1
|
How To Deal with Toxic Amino Acids: the Bipartite AzlCD Complex Exports Histidine in Bacillus subtilis. J Bacteriol 2022; 204:e0035322. [PMID: 36377869 PMCID: PMC9765041 DOI: 10.1128/jb.00353-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The Gram-positive model bacterium Bacillus subtilis can use several amino acids as sources of carbon and nitrogen. However, some amino acids inhibit the growth of this bacterium. This amino acid toxicity is often enhanced in strains lacking the second messenger cyclic dimeric adenosine 3',5'-monophosphate (c-di-AMP). We observed that the presence of histidine is also toxic for a B. subtilis strain that lacks all three c-di-AMP synthesizing enzymes. However, suppressor mutants emerged, and whole-genome sequencing revealed mutations in the azlB gene that encode the repressor of the azl operon. This operon encodes an exporter and an importer for branched-chain amino acids. The suppressor mutations result in an overexpression of the azl operon. Deletion of the azlCD genes encoding the branched-chain amino acid exporter restored the toxicity of histidine, indicating that this exporter is required for histidine export and for resistance to otherwise toxic levels of the amino acid. The higher abundance of the amino acid exporter AzlCD increased the extracellular concentration of histidine, thus confirming the new function of AzlCD as a histidine exporter. Unexpectedly, the AzlB-mediated repression of the operon remains active even in the presence of amino acids, suggesting that the expression of the azl operon requires the mutational inactivation of AzlB. IMPORTANCE Amino acids are building blocks for protein biosynthesis in each living cell. However, due to their reactivity and the similarity between several amino acids, they may also be involved in harmful reactions or in noncognate interactions and thus may be toxic. Bacillus subtilis can deal with otherwise toxic histidine by overexpressing the bipartite amino acid exporter AzlCD. Although encoded in an operon that also contains a gene for an amino acid importer, the corresponding genes are not expressed, irrespective of the availability of amino acids in the medium. This suggests that the azl operon is a last resort by which to deal with histidine stress that can be expressed due to the mutational inactivation of the cognate repressor AzlB.
Collapse
|
2
|
Prajapati B, Bernal-Cabas M, López-Álvarez M, Schaffer M, Bartel J, Rath H, Steil L, Becher D, Völker U, Mäder U, van Dijl JM. Double trouble: Bacillus depends on a functional Tat machinery to avoid severe oxidative stress and starvation upon entry into a NaCl-depleted environment. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1868:118914. [PMID: 33245978 DOI: 10.1016/j.bbamcr.2020.118914] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 11/08/2020] [Accepted: 11/20/2020] [Indexed: 11/17/2022]
Abstract
The widely conserved twin-arginine translocases (Tat) allow the transport of fully folded cofactor-containing proteins across biological membranes. In doing so, these translocases serve different biological functions ranging from energy conversion to cell division. In the Gram-positive soil bacterium Bacillus subtilis, the Tat machinery is essential for effective growth in media lacking iron or NaCl. It was previously shown that this phenomenon relates to the Tat-dependent export of the heme-containing peroxidase EfeB, which converts Fe2+ to Fe3+ at the expense of hydrogen peroxide. However, the reasons why the majority of tat mutant bacteria perish upon dilution in NaCl-deprived medium and how, after several hours, a sub-population adapts to this condition was unknown. Here we show that, upon growth in the absence of NaCl, the bacteria face two major problems, namely severe oxidative stress at the membrane and starvation leading to death. The tat mutant cells can overcome these challenges if they are fed with arginine, which implies that severe arginine depletion is a major cause of death and resumed arginine synthesis permits their survival. Altogether, our findings show that the Tat system of B. subtilis is needed to preclude severe oxidative stress and starvation upon sudden drops in the environmental Na+ concentration as caused by flooding or rain.
Collapse
Affiliation(s)
- Bimal Prajapati
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology, Groningen, the Netherlands
| | - Margarita Bernal-Cabas
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology, Groningen, the Netherlands
| | - Marina López-Álvarez
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology, Groningen, the Netherlands
| | - Marc Schaffer
- University Medicine Greifswald, Interfaculty Institute of Genetics and Functional Genomics, Department of Functional Genomics, Greifswald, Germany
| | - Jürgen Bartel
- University of Greifswald, Institute of Microbiology, Department of Microbial Proteomics, Greifswald, Germany
| | - Hermann Rath
- University Medicine Greifswald, Interfaculty Institute of Genetics and Functional Genomics, Department of Functional Genomics, Greifswald, Germany
| | - Leif Steil
- University Medicine Greifswald, Interfaculty Institute of Genetics and Functional Genomics, Department of Functional Genomics, Greifswald, Germany
| | - Dörte Becher
- University of Greifswald, Institute of Microbiology, Department of Microbial Proteomics, Greifswald, Germany
| | - Uwe Völker
- University Medicine Greifswald, Interfaculty Institute of Genetics and Functional Genomics, Department of Functional Genomics, Greifswald, Germany
| | - Ulrike Mäder
- University Medicine Greifswald, Interfaculty Institute of Genetics and Functional Genomics, Department of Functional Genomics, Greifswald, Germany.
| | - Jan Maarten van Dijl
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology, Groningen, the Netherlands.
| |
Collapse
|
3
|
Babitzke P, Lai YJ, Renda AJ, Romeo T. Posttranscription Initiation Control of Gene Expression Mediated by Bacterial RNA-Binding Proteins. Annu Rev Microbiol 2019; 73:43-67. [PMID: 31100987 PMCID: PMC9404307 DOI: 10.1146/annurev-micro-020518-115907] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
RNA-binding proteins play vital roles in regulating gene expression and cellular physiology in all organisms. Bacterial RNA-binding proteins can regulate transcription termination via attenuation or antitermination mechanisms, while others can repress or activate translation initiation by affecting ribosome binding. The RNA targets for these proteins include short repeated sequences, longer single-stranded sequences, RNA secondary or tertiary structure, and a combination of these features. The activity of these proteins can be influenced by binding of metabolites, small RNAs, or other proteins, as well as by phosphorylation events. Some of these proteins regulate specific genes, while others function as global regulators. As the regulatory mechanisms, components, targets, and signaling circuitry surrounding RNA-binding proteins have become better understood, in part through rapid advances provided by systems approaches, a sense of the true nature of biological complexity is becoming apparent, which we attempt to capture for the reader of this review.
Collapse
Affiliation(s)
- Paul Babitzke
- Department of Biochemistry and Molecular Biology, Center for RNA Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA; ,
| | - Ying-Jung Lai
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida 32611, USA; ,
| | - Andrew J Renda
- Department of Biochemistry and Molecular Biology, Center for RNA Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA; ,
| | - Tony Romeo
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida 32611, USA; ,
| |
Collapse
|
4
|
Dhakshnamoorthy B, Mizuno H, Kumar PKR. Alternative binding modes of l-histidine guided by metal ions for the activation of the antiterminator protein HutP of Bacillus subtilis. J Struct Biol 2013; 183:512-518. [PMID: 23748184 DOI: 10.1016/j.jsb.2013.05.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Revised: 05/11/2013] [Accepted: 05/29/2013] [Indexed: 11/26/2022]
Abstract
Anti-terminator proteins control gene expression by recognizing control signals within cognate transcripts and then preventing transcription termination. HutP is such a regulatory protein that regulates the expression of the histidine utilization (hut) operon in Bacillus subtilis by binding to cis-acting regulatory sequences in hut mRNAs. During the anti-termination process, l-histidine and a divalent ion are required for hutP to bind to the specific sequence within the hut mRNA. Our previous crystal structure of the HutP-l-histidine-Mg(2+)-RNA ternary complex demonstrated that the l-histidine ligand and Mg(2+) bind together such that the backbone nitrogen and carboxyl oxygen of l-histidine coordinate with Mg(2+). In addition to the Mg(2+), other divalent ions are also known to efficiently support the l-histidine-dependent anti-termination of the hut operon, and the best divalent ion is Zn(2+). In this study, we determined the crystal structure of the HutP-l-histidine-Zn(2+) complex and found that the orientation of l-histidine coordinated to Zn(2+) is reversed relative to that of l-histidine coordinated to Mg(2+), i.e., the imidazole side chain nitrogen of l-histidine coordinates to Zn(2+). This alternative binding mode of the l-histidine ligand to a divalent ion provides further insight into the mechanisms responsible for the activation of RNA binding during the hut anti-termination process.
Collapse
Affiliation(s)
- Balasundaresan Dhakshnamoorthy
- RNA Processing Group, Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, Central-6, 1-1-1 Higashi, Tsukuba 305-8566, Japan
| | - Hiroshi Mizuno
- RNA Processing Group, Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, Central-6, 1-1-1 Higashi, Tsukuba 305-8566, Japan
| | - Penmetcha K R Kumar
- RNA Processing Group, Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, Central-6, 1-1-1 Higashi, Tsukuba 305-8566, Japan.
| |
Collapse
|
5
|
Abstract
The ability to degrade the amino acid histidine to ammonia, glutamate, and a one-carbon compound (formate or formamide) is a property that is widely distributed among bacteria. The four or five enzymatic steps of the pathway are highly conserved, and the chemistry of the reactions displays several unusual features, including the rearrangement of a portion of the histidase polypeptide chain to yield an unusual imidazole structure at the active site and the use of a tightly bound NAD molecule as an electrophile rather than a redox-active element in urocanase. Given the importance of this amino acid, it is not surprising that the degradation of histidine is tightly regulated. The study of that regulation led to three central paradigms in bacterial regulation: catabolite repression by glucose and other carbon sources, nitrogen regulation and two-component regulators in general, and autoregulation of bacterial regulators. This review focuses on three groups of organisms for which studies are most complete: the enteric bacteria, for which the regulation is best understood; the pseudomonads, for which the chemistry is best characterized; and Bacillus subtilis, for which the regulatory mechanisms are very different from those of the Gram-negative bacteria. The Hut pathway is fundamentally a catabolic pathway that allows cells to use histidine as a source of carbon, energy, and nitrogen, but other roles for the pathway are also considered briefly here.
Collapse
|
6
|
Belitsky BR. Indirect repression by Bacillus subtilis CodY via displacement of the activator of the proline utilization operon. J Mol Biol 2011; 413:321-36. [PMID: 21840319 DOI: 10.1016/j.jmb.2011.08.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Revised: 07/22/2011] [Accepted: 08/01/2011] [Indexed: 11/25/2022]
Abstract
Proline is an efficient source of both carbon and nitrogen for many bacterial species. In Bacillus subtilis, the proline utilization pathway, encoded by the putBCP operon, is inducible by proline. Here, we show that this induction is mediated by PutR, a proline-responsive transcriptional activator of the PucR family. When other amino acids are present in the medium, proline utilization is prioritized through transient repression by CodY, a global transcriptional regulator in Gram-positive bacteria that responds to amino acid availability. CodY-mediated repression of the putBCP operon has two novel features. First, repression requires the cooperative binding of CodY to at least two adjacent motifs. Second, though CodY binds to the region that overlaps the putB promoter, repression is due to displacement of PutR rather than competition with RNA polymerase.
Collapse
Affiliation(s)
- Boris R Belitsky
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA 02111, USA.
| |
Collapse
|
7
|
Abstract
CodY is a global transcriptional regulator that is activated by branched-chain amino acids. A palindromic 15-bp sequence motif, AATTTTCNGAAAATT, is associated with CodY DNA binding. A gel mobility shift assay was used to examine the effect of pH on the binding of Bacillus subtilis CodY to the hutPp and ureAp(3) promoters. CodY at pH 6.0 has higher affinity for DNA, more enhanced activation by isoleucine, and a lower propensity for nonspecific DNA binding than CodY at pH 8.0. DNase I footprinting was used to identify the CodY-protected regions in the hutPp and ureAp(3) promoters. The CodY-protected sequences for both promoters were found to contain multiple copies of the 15-bp motif with 6-bp overlaps. Mutational analysis of the hutPp regulatory region revealed that two overlapping sequence motifs were required for CodY-mediated regulation. The presence of overlapping sequence motifs in the regulatory regions of many B. subtilis CodY-regulated genes suggests that CodY binds to native operators that contain overlapping binding sites.
Collapse
|
8
|
Gopinath SCB, Balasundaresan D, Kumarevel T, Misono TS, Mizuno H, Kumar PKR. Insights into anti-termination regulation of the hut operon in Bacillus subtilis: importance of the dual RNA-binding surfaces of HutP. Nucleic Acids Res 2008; 36:3463-73. [PMID: 18445631 PMCID: PMC2425495 DOI: 10.1093/nar/gkn199] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2008] [Revised: 04/01/2008] [Accepted: 04/02/2008] [Indexed: 11/30/2022] Open
Abstract
The anti-termination protein, HutP, regulates the gene expression of the hut (histidine utilization) operon of Bacillus subtilis, by destabilizing the hut terminator RNA located upstream of the coding region encoding l-histidine degradation enzymes. On the basis of biochemical, in vivo and X-ray structural analyses, we now report that HutP uses its dual RNA-binding surfaces to access two XAG-rich regions (sites I and II) within the terminator RNA to mediate the destabilization process. In this process, HutP initiates destabilization at the 5'-end of its mRNA by binding to the first XAG-rich region (site I) and then accesses the second XAG-rich region (site II), located downstream of the stable G-C-rich segment of the terminator stem. By this action, HutP appears to disrupt the G-C-rich terminator stem, and thus prevents premature termination of transcription in the RNA segment preceding the regions encoding for the histidine degradation enzymes.
Collapse
Affiliation(s)
- Subash C. B. Gopinath
- Functional Nucleic Acids Group, Institute for Biological Resources and Functions, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1 Higashi, Tsukuba City 305-8566, Ibaraki and Biometal Science Laboratory & Protein Crystallography Research Group, RIKEN Spring-8 Center, Harima Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Dhakshnamoorthy Balasundaresan
- Functional Nucleic Acids Group, Institute for Biological Resources and Functions, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1 Higashi, Tsukuba City 305-8566, Ibaraki and Biometal Science Laboratory & Protein Crystallography Research Group, RIKEN Spring-8 Center, Harima Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Thirumananseri Kumarevel
- Functional Nucleic Acids Group, Institute for Biological Resources and Functions, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1 Higashi, Tsukuba City 305-8566, Ibaraki and Biometal Science Laboratory & Protein Crystallography Research Group, RIKEN Spring-8 Center, Harima Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Tomoko S. Misono
- Functional Nucleic Acids Group, Institute for Biological Resources and Functions, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1 Higashi, Tsukuba City 305-8566, Ibaraki and Biometal Science Laboratory & Protein Crystallography Research Group, RIKEN Spring-8 Center, Harima Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Hiroshi Mizuno
- Functional Nucleic Acids Group, Institute for Biological Resources and Functions, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1 Higashi, Tsukuba City 305-8566, Ibaraki and Biometal Science Laboratory & Protein Crystallography Research Group, RIKEN Spring-8 Center, Harima Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Penmetcha K. R. Kumar
- Functional Nucleic Acids Group, Institute for Biological Resources and Functions, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1 Higashi, Tsukuba City 305-8566, Ibaraki and Biometal Science Laboratory & Protein Crystallography Research Group, RIKEN Spring-8 Center, Harima Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| |
Collapse
|
9
|
Genetic and biochemical analysis of CodY-binding sites in Bacillus subtilis. J Bacteriol 2007; 190:1224-36. [PMID: 18083814 DOI: 10.1128/jb.01780-07] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
CodY is a global transcriptional regulator that is known to control directly the expression of at least two dozen operons in Bacillus subtilis, but the rules that govern the binding of CodY to its target DNA have been unclear. Using DNase I footprinting experiments, we identified CodY-binding sites upstream of the B. subtilis ylmA and yurP genes. The protected regions overlapped versions of a previously proposed CodY-binding consensus motif, AATTTTCWGAAAATT. Multiple single mutations were introduced into the CodY-binding sites of the ylmA, yurP, dppA, and ilvB genes. The mutations affected both the affinity of CodY for its binding sites in vitro and the expression in vivo of lacZ fusions that carry these mutations in their promoter regions. Our results show that versions of the AATTTTCWGAAAATT motif, first identified for Lactococcus lactis CodY, with up to five mismatches play an important role in the interaction of B. subtilis CodY with DNA.
Collapse
|
10
|
Kumarevel T. Structural insights of HutP-mediated regulation of transcription of the hut operon in Bacillus subtilis. Biophys Chem 2007; 128:1-12. [PMID: 17395359 DOI: 10.1016/j.bpc.2007.03.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2007] [Revised: 03/01/2007] [Accepted: 03/01/2007] [Indexed: 11/20/2022]
Abstract
Regulating gene expression directly at the mRNA level represents a novel approach to control cellular processes in all organisms. In this respect, an RNA-binding protein plays a key role by targeting the mRNA to regulate the expression by attenuation or an anti-termination mechanism only in the presence of their cognate ligands. Although many proteins are known to use these mechanisms to regulate the gene expression, no structural insights have been revealed to date to explain how these proteins trigger the conformation for the recognition of RNA. This review describes the activated conformation of HutP, brought by the coordination of L-histidine and Mg(2+) ions, based on our recently solved crystal structures [uncomplexed HutP, HutP-Mg(2+), HutP-L-histidine, HutP-Mg(2+)-L-histidine, HutP-Mg(2+)-L-histidine-RNA]. Once the HutP is activated, the protein binds specifically to bases within the terminator region, without undergoing further structural rearrangement. Also, a high resolution (1.48 A) crystal structure of the quaternary complex containing the three GAG motifs is presented. This analysis clearly demonstrates that the first base in the UAG motifs is not important for the function and is consistent with our previous observations.
Collapse
MESH Headings
- Allosteric Regulation
- Bacillus subtilis/genetics
- Bacillus subtilis/metabolism
- Bacterial Proteins/chemistry
- Bacterial Proteins/genetics
- Bacterial Proteins/metabolism
- Base Sequence
- Cations, Divalent/metabolism
- Crystallography, X-Ray
- Histidine/metabolism
- Models, Molecular
- Molecular Sequence Data
- Nucleic Acid Conformation
- Operon
- Protein Conformation
- RNA, Bacterial/chemistry
- RNA, Bacterial/genetics
- RNA, Bacterial/metabolism
- RNA, Messenger/chemistry
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA-Binding Proteins/chemistry
- RNA-Binding Proteins/genetics
- RNA-Binding Proteins/metabolism
- Transcription, Genetic
Collapse
Affiliation(s)
- Thirumananseri Kumarevel
- Biometals Laboratory and Advanced Protein Crystallography Research Group, RIKEN Harima Institute at SPring-8, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan.
| |
Collapse
|
11
|
Guédon E, Sperandio B, Pons N, Ehrlich SD, Renault P. Overall control of nitrogen metabolism in Lactococcus lactis by CodY, and possible models for CodY regulation in Firmicutes. MICROBIOLOGY-SGM 2006; 151:3895-3909. [PMID: 16339935 DOI: 10.1099/mic.0.28186-0] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
CodY, a pleiotropic transcriptional regulator conserved in low G+C species of Gram-positive bacteria, was previously described to be the central regulator of proteolysis in Lactococcus lactis. In this study, over 100 potential CodY targets were identified by DNA-microarray analysis. Complementary transcriptional analysis experiments were carried out to validate the newly defined CodY regulon. Moreover, the direct role of CodY in the regulation of several target genes was demonstrated by gel retardation experiments. Interestingly, 45 % of CodY-dependent genes encode enzymes involved in amino acid biosynthesis pathways, while most of the other genes are involved in functions related to nitrogen supply. CodY of L. lactis represents the first example of a regulator in Gram-positive bacteria that globally controls amino acid biosynthesis. This global control leads to growth inhibition in several amino-acid-limited media containing an excess of isoleucine. A conserved 15 nt palindromic sequence (AATTTTCNGAAAATT), the so-called CodY-box, located in the vicinity of the -35 box of target promoter regions was identified. Relevance of the CodY-box as an operator for CodY was demonstrated by base substitutions in gel retardation experiments. This motif is also frequently found in the promoter region of genes potentially regulated by CodY in other Gram-positive bacteria.
Collapse
Affiliation(s)
- Eric Guédon
- Génétique Microbienne, Institut National de la Recherche Agronomique, 78352 Jouy-en-Josas cedex, France
| | - Brice Sperandio
- Génétique Microbienne, Institut National de la Recherche Agronomique, 78352 Jouy-en-Josas cedex, France
| | - Nicolas Pons
- Génétique Microbienne, Institut National de la Recherche Agronomique, 78352 Jouy-en-Josas cedex, France
| | - Stanislav Dusko Ehrlich
- Génétique Microbienne, Institut National de la Recherche Agronomique, 78352 Jouy-en-Josas cedex, France
| | - Pierre Renault
- Génétique Microbienne, Institut National de la Recherche Agronomique, 78352 Jouy-en-Josas cedex, France
| |
Collapse
|
12
|
Kumarevel T, Mizuno H, Kumar PKR. Characterization of the metal ion binding site in the anti-terminator protein, HutP, of Bacillus subtilis. Nucleic Acids Res 2005; 33:5494-502. [PMID: 16192572 PMCID: PMC1236978 DOI: 10.1093/nar/gki868] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
HutP is an RNA-binding protein that regulates the expression of the histidine utilization (hut) operon in Bacillus subtilis, by binding to cis-acting regulatory sequences on hut mRNA. It requires L-histidine and an Mg2+ ion for binding to the specific sequence within the hut mRNA. In the present study, we show that several divalent cations can mediate the HutP–RNA interactions. The best divalent cations were Mn2+, Zn2+ and Cd2+, followed by Mg2+, Co2+ and Ni2+, while Cu2+, Yb2+ and Hg2+ were ineffective. In the HutP–RNA interactions, divalent cations cannot be replaced by monovalent cations, suggesting that a divalent metal ion is required for mediating the protein–RNA interactions. To clarify their importance, we have crystallized HutP in the presence of three different metal ions (Mg2+, Mn2+ and Ba2+), which revealed the importance of the metal ion binding site. Furthermore, these analyses clearly demonstrated how the metal ions cause the structural rearrangements that are required for the hut mRNA recognition.
Collapse
Affiliation(s)
| | - Hiroshi Mizuno
- NEC Soft Ltd1-18-6, Shinkiba, Koto-ku, Tokyo 106-8608, Japan
| | - Penmetcha K. R. Kumar
- To whom correspondence should be addressed. Tel: +81 298 61 6085; Fax: +81 298 61 6095;
| |
Collapse
|
13
|
den Hengst CD, van Hijum SAFT, Geurts JMW, Nauta A, Kok J, Kuipers OP. The Lactococcus lactis CodY regulon: identification of a conserved cis-regulatory element. J Biol Chem 2005; 280:34332-42. [PMID: 16040604 DOI: 10.1074/jbc.m502349200] [Citation(s) in RCA: 164] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
CodY of Lactococcus lactis MG1363 is a transcriptional regulator that represses the expression of several genes encoding proteins of the proteolytic system. DNA microarray analysis, comparing the expression profiles of L. lactis MG1363 and an isogenic strain in which codY was mutated, was used to determine the CodY regulon. In peptide-rich medium and exponentially growing cells, where CodY exerts strong repressing activity, the expression of over 30 genes was significantly increased upon removal of codY. The differentially expressed genes included those predominantly involved in amino acid transport and metabolism. In addition, several genes belonging to other functional categories were derepressed, stressing the pleiotropic role of CodY. Scrutinizing the transcriptome data with bioinformatics tools revealed the presence of a novel over-represented motif in the upstream regions of several of the genes derepressed in L. lactis MG1363DeltacodY. Evidence is presented that this 15-bp cis-sequence, AATTTTCWGAAAATT, serves as a high affinity binding site for CodY, as shown by electrophoretic mobility shift assays and DNase I footprinting analyses. The presence of this CodY-box is sufficient to evoke CodY-mediated regulation in vivo. A copy of this motif is also present in the upstream region of codY itself. It is shown that CodY regulates its own synthesis and requires the CodY-box and branched-chain amino acids to interact with its promoter.
Collapse
Affiliation(s)
- Chris D den Hengst
- Department of Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, Kerklaan 30, 9751 NN Haren and Friesland Foods Corporate Research, P. O. Box 87, 7400 AB Deventer, The Netherlands
| | | | | | | | | | | |
Collapse
|
14
|
Gollnick P, Antson A. Going for RNA repeats. Nat Struct Mol Biol 2005; 12:289-90. [PMID: 15809648 DOI: 10.1038/nsmb0405-289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
15
|
Kumarevel T, Mizuno H, Kumar PKR. Structural basis of HutP-mediated anti-termination and roles of the Mg2+ ion and L-histidine ligand. Nature 2005; 434:183-91. [PMID: 15758992 DOI: 10.1038/nature03355] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2004] [Accepted: 01/10/2005] [Indexed: 11/09/2022]
Abstract
HutP regulates the expression of the hut structural genes of Bacillus subtilis by an anti-termination mechanism and requires two components, Mg2+ ions and L-histidine. HutP recognizes three UAG triplet units, separated by four non-conserved nucleotides on the terminator region. Here we report the 1.60-A resolution crystal structure of the quaternary complex (HutP-L-histidine-Mg2+-21-base single-stranded RNA). In the complex, the RNA adopts a novel triangular fold on the hexameric surface of HutP, without any base-pairing, and binds to the protein mostly by specific protein-base interactions. The structure explains how the HutP and RNA interactions are regulated critically by the l-histidine and Mg2+ ion through the structural rearrangement. To gain insights into these structural rearrangements, we solved two additional crystal structures (uncomplexed HutP and HutP-L-histidine-Mg2+) that revealed the intermediate structures of HutP (before forming an active structure) and the importance of the Mg2+ ion interactions in the complexes.
Collapse
MESH Headings
- Bacillus subtilis/chemistry
- Bacillus subtilis/genetics
- Bacterial Proteins/chemistry
- Bacterial Proteins/metabolism
- Base Sequence
- Binding Sites
- Cations, Divalent/chemistry
- Cations, Divalent/metabolism
- Crystallography, X-Ray
- Gene Expression Regulation, Bacterial
- Histidine/chemistry
- Histidine/metabolism
- Ligands
- Magnesium/chemistry
- Magnesium/metabolism
- Models, Molecular
- Nucleic Acid Conformation
- Peptide Chain Termination, Translational
- Protein Structure, Quaternary
- RNA, Messenger/chemistry
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA-Binding Proteins/chemistry
- RNA-Binding Proteins/metabolism
- Static Electricity
- Structure-Activity Relationship
- Transcription Factors/chemistry
- Transcription Factors/metabolism
Collapse
Affiliation(s)
- Thirumananseri Kumarevel
- Functional Nucleic Acids Group, Institute for Biological Resources and Functions, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | | | | |
Collapse
|
16
|
Kumarevel T, Fujimoto Z, Karthe P, Oda M, Mizuno H, Kumar PKR. Crystal structure of activated HutP; an RNA binding protein that regulates transcription of the hut operon in Bacillus subtilis. Structure 2005; 12:1269-80. [PMID: 15242603 DOI: 10.1016/j.str.2004.05.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2004] [Revised: 05/06/2004] [Accepted: 05/10/2004] [Indexed: 10/26/2022]
Abstract
HutP is an L-histidine-activated RNA binding protein that regulates the expression of the histidine utilization (hut) operon in Bacillus subtilis by binding to cis-acting regulatory sequences on the hut mRNA. The crystal structure of HutP complexed with an L-histidine analog showed a novel fold; there are four antiparallel beta strands in the central region of each monomer, with two alpha helices each on the front and back. Two HutP monomers form a dimer, and three dimers are arranged in crystallographic 3-fold symmetry to form a hexamer. A histidine analog was located in between the two monomers of HutP, with the imidazole group of L-histidine hydrogen bonded to Glu81. An activation mechanism is proposed based on the identification of key residues of HutP. The HutP binding region in hut mRNA was defined: it consists of three UAG trinucleotide motifs separated by four spacer nucleotides. Residues of HutP potentially important for RNA binding were identified.
Collapse
Affiliation(s)
- Thirumananseri Kumarevel
- Institute for Biological Resources and Functions, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 6, Tsukuba, Ibaraki 305-8566, Japan
| | | | | | | | | | | |
Collapse
|
17
|
Shivers RP, Sonenshein AL. Activation of the Bacillus subtilis global regulator CodY by direct interaction with branched-chain amino acids. Mol Microbiol 2005; 53:599-611. [PMID: 15228537 DOI: 10.1111/j.1365-2958.2004.04135.x] [Citation(s) in RCA: 179] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
CodY, a GTP-activated global transcriptional regulator of early stationary phase genes, is conserved in many Gram-positive bacterial species. Recently, a number of novel targets regulated by CodY have been identified, including three Bacillus subtilis operons involved in branched-chain amino acid (BCAA) biosynthesis (Molle, V., et al., 2003, J Bacteriol 185: 1911-1922). The mechanism of involvement of CodY in regulating the ilvB operon was investigated here using in vivo transcriptional fusions, in vitro gel mobility shift assays and DNase I footprinting assays. CodY was found to mediate regulation of the ilvB operon by GTP and BCAAs and to bind to the ilvB promoter region. BCAAs increased the affinity of CodY for the ilvB promoter and for all other CodY targets tested. This effect of BCAAs in vitro was additive with the effect of GTP on CodY DNA-binding activity.
Collapse
Affiliation(s)
- Robert P Shivers
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, 136 Harrison Ave., Boston, MA 02111, USA
| | | |
Collapse
|
18
|
Kumarevel TS, Fujimoto Z, Mizuno H, Kumar PKR. Crystallization and preliminary X-ray diffraction studies of the metal-ion-mediated ternary complex of the HutP protein with L-histidine and its cognate RNA. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2004; 1702:125-8. [PMID: 15450857 DOI: 10.1016/j.bbapap.2004.07.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2004] [Revised: 07/18/2004] [Accepted: 07/19/2004] [Indexed: 10/26/2022]
Abstract
HutP is an RNA-binding protein that regulates the expression of the Bacillus subtilis hut operon by binding to cis-acting regulatory sequences within hut mRNA, exclusively in the presence of L-histidine. We recently solved the crystal structure of a binary complex (HutP with an L-histidine analog) that revealed a novel RNA-binding fold, and identified the important residues that interact with the L-histidine analog. In addition, we have defined the minimal RNA binding segment that is required for HutP recognition. Interestingly, we showed that ternary complex formation depends on the availability of not only L-histidine but also divalent metal ions. Here we report the crystallization and preliminary X-ray diffraction analysis of the HutP ternary complex. The ternary complex was crystallized in the presence of Mg2+ along with L-histidine and hut mRNA, using the hanging drop vapor diffusion method. The crystal belongs to the R3 space group, with unit cell parameters a=b=75.30 A, c=133.8 A. A complete data set at 1.60 A was collected.
Collapse
Affiliation(s)
- T S Kumarevel
- Functional Nucleic Acids Group, Institute for Biological Resources and Function, National Institute of Advanced Industrial Science and Technology, Tsukuba Central 6, Tsukuba, Ibaraki 305-8566, Japan
| | | | | | | |
Collapse
|
19
|
Kumarevel TS, Gopinath SCB, Nishikawa S, Mizuno H, Kumar PKR. Identification of important chemical groups of the hut mRNA for HutP interactions that regulate the hut operon in Bacillus subtilis. Nucleic Acids Res 2004; 32:3904-12. [PMID: 15273277 PMCID: PMC506810 DOI: 10.1093/nar/gkh725] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
HutP is an RNA binding protein that regulates the expression of the histidine utilization (hut) operon in Bacillus species by binding to cis-acting regulatory sequences on hut mRNA. We recently solved the HutP crystal structure, which revealed a novel fold where three dimers are arranged in a 3-fold axis to form the hexamer. We also identified a minimal RNA binding element sufficient for HutP binding: three UAG trinucleotide motifs, each separated by 4 nt, located just upstream of the terminator. In the present study we have identified important RNA chemical groups essential for HutP interactions, by combining an in vitro selection strategy and analyses by site-specific base substitutions. These analyses suggest that each HutP molecule recognizes one UAG motif, where the first base (U) can be substituted with other bases, while the second and third bases (A and G) are required for the interactions. Further analyses of the chemical groups of the A and G bases in the UAG motif by modified base analogs suggested the importance of the exocyclic NH2 group in these bases. Also, in this motif, only the 2'-OH group of A is important for HutP recognition. Considering the important chemical groups identified here, as well as the electrostatic potential analysis of HutP, we propose that Glu137 is one of the important residues for the HutP-RNA interactions.
Collapse
Affiliation(s)
- T S Kumarevel
- Institute for Biological Resources and Functions, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, Tsukuba, Ibaraki 305-8566, Japan
| | | | | | | | | |
Collapse
|
20
|
Chambers AL, Smith AJ, Savery NJ. A DNA translocation motif in the bacterial transcription--repair coupling factor, Mfd. Nucleic Acids Res 2004; 31:6409-18. [PMID: 14602898 PMCID: PMC275562 DOI: 10.1093/nar/gkg868] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The bacterial transcription-repair coupling factor, Mfd, is a superfamily II helicase that releases transcription elongation complexes stalled by DNA damage or other obstacles. Transcription complex displacement is an ATP-dependent reaction that is thought to involve DNA translocation without the strand separation associated with classical helicase activity. We have identified single amino acid substitutions within Mfd that disrupt the ability of Mfd to displace RNA polymerase but do not prevent ATP hydrolysis or binding to DNA. These substitutions, or deletion of the C-terminal 209 residues of Mfd, abrogate the ability of Mfd to increase the efficiency of roadblock repression in vivo. The substitutions fall in a region of Mfd that is homologous to the 'TRG' motif of RecG, a protein that catalyses ATP-dependent translocation of Holliday junctions. Our results define a translocation motif in Mfd and suggest that Mfd and RecG couple ATP hydrolysis to translocation of DNA in a similar manner.
Collapse
Affiliation(s)
- A L Chambers
- University of Bristol, Department of Biochemistry, School of Medical Sciences, University Walk, Bristol BS8 1TD, UK
| | | | | |
Collapse
|
21
|
Oda M, Kobayashi N, Fujita M, Miyazaki Y, Sadaie Y, Kurusu Y, Nishikawa S. Analysis of HutP-dependent transcription antitermination in the Bacillus subtilis hut operon: identification of HutP binding sites on hut antiterminator RNA and the involvement of the N-terminus of HutP in binding of HutP to the antiterminator RNA. Mol Microbiol 2004; 51:1155-68. [PMID: 14763987 DOI: 10.1046/j.1365-2958.2003.03891.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We investigated HutP-dependent transcription antitermination of the Bacillus subtilis hut operon. In vitro transcription assays with the B. subtilissigmaA-containing RNA polymerase indicated that HutP inhibits transcription termination at the internal terminator by binding to the antiterminator on hut mRNA in the presence of histidine. Ethylnitrosourea modification interference assays and mutational analyses of the interference sites showed that interaction of HutP with a region containing three UAG trinucleotide sequences, which is located on top of the antiterminator structure, is critical for hut antitermination in vivo. Results from kinetic analysis of binding of HutP to RNA containing various portions of the antiterminator sequences indicated that secondary structure is required for binding of HutP to the region containing three UAG triplets in the antiterminator. The in vivo HutP antiterminator activity was reduced by the mutations in the N-terminal region of HutP. The HutP variants with H4A, R7A, I9A and Q26A mutations exhibited reduced binding affinities to the antiterminator RNA in vitro. A 25-mer peptide consisting of amino acid residues 2-26 of HutP bound to the antiterminator RNA. These results indicated that the N-terminus of HutP is involved in binding of HutP to the antiterminator RNA.
Collapse
Affiliation(s)
- Masanao Oda
- Institute for Biological Resources and Functions, National Institute of Advanced Industrial Science and Technology, Tsukuba City, Ibaraki, Japan.
| | | | | | | | | | | | | |
Collapse
|
22
|
Stanley NR, Britton RA, Grossman AD, Lazazzera BA. Identification of catabolite repression as a physiological regulator of biofilm formation by Bacillus subtilis by use of DNA microarrays. J Bacteriol 2003; 185:1951-7. [PMID: 12618459 PMCID: PMC150146 DOI: 10.1128/jb.185.6.1951-1957.2003] [Citation(s) in RCA: 185] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Biofilms are structured communities of cells that are encased in a self-produced polymeric matrix and are adherent to a surface. Many biofilms have a significant impact in medical and industrial settings. The model gram-positive bacterium Bacillus subtilis has recently been shown to form biofilms. To gain insight into the genes involved in biofilm formation by this bacterium, we used DNA microarrays representing >99% of the annotated B. subtilis open reading frames to follow the temporal changes in gene expression that occurred as cells transitioned from a planktonic to a biofilm state. We identified 519 genes that were differentially expressed at one or more time points as cells transitioned to a biofilm. Approximately 6% of the genes of B. subtilis were differentially expressed at a time when 98% of the cells in the population were in a biofilm. These genes were involved in motility, phage-related functions, and metabolism. By comparing the genes differentially expressed during biofilm formation with those identified in other genomewide transcriptional-profiling studies, we were able to identify several transcription factors whose activities appeared to be altered during the transition from a planktonic state to a biofilm. Two of these transcription factors were Spo0A and sigma-H, which had previously been shown to affect biofilm formation by B. subtilis. A third signal that appeared to be affecting gene expression during biofilm formation was glucose depletion. Through quantitative biofilm assays and confocal scanning laser microscopy, we observed that glucose inhibited biofilm formation through the catabolite control protein CcpA.
Collapse
Affiliation(s)
- Nicola R Stanley
- Department of Microbiology, Immunology and Molecular Genetics, University of California-Los Angeles, Los Angeles, California 90095, USA
| | | | | | | |
Collapse
|
23
|
Abstract
In this review, we describe a variety of mechanisms that bacteria use to regulate transcription elongation in order to control gene expression in response to changes in their environment. Together, these mechanisms are known as attenuation and antitermination, and both involve controlling the formation of a transcription terminator structure in the RNA transcript prior to a structural gene or operon. We examine attenuation and antitermination from the point of view of the different biomolecules that are used to influence the RNA structure. Attenuation of many amino acid biosynthetic operons, particularly in enteric bacteria, is controlled by ribosomes translating leader peptides. RNA-binding proteins regulate attenuation, particularly in gram-positive bacteria such as Bacillus subtilis. Transfer RNA is also used to bind to leader RNAs and influence transcription antitermination in a large number of amino acyl tRNA synthetase genes and several biosynthetic genes in gram-positive bacteria. Finally, antisense RNA is involved in mediating transcription attenuation to control copy number of several plasmids.
Collapse
Affiliation(s)
- Paul Gollnick
- Department of Biological Sciences, State University of New York, Buffalo, NY 14260, USA.
| | | |
Collapse
|
24
|
Kumarevel TS, Fujimoto Z, Padmanabhan B, Oda M, Nishikawa S, Mizuno H, Kumar PKR. Crystallization and preliminary X-ray diffraction studies of HutP protein: an RNA-binding protein that regulates the transcription of hut operon in Bacillus subtilis. J Struct Biol 2002; 138:237-40. [PMID: 12217662 DOI: 10.1016/s1047-8477(02)00024-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
HutP is an RNA-binding protein and regulates the expression of the histidine utilization (hut) operon in Bacillus subtilis by binding to cis-acting regulatory sequences on hut mRNA. HutP and its mutant, which has increased affinity for the regulatory sequences, were purified and crystallized by the hanging-drop vapor diffusion method. The space group was P2(1)3 with unit cell dimensions a=b=c=95.6A for HutP and a=b=c=96.8A for the mutant. Complete data sets of 3.0-A resolution for wild-type HutP and of 2.70-A resolution for the mutant HutP were collected.
Collapse
Affiliation(s)
- T S Kumarevel
- Institute of Molecular and Cell Biology, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 6, Tsukuba, Ibaraki 305-8566, Japan
| | | | | | | | | | | | | |
Collapse
|
25
|
Rogers JD, Scannapieco FA. RegG, a CcpA homolog, participates in regulation of amylase-binding protein A gene (abpA) expression in Streptococcus gordonii. J Bacteriol 2001; 183:3521-5. [PMID: 11344161 PMCID: PMC99651 DOI: 10.1128/jb.183.11.3521-3525.2001] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2000] [Accepted: 01/12/2001] [Indexed: 11/20/2022] Open
Abstract
The amylase-binding protein A (AbpA) of Streptococcus gordonii was found to be undetectable in supernatants of mid-log-phase cultures containing >1% glucose but abundant in supernatants of cultures made with brain heart infusion (BHI), which contains 0.2% glucose. A 10-fold decrease in the level of abpA mRNA in S. gordonii cells cultured in BHI was noted after the addition of glucose to 1%. Analysis of the abpA sequence revealed a potential catabolite responsive element CRE 153 bp downstream of the putative translational start site. A catabolite control protein A gene (ccpA) homolog from S. gordonii, designated regG, was cloned. A regG mutant strain demonstrated moderately less repression of abpA transcription in the presence of 1% glucose. Diauxic growth with glucose and lactose was not affected in the RegG mutant compared to the wild-type parental strain. These results suggest that while RegG plays a role in abpA expression, other mechanisms of catabolite repression are present.
Collapse
Affiliation(s)
- J D Rogers
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, The State University of New York, Buffalo, NY 14214, USA
| | | |
Collapse
|
26
|
Warner JB, Krom BP, Magni C, Konings WN, Lolkema JS. Catabolite repression and induction of the Mg(2+)-citrate transporter CitM of Bacillus subtilis. J Bacteriol 2000; 182:6099-105. [PMID: 11029430 PMCID: PMC94744 DOI: 10.1128/jb.182.21.6099-6105.2000] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2000] [Accepted: 08/02/2000] [Indexed: 11/20/2022] Open
Abstract
In Bacillus subtilis the citM gene encodes the Mg(2+)-citrate transporter. A target site for carbon catabolite repression (cre site) is located upstream of citM. Fusions of the citM promoter region, including the cre sequence, to the beta-galactosidase reporter gene were constructed and integrated into the amyE site of B. subtilis to study catabolic effects on citM expression. In parallel with beta-galactosidase activity, the uptake of Ni(2+)-citrate in whole cells was measured to correlate citM promoter activity with the enzymatic activity of the CitM protein. In minimal media, CitM was only expressed when citrate was present. The presence of glucose in the medium completely repressed citM expression; repression was also observed in media containing glycerol, inositol, or succinate-glutamate. Studies with B. subtilis mutants defective in the catabolite repression components HPr, Crh, and CcpA showed that the repression exerted by all these medium components was mediated via the carbon catabolite repression system. During growth on inositol and succinate, the presence of glutamate strongly potentiated the repression of citM expression by glucose. A reasonable correlation between citM promoter activity and CitM transport activity was observed in this study, indicating that the Mg(2+)-citrate uptake activity of B. subtilis is mainly regulated at the transcriptional level.
Collapse
Affiliation(s)
- J B Warner
- Department of Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9751 NN Haren, The Netherlands
| | | | | | | | | |
Collapse
|
27
|
Temmerman W, Vereecke D, Dreesen R, Van Montagu M, Holsters M, Goethals K. Leafy gall formation is controlled by fasR, an AraC-type regulatory gene in Rhodococcus fascians. J Bacteriol 2000; 182:5832-40. [PMID: 11004184 PMCID: PMC94707 DOI: 10.1128/jb.182.20.5832-5840.2000] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rhodococcus fascians can interact with many plant species and induce the formation of either leafy galls or fasciations. To provoke symptoms, R. fascians strain D188 requires pathogenicity genes that are located on a linear plasmid, pFiD188. The fas genes are essential for virulence and constitute an operon that encodes, among other functions, a cytokinin synthase gene. Expression of the fas genes is induced by extracts of infected plant tissue only. We have isolated an AraC-type regulatory gene, fasR, located on pFiD188, which is indispensable for pathogenesis and for fas gene expression. The combined results of our experiments show that in vitro expression of the fas genes in a defined medium is strictly regulated and that several environmental factors (pH, carbon and nitrogen sources, phosphate and oxygen content, and cell density) and regulatory proteins are involved. We further show that expression of the fas genes is controlled at both the transcriptional and the translational levels. The complex expression pattern probably reflects the necessity of integrating a multitude of signals and underlines the importance of the fas operon in the pathogenicity of R. fascians.
Collapse
Affiliation(s)
- W Temmerman
- Vakgroep Moleculaire Genetica, Departement Plantengenetica, Vlaams Interuniversitair Instituut voor Biotechnologie, Universiteit Gent, B-9000 Ghent, Belgium
| | | | | | | | | | | |
Collapse
|
28
|
Eda S, Hoshino T, Oda M. Role of the DNA sequence downstream of the Bacillus subtilis hut promoter in regulation of the hut operon. Biosci Biotechnol Biochem 2000; 64:484-91. [PMID: 10803944 DOI: 10.1271/bbb.64.484] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
To identify the role of the downstream region of a hut promoter in regulation of the Bacillus subtilis hut operon, three single-base substitutions (+9G-->A, +14C-->T, and +23T-->G) were introduced into the hut operon. Analysis of expression of the hut operon containing each of these three single-base substitutions and the hut-lacZ fusions with the single-base substitutions at position +14 showed that the position at +14 and probably the position at +23 were required for amino acid repression at the hut promoter, while the position at +14 was not required for catabolite repression at the hut promoter. The position at +9 was required for a histidine-dependent increase of activity of the hut promoter. Analysis of expression of the hut-lacZ fusions and the hut operon in the codY mutant indicated that the position at +14 and probably the position at +23 were involved in CodY-mediated amino acid repression at the hut promoter and that CodY was not required for catabolite repression at the hut promoter.
Collapse
Affiliation(s)
- S Eda
- Institute of Applied Biochemistry, University of Tsukuba, Tsukuba City, Ibaraki, Japan
| | | | | |
Collapse
|
29
|
Oda M, Kobayashi N, Ito A, Kurusu Y, Taira K. cis-acting regulatory sequences for antitermination in the transcript of the Bacillus subtilis hut operon and histidine-dependent binding of HutP to the transcript containing the regulatory sequences. Mol Microbiol 2000; 35:1244-54. [PMID: 10712704 DOI: 10.1046/j.1365-2958.2000.01795.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The location of the cis-acting regulatory region for histidine-dependent antitermination of the Bacillus subtilis hut operon was determined. A secondary structure, whose sequences partially overlap with the downstream terminator, was found in the regulatory region of the hut transcript. Mutational analysis of the regulatory region showed that the secondary structure was required for histidine-dependent antitermination. An electrophoretic mobility-shift assay demonstrated that, in response to the presence of histidine and Mg2+, purified HutP bound hut RNA bearing putative secondary structure but not RNA lacking the potential to form putative secondary structure. Native gel electrophoresis showed that HutP existed as a hexamer. A filter-binding assay revealed that the concentration of histidine required for half-maximal binding of HutP to RNA was 3.1 mM and that the Kd for binding of HutP to RNA was approximately 0.56 microM in the presence of histidine. These results suggested that putative secondary structure in the regulatory region of hut mRNA could function as an antiterminator to inhibit the formation of the terminator structure and that HutP causes expression of the hut structural genes by binding to the putative antiterminator structure in response to the presence of histidine.
Collapse
Affiliation(s)
- M Oda
- National Institute of Bioscience and Human Technology, Agency of Industrial Science and Technology, MITI, Tsukuba City, Ibaraki 305-8566, Japan.
| | | | | | | | | |
Collapse
|
30
|
Zalieckas JM, Wray LV, Fisher SH. trans-acting factors affecting carbon catabolite repression of the hut operon in Bacillus subtilis. J Bacteriol 1999; 181:2883-8. [PMID: 10217782 PMCID: PMC93733 DOI: 10.1128/jb.181.9.2883-2888.1999] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Bacillus subtilis, CcpA-dependent carbon catabolite repression (CCR) mediated at several cis-acting carbon repression elements (cre) requires the seryl-phosphorylated form of both the HPr (ptsH) and Crh (crh) proteins. During growth in minimal medium, the ptsH1 mutation, which prevents seryl phosphorylation of HPr, partially relieves CCR of several genes regulated by CCR. Examination of the CCR of the histidine utilization (hut) enzymes in cells grown in minimal medium showed that neither the ptsH1 nor the crh mutation individually had any affect on hut CCR but that hut CCR was abolished in a ptsH1 crh double mutant. In contrast, the ptsH1 mutation completely relieved hut CCR in cells grown in Luria-Bertani medium. The ptsH1 crh double mutant exhibited several growth defects in glucose minimal medium, including reduced rates of growth and growth inhibition by high levels of glycerol or histidine. CCR is partially relieved in B. subtilis mutants which synthesize low levels of active glutamine synthetase (glnA). In addition, these glnA mutants grow more slowly than wild-type cells in glucose minimal medium. The defects in growth and CCR seen in these mutants are suppressed by mutational inactivation of TnrA, a global nitrogen regulatory protein. The inappropriate expression of TnrA-regulated genes in this class of glnA mutants may deplete intracellular pools of carbon metabolites and thereby result in the reduction of the growth rate and partial relief of CCR.
Collapse
Affiliation(s)
- J M Zalieckas
- Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | | | | |
Collapse
|
31
|
Abstract
Nitrogen metabolism genes of Bacillus subtilis are regulated by the availability of rapidly metabolizable nitrogen sources, but not by any mechanism analogous to the two-component Ntr regulatory system found in enteric bacteria. Instead, at least three regulatory proteins independently control the expression of gene products involved in nitrogen metabolism in response to nutrient availability. Genes expressed at high levels during nitrogen-limited growth are controlled by two related proteins, GlnR and TnrA, which bind to similar DNA sequences under different nutritional conditions. The TnrA protein is active only during nitrogen limitation, whereas GlnR-dependent repression occurs in cells growing with excess nitrogen. Although the nitrogen signal regulating the activity of the GlnR and TnrA proteins is not known, the wild-type glutamine synthetase protein is required for the transduction of this signal to the GlnR and TnrA proteins. Examination of GlnR- and TnrA-regulated gene expression suggests that these proteins allow the cell to adapt to growth during nitrogen-limited conditions. A third regulatory protein, CodY, controls the expression of several genes involved in nitrogen metabolism, competence and acetate metabolism in response to growth rate. The highest levels of CodY-dependent repression occur in cells growing rapidly in a medium rich in amino acids, and this regulation is relieved during the transition to nutrient-limited growth. While the synthesis of amino acid degradative enzymes in B. subtilis is substrate inducible, their expression is generally not regulated in response to nitrogen availability by GlnR and TnrA. This pattern of regulation may reflect the fact that the catabolism of amino acids produced by proteolysis during sporulation and germination provides the cell with substrates for energy production and macromolecular synthesis. As a result, expression of amino acid degradative enzymes may be regulated to ensure that high levels of these enzymes are present in sporulating cells and in dormant spores.
Collapse
Affiliation(s)
- S H Fisher
- Department of Microbiology, Boston University School of Medicine, 715 Albany Street, Boston, MA 02118, USA.
| |
Collapse
|
32
|
Baranova NN, Danchin A, Neyfakh AA. Mta, a global MerR-type regulator of the Bacillus subtilis multidrug-efflux transporters. Mol Microbiol 1999; 31:1549-59. [PMID: 10200972 DOI: 10.1046/j.1365-2958.1999.01301.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Little is known about the natural functions of multidrug-efflux transporters expressed by bacteria. Although identified as membrane proteins actively extruding exogenous toxins from the cell, they may actually be involved in the transport of as yet unidentified specific natural substrates. The expression of two highly similar multidrug transporters of Bacillus subtilis, Bmr and Blt, is regulated by specific transcriptional activators, BmrR and BltR, respectively, which respond to different inducer molecules, thus suggesting distinct functions for the two transporters. Here, we describe an alternative mechanism of regulation, which involves a global transcriptional activator, Mta, a member of the MerR family of bacterial regulatory proteins. The individually expressed N-terminal DNA-binding domain of Mta interacts directly with the promoters of bmr and blt and induces transcription of these genes. Additionally, this domain stimulates the expression of the mta gene itself and at least one more gene, ydfK, which encodes a hypothetical membrane protein. These results and the similarity of Mta to the thiostrepton-induced protein TipA of Streptomyces lividans strongly suggest that Mta is an autogenously controlled global transcriptional regulator, whose activity is stimulated by an as yet unidentified inducer. This stimulation is mimicked by the removal of the C-terminal inducer-binding domain. The fact that both Bmr and Blt are controlled by this regulator demonstrates that some of their functions are either identical or, at least, related. Further analysis of Mta-mediated regulation may reveal the natural function of the system of multidrug transporters in B. subtilis and serve as a paradigm for similar systems in other bacteria.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics
- Acetyltransferases
- Amino Acid Sequence
- Anti-Bacterial Agents/pharmacology
- Bacillus subtilis/genetics
- Bacterial Proteins/genetics
- Blotting, Northern
- Carrier Proteins/genetics
- Chromosome Mapping
- DNA Footprinting
- DNA Mutational Analysis
- DNA-Binding Proteins/genetics
- Gene Expression Regulation, Bacterial
- Genes, Regulator
- Genotype
- Membrane Transport Proteins
- Molecular Sequence Data
- Multigene Family/genetics
- Promoter Regions, Genetic
- Sequence Homology, Amino Acid
- Sequence Homology, Nucleic Acid
- Thiostrepton/pharmacology
- Trans-Activators/genetics
- Transcription, Genetic
- Transduction, Genetic
Collapse
Affiliation(s)
- N N Baranova
- Center for Pharmaceutical Biotechnology (M/C 870), University of Illinois, Chicago 60607, USA
| | | | | |
Collapse
|
33
|
Zalieckas JM, Wray LV, Ferson AE, Fisher SH. Transcription-repair coupling factor is involved in carbon catabolite repression of the Bacillus subtilis hut and gnt operons. Mol Microbiol 1998; 27:1031-8. [PMID: 9535092 DOI: 10.1046/j.1365-2958.1998.00751.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A Bacillus subtilis mutant that partially relieves carbon catabolite repression (CCR) of the hut operon was isolated by transposon mutagenesis. Characterization of this mutant revealed that the transposon had inserted into the gene, mfd, that encodes transcription-repair coupling factor. The Mfd protein is known to promote strand-specific DNA repair by displacing RNA polymerase stalled at a nucleotide lesion and directing the (A)BC excinuclease to the DNA damage site. A set of transcriptional lacZ fusions was used to demonstrate that the mfd mutation relieves CCR of hut and gnt expression at the cis-acting cre sequences located downstream of the transcriptional start site but does not affect CCR at sites located at the promoters. CCR of the amyE and bglPH genes, which contain cre sequences that overlap their promoters, is not altered by the mfd mutation. These results support a model in which the Mfd protein displaces RNA polymerase stalled at downstream cre sites that function as transcriptional roadblocks and reveal a new role for Mfd in cellular physiology.
Collapse
Affiliation(s)
- J M Zalieckas
- Department of Microbiology, Boston University School of Medicine, MA 02118, USA
| | | | | | | |
Collapse
|
34
|
Abstract
Bacillus subtilis mutants deficient in amino acid repression of the histidine utilization (hut) operon were isolated by transposon mutagenesis. Genetic characterization of these mutants indicated that they most likely contained transposon insertions within the codVWXY operon. The codY gene is required for nutritional regulation of the dipeptide permease (dpp) operon. An examination of hut expression in a delta codY mutant demonstrated that amino acid repression exerted at the hutOA operator, which lies immediately downstream of the hut promoter, was defective in a delta codY mutant. The codY gene product was not required for amino acid regulation of either hut induction or the expression of proline oxidase, the first enzyme in proline degradation. This indicates that more than one mechanism of amino acid repression is present in B. subtilis. An examination of dpp and hut expression in cells during exponential growth in various media revealed that the level of CodY-dependent regulation appeared to be related to the growth rate of the culture.
Collapse
Affiliation(s)
- S H Fisher
- Department of Microbiology, Boston University School of Medicine, Massachusetts 02118, USA
| | | | | |
Collapse
|
35
|
Serror P, Sonenshein AL. Interaction of CodY, a novel Bacillus subtilis DNA-binding protein, with the dpp promoter region. Mol Microbiol 1996; 20:843-52. [PMID: 8793880 DOI: 10.1111/j.1365-2958.1996.tb02522.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The product of the codY gene is required for nutritional repression of the Bacillus subtillis dipeptide permease operon (dpp), an operon expressed at early stationary phase in nutrient-rich medium. Though unrelated to any known DNA-binding protein, CodY was shown to bind specifically to the dpp promoter region. DNase I footprinting experiments revealed that the CodY-protected region encompasses the dpp transcription start site and overlaps with the region protected by another regulatory protein, AbrB. CodY and AbrB were found to compete, in vitro, for binding to the dpp promoter region. Binding of CodY was altered in mutants defective in nutritional regulation.
Collapse
Affiliation(s)
- P Serror
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | | |
Collapse
|
36
|
Nygaard P, Duckert P, Saxild HH. Role of adenine deaminase in purine salvage and nitrogen metabolism and characterization of the ade gene in Bacillus subtilis. J Bacteriol 1996; 178:846-53. [PMID: 8550522 PMCID: PMC177734 DOI: 10.1128/jb.178.3.846-853.1996] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The isolation of mutants defective in adenine metabolism in Bacillus subtilis has provided a tool that has made it possible to investigate the role of adenine deaminase in adenine metabolism in growing cells. Adenine deaminase is the only enzyme that can deaminate adenine compounds in B. subtilis, a reaction which is important for adenine utilization as a purine and also as a nitrogen source. The uptake of adenine is strictly coupled to its further metabolism. Salvaging of adenine is inhibited by the stringent response to amino acid starvation, while the deamination of adenine is not. The level of adenine deaminase was reduced when exogenous guanosine served as the purine source and when glutamine served as the nitrogen source. The enzyme level was essentially the same whether ammonia or purines served as the nitrogen source. Reduced levels were seen on poor carbon sources. The ade gene was cloned, and the nucleotide sequence and mRNA analyses revealed a single-gene operon encoding a 65-kDa protein. By transductional crosses, we have located the ade gene to 130 degrees on the chromosomal map.
Collapse
Affiliation(s)
- P Nygaard
- Department of Biological Chemistry, University of Copenhagen, Denmark
| | | | | |
Collapse
|
37
|
Abstract
In this review, we summarize progress on the regulation of the aminoacyl-tRNA synthetase genes in Bacillus subtilis. Most of the genes encoding this set of enzymes in B subtilis are members of a large family of Gram-positive genes and operons controlled by a novel antitermination mechanism that uses their cognate uncharged tRNA as the effector. A subset of these genes is, in addition, likely to be controlled at the level of mRNA processing and degradation. We describe the key experiments leading to these conclusions.
Collapse
Affiliation(s)
- C Condon
- UPR 9073, Institut de Biologie Physico-Chimique, Paris, France
| | | | | |
Collapse
|
38
|
Helmann JD. Compilation and analysis of Bacillus subtilis sigma A-dependent promoter sequences: evidence for extended contact between RNA polymerase and upstream promoter DNA. Nucleic Acids Res 1995; 23:2351-60. [PMID: 7630711 PMCID: PMC307037 DOI: 10.1093/nar/23.13.2351] [Citation(s) in RCA: 304] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Sequence analysis of 236 promoters recognized by the Bacillus subtilis sigma A-RNA polymerase reveals an extended promoter structure. The most highly conserved bases include the -35 and -10 hexanucleotide core elements and a TG dinucleotide at position -15, -14. In addition, several weakly conserved A and T residues are present upstream of the -35 region. Analysis of dinucleotide composition reveals A2- and T2-rich sequences in the upstream promoter region (-36 to -70) which are phased with the DNA helix: An tracts are common near -43, -54 and -65; Tn tracts predominate at the intervening positions. When compared with larger regions of the genome, upstream promoter regions have an excess of An and Tn sequences for n > 4. These data indicate that an RNA polymerase binding site affects DNA sequence as far upstream as -70. This sequence conservation is discussed in light of recent evidence that the alpha subunits of the polymerase core bind DNA and that the promoter may wrap around RNA polymerase.
Collapse
Affiliation(s)
- J D Helmann
- Section of Microbiology, Cornell University, Ithaca, NY 14853-8101, USA
| |
Collapse
|
39
|
Slack FJ, Serror P, Joyce E, Sonenshein AL. A gene required for nutritional repression of the Bacillus subtilis dipeptide permease operon. Mol Microbiol 1995; 15:689-702. [PMID: 7783641 DOI: 10.1111/j.1365-2958.1995.tb02378.x] [Citation(s) in RCA: 145] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
An insertion mutation was isolated that resulted in derepressed expression of the Bacillus subtillis dipeptide transport operon (dpp) during the exponential growth phase in rich medium. DNA flanking the site of insertion was found to encode an operon (codVWXY) of four potential open reading frames (ORFs). The deduced product of the codV ORF is similar to members of the lambda Int family; CodW and CodX are homologous to HsIV and HsIU, two putative heat-shock proteins from Escherichia coli, and to LapC and LapA, two gene products of unknown function from Pasteurella haemolytica. CodX also shares homology with a family of ATPases, including ClpX, a regulatory subunit of the E. coli ClpP protease. CodY does not have any homologues in the data-bases. The insertion mutation and all previously isolated spontaneous cod mutations were found to map in codY. In-frame deletion mutations in each of the other cod genes revealed that only codY is required for repression of dpp in nutrient-rich medium. The codY mutations partially relieved amino acid repression of the histidine utilization (hut) operon but had no effect on regulation of certain other early stationary phase-induced genes, such as spoVG and gsiA.
Collapse
Affiliation(s)
- F J Slack
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | | | | | | |
Collapse
|