1
|
Berendsen RL, van Verk MC, Stringlis IA, Zamioudis C, Tommassen J, Pieterse CMJ, Bakker PAHM. Unearthing the genomes of plant-beneficial Pseudomonas model strains WCS358, WCS374 and WCS417. BMC Genomics 2015. [PMID: 26198432 PMCID: PMC4509608 DOI: 10.1186/s12864-015-1632-z] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Background Plant growth-promoting rhizobacteria (PGPR) can protect plants against pathogenic microbes through a diversity of mechanisms including competition for nutrients, production of antibiotics, and stimulation of the host immune system, a phenomenon called induced systemic resistance (ISR). In the past 30 years, the Pseudomonas spp. PGPR strains WCS358, WCS374 and WCS417 of the Willie Commelin Scholten (WCS) collection have been studied in detail in pioneering papers on the molecular basis of PGPR-mediated ISR and mechanisms of biological control of soil-borne pathogens via siderophore-mediated competition for iron. Results The genomes of the model WCS PGPR strains were sequenced and analyzed to unearth genetic cues related to biological questions that surfaced during the past 30 years of functional studies on these plant-beneficial microbes. Whole genome comparisons revealed important novel insights into iron acquisition strategies with consequences for both bacterial ecology and plant protection, specifics of bacterial determinants involved in plant-PGPR recognition, and diversity of protein secretion systems involved in microbe-microbe and microbe-plant communication. Furthermore, multi-locus sequence alignment and whole genome comparison revealed the taxonomic position of the WCS model strains within the Pseudomonas genus. Despite the enormous diversity of Pseudomonas spp. in soils, several plant-associated Pseudomonas spp. strains that have been isolated from different hosts at different geographic regions appear to be nearly isogenic to WCS358, WCS374, or WCS417. Interestingly, all these WCS look-a-likes have been selected because of their plant protective or plant growth-promoting properties. Conclusions The genome sequences of the model WCS strains revealed that they can be considered representatives of universally-present plant-beneficial Pseudomonas spp. With their well-characterized functions in the promotion of plant growth and health, the fully sequenced genomes of the WCS strains provide a genetic framework that allows for detailed analysis of the biological mechanisms of the plant-beneficial traits of these PGPR. Considering the increasing focus on the role of the root microbiome in plant health, functional genomics of the WCS strains will enhance our understanding of the diversity of functions of the root microbiome. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1632-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Roeland L Berendsen
- Plant-Microbe Interactions, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands.
| | - Marcel C van Verk
- Plant-Microbe Interactions, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands. .,Bioinformatics, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands.
| | - Ioannis A Stringlis
- Plant-Microbe Interactions, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands.
| | - Christos Zamioudis
- Plant-Microbe Interactions, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands.
| | - Jan Tommassen
- Molecular Microbiology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands.
| | - Corné M J Pieterse
- Plant-Microbe Interactions, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands.
| | - Peter A H M Bakker
- Plant-Microbe Interactions, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands.
| |
Collapse
|
2
|
Putker F, Tommassen-van Boxtel R, Stork M, Rodríguez-Herva JJ, Koster M, Tommassen J. The type II secretion system (Xcp) ofPseudomonas putidais active and involved in the secretion of phosphatases. Environ Microbiol 2013; 15:2658-71. [DOI: 10.1111/1462-2920.12115] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Revised: 02/12/2013] [Accepted: 02/20/2013] [Indexed: 11/30/2022]
Affiliation(s)
- Florian Putker
- Department of Molecular Microbiology and Institute of Biomembranes; Utrecht University; 3584 CH; Utrecht; The Netherlands
| | - Ria Tommassen-van Boxtel
- Department of Molecular Microbiology and Institute of Biomembranes; Utrecht University; 3584 CH; Utrecht; The Netherlands
| | - Michiel Stork
- Department of Molecular Microbiology and Institute of Biomembranes; Utrecht University; 3584 CH; Utrecht; The Netherlands
| | - José J. Rodríguez-Herva
- Department of Molecular Microbiology and Institute of Biomembranes; Utrecht University; 3584 CH; Utrecht; The Netherlands
| | - Margot Koster
- Department of Molecular Microbiology and Institute of Biomembranes; Utrecht University; 3584 CH; Utrecht; The Netherlands
| | - Jan Tommassen
- Department of Molecular Microbiology and Institute of Biomembranes; Utrecht University; 3584 CH; Utrecht; The Netherlands
| |
Collapse
|
3
|
Mikkelsen H, Sivaneson M, Filloux A. Key two-component regulatory systems that control biofilm formation in Pseudomonas aeruginosa. Environ Microbiol 2011; 13:1666-81. [PMID: 21554516 DOI: 10.1111/j.1462-2920.2011.02495.x] [Citation(s) in RCA: 168] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Biofilm formation in P. aeruginosa is a highly regulated process that proceeds through a number of distinct stages. This development is controlled by a wide range of factors, of which two-component systems (TCSs) play a key role. In this review, we focus on some of the TCSs that regulate the switch from a motile to a sessile bacterial lifestyle, either via the production of extracellular appendages or by the production of exopolysaccharides. Extracellular appendages, such as flagella, type IV pili and Cup fimbriae are often involved in the initial attachment of bacteria to a surface. In P. aeruginosa, many of these surface structures are regulated by TCSs, and some systems regulate more than one type of appendage. Furthermore, the production of exopolysaccharides, such as Pel and Psl, is required for P. aeruginosa biofilm formation. The regulation of Pel and Psl is post-transcriptionally repressed by RsmA, the activity of which is controlled by a complex regulatory system involving several sensor kinases and accessory components. Furthermore, the Rsm system is a major control system that inversely regulates factors involved in motility and acute infection on one hand, and factors involved in biofilm formation and chronic infection on the other hand. Finally, a series of TCSs has recently been discovered that regulates biofilm development in a stage-specific manner. Taken together, these complex regulatory networks allow the bacterium to respond appropriately to diverse environmental stimuli, and increased knowledge of their mechanisms and signals could be of great importance in the design of novel antibacterial strategies.
Collapse
Affiliation(s)
- Helga Mikkelsen
- Imperial College London, Division of Cell and Molecular Biology, Centre for Molecular Microbiology and Infection, South Kensington Campus, Flowers Building, London SW7 2AZ, UK
| | | | | |
Collapse
|
4
|
Matilla MA, Ramos JL, Duque E, de Dios Alché J, Espinosa-Urgel M, Ramos-González MI. Temperature and pyoverdine-mediated iron acquisition control surface motility of Pseudomonas putida. Environ Microbiol 2008; 9:1842-50. [PMID: 17564617 DOI: 10.1111/j.1462-2920.2007.01286.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Pseudomonas putida KT2440 is unable to swarm at its common temperature of growth in the laboratory (30 degrees C) but exhibits surface motility similar to swarming patterns in other Pseudomonas between 18 degrees C and 28 degrees C. These motile cells show differentiation, consisting on elongation and the presence of surface appendages. Analysis of a collection of mutants to define the molecular determinants of this type of surface movement in KT2440 shows that while type IV pili and lipopolysaccharide O-antigen are requisites flagella are not. Although surface motility of flagellar mutants was macroscopically undistinguishable from that of the wild type, microscopy analysis revealed that these mutants move using a distinct mechanism to that of the wild-type strain. Mutants either in the siderophore pyoverdine (ppsD) or in the FpvA siderophore receptor were also unable to spread on surfaces. Motility in the ppsD strain was totally restored with pyoverdine and partially with the wild-type ppsD allele. Phenotype of the fpvA strain was not complemented by this siderophore. We discuss that iron influences surface motility and that it can be an environmental cue for swarming-like movement in P. putida. This study constitutes the first report assigning an important role to pyoverdine iron acquisition in en masse bacterial surface movement.
Collapse
Affiliation(s)
- Miguel A Matilla
- Department of Environmental Protection, Estación Experimental del Zaidin, CSIC, Profesor Albareda, 1 Granada 18008, Spain
| | | | | | | | | | | |
Collapse
|
5
|
Arts J, van Boxtel R, Filloux A, Tommassen J, Koster M. Export of the pseudopilin XcpT of the Pseudomonas aeruginosa type II secretion system via the signal recognition particle-Sec pathway. J Bacteriol 2007; 189:2069-76. [PMID: 17172336 PMCID: PMC1855739 DOI: 10.1128/jb.01236-06] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2006] [Accepted: 12/01/2006] [Indexed: 11/20/2022] Open
Abstract
Type IV pilins and pseudopilins are found in various prokaryotic envelope protein complexes, including type IV pili and type II secretion machineries of gram-negative bacteria, competence systems of gram-positive bacteria, and flagella and sugar-binding structures in members of the archaeal kingdom. The precursors of these proteins have highly conserved N termini, consisting of a short, positively charged leader peptide, which is cleaved off by a dedicated peptidase during maturation, and a hydrophobic stretch of approximately 20 amino acid residues. Which pathway is involved in the inner membrane translocation of these proteins is unknown. We used XcpT, the major pseudopilin from the type II secretion machinery of Pseudomonas aeruginosa, as a model to study this process. Transport of an XcpT-PhoA hybrid was shown to occur in the absence of other Xcp components in P. aeruginosa and in Escherichia coli. Experiments with conditional sec mutants and reporter-protein fusions showed that this transport process involves the cotranslational signal recognition particle targeting route and is dependent on a functional Sec translocon.
Collapse
Affiliation(s)
- Jorik Arts
- Department of Molecular Microbiology and Institute of Biomembranes, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | | | | | | | | |
Collapse
|
6
|
Filloux A. The underlying mechanisms of type II protein secretion. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2004; 1694:163-79. [DOI: 10.1016/j.bbamcr.2004.05.003] [Citation(s) in RCA: 204] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2003] [Accepted: 05/07/2004] [Indexed: 10/26/2022]
|
7
|
De Vrind J, De Groot A, Brouwers GJ, Tommassen J, De Vrind-De Jong E. Identification of a novel Gsp-related pathway required for secretion of the manganese-oxidizing factor of Pseudomonas putida strain GB-1. Mol Microbiol 2003; 47:993-1006. [PMID: 12581354 DOI: 10.1046/j.1365-2958.2003.03339.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The manganese-oxidizing factor of Pseudomonas putida strain GB-1 is associated with the outer membrane. One of the systems of protein transport across the outer membrane is the general secretory pathway (Gsp). The gsp genes are called xcp in Pseudomonas species. In a previous study, it was shown that mutation of the prepilin peptidase XcpA and of a homologue of the pseudopilin XcpT inhibited transport of the factor. In the present study, we describe the genomic region flanking the xcpT homologue (designated xcmT1). We show that xcmT1 is part of a two-gene operon that includes an xcpS homologue (designated xcmS). No other xcp-like genes are present in the regions flanking the xcmT1/xcmS cluster. We also characterized the site of transposon insertion of another transport mutant of P. putida GB-1. This insertion appeared to be located in a gene (designated xcmX) possibly encoding another pseudopilin-related protein. This xcmX is clustered with two other xcpT-related genes (designated xcmT2 and xcmT3) on one side and homologues of three csg genes (designated csmE, csmF and csmG) on the other side. The csg genes are involved in production of aggregative fibres in Escherichia coli and Salmonella typhimurium. A search for XcmX homologues revealed that the recently published genome of Ralstonia solanacearum and the unannotated genome of P. putida KT2440 contain comparable gene clusters with xcmX and xcp homologues that are different from the well-described 'regular'xcp/gsp clusters. They do contain xcpR and xcpQ homologues but, for example, homologues of xcpP, Y and Z are lacking. The results suggest a novel Xcp-related system for the transport of manganese-oxidizing enzymes to the cell surface.
Collapse
Affiliation(s)
- Johannes De Vrind
- Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, 2300 RA Leiden, The Netherlands.
| | | | | | | | | |
Collapse
|
8
|
Barak JD, Whitehand LC, Charkowski AO. Differences in attachment of Salmonella enterica serovars and Escherichia coli O157:H7 to alfalfa sprouts. Appl Environ Microbiol 2002; 68:4758-63. [PMID: 12324317 PMCID: PMC126431 DOI: 10.1128/aem.68.10.4758-4763.2002] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2002] [Accepted: 07/04/2002] [Indexed: 11/20/2022] Open
Abstract
Numerous Salmonella enterica and Escherichia coli O157:H7 outbreaks have been associated with contaminated sprouts. We examined how S. enterica serovars, E. coli serotypes, and nonpathogenic bacteria isolated from alfalfa sprouts grow on and adhere to alfalfa sprouts. Growth on and adherence to sprouts were not significantly different among different serovars of S. enterica, but all S. enterica serovars grew on and adhered to alfalfa sprouts significantly better than E. coli O157:H7. E. coli O157:H7 was essentially rinsed from alfalfa sprouts with repeated washing steps, while 1 to 2 log CFU of S. enterica remained attached per sprout. S. enterica Newport adhered to 3-day-old sprouts as well as Pantoea agglomerans and 10-fold more than Pseudomonas putida and Rahnella aquatilis, whereas the growth rates of all four strains throughout seed sprouting were similar. S. enterica Newport and plant-associated bacteria adhered 10- to 1,000-fold more than E. coli O157:H7; however, three of four other E. coli serotypes, isolated from cabbage roots exposed to sewage water following a spill, adhered to sprouts better than E. coli O157:H7 and as well as the Pseudomonas and Rahnella strains. Therefore, attachment to alfalfa sprouts among E. coli serotypes is variable, and nonpathogenic strains of E. coli to be used as surrogates for the study of pathogenic E. coli may be difficult to identify and should be selected carefully, with knowledge of the biology being examined.
Collapse
Affiliation(s)
- J D Barak
- Produce Safety and Microbiological Research, Western Regional Research Center, USDA Agricultural Research Service, Albany, California 94710, USA.
| | | | | |
Collapse
|
9
|
van Doorn J, Hollinger TC, Oudega B. Analysis of the type IV fimbrial-subunit gene fimA of Xanthomonas hyacinthi: application in PCR-mediated detection of yellow disease in Hyacinths. Appl Environ Microbiol 2001; 67:598-607. [PMID: 11157222 PMCID: PMC92626 DOI: 10.1128/aem.67.2.598-607.2001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2000] [Accepted: 11/16/2000] [Indexed: 11/20/2022] Open
Abstract
A sensitive and specific detection method was developed for Xanthomonas hyacinthi; this method was based on amplification of a subsequence of the type IV fimbrial-subunit gene fimA from strain S148. The fimA gene was amplified by PCR with degenerate DNA primers designed by using the N-terminal and C-terminal amino acid sequences of trypsin fragments of FimA. The nucleotide sequence of fimA was determined and compared with the nucleotide sequences coding for the fimbrial subunits in other type IV fimbria-producing bacteria, such as Xanthomonas campestris pv. vesicatoria, Neisseria gonorrhoeae, and Moraxella bovis. In a PCR internal primers JAAN and JARA, designed by using the nucleotide sequences of the variable central and C-terminal region of fimA, amplified a 226-bp DNA fragment in all X. hyacinthi isolates. This PCR was shown to be pathovar specific, as assessed by testing 71 Xanthomonas pathovars and bacterial isolates belonging to other genera, such as Erwinia and Pseudomonas. Southern hybridization experiments performed with the labelled 226-bp DNA amplicon as a probe suggested that there is only one structural type IV fimbrial-gene cluster in X. hyacinthi. Only two Xanthomonas translucens pathovars cross-reacted weakly in PCR. Primers amplifying a subsequence of the fimA gene of X. campestris pv. vesicatoria (T. Ojanen-Reuhs, N. Kalkkinen, B. Westerlund-Wikström, J. van Doorn, K. Haahtela, E.-L. Nurmiaho-Lassila, K. Wengelink, U. Bonas, and T. K. Korhonen, J. Bacteriol. 179: 1280-1290, 1997) were shown to be pathovar specific, indicating that the fimbrial-subunit sequences are more generally applicable in xanthomonads for detection purposes. Under laboratory conditions, approximately 1,000 CFU of X. hyacinthi per ml could be detected. In inoculated leaves of hyacinths the threshold was 5,000 CFU/ml. The results indicated that infected hyacinths with early symptoms could be successfully screened for X. hyacinthi with PCR.
Collapse
Affiliation(s)
- J van Doorn
- Department of Plant Quality, Bulb Research Centre, 2160 AB Lisse, The Netherlands.
| | | | | |
Collapse
|
10
|
Taniguchi T, Yasuda Y, Tochikubo K, Yamamoto K, Honda T. The gene encoding the prepilin peptidase involved in biosynthesis of pilus colonization factor antigen III (CFA/III) of human enterotoxigenic Escherichia coli. Microbiol Immunol 1999; 43:853-61. [PMID: 10553678 DOI: 10.1111/j.1348-0421.1999.tb01220.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The assembly of pilus colonization factor antigen III (CFA/III) of human enterotoxigenic Escherichia coli requires the processing of CFA/III major pilin (CofA) by a peptidase, likely another type IV pilus formation system. Western blot analysis of CofA reveals that CofA is produced initially as a 26.5-kDa preform pilin (prepilin) and then processed to 20.5-kDa mature pilin by a prepilin peptidase. This processing is essential for exportation of the CofA from the cytoplasm to the periplasm. In this experiment, the structural gene, cofP, encoding CFA/III prepilin peptidase which cleavages at the Gly-30-Met-31 junction of CofA was identified, and the nucleotide sequence of the gene was determined. CofP consists of 819 bp encoding a 273-amino acid protein with a relative molecular mass of 30,533 Da. CofP is predicted to be localized in the inner membrane based on its hydropathy index. The amino acid sequence of CofP shows a high degree of homology with other prepilin peptidases which play a role in the assembly of type IV pili in several gram-negative bacteria.
Collapse
Affiliation(s)
- T Taniguchi
- Department of Microbiology, Nagoya City University Medical School, Nagoya, Aichi, Japan
| | | | | | | | | |
Collapse
|
11
|
de Groot A, Gerritse G, Tommassen J, Lazdunski A, Filloux A. Molecular organization of the xcp gene cluster in Pseudomonas putida: absence of an xcpX (gspK) homologue. Gene 1999; 226:35-40. [PMID: 9889311 DOI: 10.1016/s0378-1119(98)00570-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
A DNA fragment containing xcp (gsp) gene homologues, required for extracellular protein secretion by the general secretory pathway (GSP) in various Gram-negative bacteria, was cloned from Pseudomonas putida (Pp) strain WCS358 and sequenced. The results presented here and those previously reported (de Groot, A., Krijger, J.-J., Filloux, A., Tommassen, J., 1996. Characterization of type II protein secretion (xcp) genes in the plant growth-stimulating Pseudomonas putida, strain WCS358 Mol. Gen. Genet. 250, 491-504) complete the sequence of the xcp gene cluster of Pp. Unlike that of Pseudomonas aeruginosa (Pa), the xcp gene cluster of Pp contains a gspN homologue. More surprisingly, in contrast to all known gsp gene clusters, the xcpX (gspK) homologue is not found. In addition, genes flanking the xcp cluster of Pp are not related to those flanking the xcp genes of Pa. Overall, the xcp gene products of Pp are as much related to those of Pa as to gsp gene products of enterobacterial species, suggesting that the xcp clusters of Pp and Pa have evolved separately.
Collapse
Affiliation(s)
- A de Groot
- Laboratoire d'Ingéniérie des Systèmes Macromoléculaires, UPR9027, IBSM/CNRS, 31 Chemin Joseph Aiguier, 13402, Marseille Cedex 20, France
| | | | | | | | | |
Collapse
|
12
|
Roine E, Raineri DM, Romantschuk M, Wilson M, Nunn DN. Characterization of type IV pilus genes in Pseudomonas syringae pv. tomato DC3000. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 1998; 11:1048-1056. [PMID: 9805392 DOI: 10.1094/mpmi.1998.11.11.1048] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Many strains of Pseudomonas syringae produce retractile pili that act as receptors for lytic bacteriophage phi 6. As these are also characteristics of type IV pili, it was postulated that P. syringae may possess genes for type IV pilus biogenesis. A cosmid clone bank of P. syringae pv. tomato DC3000 genomic DNA was used to complement a mutant of Pseudomonas aeruginosa defective in the PilD (XcpA) prepilin peptidase gene by selection for restoration of extracellular protein secretion, a function also known to require PilD. A cosmid able to complement this mutant was also able to complement mutations in the pilB and pilC genes, suggesting that, if the organization of these genes is similar to that of P. aeruginosa, the cosmid may contain the P. syringae pilA. This was confirmed by sequencing a region from this plasmid that was shown to hybridize at low stringency to the P. aeruginosa pilA gene. The deduced P. syringae PilA polypeptide possesses the characteristic properties of the type IV pilins. Heterologous expression of the P. syringae pilA in P. aeruginosa was also shown, conferring not only phi 6 phage sensitivity to P. aeruginosa pilA mutants but also sensitivity to PO4, a lytic bacteriophage specific for the pilus of P. aeruginosa. This suggests that additional components might be present in the mature pilus of P. aeruginosa that are the true receptors for this phage. Chromosomal mutations in P. syringae pv. tomato DC3000 pilA and pilD genes were shown to abolish its sensitivity to bacteriophage phi 6. To determine the importance of P. syringae pilus in plant leaf interactions, these mutations were tested under laboratory and field conditions. Although little effect was seen on pathogenicity, culturable leaf-associated population sizes of the pilA mutant were significantly different from those of the wild-type parent. In addition, the expression of the DC3000 pilA gene appears to contribute to the UV tolerance of P. syringae and may play a role in survival on the plant leaf surface.
Collapse
Affiliation(s)
- E Roine
- Department of Biosciences, University of Helsinki, Finland.
| | | | | | | | | |
Collapse
|
13
|
Gerritse G, Ure R, Bizoullier F, Quax WJ. The phenotype enhancement method identifies the Xcp outer membrane secretion machinery from Pseudomonas alcaligenes as a bottleneck for lipase production. J Biotechnol 1998; 64:23-38. [PMID: 9823657 DOI: 10.1016/s0168-1656(98)00101-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Pseudomonas alcaligenes M-1 has been selected from an intensive screening for micro-organisms that can naturally produce a lipase active in detergent formulations. The lipase expression has been increased to allow high level secretion from Pseudomonas alcaligenes, via the introduction of multi-copy plasmids. In order to improve the lipase yield further, the phenotype enhancement method has been developed. This idea comprises the reintroduction of a cosmid library with random chromosomal fragments in a P. alcaligenes strain with already high lipase productivity. One of the strains which showed an enhanced lipase production appeared to contain a cosmid encoding the outer membrane secretion genes. These xcp-genes are clustered in two divergently transcribed operons similar to the situation in Pseudomonas aeruginosa. Remarkably and dissimilar to P. aeruginosa, in between the two xcp gene clusters, two reading frames of unknown function--OrfV and OrfX--are present. For OrfX no equivalent can be found in the known protein data bases. On the other hand, OrfV shows homology to the regulatory proteins MalT and AcoK. Some evidence is provided that suggests that OrfV acts as a regulator of the xcp operons. A model is proposed for the regulation of the secretion system from P. alcaligenes.
Collapse
Affiliation(s)
- G Gerritse
- Genencor International B.V., Delft, The Netherlands
| | | | | | | |
Collapse
|
14
|
Filloux A, Michel G, Bally M. GSP-dependent protein secretion in gram-negative bacteria: the Xcp system of Pseudomonas aeruginosa. FEMS Microbiol Rev 1998; 22:177-98. [PMID: 9818381 DOI: 10.1111/j.1574-6976.1998.tb00366.x] [Citation(s) in RCA: 122] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Bacteria have evolved several secretory pathways to release proteins into the extracellular medium. In Gram-negative bacteria, the exoproteins cross a cell envelope composed of two successive hydrophobic barriers, the cytoplasmic and outer membranes. In some cases, the protein is translocated in a single step across the cell envelope, directly from the cytoplasm to the extracellular medium. In other cases, outer membrane translocation involves an extension of the signal peptide-dependent pathway for translocation across the cytoplasmic membrane via the Sec machinery. By analogy with the so-called general export pathway (GEP), this latter route, including two separate steps across the inner and the outer membrane, was designated as the general secretory pathway (GSP) and is widely conserved among Gram-negative bacteria. In their great majority, exoproteins use the main terminal branch (MTB) of the GSP, namely the Xcp machinery in Pseudomonas aeruginosa, to reach the extracellular medium. In this review, we will use the P. aeruginosa Xcp system as a basis to discuss multiple aspects of the GSP mechanism, including machinery assembly, exoprotein recognition, energy requirement and pore formation for driving through the outer membrane.
Collapse
Affiliation(s)
- A Filloux
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires/UPR9027, IBSM-CNRS, Marseille, France.
| | | | | |
Collapse
|
15
|
Johnston JL, Billington SJ, Haring V, Rood JI. Complementation analysis of the Dichelobacter nodosus fimN, fimO, and fimP genes in Pseudomonas aeruginosa and transcriptional analysis of the fimNOP gene region. Infect Immun 1998; 66:297-304. [PMID: 9423871 PMCID: PMC107890 DOI: 10.1128/iai.66.1.297-304.1998] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/1997] [Accepted: 10/27/1997] [Indexed: 02/05/2023] Open
Abstract
The causative agent of ovine footrot, the gram-negative anaerobe Dichelobacter nodosus, produces polar type IV fimbriae, which are the major protective antigens. The D. nodosus genes fimN, fimO, and fimP are homologs of the Pseudomonas aeruginosa fimbrial assembly genes, pilB, pilC, and pilD, respectively. Both the pilD and fimP genes encode prepilin peptidases that are responsible for cleavage of the leader sequence from the immature fimbrial subunit. To investigate the functional similarity of the fimbrial biogenesis systems from these organisms, the D. nodosus genes were introduced into P. aeruginosa strains carrying mutations in the homologous genes. Analysis of the resultant derivatives showed that the fimP gene complemented a pilD mutant of P. aeruginosa for both fimbrial assembly and protein secretion. However, the fimN and fimO genes did not complement pilB or pilC mutants, respectively. These results suggest that although the PilD prepilin peptidase can be functionally replaced by the heterologous FimP protein, the function of the PilB and PilC proteins may require binding or catalytic domains specific for the P. aeruginosa fimbrial assembly system. The transcriptional organization and regulation of the fimNOP gene region were also examined. The results of reverse transcriptase PCR and primer extension analysis suggested that these genes form an operon transcribed from two sigma70-type promoters located upstream of ORFM, an open reading frame proximal to fimN. Transcription of the D. nodosus fimbrial subunit was found to increase in cells grown on solid media, and it was postulated that this regulatory effect may be of significance in the infected footrot lesion.
Collapse
MESH Headings
- Amino Acid Sequence
- Artificial Gene Fusion
- Bacterial Proteins/genetics
- Bacterial Proteins/physiology
- Bacteroides/genetics
- Bacteroides/metabolism
- Base Sequence
- Chromosome Mapping
- Cloning, Molecular
- Conjugation, Genetic
- Endopeptidases
- Fimbriae Proteins
- Fimbriae, Bacterial/genetics
- Fimbriae, Bacterial/metabolism
- Fimbriae, Bacterial/ultrastructure
- Gene Expression Regulation, Bacterial
- Genes, Bacterial/physiology
- Genetic Complementation Test
- Microscopy, Electron
- Molecular Sequence Data
- Open Reading Frames
- Operon
- Oxidoreductases
- Plasmids
- Polymerase Chain Reaction
- Promoter Regions, Genetic
- Protein Sorting Signals/genetics
- Pseudomonas aeruginosa/genetics
- Pseudomonas aeruginosa/metabolism
- Pseudomonas aeruginosa/ultrastructure
- RNA, Bacterial/analysis
- RNA, Bacterial/isolation & purification
- Recombination, Genetic
- Transcription, Genetic
Collapse
Affiliation(s)
- J L Johnston
- Department of Microbiology, Monash University, Clayton, Australia
| | | | | | | |
Collapse
|
16
|
Tønjum T, Koomey M. The pilus colonization factor of pathogenic neisserial species: organelle biogenesis and structure/function relationships--a review. Gene 1997; 192:155-63. [PMID: 9224886 DOI: 10.1016/s0378-1119(97)00018-8] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Type-IV pilus expression plays a critical role in the interactions between Neisseria gonorrhoeae, Neisseria meningitidis and their human host. We have focused on experiments designed to elucidate the mechanisms of organelle biogenesis as one means of understanding the complexities of pilus biology in these species. Employing a variety of approaches, genes and gene products essential to pilus biogenesis have been identified and characterized. The findings indicate that the neisserial type-IV pilus biogenesis machinery is most closely related to that operating in Pseudomonas aeruginosa and other pseudomonad species. This interrelatedness is documented at the levels of gene organization, DNA homologies and identities between the primary structures of the components. Despite these similarities, the biological correlates of pilus expression in the pathogenic Neisseria are quite unique. The current status of our embryonic understanding of the factors influencing organelle biogenesis is presented. In the context of this workshop, emphasis has been placed on specific contributions made through studies of gonococci and meningococci to the field as a whole..
Collapse
Affiliation(s)
- T Tønjum
- Institute of Microbiology, Rikshospitalet (National Hospital), Oslo, Norway
| | | |
Collapse
|
17
|
Lory S, Strom MS. Structure-function relationship of type-IV prepilin peptidase of Pseudomonas aeruginosa--a review. Gene X 1997; 192:117-21. [PMID: 9224881 DOI: 10.1016/s0378-1119(96)00830-x] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The bifunctional enzyme prepilin peptidase (PilD) from Pseudomonas aeruginosa is a key determinant in both type-IV pilus biogenesis and extracellular protein secretion, in its roles as a leader peptidase and MTase. It is responsible for endopeptidic cleavage of the unique leader peptides that characterize type-IV pilin precursors, as well as proteins with homologous leader sequences that are essential components of the general secretion pathway found in a variety of Gram-negative pathogens. Following removal of the leader peptides, the same enzyme is responsible for the second posttranslational modification that characterizes the type-IV pilins and their homologues, namely N-methylation of the newly exposed N-terminal amino acid residue. This review discusses some of the work begun in order to answer questions regarding the structure-function relationships of the active sites of this unique enzyme.
Collapse
Affiliation(s)
- S Lory
- Department of Microbiology, University of Washington, Seattle 98195, USA.
| | | |
Collapse
|
18
|
Ojanen-Reuhs T, Kalkkinen N, Westerlund-Wikström B, van Doorn J, Haahtela K, Nurmiaho-Lassila EL, Wengelnik K, Bonas U, Korhonen TK. Characterization of the fimA gene encoding bundle-forming fimbriae of the plant pathogen Xanthomonas campestris pv. vesicatoria. J Bacteriol 1997; 179:1280-90. [PMID: 9023213 PMCID: PMC178827 DOI: 10.1128/jb.179.4.1280-1290.1997] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The fimA gene of Xanthomonas campestris pv. vesicatoria was identified and characterized. A 20-mer degenerate oligonucleotide complementary to the N-terminal amino acid sequence of the purified 15.5-kDa fimbrillin was used to locate fimA on a 2.6-kb SalI fragment of the X. campestris pv. vesicatoria 3240 genome. The nucleotide sequence of a 1.4-kb fragment containing the fimA region revealed two open reading frames predicting highly homologous proteins FimA and FimB. FimA, which was composed of 136 amino acids and had a calculated molecular weight of 14,302, showed high sequence identity to the type IV fimbrillin precursors. fimB predicted a protein product of 135 amino acids and a molecular weight of 13,854. The open reading frame for fimB contained near the 5' end a palindromic sequence with a terminator loop potential, and the expression level of fimB in vitro and in Xanthomonas was considerably lower than that of fimA. We detected an efficiently transcribed fimA-specific mRNA of 600 bases as well as two weakly expressed, longer mRNA species that reacted with both fimA and fimB. A homolog of fimA but not of fimB was detected by Southern hybridization in strains of X. campestris pv. vesicatoria, campestris, begoniae, translucens, and graminis. A fimA::omega mutant of strain 3240 was not significantly reduced in virulence or adhesiveness to tomato leaves. However, the fimA mutant was dramatically reduced in cell aggregation in laboratory cultures and on infected tomato leaves. The fimA mutant strain also exhibited decreased tolerance to UV light.
Collapse
Affiliation(s)
- T Ojanen-Reuhs
- Department of Biosciences, University of Helsinki, Finland
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
de Groot A, Krijger JJ, Filloux A, Tommassen J. Characterization of type II protein secretion (xcp) genes in the plant growth-stimulating Pseudomonas putida, strain WCS358. MOLECULAR & GENERAL GENETICS : MGG 1996; 250:491-504. [PMID: 8602167 DOI: 10.1007/bf02174038] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
In Pseudomonas aeruginosa, the products of the xcp genes are required for the secretion of exoproteins across the outer membrane. Despite structural conservation of the Xcp components, secretion of exoproteins via the Xcp pathway is generally not found in heterologous organisms. To study the specificity of this protein secretion pathway, the xcp genes of another fluorescent pseudomonad, the plant growth-promoting Pseudomonas putida strain WCS358, were cloned and characterized. Nucleotide sequence analysis revealed the presence of at least five genes, i.e., xcpP, Q, R, S, and T, with homology to xcp genes of P. aeruginosa. Unlike the genetic organization in P. aeruginosa, where the xcp cluster consists of two divergently transcribed operons, the xcp genes in P. putida are all oriented in the same direction, and probably comprise a single operon. Upstream of xcpP in P. putida, an additional open reading frame, with no homolog in P. aeruginosa, was identified, which possibly encodes a lipoprotein. Mutational inactivation of xcp genes in P. putida did not affect secretion, indicating that no proteins are secreted via the Xcp system under the growth conditions tested, and that an alternative secretion system is operative. To obtain some insight into the secretory pathway involved, the amino acid sequence of the N-terminus of the major extracellular protein was determined. The protein could be identified as flagellin. Mutations in the xcpQ and R genes of P. aeruginosa could not be complemented by introduction of the corresponding xcp genes of P. putida. However, expression of a hybrid XcpR protein, composed of the N-terminal one-third of P. aeruginosa XcpR and the C-terminal two-thirds of P. putida XcpR, did restore protein secretion in a P. aeruginosa xcpR mutant.
Collapse
Affiliation(s)
- A de Groot
- Department of Molecular Cell Biology and Institute of Biomembranes, Utrecht University, Utrecht, The Netherlands
| | | | | | | |
Collapse
|
20
|
Johnston JL, Billington SJ, Haring V, Rood JI. Identification of fimbrial assembly genes from Dichelobacter nodosus: evidence that fimP encodes the type-IV prepilin peptidase. Gene X 1995; 161:21-6. [PMID: 7642131 DOI: 10.1016/0378-1119(95)00264-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Dichelobacter nodosus (Dn) is the causative agent of footrot, an economically significant disease of sheep. One of the factors believed to be involved in the virulence of this organism is its ability to produce type-IV fimbriae, which are the major protective antigens. To investigate the process of fimbrial biogenesis in Dn, gene probes were constructed from pilus biogenesis genes of Pseudomonas aeruginosa (Pa) and used to isolate homologues from Dn. A homologue, designated fimP, of the Pa prepilin peptidase-encoding gene, pilD, was cloned using this approach. The fimP gene product was shown to possess endopeptidase activity when produced in Escherichia coli. Two other fimbrial biogenesis genes fimN and fimO, whose products show similarity to the Pa PilB and PilC proteins, respectively, were identified because of their linkage to fimP. The arrangement of fimN, fimO and fimP in Dn closely resembles the arrangement of pilB, pilC and pilD in Pa.
Collapse
Affiliation(s)
- J L Johnston
- Department of Microbiology, Monash University, Clayton, Australia
| | | | | | | |
Collapse
|
21
|
Freitag NE, Seifert HS, Koomey M. Characterization of the pilF-pilD pilus-assembly locus of Neisseria gonorrhoeae. Mol Microbiol 1995; 16:575-86. [PMID: 7565116 DOI: 10.1111/j.1365-2958.1995.tb02420.x] [Citation(s) in RCA: 136] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Expression of Type IV pili by the bacterial pathogen Neisseria gonorrhoeae appears to be essential for colonization of the human host. Several N. gonorrhoeae gene products have been recently identified which bear homology to proteins involved in pilus assembly and protein export in other bacterial systems. We report here the isolation and characterization of transposon insertion mutants in N. gonorrhoeae whose phenotypes indicate that the N. gonorrhoeae pilF and pilD gene products are required for gonoccocal pilus biogenesis. Mutants lacking the pilD gene product, a pre-pilin peptidase, were unable to process the pre-pilin subunit into pilin and thus were non-piliated. pilF mutants processed pilin but did not assemble the mature subunit. Both classes of mutants released S-pilin, a soluble, truncated form of the pilin subunit previously correlated with defects in pilus assembly. In addition, mutants containing transposon insertions in pilD or in a downstream gene, orfX, exhibited a severely restricted growth phenotype. Deletion analysis of pilD indicated that the poor growth phenotype observed for the pilD transposon mutants was a result of polar effects of the insertions on orfX expression. orfX encodes a predicted polypeptide of 23 kDa which contains a consensus nucleotide-binding domain and has apparent homologues in Pseudomonas aeruginosa, Pseudomonas putida, Thermus thermophilus, and the eukaryote Caenorhabditis elegans. Although expression of orfX and pilD appears to be transcriptionally coupled, mutants containing transposon insertions in orfX expressed pili. Unlike either pilF or pilD mutants, orfX mutants were also competent for DNA transformation.
Collapse
Affiliation(s)
- N E Freitag
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor 48109-0620, USA
| | | | | |
Collapse
|
22
|
Tønjum T, Freitag NE, Namork E, Koomey M. Identification and characterization of pilG, a highly conserved pilus-assembly gene in pathogenic Neisseria. Mol Microbiol 1995; 16:451-64. [PMID: 7565106 DOI: 10.1111/j.1365-2958.1995.tb02410.x] [Citation(s) in RCA: 125] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Expression of type IV pili appears to be a requisite determinant of infectivity for the strict human pathogens Neisseria gonorrhoeae and Neisseria meningitidis. The assembly of these colonization factors is a complex process. This report describes a new pilus-assembly gene, pilG, that immediately precedes the gonococcal (Gc) pilD gene encoding the pre-pilin leader peptidase. The nucleotide sequence of this region revealed a single complete open reading frame whose derived polypeptide displayed significant identities to the pilus-assembly protein PilC of Pseudomonas aeruginosa and other polytopic integral cytoplasmic membrane constituents involved in protein export and competence. A unique polypeptide of M(r) 38 kDa corresponding to the gene product was identified. A highly related gene and flanking sequences were cloned from a group B polysaccharide-producing strain of N. meningitidis (Mc). The results indicate that the pilG genes and genetic organization at these loci in Gc and Mc are extremely conserved. Hybridization studies strongly suggest that pilG-related genes exist in commensal Neisseria species and other species known to express type IV pili. Defined genetic lesions were created by using insertional and transposon mutagenesis and moved into the Gc and Mc chromosomes by allelic replacement. Chromosomal pilG insertion mutants were devoid of pili and displayed dramatically reduced competence for transformation. These findings could not be ascribed to pilin-gene alterations or to polarity exerted on pilD expression. The results indicated that PilG exerts its own independent role in neisserial pilus biogenesis.
Collapse
Affiliation(s)
- T Tønjum
- Kaptein W. Wilhelmsen og Frues Bakteriologiske Institutt, Rikshospitalet (National Hospital), University of Oslo, Norway
| | | | | | | |
Collapse
|
23
|
Alm RA, Mattick JS. Identification of a gene, pilV, required for type 4 fimbrial biogenesis in Pseudomonas aeruginosa, whose product possesses a pre-pilin-like leader sequence. Mol Microbiol 1995; 16:485-96. [PMID: 7565109 DOI: 10.1111/j.1365-2958.1995.tb02413.x] [Citation(s) in RCA: 118] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Type 4 fimbriae are important colonization factors in Pseudomonas aeruginosa and other pathogens that mediate attachment to epithelial cells of the host. They are also responsible for a form of translocation termed 'twitching motility' and are implicated in the susceptibility to fimbrial-specific bacteriophage. Analysis of a transposon mutant which lacks functional fimbriae has identified a new gene which is required for fimbrial biogenesis. This gene, termed pilV, is located on chromosomal SpeI fragment E, 2 kb downstream of the previously characterized pilSR genes involved in transcriptional activation of the fimbrial subunit gene. The pilV gene encodes a 20 kDa membrane-located protein with considerable amino-terminal homology to the type 4 consensus pre-pilin leader sequence, suggesting that it is processed by a leader peptidase. Site-directed mutagenesis has shown that PilV requires such cleavage to be functional. PilV also exhibits close similarity to a group of proteins involved in extracellular protein secretion from a number of Gram-negative bacteria, suggesting that the biogenesis of type 4 fimbriae may have a similar basis.
Collapse
Affiliation(s)
- R A Alm
- Centre for Molecular and Cellular Biology, University of Queensland, Brisbane, Australia
| | | |
Collapse
|
24
|
Zhang HZ, Lory S, Donnenberg MS. A plasmid-encoded prepilin peptidase gene from enteropathogenic Escherichia coli. J Bacteriol 1994; 176:6885-91. [PMID: 7961448 PMCID: PMC197057 DOI: 10.1128/jb.176.22.6885-6891.1994] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Enteropathogenic Escherichia coli, a leading agent of infantile diarrhea worldwide, adheres to tissue culture cells in a pattern called "localized adherence." Localized adherence is associated with bundle-forming pili encoded by the plasmid bfpA gene, the product of which is homologous with the major structural subunit proteins of type IV fimbriae in other bacteria. Several of these proteins have been shown to be processed from a precursor by a specific prepilin peptidase. We cloned restriction fragments downstream of the bfpA gene into an E. coli-Pseudomonas aeruginosa shuttle vector and mobilized them into a P. aeruginosa prepilin peptidase (pilD) mutant. A plasmid containing a 1.3-kb PstI-BamHI fragment was able to complement the pilD mutation, as demonstrated by restoration of sensitivity to the pilus-specific bacteriophage PO4. The DNA sequence of this fragment revealed an open reading frame, designated bfpP, the predicted product of which is homologous to other prepilin peptidases, including TcpJ of Vibrio cholerae (30% identical amino acids), PulO of Klebsiella oxytoca (29%), and PilD of P. aeruginosa (28%). A bfpA::TnphoA mutant complemented with a bfpA-containing DNA fragment only partially processes the BfpA protein. When complemented with a larger fragment containing bfpP as well as bfpA, the mutant expresses the fully processed BfpA protein. P. aeruginosa PAK, but not a pilD mutant of PAK, expresses mature BfpA protein when the bfpA gene is mobilized into this strain. Thus, as in other type IV fimbria systems, enteropathogenic E. coli utilizes a specific prepilin peptidase to process the major subunit of the bundle-forming pilus. This prepilin petidase contains sequence and reciprocal functional homologies with the PilD protein of P. aeruginosa.
Collapse
Affiliation(s)
- H Z Zhang
- Department of Medicine, University of Maryland at Baltimore
| | | | | |
Collapse
|