1
|
Gao L, Xie R, Yang X, Liu Y, Lin R, Yao Z, Wang Y, Dou B, Meng J, Hu X, Song L, Cheng J, Shi Z, Huo H, Sui F, Song Q. Banxia Baizhu Tianma Decoction alleviates pentylenetetrazol-induced epileptic seizures in rats by preventing neuronal cell damage and apoptosis and altering serum and urine metabolic profiles. JOURNAL OF ETHNOPHARMACOLOGY 2025; 338:119112. [PMID: 39551285 DOI: 10.1016/j.jep.2024.119112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/13/2024] [Accepted: 11/14/2024] [Indexed: 11/19/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Epilepsy (EP) is one of the most prevalent chronic neurological disorders in children, characterised by a prolonged course and a propensity for recurrence. Banxia Baizhu Tianma Decoction (BBTD), a traditional Chinese medicine formula, is commonly employed in the clinical management of EP and has demonstrated satisfactory therapeutic effects. AIM OF THE STUDY This study aimed to evaluate the anti-epileptic effects of BBTD and to explore its molecular mechanisms. MATERIALS AND METHODS EP rat model was induced by pentylenetetrazol (PTZ) and treated with BBTD. Parameters such as seizure grade and duration were recorded to evaluate the improvement of BBTD on epileptic behavior. Nissl staining was used to observe the pathological changes in the cerebral motor cortex. The expression levels of the Bax and Bcl-2 in the motor cortex were measured by western blot analysis to assess neuronal damage and apoptosis. The therapeutic action of BBTD was evaluated by examining the levels of neurotransmitters γ-aminobutyric acid (GABA) and glutamate (Glu) in the brain tissue of EP rats, along with assessments of neuronal damage and apoptosis. Non-targeted metabolomics techniques were employed to conduct a comprehensive analysis of serum and urine metabolites, and network analysis of metabolite-related targets was performed to enhance understanding of the anti-epileptic effects and mechanisms of BBTD. RESULTS After BBTD treatment, the EP model rats exhibited reduced seizure severity and shortened seizure duration. Moreover, BBTD mitigated PTZ-induced neuronal damage, as evidenced by a significant increase in the number of Nissl bodies in the motor cortex following treatment. At the same time, BBTD inhibited neuronal apoptosis, as demonstrated by the up-regulation of the anti-apoptotic protein Bcl-2 and down-regulation of the pro-apoptotic protein Bax in the brain tissue of treated rats. In addition, BBTD reversed the decreased levels of GABA and the increased levels of Glu in the brain tissue of the model group. Metabolomics analyses suggested that BBTD treatment for EP may be closely associated with alterations in urinary metabolites related to vitamin B6 and pyrimidine metabolism, as well as serum metabolites involved in purine metabolism, glycerophospholipid metabolism and vitamin B6 metabolism. Finally, network analysis of metabolite targets indicated that dopamine and alpha-linolenic acid metabolites may play significant roles in the therapeutic effects of BBTD on EP. CONCLUSION BBTD demonstrated anti-epileptic effects in PTZ-induced seizure rats by regulating neurotransmitter balance, reducing neuronal damage and inhibiting apoptosis, suggesting its potential for the development of novel AEDs. This is the first time that UHPLC-MS-based urine and serum metabolomics have been used to elucidate the anti-epileptic mechanism of BBTD, providing insights into the underlying mechanisms of BBTD's action.
Collapse
Affiliation(s)
- Lv Gao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China; Shanxi University of Traditional Chinese Medicine, Taiyuan, 030024, China; Shanxi Integrated Traditional Chinese and Western Medicine Hospital, Taiyuan, 030013, China
| | - Ran Xie
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Xiujuan Yang
- Gansu University of Traditional Chinese Medicine, Lanzhou, 730000, China
| | - Yuling Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Rong Lin
- Gansu University of Traditional Chinese Medicine, Lanzhou, 730000, China
| | - Zhengyu Yao
- Shanxi University of Traditional Chinese Medicine, Taiyuan, 030024, China
| | - Yingxuan Wang
- Shanxi University of Traditional Chinese Medicine, Taiyuan, 030024, China
| | - Baokai Dou
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China; Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China
| | - Jing Meng
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Xiaoyu Hu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Lixia Song
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Jinlai Cheng
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Zhenggang Shi
- Gansu University of Traditional Chinese Medicine, Lanzhou, 730000, China.
| | - Hairu Huo
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Feng Sui
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Qi Song
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China; College of Traditional Chinese Medicine, Hebei University, Baoding, 071000, China.
| |
Collapse
|
2
|
Jakkula P, Narsimulu B, Qureshi IA. Biochemical and structural insights into 6-phosphogluconate dehydrogenase from Leishmania donovani. Appl Microbiol Biotechnol 2021; 105:5471-5489. [PMID: 34250571 DOI: 10.1007/s00253-021-11434-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 05/19/2021] [Accepted: 06/13/2021] [Indexed: 11/29/2022]
Abstract
6-phosphogluconate dehydrogenase (6PGDH) participates in pentose phosphate pathway of glucose metabolism by catalyzing oxidative decarboxylation of 6-phsophogluconate (6PG) and its absence has been lethal for several eukaryotes. Despite being a validated drug target in many organisms like Plasmodium, the enzyme has not been explored in leishmanial parasites. In the present study, 6PGDH of Leishmania donovani (Ld6PGDH) is cloned and purified followed by its characterization using biochemical and structural approaches. Ld6PGDH lacks the glycine-serine-rich sequence at its C-terminal that is present in other eukaryotes including humans. Leishmanial 6PGDH possesses more affinity for substrate (6PG) and cofactor (NADP) in comparison to that of human. The enzymatic activity is inhibited by gentamicin and cefuroxime through competitive mode with functioning more potently towards leishmanial 6PGDH than its human counterpart. CD analysis has shown higher α-helical content in the secondary structure of Ld6PGDH, while fluorescence studies revealed that tryptophan residues are not completely accessible to solvent environment. The three-dimensional structure was generated through homology modelling and docked with substrate and cofactor. The docking studies demonstrated two separate binding pockets for 6PG and NADP with higher affinity for the cofactor binding, and Asn105 is interacting with substrate as well as the cofactor. Additionally, MD simulation has shown complexes of Ld6PGDH with 6PG and NADP to be more stable than its apo form. Altogether, the present study might provide the foundation to investigate this enzyme as potential target against leishmaniasis. KEY POINTS: • Ld6PGDH enzymatic activity is competitively inhibited by gentamicin and cefuroxime. • It displays more helical contents and all structural characteristics of 6PGDH family. • Interaction studies demonstrate higher affinity of cofactor than substrate for Ld6PGDH.
Collapse
Affiliation(s)
- Pranay Jakkula
- Department of Biotechnology & Bioinformatics, School of Life Sciences, University of Hyderabad, Prof. C.R. Rao Road, Hyderabad, 500046, India
| | - Bandigi Narsimulu
- Department of Biotechnology & Bioinformatics, School of Life Sciences, University of Hyderabad, Prof. C.R. Rao Road, Hyderabad, 500046, India
| | - Insaf Ahmed Qureshi
- Department of Biotechnology & Bioinformatics, School of Life Sciences, University of Hyderabad, Prof. C.R. Rao Road, Hyderabad, 500046, India.
| |
Collapse
|
3
|
Construction of recombinant Escherichia coli for production of L-phenylalanine-derived compounds. World J Microbiol Biotechnol 2021; 37:84. [PMID: 33855641 DOI: 10.1007/s11274-021-03050-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 04/03/2021] [Indexed: 10/21/2022]
Abstract
L-phenylalanine is an important amino acid that is widely used in the fields of food flavors and pharmaceuticals. Apart from L-phenylalanine itself, various commercially valuable chemical compounds can also be generated via the L-phenylalanine biosynthesis pathway. Compared with direct extraction from plants or synthesis by chemical reaction, microbial production of L-phenylalanine -derived compounds can overcome the drawbacks of environmental pollution, low yield, and mixtures of stereoisomeric products. Accordingly, increasing intracellular levels of precursors, deregulating feedback inhibition and transcription repression, engineering global regulators and other effective strategies have been implemented to produce different L-phenylalanine -derived compounds in the excellent chassis host Escherichia coli. Finally, this review highlights principal strategies for improving the production of L-phenylalanine and/or its derivatives in E. coli, and discusses the future outlook for further enhancing the titer and yields of these compounds.
Collapse
|
4
|
Satanowski A, Dronsella B, Noor E, Vögeli B, He H, Wichmann P, Erb TJ, Lindner SN, Bar-Even A. Awakening a latent carbon fixation cycle in Escherichia coli. Nat Commun 2020; 11:5812. [PMID: 33199707 PMCID: PMC7669889 DOI: 10.1038/s41467-020-19564-5] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 10/15/2020] [Indexed: 02/06/2023] Open
Abstract
Carbon fixation is one of the most important biochemical processes. Most natural carbon fixation pathways are thought to have emerged from enzymes that originally performed other metabolic tasks. Can we recreate the emergence of a carbon fixation pathway in a heterotrophic host by recruiting only endogenous enzymes? In this study, we address this question by systematically analyzing possible carbon fixation pathways composed only of Escherichia coli native enzymes. We identify the GED (Gnd-Entner-Doudoroff) cycle as the simplest pathway that can operate with high thermodynamic driving force. This autocatalytic route is based on reductive carboxylation of ribulose 5-phosphate (Ru5P) by 6-phosphogluconate dehydrogenase (Gnd), followed by reactions of the Entner-Doudoroff pathway, gluconeogenesis, and the pentose phosphate pathway. We demonstrate the in vivo feasibility of this new-to-nature pathway by constructing E. coli gene deletion strains whose growth on pentose sugars depends on the GED shunt, a linear variant of the GED cycle which does not require the regeneration of Ru5P. Several metabolic adaptations, most importantly the increased production of NADPH, assist in establishing sufficiently high flux to sustain this growth. Our study exemplifies a trajectory for the emergence of carbon fixation in a heterotrophic organism and demonstrates a synthetic pathway of biotechnological interest.
Collapse
Affiliation(s)
- Ari Satanowski
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Beau Dronsella
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Elad Noor
- Institute of Molecular Systems Biology, ETH Zürich, Otto-Stern-Weg 3, 8093, Zürich, Switzerland
| | - Bastian Vögeli
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Straße 10, 35043, Marburg, Germany
| | - Hai He
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Philipp Wichmann
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Tobias J Erb
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Straße 10, 35043, Marburg, Germany.,Center for Synthetic Microbiology (SYNMIKRO), 35043, Marburg, Germany
| | - Steffen N Lindner
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam, Germany.
| | - Arren Bar-Even
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam, Germany
| |
Collapse
|
5
|
Phosphate starvation controls lactose metabolism to produce recombinant protein in Escherichia coli. Appl Microbiol Biotechnol 2020; 104:9707-9718. [PMID: 33001250 DOI: 10.1007/s00253-020-10935-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 09/14/2020] [Accepted: 09/27/2020] [Indexed: 10/23/2022]
Abstract
Phosphate is one of the major constituents in growth media. It closely regulates central carbon and energy metabolism. Biochemical reactions in central carbon metabolism are known to be regulated by phosphorylation and dephosphorylation of enzymes. Phosphate scarcity can limit microbial productivity. However, microorganisms are evolved to grow in phosphate starvation environments. This study investigates the effect of phosphate-starved response (PSR) stimuli in wild-type and recombinant Escherichia coli cells cultivated in two different substrates, lactose, and glycerol. Phosphate-starved E. coli culture sustained bacterial growth despite the metabolic burden that emanated from recombinant protein expression albeit with altered dynamics of substrate utilisation. Induction of lactose in phosphate-starved culture led to a 2-fold improvement in product titre of rSymlin and a 2.3-fold improvement in product titre of rLTNF as compared with phosphate-unlimited culture. The results obtained in the study are in agreement with the literature to infer that phosphate starvation or limitation can slow down the microbial growth rate in order to produce recombinant proteins. Further, under PSR conditions, gene expression analysis demonstrated that while selected genes (gapdh, pykF, ppsA, icdA) in glycolysis and pentose phosphate pathway (zwf, gnd, talB, tktA) were up-regulated, other genes in lactose (lacY, lacA) and acetate (ackA, pta) pathway were down-regulated. We have demonstrated that cra, crp, phoB, and phoR are involved in the regulation of central carbon metabolism. We propose a novel cross-regulation between lactose metabolism and phosphate starvation. UDP-galactose, a toxic metabolite that is known to cause cell lysis, has been shown to be significantly reduced due to slow uptake of lactose under PSR conditions. Therefore, E. coli employs a decoupling strategy by limiting growth and redirecting metabolic resources to survive and produce recombinant protein under phosphate starvation conditions. KEY POINTS: • Phosphate starvation controls lactose metabolism, which results in less galactose accumulation. • Phosphate starvation modulates metabolic flow of central carbon metabolism. • Product titre improves by 2-fold due to phosphate starvation. • The approach has been successfully applied to production of two different proteins.
Collapse
|
6
|
Validation of Predicted Virulence Factors in Listeria monocytogenes Identified Using Comparative Genomics. Toxins (Basel) 2019; 11:toxins11090508. [PMID: 31480280 PMCID: PMC6783856 DOI: 10.3390/toxins11090508] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 08/14/2019] [Accepted: 08/24/2019] [Indexed: 12/19/2022] Open
Abstract
Listeria monocytogenes is an intracellular facultative pathogen that causes listeriosis, a foodborne zoonotic infection. There are differences in the pathogenic potential of L. monocytogenes subtypes and strains. Comparison of the genome sequences among L. monocytogenes pathogenic strains EGD-e and F2365 with nonpathogenic L. innocua CLIP1182 and L. monocytogenes strain HCC23 revealed a set of proteins that were present in pathogenic strains and had no orthologs among the nonpathogenic strains. Among the candidate virulence factors are five proteins: putrescine carbamoyltransferase; InlH/InlC2 family class 1 internalin; phosphotransferase system (PTS) fructose transporter subunit EIIC; putative transketolase; and transcription antiterminator BglG family. To determine if these proteins have a role in adherence and invasion of intestinal epithelial Caco-2 cells and/or contribute to virulence, five mutant strains were constructed. F2365ΔinlC2, F2365Δeiic, and F2365Δtkt exhibited a significant (p < 0.05) reduction in adhesion to Caco-2 cells compared to parent F2365 strain. The invasion of F2365ΔaguB, F2365ΔinlC2, and F2365ΔbglG decreased significantly (p < 0.05) compared with the parent strain. Bacterial loads in mouse liver and spleen infected by F2365 was significantly (p < 0.05) higher than it was for F2365ΔaguB, F2365ΔinlC2, F2365Δeiic, F2365Δtkt, and F2365ΔbglG strains. This study demonstrates that aguB, inlC2, eiic, tkt, and bglG play a role in L. monocytogenes pathogenicity.
Collapse
|
7
|
Liu X, Niu H, Li Q, Gu P. Metabolic engineering for the production of l-phenylalanine in Escherichia coli. 3 Biotech 2019; 9:85. [PMID: 30800596 DOI: 10.1007/s13205-019-1619-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Accepted: 02/08/2019] [Indexed: 10/27/2022] Open
Abstract
As one of the three proteinogenic aromatic amino acids, l-phenylalanine is widely applied in the food, chemical and pharmaceutical industries, especially in production of the low-calorie sweetener aspartame. Microbial production of l-phenylalanine has become attractive as it possesses the advantages of environmental friendliness, low cost, and feedstock renewability. With the progress of metabolic engineering, systems biology and synthetic biology, production of l-phenylalanine from glucose in Escherichia coli with relatively high titer has been achieved by improving the intracellular levels of precursors, alleviating transcriptional repression and feedback inhibition of key enzymes, increasing the export of l-phenylalanine, engineering of global regulators, and overexpression of rate-limiting enzymes. In this review, successful metabolic engineering strategies for increasing l-phenylalanine accumulation from glucose in E. coli are described. In addition, perspectives for further improvement of production of l-phenylalanine are discussed.
Collapse
|
8
|
Metabolic engineering for improving l-tryptophan production in Escherichia coli. ACTA ACUST UNITED AC 2019; 46:55-65. [DOI: 10.1007/s10295-018-2106-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 11/03/2018] [Indexed: 11/26/2022]
Abstract
Abstract
l-Tryptophan is an important aromatic amino acid that is used widely in the food, chemical, and pharmaceutical industries. Compared with the traditional synthetic methods, production of l-tryptophan by microbes is environmentally friendly and has low production costs, and feed stocks are renewable. With the development of metabolic engineering, highly efficient production of l-tryptophan in Escherichia coli has been achieved by eliminating negative regulation factors, improving the intracellular level of precursors, engineering of transport systems and overexpression of rate-limiting enzymes. However, challenges remain for l-tryptophan biosynthesis to be cost-competitive. In this review, successful and applicable strategies derived from metabolic engineering for increasing l-tryptophan accumulation in E. coli are summarized. In addition, perspectives for further efficient production of l-tryptophan are discussed.
Collapse
|
9
|
Krüsemann JL, Lindner SN, Dempfle M, Widmer J, Arrivault S, Debacker M, He H, Kubis A, Chayot R, Anissimova M, Marlière P, Cotton CAR, Bar‐Even A. Artificial pathway emergence in central metabolism from three recursive phosphoketolase reactions. FEBS J 2018; 285:4367-4377. [DOI: 10.1111/febs.14682] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 09/11/2018] [Accepted: 10/17/2018] [Indexed: 01/17/2023]
Affiliation(s)
- Jan L. Krüsemann
- Max Planck Institute of Molecular Plant Physiology Potsdam‐Golm Germany
| | | | - Marian Dempfle
- Max Planck Institute of Molecular Plant Physiology Potsdam‐Golm Germany
| | - Julian Widmer
- Max Planck Institute of Molecular Plant Physiology Potsdam‐Golm Germany
| | | | | | - Hai He
- Max Planck Institute of Molecular Plant Physiology Potsdam‐Golm Germany
| | - Armin Kubis
- Max Planck Institute of Molecular Plant Physiology Potsdam‐Golm Germany
| | | | | | - Philippe Marlière
- Altar Evry France
- TESSSI The European Syndicate of Synthetic Scientists and Industrialists Paris France
| | | | - Arren Bar‐Even
- Max Planck Institute of Molecular Plant Physiology Potsdam‐Golm Germany
| |
Collapse
|
10
|
Synthetic methanol auxotrophy of Escherichia coli for methanol-dependent growth and production. Metab Eng 2018; 49:257-266. [PMID: 30172686 DOI: 10.1016/j.ymben.2018.08.010] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 08/22/2018] [Accepted: 08/28/2018] [Indexed: 02/06/2023]
Abstract
Methanol is a potentially attractive substrate for bioproduction of chemicals because of the abundance of natural gas and biogas-derived methane. To move towards utilizing methanol as a sole carbon source, here we engineer an Escherichia coli strain to couple methanol utilization with growth on five-carbon (C5) sugars. By deleting essential genes in the pentose phosphate pathway for pentose utilization and expressing heterologous enzymes from the ribulose-monophosphate (RuMP) pathway, we constructed a strain that cannot grow on xylose or ribose minimal media unless methanol is utilized, creating a phenotype termed "synthetic methanol auxotrophy". Our best strains were able to utilize methanol for growth at a rate of 0.17 ± 0.006 (h-1) with methanol and xylose co-assimilation at a molar ratio of approximately 1:1. Genome sequencing and reversion of mutations indicated that mutations on genes encoding for adenylate cyclase (cyaA) and the formaldehyde detoxification operon (frmRAB) were necessary for the growth phenotype. The methanol auxotrophic strain was further engineered to produce ethanol or 1-butanol to final titers of 4.6 g/L and 2.0 g/L, respectively. 13C tracing showed that 43% and 71% of ethanol and 1-butanol produced had labeled carbon derived from methanol, respectively.
Collapse
|
11
|
He H, Edlich-Muth C, Lindner SN, Bar-Even A. Ribulose Monophosphate Shunt Provides Nearly All Biomass and Energy Required for Growth of E. coli. ACS Synth Biol 2018; 7:1601-1611. [PMID: 29756766 DOI: 10.1021/acssynbio.8b00093] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The ribulose monophosphate (RuMP) cycle is a highly efficient route for the assimilation of reduced one-carbon compounds. Despite considerable research, the RuMP cycle has not been fully implemented in model biotechnological organisms such as Escherichia coli, mainly since the heterologous establishment of the pathway requires addressing multiple challenges: sufficient formaldehyde production, efficient formaldehyde assimilation, and sufficient regeneration of the formaldehyde acceptor, ribulose 5-phosphate. Here, by efficiently producing formaldehyde from sarcosine oxidation and ribulose 5-phosphate from exogenous xylose, we set aside two of these concerns, allowing us to focus on the particular challenge of establishing efficient formaldehyde assimilation via the RuMP shunt, the linear variant of the RuMP cycle. We have generated deletion strains whose growth depends, to different extents, on the activity of the RuMP shunt, thus incrementally increasing the selection pressure for the activity of the synthetic pathway. Our final strain depends on the activity of the RuMP shunt for providing the cell with almost all biomass and energy needs, presenting an absolute coupling between growth and activity of key RuMP cycle components. This study shows the value of a stepwise problem solving approach when establishing a difficult but promising pathway, and is a strong basis for future engineering, selection, and evolution of model organisms for growth via the RuMP cycle.
Collapse
Affiliation(s)
- Hai He
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Christian Edlich-Muth
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Steffen N. Lindner
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Arren Bar-Even
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| |
Collapse
|
12
|
Shaw JA, Henard CA, Liu L, Dieckman LM, Vázquez-Torres A, Bourret TJ. Salmonella enterica serovar Typhimurium has three transketolase enzymes contributing to the pentose phosphate pathway. J Biol Chem 2018; 293:11271-11282. [PMID: 29848552 DOI: 10.1074/jbc.ra118.003661] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 05/23/2018] [Indexed: 11/06/2022] Open
Abstract
The genus Salmonella is responsible for many illnesses in humans and other vertebrate animals. We report here that Salmonella enterica serovar Typhimurium harbors three transketolases that support the non-oxidative branch of the pentose phosphate pathway. BLAST analysis identified two genes, STM14_2885 and STM14_2886, that together encode a putative transketolase (TktC) with 46-47% similarity to the known TktA and TktB isoforms. Assessing the mRNA and protein expression for each of the three transketolases, we determined that all are expressed in WT cells and regulated to varying extents by the alternative sigma factor RpoS. Enzyme assays with lysates from WT and transketolase-knockout strains established that TktA is responsible for >88% of the transketolase activity in WT cells. We purified recombinant forms of each isoenzyme to assess the kinetics for canonical transketolase reactions. TktA and TktB had comparable values for Vmax (539-1362 μm NADH consumed/s), Km (80-739 μm), and catalytic efficiency (1.02 × 108-1.06 × 109 m-1/s) for each substrate tested. The recombinant form of TktC had lower Km values (23-120 μm), whereas the Vmax (7.8-16 μm NADH consumed/s) and catalytic efficiency (5.58 × 106 to 6.07 × 108 m-1/s) were 10-100-fold lower. Using a murine model of Salmonella infection, we showed that a strain lacking all three transketolases is avirulent in C57BL/6 mice. These data provide evidence that S Typhimurium possesses three transketolases that contribute to pathogenesis.
Collapse
Affiliation(s)
- Jeff A Shaw
- Department of Medical Microbiology and Immunology, Creighton University School of Medicine, Omaha, Nebraska 68178
| | - Calvin A Henard
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado 80011
| | - Lin Liu
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado 80011
| | - Lynne M Dieckman
- Department of Chemistry, Creighton University, Omaha, Nebraska 68178
| | - Andrés Vázquez-Torres
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado 80011; Veterans Affairs Eastern Colorado Health Care System, Denver, Colorado 80220
| | - Travis J Bourret
- Department of Medical Microbiology and Immunology, Creighton University School of Medicine, Omaha, Nebraska 68178.
| |
Collapse
|
13
|
Hawkins JP, Ordonez PA, Oresnik IJ. Characterization of Mutations That Affect the Nonoxidative Pentose Phosphate Pathway in Sinorhizobium meliloti. J Bacteriol 2018; 200:e00436-17. [PMID: 29084855 PMCID: PMC5738737 DOI: 10.1128/jb.00436-17] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 10/21/2017] [Indexed: 12/12/2022] Open
Abstract
Sinorhizobium meliloti is a Gram-negative alphaproteobacterium that can enter into a symbiotic relationship with Medicago sativa and Medicago truncatula Previous work determined that a mutation in the tkt2 gene, which encodes a putative transketolase, could prevent medium acidification associated with a mutant strain unable to metabolize galactose. Since the pentose phosphate pathway in S. meliloti is not well studied, strains carrying mutations in either tkt2 and tal, which encodes a putative transaldolase, were characterized. Carbon metabolism phenotypes revealed that both mutants were impaired in growth on erythritol and ribose. This phenotype was more pronounced for the tkt2 mutant strain, which also displayed auxotrophy for aromatic amino acids. Changes in pentose phosphate pathway metabolite concentrations were also consistent with a mutation in either tkt2 or tal The concentrations of metabolites in central carbon metabolism were also found to shift dramatically in strains carrying a tkt2 mutation. While the concentrations of proteins involved in central carbon metabolism did not change significantly under any conditions, the levels of those associated with iron acquisition increased in the wild-type strain with erythritol induction. These proteins were not detected in either mutant, resulting in less observable rhizobactin production in the tkt2 mutant. While both mutants were impaired in succinoglycan synthesis, only the tkt2 mutant strain was unable to establish symbiosis with alfalfa. These results suggest that tkt2 and tal play central roles in regulating the carbon flow necessary for carbon metabolism and the establishment of symbiosis.IMPORTANCESinorhizobium meliloti is a model organism for the study of plant-microbe interactions and metabolism, especially because it effects nitrogen fixation. The ability to derive the energy necessary for nitrogen fixation is dependent on an organism's ability to metabolize carbon efficiently. The pentose phosphate pathway is central in the interconversion of hexoses and pentoses. This study characterizes the key enzymes of the nonoxidative branch of the pentose phosphate pathway by using defined genetic mutations and shows the effects the mutations have on the metabolite profile and on physiological processes such as the biosynthesis of exopolysaccharide, as well as the ability to regulate iron acquisition.
Collapse
Affiliation(s)
- Justin P Hawkins
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Patricia A Ordonez
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Ivan J Oresnik
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
14
|
Sampath V, McCaig WD, Thanassi DG. Amino acid deprivation and central carbon metabolism regulate the production of outer membrane vesicles and tubes by Francisella. Mol Microbiol 2018; 107:523-541. [PMID: 29240272 DOI: 10.1111/mmi.13897] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 12/07/2017] [Accepted: 12/11/2017] [Indexed: 12/23/2022]
Abstract
Francisella tularensis is a highly virulent Gram-negative bacterial pathogen that causes the zoonotic disease tularemia. F. novicida, a model tularemia strain, produces spherical outer membrane vesicles (OMV), as well as novel tubular vesicles and extensions of the cell surface. These OMV and tubes (OMV/T) are produced in a regulated manner and contain known virulence factors. Mechanisms by which bacterial vesicles are produced and regulated are not well understood. We performed a genetic screen in F. novicida to decipher the molecular basis for regulated OMV/T formation, and identified both hypo- and hyper-vesiculating mutants. Mutations in fumA and tktA, involved in central carbon metabolism, and in FTN_0908 and FTN_1037, of unknown function, resulted in severe defects in OMV/T production. Cysteine deprivation was identified as the signal that triggers OMV/T formation in F. novicida during growth in rich medium. We also found that fully virulent F. tularensis produces OMV/T in a similarly regulated manner. Further analysis revealed that OMV/T production is responsive to deprivation of essential amino acids in addition to cysteine, and that the hypo-vesiculating mutants are defective in responding to this signal. Thus, amino acid starvation, such as encountered by Francisella during host cell invasion, regulates the production of membrane-derived structures.
Collapse
Affiliation(s)
- Vinaya Sampath
- Department of Molecular Genetics and Microbiology, Center for Infectious Diseases, Stony Brook University, Stony Brook, NY 11794, USA
| | - William D McCaig
- Department of Molecular Genetics and Microbiology, Center for Infectious Diseases, Stony Brook University, Stony Brook, NY 11794, USA
| | - David G Thanassi
- Department of Molecular Genetics and Microbiology, Center for Infectious Diseases, Stony Brook University, Stony Brook, NY 11794, USA
| |
Collapse
|
15
|
Kim JH, Kim J, Kim HJ, Sathiyanarayanan G, Bhatia SK, Song HS, Choi YK, Kim YG, Park K, Yang YH. Biotransformation of pyridoxal 5′-phosphate from pyridoxal by pyridoxal kinase ( pdxY ) to support cadaverine production in Escherichia coli. Enzyme Microb Technol 2017. [DOI: 10.1016/j.enzmictec.2017.05.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
16
|
Hawkins JP, Geddes BA, Oresnik IJ. Common dyes used to determine bacterial polysaccharides on agar are affected by medium acidification. Can J Microbiol 2017; 63:559-562. [PMID: 28253454 DOI: 10.1139/cjm-2016-0743] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
In this work, we highlight effects of pH on bacterial phenotypes when using the bacteriological dyes Aniline blue, Congo red, and Calcofluor white to analyze polysaccharide production. A study of galactose catabolism in Sinorhizobium meliloti led to the isolation of a mutation in dgoK1, which was observed to overproduce exopolysaccharides when grown in the presence of galactose. When this mutant strain was spotted onto plates containing Aniline blue, Congo red, or Calcofluor white, the intensity of the associated staining was strikingly different from that of the wild type. Additionally, a Calcofluor dull phenotype was observed, suggesting production of a polysaccharide other than succinoglycan. Further investigation of this phenotype revealed that these results were dependent on medium acidification, as buffering at pH 6 had no effect on these phenotypes, while medium buffered at pH 6.5 resulted in a reversal of the phenotypes. Screening for mutants of the dgoK1 strain that were negative for the Aniline blue phenotype yielded a strain carrying a mutation in tkt2, which is annotated as a putative transketolase. Consistent with the plate phenotypes, when this mutant was grown in broth cultures, it did not acidify its growth medium. Overall, this work shows that caution should be exercised in evaluating polysaccharide phenotypes based strictly on the use of dyes.
Collapse
Affiliation(s)
- Justin P Hawkins
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.,Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Barney A Geddes
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.,Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Ivan J Oresnik
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.,Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| |
Collapse
|
17
|
Verbeke TJ, Giannone RJ, Klingeman DM, Engle NL, Rydzak T, Guss AM, Tschaplinski TJ, Brown SD, Hettich RL, Elkins JG. Pentose sugars inhibit metabolism and increase expression of an AgrD-type cyclic pentapeptide in Clostridium thermocellum. Sci Rep 2017; 7:43355. [PMID: 28230109 PMCID: PMC5322536 DOI: 10.1038/srep43355] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 01/18/2017] [Indexed: 12/22/2022] Open
Abstract
Clostridium thermocellum could potentially be used as a microbial biocatalyst to produce renewable fuels directly from lignocellulosic biomass due to its ability to rapidly solubilize plant cell walls. While the organism readily ferments sugars derived from cellulose, pentose sugars from xylan are not metabolized. Here, we show that non-fermentable pentoses inhibit growth and end-product formation during fermentation of cellulose-derived sugars. Metabolomic experiments confirmed that xylose is transported intracellularly and reduced to the dead-end metabolite xylitol. Comparative RNA-seq analysis of xylose-inhibited cultures revealed several up-regulated genes potentially involved in pentose transport and metabolism, which were targeted for disruption. Deletion of the ATP-dependent transporter, CbpD partially alleviated xylose inhibition. A putative xylitol dehydrogenase, encoded by Clo1313_0076, was also deleted resulting in decreased total xylitol production and yield by 41% and 46%, respectively. Finally, xylose-induced inhibition corresponds with the up-regulation and biogenesis of a cyclical AgrD-type, pentapeptide. Medium supplementation with the mature cyclical pentapeptide also inhibits bacterial growth. Together, these findings provide new foundational insights needed for engineering improved pentose utilizing strains of C. thermocellum and reveal the first functional Agr-type cyclic peptide to be produced by a thermophilic member of the Firmicutes.
Collapse
Affiliation(s)
- Tobin J Verbeke
- BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA.,Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Richard J Giannone
- BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA.,Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Dawn M Klingeman
- BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA.,Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Nancy L Engle
- BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA.,Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Thomas Rydzak
- BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA.,Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Adam M Guss
- BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA.,Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Timothy J Tschaplinski
- BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA.,Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Steven D Brown
- BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA.,Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Robert L Hettich
- BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA.,Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - James G Elkins
- BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA.,Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| |
Collapse
|
18
|
Park HC, Kim YJ, Lee CW, Rho YT, Kang J, Lee DH, Seong YJ, Park YC, Lee D, Kim SG. Production of d -ribose by metabolically engineered Escherichia coli. Process Biochem 2017. [DOI: 10.1016/j.procbio.2016.10.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
19
|
The Pentose Phosphate Pathway in Parasitic Trypanosomatids. Trends Parasitol 2016; 32:622-634. [DOI: 10.1016/j.pt.2016.04.010] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 04/11/2016] [Accepted: 04/13/2016] [Indexed: 12/20/2022]
|
20
|
Pettersen VK, Mosevoll KA, Lindemann PC, Wiker HG. Coordination of Metabolism and Virulence Factors Expression of Extraintestinal Pathogenic Escherichia coli Purified from Blood Cultures of Patients with Sepsis. Mol Cell Proteomics 2016; 15:2890-907. [PMID: 27364158 PMCID: PMC5013306 DOI: 10.1074/mcp.m116.060582] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Indexed: 02/06/2023] Open
Abstract
One of the trademarks of extraintestinal pathogenic Escherichia coli is adaptation of metabolism and basic physiology to diverse host sites. However, little is known how this common human pathogen adapts to permit survival and growth in blood. We used label-free quantitative proteomics to characterize five E. coli strains purified from clinical blood cultures associated with sepsis and urinary tract infections. Further comparison of proteome profiles of the clinical strains and a reference uropathogenic E. coli strain 536 cultivated in blood culture and on two different solid media distinguished cellular features altered in response to the pathogenically relevant condition. The analysis covered nearly 60% of the strains predicted proteomes, and included quantitative description based on label-free intensity scores for 90% of the detected proteins. Statistical comparison of anaerobic and aerobic blood cultures revealed 32 differentially expressed proteins (1.5% of the shared proteins), mostly associated with acquisition and utilization of metal ions critical for anaerobic or aerobic respiration. Analysis of variance identified significantly altered amounts of 47 proteins shared by the strains (2.7%), including proteins involved in vitamin B6 metabolism and virulence. Although the proteomes derived from blood cultures were fairly similar for the investigated strains, quantitative proteomic comparison to the growth on solid media identified 200 proteins with substantially changed levels (11% of the shared proteins). Blood culture was characterized by up-regulation of anaerobic fermentative metabolism and multiple virulence traits, including cell motility and iron acquisition. In a response to the growth on solid media there were increased levels of proteins functional in aerobic respiration, catabolism of medium-specific carbon sources and protection against oxidative and osmotic stresses. These results demonstrate on the expressed proteome level that expression of extraintestinal virulence factors and overall cellular metabolism closely reflects specific growth conditions. Data are available via ProteomeXchange with identifier PXD002912.
Collapse
Affiliation(s)
- Veronika Kuchařová Pettersen
- From the ‡The Gade Research Group for Infection and Immunity, Department of Clinical Science, University of Bergen, N-5021 Bergen, Norway;
| | | | - Paul Christoffer Lindemann
- From the ‡The Gade Research Group for Infection and Immunity, Department of Clinical Science, University of Bergen, N-5021 Bergen, Norway; ¶Department of Microbiology; Haukeland University Hospital, N-5021 Bergen, Norway
| | - Harald G Wiker
- From the ‡The Gade Research Group for Infection and Immunity, Department of Clinical Science, University of Bergen, N-5021 Bergen, Norway; ¶Department of Microbiology; Haukeland University Hospital, N-5021 Bergen, Norway
| |
Collapse
|
21
|
Vimala A, Harinarayanan R. Transketolase activity modulates glycerol-3-phosphate levels inEscherichia coli. Mol Microbiol 2016; 100:263-77. [DOI: 10.1111/mmi.13317] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2015] [Indexed: 11/30/2022]
Affiliation(s)
- A. Vimala
- Laboratory of Bacterial Genetics; Center for DNA Fingerprinting and Diagnostics; Hyderabad 500 001 India
| | - R. Harinarayanan
- Laboratory of Bacterial Genetics; Center for DNA Fingerprinting and Diagnostics; Hyderabad 500 001 India
| |
Collapse
|
22
|
Rodriguez A, Martínez JA, Flores N, Escalante A, Gosset G, Bolivar F. Engineering Escherichia coli to overproduce aromatic amino acids and derived compounds. Microb Cell Fact 2014; 13:126. [PMID: 25200799 PMCID: PMC4174253 DOI: 10.1186/s12934-014-0126-z] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 08/17/2014] [Indexed: 11/10/2022] Open
Abstract
The production of aromatic amino acids using fermentation processes with recombinant microorganisms can be an advantageous approach to reach their global demands. In addition, a large array of compounds with alimentary and pharmaceutical applications can potentially be synthesized from intermediates of this metabolic pathway. However, contrary to other amino acids and primary metabolites, the artificial channelling of building blocks from central metabolism towards the aromatic amino acid pathway is complicated to achieve in an efficient manner. The length and complex regulation of this pathway have progressively called for the employment of more integral approaches, promoting the merge of complementary tools and techniques in order to surpass metabolic and regulatory bottlenecks. As a result, relevant insights on the subject have been obtained during the last years, especially with genetically modified strains of Escherichia coli. By combining metabolic engineering strategies with developments in synthetic biology, systems biology and bioprocess engineering, notable advances were achieved regarding the generation, characterization and optimization of E. coli strains for the overproduction of aromatic amino acids, some of their precursors and related compounds. In this paper we review and compare recent successful reports dealing with the modification of metabolic traits to attain these objectives.
Collapse
|
23
|
Kolly GS, Sala C, Vocat A, Cole ST. Assessing essentiality of transketolase in Mycobacterium tuberculosis using an inducible protein degradation system. FEMS Microbiol Lett 2014; 358:30-5. [PMID: 25047872 DOI: 10.1111/1574-6968.12536] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 07/11/2014] [Accepted: 07/11/2014] [Indexed: 12/15/2022] Open
Abstract
Improved genetic tools are required to identify new drug targets in Mycobacterium tuberculosis. To this aim, genetic approaches, targeting either transcription and/or protein degradation, have been developed to appraise gene essentiality and to test the impact of gene silencing on bacterial survival. Here, we successfully combined the Tet-Pip OFF system, which downregulates transcription through the TetR and Pip repressors, with SspB-mediated protein degradation to study depletion of the transketolase encoded by the tkt (rv1449c) gene. We show that depletion of Tkt using the RNA silencing and protein degradation (RSPD) system arrested growth of M. tuberculosis in vitro faster than the Tet-Pip OFF system alone. In addition, we extended the new combined approach to an ex vivo model of M. tuberculosis infection in THP-1 cells. Tkt-depleted bacteria displayed reduced virulence as compared to wild type bacilli, thus confirming the essentiality of the enzyme for intracellular growth.
Collapse
Affiliation(s)
- Gaëlle S Kolly
- Ecole Polytechnique Fédérale de Lausanne, Global Health Institute, Lausanne, Switzerland
| | | | | | | |
Collapse
|
24
|
Essential plasticity and redundancy of metabolism unveiled by synthetic lethality analysis. PLoS Comput Biol 2014; 10:e1003637. [PMID: 24854166 PMCID: PMC4031049 DOI: 10.1371/journal.pcbi.1003637] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Accepted: 04/04/2014] [Indexed: 01/18/2023] Open
Abstract
We unravel how functional plasticity and redundancy are essential mechanisms underlying the ability to survive of metabolic networks. We perform an exhaustive computational screening of synthetic lethal reaction pairs in Escherichia coli in a minimal medium and we find that synthetic lethal pairs divide in two different groups depending on whether the synthetic lethal interaction works as a backup or as a parallel use mechanism, the first corresponding to essential plasticity and the second to essential redundancy. In E. coli, the analysis of pathways entanglement through essential redundancy supports the view that synthetic lethality affects preferentially a single function or pathway. In contrast, essential plasticity, the dominant class, tends to be inter-pathway but strongly localized and unveils Cell Envelope Biosynthesis as an essential backup for Membrane Lipid Metabolism. When comparing E. coli and Mycoplasma pneumoniae, we find that the metabolic networks of the two organisms exhibit a large difference in the relative importance of plasticity and redundancy which is consistent with the conjecture that plasticity is a sophisticated mechanism that requires a complex organization. Finally, coessential reaction pairs are explored in different environmental conditions to uncover the interplay between the two mechanisms. We find that synthetic lethal interactions and their classification in plasticity and redundancy are basically insensitive to medium composition, and are highly conserved even when the environment is enriched with nonessential compounds or overconstrained to decrease maximum biomass formation. Plasticity and redundancy are essential features of biological systems, from brain to genome, that underlie the ability of organisms to survive. In metabolic networks, these essential mechanisms are unveiled by the analysis and categorization of synthetic lethal pairs of reactions. We find that plasticity acts as a backup mechanism that reorganizes metabolic fluxes, while redundancy corresponds to a simultaneous use of different flux channels that increases fitness. Both capacities ensure viability and are highly insensitive to environmental conditions, but plasticity seems a more sophisticated mechanism requiring a more complex functional organization. Our results have clear implications for biotechnology and biomedicine, since targeting a plasticity or a redundancy synthetic lethal pair will certainly have different requirements and peculiar specific effects.
Collapse
|
25
|
Gawand P, Mahadevan R. EngineeringEscherichia colifor D-Ribose Production from Glucose-Xylose Mixtures. Ind Biotechnol (New Rochelle N Y) 2014. [DOI: 10.1089/ind.2013.0028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Pratish Gawand
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Canada
| | - Radhakrishnan Mahadevan
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Canada
| |
Collapse
|
26
|
Markert B, Stolzenberger J, Brautaset T, Wendisch VF. Characterization of two transketolases encoded on the chromosome and the plasmid pBM19 of the facultative ribulose monophosphate cycle methylotroph Bacillus methanolicus. BMC Microbiol 2014; 14:7. [PMID: 24405865 PMCID: PMC3905653 DOI: 10.1186/1471-2180-14-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2013] [Accepted: 01/07/2014] [Indexed: 11/19/2022] Open
Abstract
Background Transketolase (TKT) is a key enzyme of the pentose phosphate pathway (PPP), the Calvin cycle and the ribulose monophosphate (RuMP) cycle. Bacillus methanolicus is a facultative RuMP pathway methylotroph. B. methanolicus MGA3 harbors two genes putatively coding for TKTs; one located on the chromosome (tktC) and one located on the natural occurring plasmid pBM19 (tktP). Results Both enzymes were produced in recombinant Escherichia coli, purified and shown to share similar biochemical parameters in vitro. They were found to be active as homotetramers and require thiamine pyrophosphate for catalytic activity. The inactive apoform of the TKTs, yielded by dialysis against buffer containing 10 mM EDTA, could be reconstituted most efficiently with Mn2+ and Mg2+. Both TKTs were thermo stable at physiological temperature (up to 65°C) with the highest activity at neutral pH. Ni2+, ATP and ADP significantly inhibited activity of both TKTs. Unlike the recently characterized RuMP pathway enzymes fructose 1,6-bisphosphate aldolase (FBA) and fructose 1,6-bisphosphatase/sedoheptulose 1,7-bisphosphatase (FBPase/SBPase) from B. methanolicus MGA3, both TKTs exhibited similar kinetic parameters although they only share 76% identical amino acids. The kinetic parameters were determined for the reaction with the substrates xylulose 5-phosphate (TKTC: kcat/KM: 264 s-1 mM-1; TKTP: kcat/KM: 231 s-1 mM) and ribulose 5-phosphate (TKTC: kcat/KM: 109 s-1 mM; TKTP: kcat/KM: 84 s-1 mM) as well as for the reaction with the substrates glyceraldehyde 3-phosphate (TKTC: kcat/KM: 108 s-1 mM; TKTP: kcat/KM: 71 s-1 mM) and fructose 6-phosphate (TKTC kcat/KM: 115 s-1 mM; TKTP: kcat/KM: 448 s-1 mM). Conclusions Based on the kinetic parameters no major TKT of B. methanolicus could be determined. Increased expression of tktP, but not of tktC during growth with methanol [J Bacteriol 188:3063–3072, 2006] argues for TKTP being the major TKT relevant in the RuMP pathway. Neither TKT exhibited activity as dihydroxyacetone synthase, as found in methylotrophic yeast, or as the evolutionary related 1-deoxyxylulose-5-phosphate synthase. The biological significance of the two TKTs for B. methanolicus methylotrophy is discussed.
Collapse
Affiliation(s)
| | | | | | - Volker F Wendisch
- Genetics of Prokaryotes, Faculty of Biology & CeBiTec, Bielefeld University, Universitätsstr, 25, 33615 Bielefeld, Germany.
| |
Collapse
|
27
|
Grassi S, Piro G, Lee JM, Zheng Y, Fei Z, Dalessandro G, Giovannoni JJ, Lenucci MS. Comparative genomics reveals candidate carotenoid pathway regulators of ripening watermelon fruit. BMC Genomics 2013; 14:781. [PMID: 24219562 PMCID: PMC3840736 DOI: 10.1186/1471-2164-14-781] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 10/31/2013] [Indexed: 12/22/2022] Open
Abstract
Background Many fruits, including watermelon, are proficient in carotenoid accumulation during ripening. While most genes encoding steps in the carotenoid biosynthetic pathway have been cloned, few transcriptional regulators of these genes have been defined to date. Here we describe the identification of a set of putative carotenoid-related transcription factors resulting from fresh watermelon carotenoid and transcriptome analysis during fruit development and ripening. Our goal is to both clarify the expression profiles of carotenoid pathway genes and to identify candidate regulators and molecular targets for crop improvement. Results Total carotenoids progressively increased during fruit ripening up to ~55 μg g-1 fw in red-ripe fruits. Trans-lycopene was the carotenoid that contributed most to this increase. Many of the genes related to carotenoid metabolism displayed changing expression levels during fruit ripening generating a metabolic flux toward carotenoid synthesis. Constitutive low expression of lycopene cyclase genes resulted in lycopene accumulation. RNA-seq expression profiling of watermelon fruit development yielded a set of transcription factors whose expression was correlated with ripening and carotenoid accumulation. Nineteen putative transcription factor genes from watermelon and homologous to tomato carotenoid-associated genes were identified. Among these, six were differentially expressed in the flesh of both species during fruit development and ripening. Conclusions Taken together the data suggest that, while the regulation of a common set of metabolic genes likely influences carotenoid synthesis and accumulation in watermelon and tomato fruits during development and ripening, specific and limiting regulators may differ between climacteric and non-climacteric fruits, possibly related to their differential susceptibility to and use of ethylene during ripening.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Marcello S Lenucci
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali (Di,S,Te,B,A,), Università del Salento, via Prov,le Lecce-Monteroni,73100 Lecce, Italy.
| |
Collapse
|
28
|
Establishment, in silico analysis, and experimental verification of a large-scale metabolic network of the xanthan producing Xanthomonas campestris pv. campestris strain B100. J Biotechnol 2013; 167:123-34. [DOI: 10.1016/j.jbiotec.2013.01.023] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Revised: 01/28/2013] [Accepted: 01/28/2013] [Indexed: 11/20/2022]
|
29
|
Fullam E, Pojer F, Bergfors T, Jones TA, Cole ST. Structure and function of the transketolase from Mycobacterium tuberculosis and comparison with the human enzyme. Open Biol 2013; 2:110026. [PMID: 22645655 PMCID: PMC3352088 DOI: 10.1098/rsob.110026] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Accepted: 12/16/2011] [Indexed: 11/19/2022] Open
Abstract
The transketolase (TKT) enzyme in Mycobacterium tuberculosis
represents a novel drug target for tuberculosis treatment and has low homology
with the orthologous human enzyme. Here, we report on the structural and kinetic
characterization of the transketolase from M. tuberculosis
(TBTKT), a homodimer whose monomers each comprise 700 amino acids. We show that
TBTKT catalyses the oxidation of donor sugars xylulose-5-phosphate and
fructose-6-phosphate as well as the reduction of the acceptor sugar
ribose-5-phosphate. An invariant residue of the TKT consensus sequence required
for thiamine cofactor binding is mutated in TBTKT; yet its catalytic activities
are unaffected, and the 2.5 Å resolution structure of full-length TBTKT
provides an explanation for this. Key structural differences between the human
and mycobacterial TKT enzymes that impact both substrate and cofactor
recognition and binding were uncovered. These changes explain the kinetic
differences between TBTKT and its human counterpart, and their differential
inhibition by small molecules. The availability of a detailed structural model
of TBTKT will enable differences between human and M.
tuberculosis TKT structures to be exploited to design selective
inhibitors with potential antitubercular activity.
Collapse
|
30
|
Shimizu K. Metabolic Regulation of a Bacterial Cell System with Emphasis on Escherichia coli Metabolism. ISRN BIOCHEMISTRY 2013; 2013:645983. [PMID: 25937963 PMCID: PMC4393010 DOI: 10.1155/2013/645983] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Accepted: 10/25/2012] [Indexed: 12/19/2022]
Abstract
It is quite important to understand the overall metabolic regulation mechanism of bacterial cells such as Escherichia coli from both science (such as biochemistry) and engineering (such as metabolic engineering) points of view. Here, an attempt was made to clarify the overall metabolic regulation mechanism by focusing on the roles of global regulators which detect the culture or growth condition and manipulate a set of metabolic pathways by modulating the related gene expressions. For this, it was considered how the cell responds to a variety of culture environments such as carbon (catabolite regulation), nitrogen, and phosphate limitations, as well as the effects of oxygen level, pH (acid shock), temperature (heat shock), and nutrient starvation.
Collapse
Affiliation(s)
- Kazuyuki Shimizu
- Kyushu Institute of Technology, Fukuoka, Iizuka 820-8502, Japan
- Institute of Advanced Bioscience, Keio University, Yamagata, Tsuruoka 997-0017, Japan
| |
Collapse
|
31
|
Tuntufye HN, Gwakisa PS, Goddeeris BM. In silico analysis of tkt1 from avian pathogenic Escherichia coli and its virulence evaluation in chickens. Res Microbiol 2013; 164:310-8. [PMID: 23376541 DOI: 10.1016/j.resmic.2013.01.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Accepted: 11/19/2012] [Indexed: 12/13/2022]
Abstract
Extraintestinal pathogenic Escherichia coli (ExPEC) contain tktA and tktB which code for transketolases involved in the pentose phosphate pathway. Recent studies demonstrated that a third gene coding for transketolase 1 (tkt1) was located in a pathogenicity island of avian and human ExPEC belonging to phylogenetic group B2. In the present study, in silico analysis of tkt1 revealed 68% and 69% identity with tktA and tktB, respectively, of ExPEC and 68% identity with tktA and tktB of E. coli MG1655. The translated tkt1 shared 69% and 68% identity with TktA and TktB proteins, respectively, of ExPEC and E. coli MG1655. Phylogenetically, it is shown that the three genes (tktA, tktB and tkt1) cluster in three different clades. Further analysis suggests that tkt1 has been acquired though horizontal gene transfer from plant-associated bacteria within the family Enterobacteriaceae. Virulence studies were performed in order to evaluate whether tkt1 played a role in avian pathogenic E. coli CH2 virulence in chickens. The evaluation revealed that mutant virulence was slightly lower based on LD50 when compared to the wild type during infection of chickens, but there were no significant differences when the two strains were compared based on the number of deaths and lesion scores.
Collapse
Affiliation(s)
- Huruma Nelwike Tuntufye
- Department of Biosystems, Faculty of Bioscience Engineering, University of Leuven (KU Leuven), Kasteelpark Arenberg 30, B-3001 Heverlee, Belgium.
| | | | | |
Collapse
|
32
|
Kim MS, Lim A, Yang SW, Lee D, Park J, Shin DH. A preliminary X-ray study of transketolase from Burkholderia pseudomallei. Acta Crystallogr Sect F Struct Biol Cryst Commun 2012; 68:1554-6. [PMID: 23192046 PMCID: PMC3509987 DOI: 10.1107/s1744309112044375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Accepted: 10/25/2012] [Indexed: 11/10/2022]
Abstract
TktA is the most critical enzyme in the nonoxidative pentose phosphate pathway. It catalyzes the conversion of xylulose 5-phosphate and ribose 5-phosphate into sedoheptulose 7-phosphate and glyceraldehyde 3-phosphate, and its products are used in the biosynthesis of acetyl-CoA, aromatic amino acids, nucleic acids and ADP-L-glycero-β-D-manno-heptose. TktA also has an unexpected role in chromosome structure that is independent of its metabolic responsibilities. Therefore, it is a new potent antibiotic target. In this study, TktA from Burkholderia pseudomallei has been cloned, expressed, purified and crystallized. Synchrotron X-ray data were also collected to 2.0 Å resolution. The crystal belonged to the monoclinic space group C2, with unit-cell parameters a=146.2, b=74.6, c=61.6 Å, β=113.0°. A full structural determination is under way in order to provide insight into the structure-function relationship of this protein.
Collapse
Affiliation(s)
- Mi-Sun Kim
- The Center for Cell Signaling and Drug Discovery Research, College of Pharmacy, Division of Life and Pharmaceutical Sciences, Ewha Womans University, Seoul 120-750, Republic of Korea
| | - Areum Lim
- The Center for Cell Signaling and Drug Discovery Research, College of Pharmacy, Division of Life and Pharmaceutical Sciences, Ewha Womans University, Seoul 120-750, Republic of Korea
| | - Seung Won Yang
- The Center for Cell Signaling and Drug Discovery Research, College of Pharmacy, Division of Life and Pharmaceutical Sciences, Ewha Womans University, Seoul 120-750, Republic of Korea
| | - Daeun Lee
- The Center for Cell Signaling and Drug Discovery Research, College of Pharmacy, Division of Life and Pharmaceutical Sciences, Ewha Womans University, Seoul 120-750, Republic of Korea
| | - Jimin Park
- The Center for Cell Signaling and Drug Discovery Research, College of Pharmacy, Division of Life and Pharmaceutical Sciences, Ewha Womans University, Seoul 120-750, Republic of Korea
| | - Dong Hae Shin
- The Center for Cell Signaling and Drug Discovery Research, College of Pharmacy, Division of Life and Pharmaceutical Sciences, Ewha Womans University, Seoul 120-750, Republic of Korea
| |
Collapse
|
33
|
Kim J, Reed JL. RELATCH: relative optimality in metabolic networks explains robust metabolic and regulatory responses to perturbations. Genome Biol 2012; 13:R78. [PMID: 23013597 PMCID: PMC3506949 DOI: 10.1186/gb-2012-13-9-r78] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Revised: 08/30/2012] [Accepted: 09/26/2012] [Indexed: 11/25/2022] Open
Abstract
Predicting cellular responses to perturbations is an important task in systems biology. We report a new approach, RELATCH, which uses flux and gene expression data from a reference state to predict metabolic responses in a genetically or environmentally perturbed state. Using the concept of relative optimality, which considers relative flux changes from a reference state, we hypothesize a relative metabolic flux pattern is maintained from one state to another, and that cells adapt to perturbations using metabolic and regulatory reprogramming to preserve this relative flux pattern. This constraint-based approach will have broad utility where predictions of metabolic responses are needed.
Collapse
Affiliation(s)
- Joonhoon Kim
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | | |
Collapse
|
34
|
Li G, Kariyawasam S, Tivendale KA, Wannemuehler Y, Ewers C, Wieler LH, Logue CM, Nolan LK. tkt1, located on a novel pathogenicity island, is prevalent in avian and human extraintestinal pathogenic Escherichia coli. BMC Microbiol 2012; 12:51. [PMID: 22471764 PMCID: PMC3349570 DOI: 10.1186/1471-2180-12-51] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Accepted: 04/03/2012] [Indexed: 12/04/2022] Open
Abstract
Background Extraintestinal pathogenic Escherichia coli are important pathogens of human and animal hosts. Some human and avian extraintestinal pathogenic E. coli are indistinguishable on the basis of diseases caused, multilocus sequence and phylogenetic typing, carriage of large virulence plasmids and traits known to be associated with extraintestinal pathogenic E. coli virulence. Results The gene tkt1 identified by a previous signature-tagged transposon mutagenesis study, was found on a 16-kb genomic island of avian pathogenic Escherichia coli (APEC) O1, the first pathogenic Escherichia coli strain whose genome has been completely sequenced. tkt1 was present in 39.6% (38/96) of pathogenic Escherichia coli strains, while only 6.25% (3/48) of E. coli from the feces of apparently healthy chickens was positive. Further, tkt1 was predominantly present in extraintestinal pathogenic E. coli belonging to the B2 phylogenetic group, as compared to extraintestinal pathogenic E. coli of other phylogenetic groups. The tkt1-containing genomic island is inserted between the metE and ysgA genes of the E. coli K12 genome. Among different extraintestinal pathogenic E. coli of the B2 phylogenetic group, 61.7% of pathogenic Escherichia coli, 80.6% of human uropathogenic E.coli and 94.1% of human neonatal meningitis-causing E. coli, respectively, harbor a complete copy of this island; whereas, only a few avian fecal E. coli strains contained the complete island. Functional analysis showed that Tkt1 confers very little transketolase activity but is involved in peptide nitrogen metabolism. Conclusion These results suggest tkt1 and its corresponding genomic island are frequently associated with avian and human ExPEC and are involved in bipeptide metabolism.
Collapse
Affiliation(s)
- Ganwu Li
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary medicine, Iowa State University, Ames, Iowa 50011, USA
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Identification of Avian pathogenic Escherichia coli genes that are induced in vivo during infection in chickens. Appl Environ Microbiol 2012; 78:3343-51. [PMID: 22344666 DOI: 10.1128/aem.07677-11] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Avian pathogenic Escherichia coli (APEC) is associated with extraintestinal infections in poultry causing a variety of diseases collectively known as colibacillosis. The host and bacterial factors influencing and/or responsible for carriage and systemic translocation of APEC inside the host are poorly understood. Identification of such factors could help in the understanding of its pathogenesis and in the subsequent development of control strategies. Recombination-based in vivo expression technology (RIVET) was used to identify APEC genes specifically expressed during infection in chickens. A total of 21 clones with in vivo-induced promoters were isolated from chicken livers and spleens, indicative of systemic infection. DNA sequencing of the cloned fragments revealed that 12 of the genes were conserved E. coli genes (metH, lysA, pntA, purL, serS, ybjE, ycdK [rutC], wcaJ, gspL, sdsR, ylbE, and yjiY), 6 of the genes were phage related/associated, and 3 genes were pathogen specific (tkt1, irp2, and eitD). These genes are involved in various cellular functions, such as metabolism, cell envelope and integrity, transport systems, and virulence. Others were phage related or have yet-unknown functions.
Collapse
|
36
|
Experimental evolution of a facultative thermophile from a mesophilic ancestor. Appl Environ Microbiol 2011; 78:144-55. [PMID: 22020511 DOI: 10.1128/aem.05773-11] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Experimental evolution via continuous culture is a powerful approach to the alteration of complex phenotypes, such as optimal/maximal growth temperatures. The benefit of this approach is that phenotypic selection is tied to growth rate, allowing the production of optimized strains. Herein, we demonstrate the use of a recently described long-term culture apparatus called the Evolugator for the generation of a thermophilic descendant from a mesophilic ancestor (Escherichia coli MG1655). In addition, we used whole-genome sequencing of sequentially isolated strains throughout the thermal adaptation process to characterize the evolutionary history of the resultant genotype, identifying 31 genetic alterations that may contribute to thermotolerance, although some of these mutations may be adaptive for off-target environmental parameters, such as rich medium. We undertook preliminary phenotypic analysis of mutations identified in the glpF and fabA genes. Deletion of glpF in a mesophilic wild-type background conferred significantly improved growth rates in the 43-to-48°C temperature range and altered optimal growth temperature from 37°C to 43°C. In addition, transforming our evolved thermotolerant strain (EVG1064) with a wild-type allele of glpF reduced fitness at high temperatures. On the other hand, the mutation in fabA predictably increased the degree of saturation in membrane lipids, which is a known adaptation to elevated temperature. However, transforming EVG1064 with a wild-type fabA allele had only modest effects on fitness at intermediate temperatures. The Evolugator is fully automated and demonstrates the potential to accelerate the selection for complex traits by experimental evolution and significantly decrease development time for new industrial strains.
Collapse
|
37
|
Dick T, Manjunatha U, Kappes B, Gengenbacher M. Vitamin B6 biosynthesis is essential for survival and virulence of Mycobacterium tuberculosis. Mol Microbiol 2010; 78:980-8. [PMID: 20815826 DOI: 10.1111/j.1365-2958.2010.07381.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
With 500000 cases of multidrug-resistant tuberculosis there is an urgent need for attractive targets to enable the discovery of novel antimycobacterials. The biosynthesis of essential cofactors is of particular interest as these pathways are absent in man and their inhibition is expected to affect the metabolism of Mycobacterium tuberculosis at multiple sites. Our data demonstrate that the pathogen synthesizes pyridoxal 5-phosphate (PLP), the bioactive form of vitamin B6, by a heteromeric PLP synthase composed of Pdx1 (Rv2606c) and Pdx2 (Rv2604c). Disruption of the pdx1 gene generated a strictly B6 auxotrophic M. tuberculosis mutant, Δpdx1. Removal of the cofactor during exponential growth or stationary phase demonstrated the essentiality of vitamin B6 biosynthesis for growth and survival of the pathogen in culture. In a tuberculosis dormancy model based on gradual oxygen depletion, de novo biosynthesis of PLP was required for regrowth of the bacillus after direct oxygen exposure. The Δpdx1 mutant showed a severe growth defect in immunocompetent mice: bacilli applied intranasally failed to persist in host tissues and were quickly cleared. We conclude that vitamin B6 biosynthesis is required for survival of M. tuberculosis in vivo and thus might represent a candidate pathway for the development of new antitubercular agents.
Collapse
Affiliation(s)
- Thomas Dick
- Novartis Institute for Tropical Diseases Pte. Ltd., 10 Biopolis Road, #05-01 Chromos, Singapore 138670, Singapore
| | | | | | | |
Collapse
|
38
|
Kim J, Reed JL. OptORF: Optimal metabolic and regulatory perturbations for metabolic engineering of microbial strains. BMC SYSTEMS BIOLOGY 2010; 4:53. [PMID: 20426856 PMCID: PMC2887412 DOI: 10.1186/1752-0509-4-53] [Citation(s) in RCA: 153] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2009] [Accepted: 04/28/2010] [Indexed: 02/03/2023]
Abstract
Background Computational modeling and analysis of metabolic networks has been successful in metabolic engineering of microbial strains for valuable biochemical production. Limitations of currently available computational methods for metabolic engineering are that they are often based on reaction deletions rather than gene deletions and do not consider the regulatory networks that control metabolism. Due to the presence of multi-functional enzymes and isozymes, computational designs based on reaction deletions can sometimes result in strategies that are genetically complicated or infeasible. Additionally, strains might not be able to grow initially due to regulatory restrictions. To overcome these limitations, we have developed a new approach (OptORF) for identifying metabolic engineering strategies based on gene deletion and overexpression. Results Here we propose an effective method to systematically integrate transcriptional regulatory networks and metabolic networks. This allows for the formulation of linear optimization problems that search for metabolic and/or regulatory perturbations that couple biomass and biochemical production, thus proposing adaptive evolutionary strain designs. Using genome-scale models of Escherichia coli, we have implemented the OptORF algorithm (which considers gene deletions and transcriptional regulation) and compared its metabolic engineering strategies for ethanol production to those found using OptKnock (which considers reaction deletions). Our results found that the reaction-based strategies often require more gene deletions to remove the identified reactions (2 more genes than reactions), and result in lethal growth phenotypes when transcriptional regulation is considered (162 out of 200 cases). Finally, we present metabolic engineering strategies for producing ethanol and higher alcohols (e.g. isobutanol) in E. coli using our OptORF approach. We have found common genetic modifications such as deletion of pgi and overexpression of edd, as well as chemical specific strategies for producing different alcohols. Conclusions By taking regulatory effects into account, OptORF can propose changes such as the overexpression of metabolic genes or deletion of transcriptional factors, in addition to the deletion of metabolic genes, that may lead to faster evolutionary trajectories. While biofuel production in E. coli is evaluated here, the developed OptORF approach is general and can be applied to optimize the production of different compounds in other biological systems.
Collapse
Affiliation(s)
- Joonhoon Kim
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | |
Collapse
|
39
|
GyrA interacts with MarR to reduce repression of the marRAB operon in Escherichia coli. J Bacteriol 2009; 192:942-8. [PMID: 19933356 DOI: 10.1128/jb.01259-09] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacterial two-hybrid studies of randomly cloned Escherichia coli DNA identified a physical interaction between GyrA, subunit A of gyrase, and MarR, a repressor of the marRAB operon. GyrA-His immobilized on Ni-nitrilotriacetic acid (NiNTA) resin bound MarR, while MarR alone did not bind. GyrA interfered with MarR binding to marO, as detected by electrophoretic mobility assays. In a strain bearing the marRAB operon and a marO-lacZ reporter, overexpression of GyrA increased LacZ activity, indicating decreased repression of marO-lacZ by MarR. These results were confirmed by an increased survival of cells treated with quinolones and other antibiotics when GyrA was overexpressed. This work, like a previous study examining TktA (12), shows that unrelated proteins can regulate MarR activity. The findings reveal an unexpected regulatory function of GyrA in antibiotic resistance.
Collapse
|
40
|
Toward systematic metabolic engineering based on the analysis of metabolic regulation by the integration of different levels of information. Biochem Eng J 2009. [DOI: 10.1016/j.bej.2009.06.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
41
|
Genome-scale gene/reaction essentiality and synthetic lethality analysis. Mol Syst Biol 2009; 5:301. [PMID: 19690570 PMCID: PMC2736653 DOI: 10.1038/msb.2009.56] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2008] [Accepted: 07/08/2009] [Indexed: 01/18/2023] Open
Abstract
Synthetic lethals are to pairs of non-essential genes whose simultaneous deletion prohibits growth. One can extend the concept of synthetic lethality by considering gene groups of increasing size where only the simultaneous elimination of all genes is lethal, whereas individual gene deletions are not. We developed optimization-based procedures for the exhaustive and targeted enumeration of multi-gene (and by extension multi-reaction) lethals for genome-scale metabolic models. Specifically, these approaches are applied to iAF1260, the latest model of Escherichia coli, leading to the complete identification of all double and triple gene and reaction synthetic lethals as well as the targeted identification of quadruples and some higher-order ones. Graph representations of these synthetic lethals reveal a variety of motifs ranging from hub-like to highly connected subgraphs providing a birds-eye view of the avenues available for redirecting metabolism and uncovering complex patterns of gene utilization and interdependence. The procedure also enables the use of falsely predicted synthetic lethals for metabolic model curation. By analyzing the functional classifications of the genes involved in synthetic lethals, we reveal surprising connections within and across clusters of orthologous group functional classifications.
Collapse
|
42
|
Harinarayanan R, Murphy H, Cashel M. Synthetic growth phenotypes of Escherichia coli lacking ppGpp and transketolase A (tktA) are due to ppGpp-mediated transcriptional regulation of tktB. Mol Microbiol 2008; 69:882-94. [PMID: 18532980 PMCID: PMC2561915 DOI: 10.1111/j.1365-2958.2008.06317.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Many physiological adjustments to nutrient changes involve ppGpp. Recent attempts to deduce ppGpp regulatory effects using proteomics or gene profiling can rigorously identify proteins or transcripts, but the functional significance is often unclear. Using a random screen for synthetic lethals we found a ppGpp-dependent functional pathway that operates through transketolase B (TktB), and which is 'buffered' in wildtype strain by the presence of an isozyme, transketolase A (TktA). Transketolase activity is required in cells to make erythrose-4-phosphate, a precursor of aromatic amino acids and vitamins. By studying tktB-dependent nutritional requirements as well as measuring activities using PtalA-tktB'-lacZ transcriptional reporter fusion, we show positive transcriptional regulation of the talA-tktB operon by ppGpp. Our results show the existence of RpoS-dependent and RpoS-independent modes of positive regulation by ppGpp. Both routes of activation are magnified by elevating ppGpp levels with a spoT mutation (spoT-R39A) defective in hydrolase but not synthetase activity or with the stringent suppressor mutations rpoB-A532Delta or rpoB-T563P in the absence of ppGpp.
Collapse
Affiliation(s)
- Rajendran Harinarayanan
- Laboratory of Molecular Genetics, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | |
Collapse
|
43
|
Fitzpatrick TB, Amrhein N, Kappes B, Macheroux P, Tews I, Raschle T. Two independent routes of de novo vitamin B6 biosynthesis: not that different after all. Biochem J 2007; 407:1-13. [PMID: 17822383 DOI: 10.1042/bj20070765] [Citation(s) in RCA: 150] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Vitamin B6 is well known in its biochemically active form as pyridoxal 5'-phosphate, an essential cofactor of numerous metabolic enzymes. The vitamin is also implicated in numerous human body functions ranging from modulation of hormone function to its recent discovery as a potent antioxidant. Its de novo biosynthesis occurs only in bacteria, fungi and plants, making it an essential nutrient in the human diet. Despite its paramount importance, its biosynthesis was predominantly investigated in Escherichia coli, where it is synthesized from the condensation of deoxyxylulose 5-phosphate and 4-phosphohydroxy-L-threonine catalysed by the concerted action of PdxA and PdxJ. However, it has now become clear that the majority of organisms capable of producing this vitamin do so via a different route, involving precursors from glycolysis and the pentose phosphate pathway. This alternative pathway is characterized by the presence of two genes, Pdx1 and Pdx2. Their discovery has sparked renewed interest in vitamin B6, and numerous studies have been conducted over the last few years to characterize the new biosynthesis pathway. Indeed, enormous progress has been made in defining the nature of the enzymes involved in both pathways, and important insights have been provided into their mechanisms of action. In the present review, we summarize the recent advances in our knowledge of the biosynthesis of this versatile molecule and compare the two independent routes to the biosynthesis of vitamin B6. Surprisingly, this comparison reveals that the key biosynthetic enzymes of both pathways are, in fact, very similar both structurally and mechanistically.
Collapse
|
44
|
Rahman M, Shimizu K. Altered acetate metabolism and biomass production in several Escherichia coli mutants lacking rpoS-dependent metabolic pathway genes. MOLECULAR BIOSYSTEMS 2007; 4:160-9. [PMID: 18213409 DOI: 10.1039/b712023k] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The stress responsive sigma factor RpoS regulates the expression of tktB and talAgenes of the non-oxidative pentose phosphate (PP) pathway, and fumCand acnA genes of the TCA cycle at the stationary phase of growth. In the present study, batch cultivations were performed using tktB, talA, fumC or acnA-knockout mutants of Escherichia coli to observe the metabolic changes at different phases of growth compared to the wild type strain. Although the specific growth rates of the mutants were similar to the wild type, acetate yield was nearly half in all mutants except the acnA mutant. Altered acetate yield in the mutants was also accompanied by variations in the biomass yield. While the biomass yield in both the tktB and talA mutants was increased by 13.8%, biomass was 5.5% and 13.8% lower in the fumC and acnA mutants, respectively. Upregulation of global regulators such as rpoS and soxRS, the acs, aceA, aceB genes, and several TCA cycle genes such as fumC, acnA and sucA, is consistent with higher acetate consumption and biomass yield in the tktB and talA mutants. On the other hand, the fumC and acnA mutants, with their impaired TCA cycles, were unable to utilize acetate for biomass production in spite of the higher expression of rpoS and soxRS.
Collapse
Affiliation(s)
- Mahbuba Rahman
- Department of Bioscience and Bioinformatics, Faculty of Computer Science and System Engineering, Kyushu Institute of Technology, Iizuka, Fukuoka 820-8502, Japan
| | | |
Collapse
|
45
|
Smith LK, Gomez MJ, Shatalin KY, Lee H, Neyfakh AA. Monitoring of gene knockouts: genome-wide profiling of conditionally essential genes. Genome Biol 2007; 8:R87. [PMID: 17519022 PMCID: PMC1929150 DOI: 10.1186/gb-2007-8-5-r87] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2006] [Revised: 03/05/2007] [Accepted: 05/22/2007] [Indexed: 11/12/2022] Open
Abstract
Monitoring of gene knockouts is a new microarray-based genetic technique used for genome-wide identification of conditionally essential genes in bacteria We have developed a new microarray-based genetic technique, named MGK (Monitoring of Gene Knockouts), for genome-wide identification of conditionally essential genes. MGK identified bacterial genes that are critical for fitness in the absence of aromatic amino acids, and was further applied to identify genes whose inactivation causes bacterial cell death upon exposure to the bacteriostatic antibiotic chloramphenicol. Our findings suggest that MGK can serve as a robust tool in functional genomics studies.
Collapse
Affiliation(s)
- Lisa K Smith
- Center for Pharmaceutical Biotechnology, University of Illinois, Chicago, Illinois 60607, USA
| | - Maria J Gomez
- Center for Pharmaceutical Biotechnology, University of Illinois, Chicago, Illinois 60607, USA
| | - Konstantin Y Shatalin
- Current address: Department of Biochemistry, New York University School of Medicine, New York, New York 10016, USA
| | - Hyunwoo Lee
- Center for Pharmaceutical Biotechnology, University of Illinois, Chicago, Illinois 60607, USA
| | - Alexander A Neyfakh
- Center for Pharmaceutical Biotechnology, University of Illinois, Chicago, Illinois 60607, USA
- Deceased (20 April 2006)
| |
Collapse
|
46
|
Domain F, Bina XR, Levy SB. Retracted: Transketolase A, an enzyme in central metabolism, derepresses themarRABmultiple antibiotic resistance operon ofEscherichia coliby interaction with MarR. Mol Microbiol 2007; 66:383-94. [PMID: 17850260 DOI: 10.1111/j.1365-2958.2007.05928.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The Escherichia coli marRAB operon specifies two regulatory proteins, MarR (which represses) and MarA (which activates expression of the operon). The latter controls expression of multiple other chromosomal genes implicated in cell physiology, multiple drug resistance and virulence. Using randomly cloned E. coli DNA fragments in the bacterial adenylate cyclase two-hybrid system, we found that transketolase A (TktA) interacts with MarR. Purified (6H)-TktA immobilized on NiNTA resin-bound MarR. Overexpression or deletion of tktA showed that TktA interfered with MarR repression of the marRAB operon. Deletion of tktA increased antibiotic and oxidative stress susceptibilities, while its overexpression decreased them. Hydrogen peroxide induced tktA at 1 h treatment, while an increase in marRAB expression occurred only after 3 h exposure. This increase was dependent on the presence of tktA. Two MarR mutations which eliminated MarR binding to the marRAB operator and one which decreased dimerization of MarR had no effect on MarR interaction with TktA in the two-hybrid system. However, the interaction was disrupted by one of the three tested superrepressor mutant MarR proteins known to increase MarR binding to DNA. TktA inhibition of repression by MarR demonstrates a previously unrecognized level of control of the expression of marRAB operon.
Collapse
Affiliation(s)
- Francis Domain
- Center for Adaptation Genetics and Drug Resistance, Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA 02111, USA
| | | | | |
Collapse
|
47
|
Raschle T, Arigoni D, Brunisholz R, Rechsteiner H, Amrhein N, Fitzpatrick TB. Reaction mechanism of pyridoxal 5'-phosphate synthase. Detection of an enzyme-bound chromophoric intermediate. J Biol Chem 2006; 282:6098-105. [PMID: 17189272 DOI: 10.1074/jbc.m610614200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Vitamin B6 is an essential metabolite in all organisms. De novo synthesis of the vitamin can occur through either of two mutually exclusive pathways referred to as deoxyxylulose 5-phosphate-dependent and deoxyxylulose 5-phosphate-independent. The latter pathway has only recently been discovered and is distinguished by the presence of two genes, Pdx1 and Pdx2, encoding the synthase and glutaminase subunit of PLP synthase, respectively. In the presence of ammonia, the synthase alone displays an exceptional polymorphic synthetic ability in carrying out a complex set of reactions, including pentose and triose isomerization, imine formation, ammonia addition, aldol-type condensation, cyclization, and aromatization, that convert C3 and C5 precursors into the cofactor B6 vitamer, pyridoxal 5'-phosphate. Here, employing the Bacillus subtilis proteins, we demonstrate key features along the catalytic path. We show that ribose 5-phosphate is the preferred C5 substrate and provide unequivocal evidence that the pent(ul)ose phosphate imine occurs at lysine 81 rather than lysine 149 as previously postulated. While this study was under review, corroborative crystallographic evidence has been provided for imine formation with the corresponding lysine group in the enzyme from Thermotoga maritima (Zein, F., Zhang, Y., Kang, Y.-N., Burns, K., Begley, T. P., and Ealick, S. E. (2006) Biochemistry 45, 14609-14620). We have detected an unanticipated covalent reaction intermediate that occurs subsequent to imine formation and is dependent on the presence of Pdx2 and glutamine. This step most likely primes the enzyme for acceptance of the triose sugar, ultimately leading to formation of the pyridine ring. Two alternative structures are proposed for the chromophoric intermediate, both of which require substantial modifications of the proposed mechanism.
Collapse
|
48
|
Parikh MR, Greene DN, Woods KK, Matsumura I. Directed evolution of RuBisCO hypermorphs through genetic selection in engineered E.coli. Protein Eng Des Sel 2006; 19:113-9. [PMID: 16423843 PMCID: PMC2012944 DOI: 10.1093/protein/gzj010] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The Calvin Cycle is the primary conduit for the fixation of carbon dioxide into the biosphere; ribulose 1,5-bisphosphate carboxylase/oxygenase (RuBisCO) catalyzes the rate-limiting fixation step. Our goal is to direct the evolution of RuBisCO variants with improved kinetic and biophysical properties. The Calvin Cycle was partially reconstructed in Escherichia coli; the engineered strain requires the Synechococcus PCC6301 RuBisCO for growth in minimal media supplemented with a pentose. We randomly mutated the gene encoding the large subunit of RuBisCO (rbcL), co-expressed the resulting library with the small subunit (rbcS) and the Synechococcus PCC7492 phosphoribulokinase (prkA), and selected hypermorphic variants. The RuBisCO variants that evolved during three rounds of random mutagenesis and selection were over-expressed, and exhibited 5-fold improvement in specific activity relative to the wild-type enzyme. These results demonstrate a new strategy for the artificial selection of RuBisCO and other non-native metabolic enzymes.
Collapse
Affiliation(s)
- Monal R. Parikh
- Department of Biochemistry, Center for Fundamental and Applied Molecular Evolution, Emory University School of Medicine, Rollins Research Center, Room 4119, 1510 Clifton Road, Atlanta, GA 30322, USA
| | - Dina N. Greene
- Department of Biochemistry, Center for Fundamental and Applied Molecular Evolution, Emory University School of Medicine, Rollins Research Center, Room 4119, 1510 Clifton Road, Atlanta, GA 30322, USA
| | | | - Ichiro Matsumura
- Department of Biochemistry, Center for Fundamental and Applied Molecular Evolution, Emory University School of Medicine, Rollins Research Center, Room 4119, 1510 Clifton Road, Atlanta, GA 30322, USA
| |
Collapse
|
49
|
Kleijn RJ, van Winden WA, van Gulik WM, Heijnen JJ. Revisiting the 13C-label distribution of the non-oxidative branch of the pentose phosphate pathway based upon kinetic and genetic evidence. FEBS J 2005; 272:4970-82. [PMID: 16176270 DOI: 10.1111/j.1742-4658.2005.04907.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The currently applied reaction structure in stoichiometric flux balance models for the nonoxidative branch of the pentose phosphate pathway is not in accordance with the established ping-pong kinetic mechanism of the enzymes transketolase (EC 2.2.1.1) and transaldolase (EC 2.2.1.2). Based upon the ping-pong mechanism, the traditional reactions of the nonoxidative branch of the pentose phosphate pathway are replaced by metabolite specific, reversible, glycolaldehyde moiety (C(2)) and dihydroxyacetone moiety (C(3)) fragments producing and consuming half-reactions. It is shown that a stoichiometric model based upon these half-reactions is fundamentally different from the currently applied stoichiometric models with respect to the number of independent C(2) and C(3) fragment pools in the pentose phosphate pathway and can lead to different label distributions for (13)C-tracer experiments. To investigate the actual impact of the new reaction structure on the estimated flux patterns within a cell, mass isotopomer measurements from a previously published (13)C-based metabolic flux analysis of Saccharomyces cerevisiae were used. Different flux patterns were found. From a genetic point of view, it is well known that several micro-organisms, including Escherichia coli and S. cerevisiae, contain multiple genes encoding isoenzymes of transketolase and transaldolase. However, the extent to which these gene products are also actively expressed remains unknown. It is shown that the newly proposed stoichiometric model allows study of the effect of isoenzymes on the (13)C-label distribution in the nonoxidative branch of the pentose phosphate pathway by extending the half-reaction based stoichiometric model with two distinct transketolase enzymes instead of one. Results show that the inclusion of isoenzymes affects the ensuing flux estimates.
Collapse
Affiliation(s)
- Roelco J Kleijn
- Department of Biotechnology, Delft University of Technology, the Netherlands.
| | | | | | | |
Collapse
|
50
|
Abstract
Central metabolism of carbohydrates uses the Embden-Meyerhof-Parnas (EMP), pentose phosphate (PP), and Entner-Doudoroff (ED) pathways. This review reviews the biological roles of the enzymes and genes of these three pathways of E. coli. Glucose, pentoses, and gluconate are primarily discussed as the initial substrates of the three pathways, respectively. The genetic and allosteric regulatory mechanisms of glycolysis and the factors that affect metabolic flux through the pathways are considered here. Despite the fact that a lot of information on each of the reaction steps has been accumulated over the years for E. coli, surprisingly little quantitative information has been integrated to analyze glycolysis as a system. Therefore, the review presents a detailed description of each of the catalytic steps by a systemic approach. It considers both structural and kinetic aspects. Models that include kinetic information of the reaction steps will always contain the reaction stoichiometry and therefore follow the structural constraints, but in addition to these also kinetic rate laws must be fulfilled. The kinetic information obtained on isolated enzymes can be integrated using computer models to simulate behavior of the reaction network formed by these enzymes. Successful examples of such approaches are the modeling of glycolysis in S. cerevisiae, the parasite Trypanosoma brucei, and the red blood cell. With the rapid developments in the field of Systems Biology many new methods have been and will be developed, for experimental and theoretical approaches, and the authors expect that these will be applied to E. coli glycolysis in the near future.
Collapse
Affiliation(s)
- Tony Romeo
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Jacky L Snoep
- Department of Biochemistry, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa, and Department of Molecular Cell Physiology, Vrije Universiteit, Amsterdam, The Netherlands
| |
Collapse
|