. Major new insights have been gained into the cascade of preprotein targeting events and the enzymatic mechanism or preprotein translocation. It has become clear that preproteins are translocated in a stepwise fashion involving large nucleotide-induced conformational changes of the molecular motor SecA that propels the translocation reaction.
Collapse
Affiliation(s)
- A J Driessen
- Department of Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Kerklaan 30, 9751 NN Haren, The Netherlands.
| | | | | |
Collapse
|
44
|
de Cock H, Randall LL. Correlation between requirement for SecA during export and folding properties of precursor polypeptides. Mol Microbiol 1998; 27:469-76. [PMID: 9484900 DOI: 10.1046/j.1365-2958.1998.00695.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The structural complexity of a ligand in association with the molecular chaperones SecB and SecA was investigated using three species of precursor maltose-binding protein, which differ in their stability as a result of an amino acid substitution in each that affects the rate of folding of the polypeptide. In the presence of high concentrations of both SecB and SecA, the precursors were translocated in vitro with indistinguishable kinetics. However, when SecA was limiting, the translocation was more rapid for precursor species, which had lower stability in the native state relative to the stability of the wild-type precursor. We propose that, when in complex with SecB, precursors can form an element of tertiary structure and that these tertiary contacts are blocked when SecA is bound.
Collapse
Affiliation(s)
- H de Cock
- Department of Biochemistry and Biophysics, Washington State University, Pullman, USA.
| | | |
Collapse
|
45
|
Abstract
SecB is a molecular chaperone dedicated to interact exclusively with proteins destined for translocation across membranes. We find that SecB interacts with barnase during its folding in a similar manner to its interaction with GroEL. On mixing acid-denatured barnase with SecB in a stopped-flow spectrofluorimeter under conditions that favour refolding, we observe a series of fluorescence changes, corresponding to the binding of the denatured protein and the subsequent refolding of multiply and singly bound forms. The different phases were assigned using a combination of kinetics and mutant proteins. The refolding of barnase when bound to SecB is strongly retarded but never blocked. Multiply bound barnase is less tightly bound and refolds with a higher rate constant than singly bound barnase. Up to 4 mol of denatured barnase bind to 1 mol of tetrameric SecB.
Collapse
Affiliation(s)
- G Stenberg
- Cambridge Centre for Protein Engineering, Cambridge University Chemical Laboratory, Lensfield Road, Cambridge, CB2 1EW, UK
| | | |
Collapse
|
46
|
Diamond DL, Randall LL. Kinetic partitioning. Poising SecB to favor association with a rapidly folding ligand. J Biol Chem 1997; 272:28994-8. [PMID: 9360972 DOI: 10.1074/jbc.272.46.28994] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Chaperones are a class of proteins that possess the remarkable ability to selectively bind polypeptides that are in a nonnative state. The selectivity of SecB, a molecular chaperone in Escherichia coli, for its ligands can be explained in part by a kinetic partitioning between folding of the polypeptide and association with SecB. It has clearly been established that kinetic partitioning can be poised to favor association with SecB by changing the rate constant for folding of the ligand. We now demonstrate that binding to SecB can be given a kinetic advantage over the pathway for folding by modulating the properties of the chaperone. By poising SecB to expose a hydrophobic patch, we were able to detect a complex between SecB and maltose-binding protein under conditions in which rapid folding of the polypeptide otherwise precludes formation of a kinetically stable complex. The data presented here are interpreted within the framework of a kinetic partitioning between binding to SecB and folding of the polypeptide. We propose that exposure of a hydrophobic patch on SecB increases the surface area for binding and thereby increases the rate constant for association. In this way association of SecB with the polypeptide ligand has a kinetic advantage over the pathway for folding.
Collapse
Affiliation(s)
- D L Diamond
- Department of Biochemistry and Biophysics, Washington State University, Pullman, Washington 99164-4660, USA.
| | | |
Collapse
|
47
|
Fekkes P, van der Does C, Driessen AJ. The molecular chaperone SecB is released from the carboxy-terminus of SecA during initiation of precursor protein translocation. EMBO J 1997; 16:6105-13. [PMID: 9321390 PMCID: PMC1326294 DOI: 10.1093/emboj/16.20.6105] [Citation(s) in RCA: 154] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The chaperone SecB keeps precursor proteins in a translocation-competent state and targets them to SecA at the translocation sites in the cytoplasmic membrane of Escherichia coli. SecA is thought to recognize SecB via its carboxy-terminus. To determine the minimal requirement for a SecB-binding site, fusion proteins were created between glutathione-S-transferase and different parts of the carboxy-terminus of SecA and analysed for SecB binding. A strikingly short amino acid sequence corresponding to only the most distal 22 aminoacyl residues of SecA suffices for the authentic binding of SecB or the SecB-precursor protein complex. SecAN880, a deletion mutant that lacks this highly conserved domain, still supports precursor protein translocation but is unable to bind SecB. Heterodimers of wild-type SecA and SecAN880 are defective in SecB binding, demonstrating that both carboxy-termini of the SecA dimer are needed to form a genuine SecB-binding site. SecB is released from the translocase at a very early stage in protein translocation when the membrane-bound SecA binds ATP to initiate translocation. It is concluded that the SecB-binding site on SecA is confined to the extreme carboxy-terminus of the SecA dimer, and that SecB is released from this site at the onset of translocation.
Collapse
Affiliation(s)
- P Fekkes
- Department of Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Kerklaan 30, 9751 NN Haren, The Netherlands
| | | | | |
Collapse
|
48
|
Abstract
The preprotein binding molecular chaperone SecB functions by preventing the premature folding of the preprotein in the cytosol, and targeting it to the peripheral subunit SecA of the translocase at the cytoplasmic membrane. The nature of the interaction of SecB with soluble SecA was studied by fluorescence anisotropy spectroscopy of Ru(bpy)2(dcbpy)-labeled SecA in the presence of increasing concentrations of SecB. A more than 50-fold difference in affinity for the cytosolic SecA compared to translocase associated SecA seems to prevent unproductive binding of SecB to the cytosolic SecA and stresses its targeting function.
Collapse
Affiliation(s)
- Tanneke den Blaauwen
- Department of Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Kerklaan 30, 9751 NN Haren, The Netherlands
| | - Ewald Terpetschnig
- Center for Fluorescence Spectroscopy, Department of Biological Chemistry, University of Maryland at Baltimore School of Medicine, Baltimore, MD 21201, USA
| | - Joseph R. Lakowicz
- Center for Fluorescence Spectroscopy, Department of Biological Chemistry, University of Maryland at Baltimore School of Medicine, Baltimore, MD 21201, USA
| | - Arnold J.M. Driessen
- Department of Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Kerklaan 30, 9751 NN Haren, The Netherlands
| |
Collapse
|
49
|
Helde R, Wiesler B, Wachter E, Neubüser A, Hoffschulte HK, Hengelage T, Schimz KL, Stuart RA, Müller M. Comparative characterization of SecA from the alpha-subclass purple bacterium Rhodobacter capsulatus and Escherichia coli reveals differences in membrane and precursor specificity. J Bacteriol 1997; 179:4003-12. [PMID: 9190818 PMCID: PMC179211 DOI: 10.1128/jb.179.12.4003-4012.1997] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
We have cloned the secA gene of the alpha-subclass purple bacterium Rhodobacter capsulatus, a close relative to the mitochondrial ancestor, and purified the protein after expression in Escherichia coli. R. capsulatus SecA contains 904 amino acids with 53% identity to E. coli and 54% identity to Caulobacter crescentus SecA. In contrast to the nearly equal partitioning of E. coli SecA between the cytosol and plasma membrane, R. capsulatus SecA is recovered predominantly from the membrane fraction. A SecA-deficient, cell-free synthesis-translocation system prepared from R. capsulatus is used to demonstrate translocation activity of the purified R. capsulatus SecA. This translocation activity is then compared to that of the E. coli counterpart by using various precursor proteins and inside-out membrane vesicles prepared from both bacteria. We find a preference of the R. capsulatus SecA for the homologous membrane vesicles whereas E. coli SecA is active with either type of membrane. Furthermore, the two SecA proteins clearly select between distinct precursor proteins. In addition, we show here for the first time that a bacterial c-type cytochrome utilizes the canonical, Sec-dependent export pathway.
Collapse
Affiliation(s)
- R Helde
- Adolf Butenandt Institut für Physikalische Biochemie, Ludwig-Maximilians-Universität München, Munich, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Yang YB, Yu N, Tai PC. SecE-depleted membranes of Escherichia coli are active. SecE is not obligatorily required for the in vitro translocation of certain protein precursors. J Biol Chem 1997; 272:13660-5. [PMID: 9153216 DOI: 10.1074/jbc.272.21.13660] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Membrane vesicles were prepared from Escherichia coli cells in which SecE was depleted to 2% of wild-type membranes. SecE depletion had pleiotropic effects; SecD, SecF, SecG, and SecY were decreased 4-6-fold, whereas SecA was increased about 16-fold over that of wild-type membranes. These membranes were substantially active in the in vitro translocation of proOmpA, which was mediated by the SecA pathway since it was inhibited by azide. Similar substantial translocation activities were observed for proLamB and proLpp in the SecE-depleted membranes. However, the translocation of proPhoA was more severely impaired. These data indicate that SecE may enhance but is not obligatorily required for the translocation of at least certain precursors, and suggest that the effects of the SecE depletion on protein translocation may be precursor-dependent.
Collapse
Affiliation(s)
- Y B Yang
- Department of Biology, Georgia State University, Atlanta, Georgia 30303, USA
| | | | | |
Collapse
|