1
|
Thakur P, Gauba P. Expression Analysis of Nitrogen Metabolism Genes in Lelliottia amnigena PTJIIT1005, Comparison with Escherichia coli K12 and Validation of Nitrogen Metabolism Genes. Biochem Genet 2024; 62:4536-4566. [PMID: 38341394 DOI: 10.1007/s10528-024-10677-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 01/02/2024] [Indexed: 02/12/2024]
Abstract
Escherichia coli K12 and Lelliottia amnigena PTJIIT1005 bacteria were isolated from the polluted Yamuna River (Delhi, India) site, which can remediate nitrate from groundwater media under anaerobic conditions. BV-BRC (Bacterial and Viral Bioinformatics Resource Center) information system, RAST, and PGAP servers were used to annotate the nitrogen metabolism genes from the genome sequence of these microbes. Here we compared the strains L. amnigena PTJIIT1005 with E. coli K12 in the context of nitrogen metabolism genes. Sequence alignment, similarity percentage, and phylogenetic analysis were done to find similarities between the genes. Common nitrogen genes of these strains, like respiratory nitrate reductase, nitrite reductase, nitric oxide reductase, glutamine synthetase, and hydroxylamine reductase, have found good sequence similarity (83-94%) with each other. The PATRIC tool identified N-operons, and the nitrate reductase gene clusters were also determined as per literature survey. Protein-protein interaction network was constructed using STRING 12.0 database and Cytoscape v 3.10.0 software plug-in Network analyzer. On the basis of network topological parameters NarG, NarZ, NarY, NarH, NarI, NarV, NirB, NirD, NapA, and NapB are the key genes in network of E. coli K12 strain. Nar, NirB, NirD, NasA, NasB, NasC, NasD, NasE, and GlnA are the key genes in network of L. amnigena PTJIIT1005. Among these, NarG and NirB are the superhub genes because of having highest Betweenness centrality (BC) and node degree. The functional enrichment analysis was determined using PANTHER GENE ONTOLOGY and DAVID software exhibited their role in nitrogen metabolism pathway and nitrate assimilation. Further, SWISS-MODEL was used to predict the 3D protein structure of these enzymes, and after, these structures were validated by Ramachandran plot using the PROCHECK tool. The Real-Time Quantitative Reverse Transcription PCR (qRT-PCR) method was used to determine the N-genes expression level in both strains. This study showed that E. coli K12 and L. amnigena PTJIIT1005 have common nitrogen metabolism genes involved in the same functional role, like the denitrification pathway. Additionally, operon arrangement study and PPI network revealed that E. coli K12 has only a denitrification pathway, while L. amnigena PTJIIT1005 has both an assimilation and denitrification pathway. PCR successfully amplified selected N-metabolizing genes, and the expression level of N-genes was high in strain L. amnigena PTJIIT1005. Our previous experimental study exhibited a better nitrate remediation rate in L. amnigena PTJIIT1005 over E. coli K12. This study confirmed the presence of assimilation and denitrification process through amplified N-metabolizing genes and showed high expression of N-genes in L. amnigena PTJIIT1005, which favor the evidence of better nitrate remediation in L. amnigena PTJIIT1005 over E. coli K12.
Collapse
Affiliation(s)
- Preeti Thakur
- Department of Biotechnology, Jaypee Institute of Information & Technology, Noida, 201307, India
| | - Pammi Gauba
- Head of Department, Jaypee Institute of Information & Technology, Noida, Uttar Pradesh, 201307, India.
| |
Collapse
|
2
|
Kaviraj M, Kumar U, Snigdha A, Chatterjee S. Nitrate reduction to ammonium: a phylogenetic, physiological, and genetic aspects in Prokaryotes and eukaryotes. Arch Microbiol 2024; 206:297. [PMID: 38861039 DOI: 10.1007/s00203-024-04009-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 05/15/2024] [Accepted: 05/16/2024] [Indexed: 06/12/2024]
Abstract
The microbe-mediated conversion of nitrate (NO3-) to ammonium (NH4+) in the nitrogen cycle has strong implications for soil health and crop productivity. The role of prokaryotes, eukaryotes and their phylogeny, physiology, and genetic regulations are essential for understanding the ecological significance of this empirical process. Several prokaryotes (bacteria and archaea), and a few eukaryotes (fungi and algae) are reported as NO3- reducers under certain conditions. This process involves enzymatic reactions which has been catalysed by nitrate reductases, nitrite reductases, and NH4+-assimilating enzymes. Earlier reports emphasised that single-cell prokaryotic or eukaryotic organisms are responsible for this process, which portrayed a prominent gap. Therefore, this study revisits the similarities and uniqueness of mechanism behind NO3- -reduction to NH4+ in both prokaryotes and eukaryotes. Moreover, phylogenetic, physiological, and genetic regulation also shed light on the evolutionary connections between two systems which could help us to better explain the NO3--reduction mechanisms over time. Reports also revealed that certain transcription factors like NtrC/NtrB and Nit2 have shown a major role in coordinating the expression of NO3- assimilation genes in response to NO3- availability. Overall, this review provides a comprehensive information about the complex fermentative and respiratory dissimilatory nitrate reduction to ammonium (DNRA) processes. Uncovering the complexity of this process across various organisms may further give insight into sustainable nitrogen management practices and might contribute to addressing global environmental challenges.
Collapse
Affiliation(s)
- Megha Kaviraj
- ICAR- National Rice Research Institute, Cuttack, 753006, Odisha, India.
- The University of Burdwan, Burdwan, 713104, West Bengal, India.
| | - Upendra Kumar
- ICAR- National Rice Research Institute, Cuttack, 753006, Odisha, India.
| | - Alisha Snigdha
- Siksha 'O' Anusandhan University, Bhubaneswar, 751003, Odisha, India
| | | |
Collapse
|
3
|
Tan W, Liao TH, Wang J, Ye Y, Wei YC, Zhou HK, Xiao Y, Zhi XY, Shao ZH, Lyu LD, Zhao GP. A recently evolved diflavin-containing monomeric nitrate reductase is responsible for highly efficient bacterial nitrate assimilation. J Biol Chem 2020; 295:5051-5066. [PMID: 32111737 PMCID: PMC7152768 DOI: 10.1074/jbc.ra120.012859] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 02/25/2020] [Indexed: 12/11/2022] Open
Abstract
Nitrate is one of the major inorganic nitrogen sources for microbes. Many bacterial and archaeal lineages have the capacity to express assimilatory nitrate reductase (NAS), which catalyzes the rate-limiting reduction of nitrate to nitrite. Although a nitrate assimilatory pathway in mycobacteria has been proposed and validated physiologically and genetically, the putative NAS enzyme has yet to be identified. Here, we report the characterization of a novel NAS encoded by Mycolicibacterium smegmatis Msmeg_4206, designated NasN, which differs from the canonical NASs in its structure, electron transfer mechanism, enzymatic properties, and phylogenetic distribution. Using sequence analysis and biochemical characterization, we found that NasN is an NADPH-dependent, diflavin-containing monomeric enzyme composed of a canonical molybdopterin cofactor-binding catalytic domain and an FMN-FAD/NAD-binding, electron-receiving/transferring domain, making it unique among all previously reported hetero-oligomeric NASs. Genetic studies revealed that NasN is essential for aerobic M. smegmatis growth on nitrate as the sole nitrogen source and that the global transcriptional regulator GlnR regulates nasN expression. Moreover, unlike the NADH-dependent heterodimeric NAS enzyme, NasN efficiently supports bacterial growth under nitrate-limiting conditions, likely due to its significantly greater catalytic activity and oxygen tolerance. Results from a phylogenetic analysis suggested that the nasN gene is more recently evolved than those encoding other NASs and that its distribution is limited mainly to Actinobacteria and Proteobacteria. We observed that among mycobacterial species, most fast-growing environmental mycobacteria carry nasN, but that it is largely lacking in slow-growing pathogenic mycobacteria because of multiple independent genomic deletion events along their evolution.
Collapse
Affiliation(s)
- Wei Tan
- Department of Microbiology and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong 999077, China
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences and Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan University, Shanghai 200032, China
| | - Tian-Hua Liao
- Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Jin Wang
- College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Yu Ye
- Department of Microbiology and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong 999077, China
| | - Yu-Chen Wei
- Department of Microbiology and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong 999077, China
| | - Hao-Kui Zhou
- Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Youli Xiao
- CAS Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Xiao-Yang Zhi
- Yunnan Institute of Microbiology, School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Zhi-Hui Shao
- CAS Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Liang-Dong Lyu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences and Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan University, Shanghai 200032, China
| | - Guo-Ping Zhao
- Department of Microbiology and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong 999077, China
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences and Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan University, Shanghai 200032, China
- Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- CAS Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- Bio-Med Big Data Center, Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
- Shanghai-MOST Key Laboratory for Health and Disease Genomics, Chinese National Human Genome Center, Shanghai 201203, China
| |
Collapse
|
4
|
Maeda SI, Aoba R, Nishino Y, Omata T. A Novel Bacterial Nitrate Transporter Composed of Small Transmembrane Proteins. PLANT & CELL PHYSIOLOGY 2019; 60:2180-2192. [PMID: 31198965 DOI: 10.1093/pcp/pcz112] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Accepted: 05/27/2019] [Indexed: 06/09/2023]
Abstract
A putative silent gene of the freshwater cyanobacterium Synechococcus elongatus strain PCC 7942, encoding a small protein with two transmembrane helices, was named nrtS, since its overexpression from an inducible promoter conferred nitrate uptake activity on the nitrate transport-less NA4 mutant of S. elongatus. Homologs of nrtS, encoding proteins of 67-118 amino acid residues, are present in a limited number of eubacteria including mostly cyanobacteria and proteobacteria, but some others, e.g. the actinobacteria of the Mycobacterium tuberculosis complex, also have the gene. When expressed in NA4, the nrtS homolog of the γ-proteobacterium Marinomonas mediterranea took up nitrate with higher affinity for the substrate as compared with the S. elongatus NrtS (Km of 0.49 mM vs. 2.5 mM). Among the 61 bacterial species carrying the nrtS homolog, the marine cyanobacterium Synechococcus sp. strain PCC 7002 is unique in having two nrtS genes (nrtS1 and nrtS2) located in tandem on the chromosome. Coexpression of the two genes in NA4 resulted in nitrate uptake with a Km (NO3-) of 0.15 mM, while expression of either of the two resulted in low-affinity nitrate uptake activity with Km values of >3 mM, indicating that NrtS1 and NrtS2 form a heteromeric transporter complex. The heteromeric transporter was shown to transport nitrite as well. A Synechococcus sp. strain PCC 7002 mutant defective in the nitrate transporter (NrtP) showed a residual activity of nitrate uptake, which was ascribed to the NrtS proteins. Blue-native PAGE and immunoblotting analysis suggested a hexameric structure for the NrtS proteins.
Collapse
Affiliation(s)
- Shin-Ichi Maeda
- Laboratory of Photosynthesis Research, Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, 464-8601 Japan
| | - Risa Aoba
- Laboratory of Photosynthesis Research, Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, 464-8601 Japan
| | - Yuma Nishino
- Laboratory of Photosynthesis Research, Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, 464-8601 Japan
| | - Tatsuo Omata
- Laboratory of Photosynthesis Research, Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, 464-8601 Japan
| |
Collapse
|
5
|
Chu S, Zhang D, Wang D, Zhi Y, Zhou P. Heterologous expression and biochemical characterization of assimilatory nitrate and nitrite reductase reveals adaption and potential of Bacillus megaterium NCT-2 in secondary salinization soil. Int J Biol Macromol 2017; 101:1019-1028. [PMID: 28389402 DOI: 10.1016/j.ijbiomac.2017.04.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 03/30/2017] [Accepted: 04/03/2017] [Indexed: 10/19/2022]
Abstract
Large accumulation of nitrate in soil has resulted in "salt stress" and soil secondary salinization. Bacillus megaterium NCT-2 which was isolated from secondary salinization soil showed high capability of nitrate reduction. The genes encoding assimilatory nitrate and nitrite reductase from NCT-2 were cloned and over-expressed in Escherichia coli. The optimum co-expression condition was obtained with E. coli BL21 (DE3) and 0.1mM IPTG for 10h when expression was carried out at 20°C and 120rpm in Luria-Bertani (LB) medium. The molecular mass of nitrate reductase was 87.3kDa and 80.5kDa for electron transfer and catalytic subunit, respectively. The large and small subunit of nitrite reductase was 88kDa and 11.7kDa, respectively. The purified recombinant enzymes showed broad activity range of temperature and pH. The maximum activities were obtained at 35°C and 30°C, pH 6.2 and 6.5, which was similar to the condition of greenhouse soils. Maximum stimulation of the enzymes occurred with addition of Fe3+, while Cu2+ caused the maximum inhibition. The optimum electron donor was MV+Na2S2O4+EDTA and MV+Na2S2O4, respectively. Kinetic parameters of Km and Vmax were determined to be 670μM and 58U/mg for nitrate reductase, and 3100μM and 5.2U/mg for nitrite reductase. Results of quantitative real-time PCR showed that the maximum expression levels of nitrate and nitrite reductase were obtained at 50mM nitrate for 8h and 12h, respectively. These results provided information on novel assimilatory nitrate and nitrite reductase and their properties presumably revealed adaption of B. megaterium NCT-2 to secondary salinization condition. This study also shed light on the role played by the nitrate assimilatory pathway in B. megaterium NCT-2.
Collapse
Affiliation(s)
- Shaohua Chu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China; Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, Shanghai, China; Bor S. Luh Food Safety Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Dan Zhang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China; Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, Shanghai, China; Bor S. Luh Food Safety Research Center, Shanghai Jiao Tong University, Shanghai, China.
| | - Daxin Wang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China; Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, Shanghai, China; Bor S. Luh Food Safety Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Yuee Zhi
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China; Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, Shanghai, China; Bor S. Luh Food Safety Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Pei Zhou
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China; Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, Shanghai, China; Bor S. Luh Food Safety Research Center, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
6
|
Degli Esposti M, Chouaia B, Comandatore F, Crotti E, Sassera D, Lievens PMJ, Daffonchio D, Bandi C. Evolution of mitochondria reconstructed from the energy metabolism of living bacteria. PLoS One 2014; 9:e96566. [PMID: 24804722 PMCID: PMC4013037 DOI: 10.1371/journal.pone.0096566] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 04/07/2014] [Indexed: 11/26/2022] Open
Abstract
The ancestors of mitochondria, or proto-mitochondria, played a crucial role in the evolution of eukaryotic cells and derived from symbiotic α-proteobacteria which merged with other microorganisms - the basis of the widely accepted endosymbiotic theory. However, the identity and relatives of proto-mitochondria remain elusive. Here we show that methylotrophic α-proteobacteria could be the closest living models for mitochondrial ancestors. We reached this conclusion after reconstructing the possible evolutionary pathways of the bioenergy systems of proto-mitochondria with a genomic survey of extant α-proteobacteria. Results obtained with complementary molecular and genetic analyses of diverse bioenergetic proteins converge in indicating the pathway stemming from methylotrophic bacteria as the most probable route of mitochondrial evolution. Contrary to other α-proteobacteria, methylotrophs show transition forms for the bioenergetic systems analysed. Our approach of focusing on these bioenergetic systems overcomes the phylogenetic impasse that has previously complicated the search for mitochondrial ancestors. Moreover, our results provide a new perspective for experimentally re-evolving mitochondria from extant bacteria and in the future produce synthetic mitochondria.
Collapse
Affiliation(s)
| | - Bessem Chouaia
- Department of Food, Environmental and Evolutionary Sciences, University of Milan, Milan, Italy
| | - Francesco Comandatore
- Dipartimento di Scienze Veterinarie e Sanità Pubblica, University of Milan, Milan, Italy
| | - Elena Crotti
- Department of Food, Environmental and Evolutionary Sciences, University of Milan, Milan, Italy
| | - Davide Sassera
- Dipartimento di Scienze Veterinarie e Sanità Pubblica, University of Milan, Milan, Italy
| | | | - Daniele Daffonchio
- Department of Food, Environmental and Evolutionary Sciences, University of Milan, Milan, Italy
| | - Claudio Bandi
- Dipartimento di Scienze Veterinarie e Sanità Pubblica, University of Milan, Milan, Italy
| |
Collapse
|
7
|
Microbial mediation of biogeochemical cycles revealed by simulation of global changes with soil transplant and cropping. ISME JOURNAL 2014; 8:2045-55. [PMID: 24694714 DOI: 10.1038/ismej.2014.46] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 02/27/2014] [Accepted: 03/02/2014] [Indexed: 11/08/2022]
Abstract
Despite microbes' key roles in driving biogeochemical cycles, the mechanism of microbe-mediated feedbacks to global changes remains elusive. Recently, soil transplant has been successfully established as a proxy to simulate climate changes, as the current trend of global warming coherently causes range shifts toward higher latitudes. Four years after southward soil transplant over large transects in China, we found that microbial functional diversity was increased, in addition to concurrent changes in microbial biomass, soil nutrient content and functional processes involved in the nitrogen cycle. However, soil transplant effects could be overridden by maize cropping, which was attributed to a negative interaction. Strikingly, abundances of nitrogen and carbon cycle genes were increased by these field experiments simulating global change, coinciding with higher soil nitrification potential and carbon dioxide (CO2) efflux. Further investigation revealed strong correlations between carbon cycle genes and CO2 efflux in bare soil but not cropped soil, and between nitrogen cycle genes and nitrification. These findings suggest that changes of soil carbon and nitrogen cycles by soil transplant and cropping were predictable by measuring microbial functional potentials, contributing to a better mechanistic understanding of these soil functional processes and suggesting a potential to incorporate microbial communities in greenhouse gas emission modeling.
Collapse
|
8
|
Dam B, Dam S, Kim Y, Liesack W. Ammonium induces differential expression of methane and nitrogen metabolism-related genes in Methylocystis sp. strain SC2. Environ Microbiol 2014; 16:3115-27. [PMID: 24373058 DOI: 10.1111/1462-2920.12367] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Accepted: 12/14/2013] [Indexed: 11/30/2022]
Abstract
Nitrogen source and concentration are major determinants of methanotrophic activity, but their effect on global gene expression is poorly studied. Methylocystis sp. strain SC2 produces two isozymes of particulate methane monooxygenase. These are encoded by pmoCAB1 (low-affinity pMMO1) and pmoCAB2 (high-affinity pMMO2). We used RNA-Seq to identify strain SC2 genes that respond to standard (10 mM) and high (30 mM) NH4(+) concentrations in the medium, compared with 10 mM NO3(-). While the expression of pmoCAB1 was unaffected, pmoCAB2 was significantly downregulated (log2 fold changes of -5.0 to -6.0). Among nitrogen metabolism-related processes, genes involved in hydroxylamine detoxification (haoAB) were highly upregulated, while those for assimilatory nitrate/nitrite reduction, high-affinity ammonium uptake and nitrogen regulatory protein PII were downregulated. Differential expression of pmoCAB2 and haoAB was independently validated by end-point reverse transcription polymerase chain reaction. Methane oxidation by SC2 cells exposed to 30 mM NH4(+) was inhibited at ≤ 400 ppmv CH4 , where pMMO2 but not pMMO1 is functional. When transferred back to standard nitrogen concentration, methane oxidation capability and pmoCAB2 expression were restored. Given that Methylocystis contributes to atmospheric methane oxidation in upland soils, differential expression of pmoCAB2 explains, at least to some extent, the strong inhibitory effect of ammonium fertilizers on this activity.
Collapse
Affiliation(s)
- Bomba Dam
- Max Planck Institute for Terrestrial Microbiology, D-35043, Marburg, Germany; Center for Synthetic Microbiology (SYNMIKRO), Philipps-Universität Marburg, D-35043, Marburg, Germany
| | | | | | | |
Collapse
|
9
|
Three of four GlnR binding sites are essential for GlnR-mediated activation of transcription of the Amycolatopsis mediterranei nas operon. J Bacteriol 2013; 195:2595-602. [PMID: 23543714 DOI: 10.1128/jb.00182-13] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Amycolatopsis mediterranei U32, genes responsible for nitrate assimilation formed one operon, nasACKBDEF, whose transcription is induced by the addition of nitrate. Here, we characterized GlnR as a direct transcriptional activator for the nas operon. The GlnR-protected DNA sequences in the promoter region of the nas operon were characterized by DNase I footprinting assay, the previously deduced Streptomyces coelicolor double 22-bp GlnR binding consensus sequences comprising a1, b1, a2, and b2 sites were identified, and the sites were then mutated individually to test their roles in both the binding of GlnR in vitro and the GlnR-mediated transcriptional activation in vivo. The results clearly showed that only three GlnR binding sites (a1, b1, and b2 sites) were required by GlnR for its specific binding to the nas promoter region and efficient activation of the transcription of the nas operon in U32, while the a2 site seemed unnecessary.
Collapse
|
10
|
The prokaryotic Mo/W-bisPGD enzymes family: a catalytic workhorse in bioenergetic. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2013; 1827:1048-85. [PMID: 23376630 DOI: 10.1016/j.bbabio.2013.01.011] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Revised: 01/21/2013] [Accepted: 01/23/2013] [Indexed: 01/05/2023]
Abstract
Over the past two decades, prominent importance of molybdenum-containing enzymes in prokaryotes has been put forward by studies originating from different fields. Proteomic or bioinformatic studies underpinned that the list of molybdenum-containing enzymes is far from being complete with to date, more than fifty different enzymes involved in the biogeochemical nitrogen, carbon and sulfur cycles. In particular, the vast majority of prokaryotic molybdenum-containing enzymes belong to the so-called dimethylsulfoxide reductase family. Despite its extraordinary diversity, this family is characterized by the presence of a Mo/W-bis(pyranopterin guanosine dinucleotide) cofactor at the active site. This review highlights what has been learned about the properties of the catalytic site, the modular variation of the structural organization of these enzymes, and their interplay with the isoprenoid quinones. In the last part, this review provides an integrated view of how these enzymes contribute to the bioenergetics of prokaryotes. This article is part of a Special Issue entitled: Metals in Bioenergetics and Biomimetics Systems.
Collapse
|
11
|
Boudes M, Lazar N, Graille M, Durand D, Gaidenko TA, Stewart V, van Tilbeurgh H. The structure of the NasR transcription antiterminator reveals a one-component system with a NIT nitrate receptor coupled to an ANTAR RNA-binding effector. Mol Microbiol 2012; 85:431-44. [PMID: 22690729 DOI: 10.1111/j.1365-2958.2012.08111.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The nitrate- and nitrite-sensing NIT domain is present in diverse signal-transduction proteins across a wide range of bacterial species. NIT domain function was established through analysis of the Klebsiella oxytoca NasR protein, which controls expression of the nasF operon encoding enzymes for nitrite and nitrate assimilation. In the presence of nitrate or nitrite, the NasR protein inhibits transcription termination at the factor-independent terminator site in the nasF operon transcribed leader region. We present here the crystal structure of the intact NasR protein in the apo state. The dimeric all-helical protein contains a large amino-terminal NIT domain that associates two four-helix bundles, and a carboxyl-terminal ANTAR (AmiR and NasR transcription antitermination regulator) domain. The analysis reveals unexpectedly that the NIT domain is structurally similar to the periplasmic input domain of the NarX two-component sensor that regulates nitrate and nitrite respiration. This similarity suggests that the NIT domain binds nitrate and nitrite between two invariant arginyl residues located on adjacent alpha helices, and results from site-specific mutagenesis showed that these residues are critical for NasR function. The resulting structural movements in the NIT domain would provoke an active configuration of the ANTAR domains necessary for specific leader mRNA binding.
Collapse
Affiliation(s)
- Marion Boudes
- IBBMC-CNRS UMR8619, Bât. 430, Université Paris-Sud, 91405 Orsay, France
| | | | | | | | | | | | | |
Collapse
|
12
|
|
13
|
Shao Z, Gao J, Ding X, Wang J, Chiao J, Zhao G. Identification and functional analysis of a nitrate assimilation operon nasACKBDEF from Amycolatopsis mediterranei U32. Arch Microbiol 2011; 193:463-477. [PMID: 21424691 DOI: 10.1007/s00203-011-0690-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2010] [Revised: 02/23/2011] [Accepted: 02/23/2011] [Indexed: 10/18/2022]
Abstract
Nitrate assimilation has been well studied for Gram-negative bacteria but not so much in the Gram-positive actinomycetes up to date. In a rifamycin SV-producing actinomycete, Amycolatopsis mediterranei strain U32, nitrate not only can be used as a sole nitrogen source but also remarkably stimulates the antibiotic production along with regulating the related metabolic enzymes. A gene cluster of nasACKBDEF was cloned from a U32 genomic library by in situ hybridization screening with a heterogeneous nasB probe and confirmed later by whole genome sequence, corresponding to the protein coding genes of AMED_1121 to AMED_1127. These genes were co-transcribed as an operon, concomitantly repressed by ammonium while activated with supplement of either nitrate or nitrite. Genetic and biochemical analyses identified the essential nitrate/nitrite assimilation functions of the encoded proteins, orderly, the assimilatory nitrate reductase catalytic subunit (NasA), nitrate reductase electron transfer subunit (NasC), nitrate/nitrite transporter (NasK), assimilatory nitrite reductase large subunit (NasB) and small subunit (NasD), bifunctional uroporphyrinogen-III synthase (NasE), and an unknown function protein (NasF). Comparing rifamycin SV production and the level of transcription of nasB and rifE from U32 and its individual nas mutants in Bennet medium with or without nitrate indicated that nitrate assimilation function encoded by the nas operon played an essential role in the "nitrate stimulated" rifamycin production but had no effect upon the transcription regulation of the primary and secondary metabolic genes related to rifamycin biosynthesis.
Collapse
Affiliation(s)
- Zhihui Shao
- Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | | | | | | | | | | |
Collapse
|
14
|
Gates AJ, Luque-Almagro VM, Goddard AD, Ferguson SJ, Roldán MD, Richardson DJ. A composite biochemical system for bacterial nitrate and nitrite assimilation as exemplified by Paracoccus denitrificans. Biochem J 2011; 435:743-53. [PMID: 21348864 DOI: 10.1042/bj20101920] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The denitrifying bacterium Paracoccus denitrificans can grow aerobically or anaerobically using nitrate or nitrite as the sole nitrogen source. The biochemical pathway responsible is expressed from a gene cluster comprising a nitrate/nitrite transporter (NasA), nitrite transporter (NasH), nitrite reductase (NasB), ferredoxin (NasG) and nitrate reductase (NasC). NasB and NasG are essential for growth with nitrate or nitrite as the nitrogen source. NADH serves as the electron donor for nitrate and nitrite reduction, but only NasB has a NADH-oxidizing domain. Nitrate and nitrite reductase activities show the same Km for NADH and can be separated by anion-exchange chromatography, but only fractions containing NasB retain the ability to oxidize NADH. This implies that NasG mediates electron flux from the NADH-oxidizing site in NasB to the sites of nitrate and nitrite reduction in NasC and NasB respectively. Delivery of extracellular nitrate to NasBGC is mediated by NasA, but both NasA and NasH contribute to nitrite uptake. The roles of NasA and NasC can be substituted during anaerobic growth by the biochemically distinct membrane-bound respiratory nitrate reductase (Nar), demonstrating functional overlap. nasG is highly conserved in nitrate/nitrite assimilation gene clusters, which is consistent with a key role for the NasG ferredoxin, as part of a phylogenetically widespread composite nitrate and nitrite reductase system.
Collapse
Affiliation(s)
- Andrew J Gates
- Centre for Molecular and Structural Biochemistry, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | | | | | | | | | | |
Collapse
|
15
|
Wang J, Zhao GP. GlnR positively regulates nasA transcription in Streptomyces coelicolor. Biochem Biophys Res Commun 2009; 386:77-81. [PMID: 19501565 DOI: 10.1016/j.bbrc.2009.05.147] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2009] [Accepted: 05/29/2009] [Indexed: 11/20/2022]
Abstract
The model actinomycete, Streptomyces coelicolor is able to grow with nitrate as the sole nitrogen source. In this study, an assimilatory nitrate reductase encoding gene, nasA (SCO2473) was, for the first time, identified from the genome of S. coelicolor by genetic and physiological means. We also proved that GlnR, a previously characterized global nitrogen regulator in S. coelicolor, positively regulated the transcription of nasA via specific binding to a cis-element similar but different from the previously characterized consensus sequence. This finding will certainly facilitate the better understanding about both the functional scope and the mechanism of action of GlnR in regulating nitrogen metabolism in S. coelicolor.
Collapse
Affiliation(s)
- Jin Wang
- Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China
| | | |
Collapse
|
16
|
Salinero KK, Keller K, Feil WS, Feil H, Trong S, Di Bartolo G, Lapidus A. Metabolic analysis of the soil microbe Dechloromonas aromatica str. RCB: indications of a surprisingly complex life-style and cryptic anaerobic pathways for aromatic degradation. BMC Genomics 2009; 10:351. [PMID: 19650930 PMCID: PMC2907700 DOI: 10.1186/1471-2164-10-351] [Citation(s) in RCA: 136] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2008] [Accepted: 08/03/2009] [Indexed: 12/24/2022] Open
Abstract
Background Initial interest in Dechloromonas aromatica strain RCB arose from its ability to anaerobically degrade benzene. It is also able to reduce perchlorate and oxidize chlorobenzoate, toluene, and xylene, creating interest in using this organism for bioremediation. Little physiological data has been published for this microbe. It is considered to be a free-living organism. Results The a priori prediction that the D. aromatica genome would contain previously characterized "central" enzymes to support anaerobic aromatic degradation of benzene proved to be false, suggesting the presence of novel anaerobic aromatic degradation pathways in this species. These missing pathways include the benzylsuccinate synthase (bssABC) genes (responsible for fumarate addition to toluene) and the central benzoyl-CoA pathway for monoaromatics. In depth analyses using existing TIGRfam, COG, and InterPro models, and the creation of de novo HMM models, indicate a highly complex lifestyle with a large number of environmental sensors and signaling pathways, including a relatively large number of GGDEF domain signal receptors and multiple quorum sensors. A number of proteins indicate interactions with an as yet unknown host, as indicated by the presence of predicted cell host remodeling enzymes, effector enzymes, hemolysin-like proteins, adhesins, NO reductase, and both type III and type VI secretory complexes. Evidence of biofilm formation including a proposed exopolysaccharide complex and exosortase (epsH) are also present. Annotation described in this paper also reveals evidence for several metabolic pathways that have yet to be observed experimentally, including a sulphur oxidation (soxFCDYZAXB) gene cluster, Calvin cycle enzymes, and proteins involved in nitrogen fixation in other species (including RubisCo, ribulose-phosphate 3-epimerase, and nif gene families, respectively). Conclusion Analysis of the D. aromatica genome indicates there is much to be learned regarding the metabolic capabilities, and life-style, for this microbial species. Examples of recent gene duplication events in signaling as well as dioxygenase clusters are present, indicating selective gene family expansion as a relatively recent event in D. aromatica's evolutionary history. Gene families that constitute metabolic cycles presumed to create D. aromatica's environmental 'foot-print' indicate a high level of diversification between its predicted capabilities and those of its close relatives, A. aromaticum str EbN1 and Azoarcus BH72.
Collapse
|
17
|
Tsujimoto R, Yamazaki H, Maeda SI, Omata T. Distinct roles of nitrate and nitrite in regulation of expression of the nitrate transport genes in the moss Physcomitrella patens. PLANT & CELL PHYSIOLOGY 2007; 48:484-97. [PMID: 17289796 DOI: 10.1093/pcp/pcm019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Five NRT2 genes and three Nar2 genes, encoding putative high-affinity nitrate transporters, and the respective cDNAs were identified and characterized in Physcomitrella patens. The deduced moss NRT2 and NAR2 proteins were more similar to the corresponding proteins of higher plants than to those of the green alga Chlamydomonas reinhardtii. Expression of all the genes was inhibited by ammonium added to the medium. The regulation by ammonium was abolished by an inhibitor of glutamine synthetase, but the effect of this inhibitor was counteracted by an inhibitor of glutamate synthase. Negative correlation was observed between the glutamine content of protonemata and the transcript levels of PpNRT2 and PpNar2. These results indicated that glutamine is the signal for repression of the genes. All the genes except PpNRT2;5 showed transient expression stimulated by nitrate but not by nitrite, peaking at 2-4 h after the medium was deprived of ammonium. When the glutamine synthetase inhibitor was used to inhibit assimilation of the ammonium generated intracellularly from nitrate or nitrite, the second phase of activation of genes became manifest at approximately 8 h after the medium was deprived of ammonium. Surprisingly, both nitrate and nitrite stimulated gene expression at this stage. PpNRT2;5 was distinct from the other genes in that its expression is sharply induced by nitrite, is strictly dependent on nitrite or nitrate, and is much less susceptible to the feedback regulation, retaining a constant level in nitrate-containing medium. These results indicated that P. patens has multiple mechanisms for sensing nitrate and nitrite.
Collapse
Affiliation(s)
- Ryoma Tsujimoto
- Laboratory of Molecular Plant Physiology, Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, 464-8601, Japan
| | | | | | | |
Collapse
|
18
|
Pino C, Olmo-Mira F, Cabello P, Martínez-Luque M, Castillo F, Roldán MD, Moreno-Vivián C. The assimilatory nitrate reduction system of the phototrophic bacterium Rhodobacter capsulatus E1F1. Biochem Soc Trans 2006; 34:127-9. [PMID: 16417500 DOI: 10.1042/bst0340127] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The phototrophic bacterium Rhodobacter capsulatus E1F1 assimilates nitrate under anaerobic phototrophic growth conditions. A 17 kb DNA region encoding the nitrate assimilation (nas) system of this bacterium has been cloned and sequenced. This region includes the genes coding for a putative ABC (ATP-binding cassette)-type nitrate transporter (nasFED) and the structural genes for the enzymes nitrate reductase (nasA), nitrite reductase (nasB) and hydroxylamine reductase (hcp). Three genes code for putative regulatory proteins: a nitrite-sensitive repressor (nsrR), a transcription antiterminator (nasT) and a nitrate sensor (nasS). Other genes probably involved in nitrate assimilation are also present in this region. The sequence analysis of these genes and the biochemical properties of the purified nitrate, nitrite and hydroxylamine reductases are reviewed.
Collapse
Affiliation(s)
- C Pino
- Departamento de Bioquímica y Biología Molecular, Edificio Severo Ochoa, Universidad de Córdoba, 14071 Córdoba, Spain
| | | | | | | | | | | | | |
Collapse
|
19
|
Cui L, Lian JQ, Neoh HM, Reyes E, Hiramatsu K. DNA microarray-based identification of genes associated with glycopeptide resistance in Staphylococcus aureus. Antimicrob Agents Chemother 2005; 49:3404-13. [PMID: 16048954 PMCID: PMC1196288 DOI: 10.1128/aac.49.8.3404-3413.2005] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Six pairs of transcription profiles between glycopeptide-intermediate S. aureus (GISA [or vancomycin-intermediate S. aureus; VISA]) and glycopeptide-susceptible S. aureus (vancomycin-susceptible S. aureus [VSSA], including glycopeptide-susceptible isogenic mutants from VISA) strains were compared using a microarray. Ninety-two open reading frames which were or tended to be increased in transcription in VISA in at least five out of six array combination pairs were evaluated for their effects on glycopeptide susceptibility by introducing these genes one by one into VSSA strain N315 to construct an overexpression library. By screening the library, 17 genes including 8 novel genes were identified as associated with glycopeptide resistance since their experimental overexpression reduced vancomycin and/or teicoplanin susceptibility of N315. The raised MICs of vancomycin and teicoplanin were 1.25 to 3.0 and 1.5 to 6.0 mg/liter, respectively, as compared to 1.0 mg/liter of N315. Three of these genes, namely graF, msrA2, and mgrA, also raised the oxacillin MIC from 8.0 mg/liter for N315 to 64 to approximately 128 mg/liter when they were overexpressed in N315. Their contribution to vancomycin and beta-lactam resistance was further supported by gene knockout and trans-complementation assay. By using a plasmid-based promoter-green fluorescent protein gene (gfp) transcriptional fusion system, graF promoter-activated cells were purified, and subsequent susceptibility tests and Northern blot analysis demonstrated that the cells with up-regulated activity of graF promoter showed reduced susceptibility to vancomycin, teicoplanin, and oxacillin. In addition, cell morphology studies showed that graF and msrA2 overexpression increased cell wall thickness of N315 by factors of 23.91 and 22.27%, respectively, accompanied by glycopeptide MIC increments of 3- to 6-fold, when they were overexpressed in N315. Moreover, extended experiments and analyses indicate that many of the genes identified above are related to the cell wall biosynthetic pathway, including active nutrient transport systems. We propose that the genes which raise glycopeptide resistance in S. aureus function toward altering the cell wall metabolic pathway.
Collapse
Affiliation(s)
- Longzhu Cui
- Department of Bacteriology, Faculty of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-Ku, Tokyo 113-8421, Japan.
| | | | | | | | | |
Collapse
|
20
|
Maeda SI, Omata T. A novel gene (narM) required for expression of nitrate reductase activity in the cyanobacterium Synechococcus elongatus strain PCC7942. J Bacteriol 2004; 186:2107-14. [PMID: 15028696 PMCID: PMC374400 DOI: 10.1128/jb.186.7.2107-2114.2004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A new class of mutants deficient in nitrate assimilation was obtained from the cyanobacterium Synechococcus elongatus strain PCC7942 by means of random insertional mutagenesis. A 0.5-kb genomic region had been replaced by a kanamycin resistance gene cassette in the mutant, resulting in inactivation of two genes, one of which was homologous to the recently characterized cnaT gene of Anabaena sp. strain PCC7120 (J. E. Frías, A. Herrero, and E. Flores, J. Bacteriol. 185:5037-5044, 2003). While insertional mutation of the cnaT homolog did not affect expression of the nitrate assimilation operon or the activity of the nitrate assimilation enzymes in S. elongatus, inactivation of the other gene, designated narM, resulted in specific loss of the cellular nitrate reductase activity. The deduced NarM protein is a hydrophilic protein consisting of 161 amino acids. narM was expressed constitutively at a low level. The narM gene has its homolog only in the cyanobacterial strains that are capable of nitrate assimilation. In most of the cyanobacterial strains, narM is located downstream of narB, the structural gene of the cyanobacterial nitrate reductase, suggesting the functional link between the two genes. NarM is clearly not the structural component of the cyanobacterial nitrate reductase. The narM insertional mutant normally expressed narB, indicating that narM is not the transcriptional regulator of the structural gene of nitrate reductase. These results suggested that narM is required for either synthesis of the prosthetic group of nitrate reductase or assembly of the prosthetic groups to the NarB polypeptide to form functional nitrate reductase in cyanobacteria.
Collapse
Affiliation(s)
- Shin-ichi Maeda
- Laboratory of Molecular Plant Physiology, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan.
| | | |
Collapse
|
21
|
Abstract
Nitrate assimilation has received much attention in filamentous fungi and plants but not so much in yeasts. Recently the availability of classical genetic and molecular biology tools for the yeast Hansenula polymorpha has allowed the advance of the study of this metabolic pathway in yeasts. The genes YNT1, YNR1 and YNI1, encoding respectively nitrate transport, nitrate reductase and nitrite reductase, have been cloned, as well as two other genes encoding transcriptional regulatory factors. All these genes lie closely together in a cluster. Transcriptional regulation is the main regulatory mechanism that controls the levels of the enzymes involved in nitrate metabolism although other mechanisms may also be operative. The process involved in the sensing and signalling of the presence of nitrate in the medium is not well understood. In this article the current state of the studies of nitrate assimilation in yeasts as well as possible venues for future research are reviewed.
Collapse
Affiliation(s)
- José M Siverio
- Departamento de Bioquímica y Biología Molecular, Grupo del Metabolismo del Nitrógeno, Universidad de La Laguna, E-38206 La Laguna, Tenerife, Spain.
| |
Collapse
|
22
|
da Silva ACR, Ferro JA, Reinach FC, Farah CS, Furlan LR, Quaggio RB, Monteiro-Vitorello CB, Van Sluys MA, Almeida NF, Alves LMC, do Amaral AM, Bertolini MC, Camargo LEA, Camarotte G, Cannavan F, Cardozo J, Chambergo F, Ciapina LP, Cicarelli RMB, Coutinho LL, Cursino-Santos JR, El-Dorry H, Faria JB, Ferreira AJS, Ferreira RCC, Ferro MIT, Formighieri EF, Franco MC, Greggio CC, Gruber A, Katsuyama AM, Kishi LT, Leite RP, Lemos EGM, Lemos MVF, Locali EC, Machado MA, Madeira AMBN, Martinez-Rossi NM, Martins EC, Meidanis J, Menck CFM, Miyaki CY, Moon DH, Moreira LM, Novo MTM, Okura VK, Oliveira MC, Oliveira VR, Pereira HA, Rossi A, Sena JAD, Silva C, de Souza RF, Spinola LAF, Takita MA, Tamura RE, Teixeira EC, Tezza RID, Trindade dos Santos M, Truffi D, Tsai SM, White FF, Setubal JC, Kitajima JP. Comparison of the genomes of two Xanthomonas pathogens with differing host specificities. Nature 2002; 417:459-63. [PMID: 12024217 DOI: 10.1038/417459a] [Citation(s) in RCA: 806] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The genus Xanthomonas is a diverse and economically important group of bacterial phytopathogens, belonging to the gamma-subdivision of the Proteobacteria. Xanthomonas axonopodis pv. citri (Xac) causes citrus canker, which affects most commercial citrus cultivars, resulting in significant losses worldwide. Symptoms include canker lesions, leading to abscission of fruit and leaves and general tree decline. Xanthomonas campestris pv. campestris (Xcc) causes black rot, which affects crucifers such as Brassica and Arabidopsis. Symptoms include marginal leaf chlorosis and darkening of vascular tissue, accompanied by extensive wilting and necrosis. Xanthomonas campestris pv. campestris is grown commercially to produce the exopolysaccharide xanthan gum, which is used as a viscosifying and stabilizing agent in many industries. Here we report and compare the complete genome sequences of Xac and Xcc. Their distinct disease phenotypes and host ranges belie a high degree of similarity at the genomic level. More than 80% of genes are shared, and gene order is conserved along most of their respective chromosomes. We identified several groups of strain-specific genes, and on the basis of these groups we propose mechanisms that may explain the differing host specificities and pathogenic processes.
Collapse
Affiliation(s)
- A C R da Silva
- Departamento de Bioquímica, Instituto de Química, Av. Prof. Lineu Prestes 748, São Paulo, SP, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Potter L, Angove H, Richardson D, Cole J. Nitrate reduction in the periplasm of gram-negative bacteria. Adv Microb Physiol 2002; 45:51-112. [PMID: 11450112 DOI: 10.1016/s0065-2911(01)45002-8] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
In contrast to the bacterial assimilatory and membrane-associated, respiratory nitrate reductases that have been studied for many years, it is only recently that periplasmic nitrate reductases have attracted growing interest. Recent research has shown that these soluble proteins are widely distributed, but vary greatly between species. All of those so far studied include four essential components: the periplasmic molybdoprotein, NapA, which is associated with a small, di-haem cytochrome, NapB; a putative quinol oxidase, NapC; and a possible pathway-specific chaperone, NapD. At least five other components have been found in different species. Other variations between species include the location of the nap genes on chromosomal or extrachromosomal DNA, and the environmental factors that regulate their expression. Despite the relatively small number of bacteria so far screened, striking correlations are beginning to emerge between the organization of the nap genes, the physiology of the host, the conditions under which the nap genes are expressed, and even the fate of nitrite, the product of Nap activity. Evidence is emerging that Nap fulfills a novel role in nitrate scavenging by some pathogenic bacteria.
Collapse
Affiliation(s)
- L Potter
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK.
| | | | | | | |
Collapse
|
24
|
Allen AE, Booth MG, Frischer ME, Verity PG, Zehr JP, Zani S. Diversity and detection of nitrate assimilation genes in marine bacteria. Appl Environ Microbiol 2001; 67:5343-8. [PMID: 11679368 PMCID: PMC93313 DOI: 10.1128/aem.67.11.5343-5348.2001] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A PCR approach was used to construct a database of nasA genes (called narB genes in cyanobacteria) and to detect the genetic potential for heterotrophic bacterial nitrate utilization in marine environments. A nasA-specific PCR primer set that could be used to selectively amplify the nasA gene from heterotrophic bacteria was designed. Using seawater DNA extracts obtained from microbial communities in the South Atlantic Bight, the Barents Sea, and the North Pacific Gyre, we PCR amplified and sequenced nasA genes. Our results indicate that several groups of heterotrophic bacterial nasA genes are common and widely distributed in oceanic environments.
Collapse
Affiliation(s)
- A E Allen
- Institute of Ecology, University of Georgia, Athens, Georgia 30602, USA
| | | | | | | | | | | |
Collapse
|
25
|
MartıÌnez-Espinosa RM, Marhuenda-Egea FC, Bonete MJ. Assimilatory nitrate reductase from the haloarchaeon Haloferax mediterranei: purification and characterisation. FEMS Microbiol Lett 2001. [DOI: 10.1111/j.1574-6968.2001.tb10914.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
26
|
Arcondéguy T, Jack R, Merrick M. P(II) signal transduction proteins, pivotal players in microbial nitrogen control. Microbiol Mol Biol Rev 2001; 65:80-105. [PMID: 11238986 PMCID: PMC99019 DOI: 10.1128/mmbr.65.1.80-105.2001] [Citation(s) in RCA: 318] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The P(II) family of signal transduction proteins are among the most widely distributed signal proteins in the bacterial world. First identified in 1969 as a component of the glutamine synthetase regulatory apparatus, P(II) proteins have since been recognized as playing a pivotal role in control of prokaryotic nitrogen metabolism. More recently, members of the family have been found in higher plants, where they also potentially play a role in nitrogen control. The P(II) proteins can function in the regulation of both gene transcription, by modulating the activity of regulatory proteins, and the catalytic activity of enzymes involved in nitrogen metabolism. There is also emerging evidence that they may regulate the activity of proteins required for transport of nitrogen compounds into the cell. In this review we discuss the history of the P(II) proteins, their structures and biochemistry, and their distribution and functions in prokaryotes. We survey data emerging from bacterial genome sequences and consider other likely or potential targets for control by P(II) proteins.
Collapse
Affiliation(s)
- T Arcondéguy
- Department of Microbiology, John Innes Centre, Norwich, United Kingdom
| | | | | |
Collapse
|
27
|
Kerschen EJ, Irani VR, Hassett DJ, Rowe JJ. snr-1 gene is required for nitrate reduction in Pseudomonas aeruginosa PAO1. J Bacteriol 2001; 183:2125-31. [PMID: 11222615 PMCID: PMC95112 DOI: 10.1128/jb.183.6.2125-2131.2001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas aeruginosa is able to use nitrate for both assimilation and anaerobic respiration. One set of genes, designated snr (for "shared nitrate reduction"), have been recently cloned and partially characterized. In this study, we demonstrate that the snr-1 gene encodes a predicted 52.5-kDa protein that is 82% similar to a unique cytochrome c of Desulfomonile tiedjei DCB-1. Importantly, the Snr-1 protein sequence of P. aeruginosa differed from that of the cytochrome c of D. tiedjei primarily in the first 25 amino acids, which are required for membrane attachment in D. tiedjei. In P. aeruginosa, the Snr-1 protein hydropathy profile indicates that it is a soluble protein. An isogenic snr-1::Gm insertional mutant was unable to grow aerobically with nitrate as a sole nitrogen source or anaerobically with nitrate as an electron acceptor. Complementation of the snr-1::Gm mutant with the snr-1 gene restored the wild-type phenotypes. Interestingly, anaerobic growth rates were significantly higher in the snr-1 mutant harboring a multicopy plasmid containing snr-1. In contrast, aerobic growth rates of the restored mutant using nitrate as the sole nitrogen source were similar to those of the wild type. Transcriptional lacZ fusions demonstrated that snr-1 was not regulated by molybdate, oxygen, or nitrate.
Collapse
Affiliation(s)
- E J Kerschen
- Department of Biology, University of Dayton, Dayton, Ohio 45469, USA
| | | | | | | |
Collapse
|
28
|
Wu SQ, Chai W, Lin JT, Stewart V. General nitrogen regulation of nitrate assimilation regulatory gene nasR expression in Klebsiella oxytoca M5al. J Bacteriol 1999; 181:7274-84. [PMID: 10572131 PMCID: PMC103690 DOI: 10.1128/jb.181.23.7274-7284.1999] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Klebsiella oxytoca can assimilate nitrate and nitrite by using enzymes encoded by the nasFEDCBA operon. Expression of the nasF operon is controlled by general nitrogen regulation (Ntr) via the NtrC transcription activator and by pathway-specific nitrate and nitrite induction via the NasR transcription antiterminator. This paper reports our analysis of nasR gene expression. We constructed strains bearing single-copy Phi(nasR-lacZ) operon fusions within the chromosomal rhaBAD-rhaSR locus. The expression of DeltarhaBS::[Phi(nasR-lacZ)] operon fusions was induced about 10-fold during nitrogen-limited growth. Induction was reduced in both ntrC and rpoN null mutants, indicating that Ntr control of nasR gene expression requires the NtrC and sigma(N) (sigma(54)) proteins. Sequence inspection of the nasR control region reveals an apparent sigma(N)-dependent promoter but no apparent NtrC protein binding sites. Analysis of site-specific mutations coupled with primer extension analysis authenticated the sigma(N)-dependent nasR promoter. Fusion constructs with only about 70 nucleotides (nt) upstream of the transcription initiation site exhibited patterns of beta-galactosidase expression indistinguishable from Phi(nasR-lacZ) constructs with about 470 nt upstream. Expression was independent of the Nac protein, implying that NtrC is a direct activator of nasR transcription. Together, these results indicate that nasR gene expression does not require specific upstream NtrC-binding sequences, as previously noted for argT gene expression in Salmonella typhimurium (G. Schmitz, K. Nikaido, and G. F.-L. Ames, Mol. Gen. Genet. 215:107-117, 1988).
Collapse
Affiliation(s)
- S Q Wu
- Section of Microbiology, Cornell University, Ithaca, New York 14853-8101, USA
| | | | | | | |
Collapse
|
29
|
Moreno-Vivián C, Cabello P, Martínez-Luque M, Blasco R, Castillo F. Prokaryotic nitrate reduction: molecular properties and functional distinction among bacterial nitrate reductases. J Bacteriol 1999; 181:6573-84. [PMID: 10542156 PMCID: PMC94119 DOI: 10.1128/jb.181.21.6573-6584.1999] [Citation(s) in RCA: 344] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- C Moreno-Vivián
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias, Universidad de Córdoba, 14071 Córdoba, Spain.
| | | | | | | | | |
Collapse
|
30
|
Chai W, Stewart V. RNA sequence requirements for NasR-mediated, nitrate-responsive transcription antitermination of the Klebsiella oxytoca M5al nasF operon leader. J Mol Biol 1999; 292:203-16. [PMID: 10493869 DOI: 10.1006/jmbi.1999.3084] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In Klebsiella oxytoca, enzymes required for nitrate assimilation are encoded by the nasFEDCBA operon. Nitrate and nitrite induction of nasF operon expression is determined by a transcriptional antitermination mechanism, in which the nasR gene product responds to nitrate or nitrite and overcomes transcription termination at the factor-independent terminator site located in the nasF upstream leader region. Previous studies led to the hypothesis that the NasR protein mediates transcription antitermination through interaction with nasF leader RNA. Here, we report a DNA sequence comparison that reveals conserved 1:2 and 3:4 RNA secondary structures in the nasF leader RNAs from two Klebsiella species. Additionally, we found that specific binding of the NasR protein to nasF leader RNA was stimulated by nitrate and nitrite. We combined mutational analysis, in vivo and in vitro antitermination assays, and an RNA electrophoretic mobility shift assay to define regions in the nasF leader that are essential for antitermination and for NasR-RNA interaction. Formation of the 1:2 stem structure and the specific sequence of the 1:2 hexanucleotide loop were required for both nitrate induction and for NasR-RNA interaction. Mutations in the 1:2 stem-loop region that abolished nitrate induction also interfered with NasR-leader RNA interaction. Finally, nucleotide alterations or additions in the linker region between the 1:2 and 3:4 stem-loops were deleterious to nasF operon induction but not to NasR-leader RNA interaction. We hypothesize that NasR protein recognizes the 1:2 stem-loop structure in the nasF leader RNA to mediate transcription antitermination in response to nitrate or nitrite.
Collapse
Affiliation(s)
- W Chai
- Section of Microbiology, Cornell University, Ithaca, NY, 14853-8101, USA
| | | |
Collapse
|
31
|
Vidmar JJ, Schjoerring JK, Touraine B, Glass AD. Regulation of the hvst1 gene encoding a high-affinity sulfate transporter from Hordeum vulgare. PLANT MOLECULAR BIOLOGY 1999; 40:883-92. [PMID: 10487222 DOI: 10.1023/a:1006230131841] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
A cDNA, hvst1, was isolated from Hordeum vulgare by heterologous complementation in Escherichia coli. This cDNA encodes a high-affinity sulfate transporter that is 2442 bp in length and consists of 660 amino acids. Under steady-state conditions of sulfate supply during culture, sulfate influx (measured at 100 microM external sulfate concentration) and hvst1 transcript level were inversely correlated with sulfate concentrations in the culture solution. Glutathione (GSH) concentrations increased as external sulfate was increased from 2.5 to 250 microM. A time-course study, designed to investigate effects of sulfate withdrawal on the abundance of hvst1 transcript, showed a 5-fold increase of the latter within the first two hours. This was followed by a further slight increase during the next 46 h. These changes were accompanied by a parallel increase in sulfate influx and a decrease of root GSH concentrations. When plants that had been deprived of sulfate for 24 h were exposed to L-cysteine (Cys) or GSH for 3 h, GSH was the more effective down-regulator, reducing hvst1 transcript level to below that of unstarved controls. The decrease in transcript abundance induced by sulfate or Cys was partially relieved by the addition of buthionine sulfoximine (BSO), an inhibitor of GSH synthesis. Both hvst1 transcripts and sulfate influx increased as a function of N supply to N-starved plants. Amino oxyacetate acid (AOA), an aminotransferase inhibitor, when supplied with NO3-, increased transcript abundance of hvst1, while tungstate, methionine sulfoximine (MSO) and azaserine (AZA), inhibitors of nitrate reductase, glutamine synthetase and glutamate synthase (GOGAT), respectively, were without effect. AOA decreased root concentrations of aspartate (Asp), Cys and GSH; in contrast, glutamate (Glu) concentrations remained unchanged.
Collapse
Affiliation(s)
- J J Vidmar
- Department of Botany, University of British Columbia, Vancouver, Canada
| | | | | | | |
Collapse
|
32
|
Recombinant klebsiella oxytoca strains with improved efficiency in removal of high nitrate loads. Appl Environ Microbiol 1998; 64:5016-9. [PMID: 9835599 PMCID: PMC90959 DOI: 10.1128/aem.64.12.5016-5019.1998] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Klebsiella oxytoca CECT 4460 removes high nitrate loads from industrial wastewaters without accumulation of nitrite under optimal culture conditions; however, under nonoptimal conditions nitrite accumulates. This situation reflects an in vivo-limited functioning of nitrite reductase in this strain. As a way to overcome this limitation, an increase in the nitrite reductase gene dose in K. oxytoca CECT 4460 was considered. To achieve this, we cloned and transferred into this strain the Klebsiella pneumoniae nasB gene, which encodes assimilatory nitrite reductase (Lin et al., J. Bacteriol. 176:2551-2559, 1994). The delivery vector was either the wide-host-range plasmid pUPE2, in which the nasB gene is expressed from the Escherichia coli Plac promoter, or a mini-Tn5-Km vector, which upon random insertion in the host chromosome allowed expression of the nasB gene from an unidentified chromosomal host promoter. The effect of the increase in the dose of the nasB gene in K. oxytoca CECT 4460 on the accumulation of nitrite in the culture medium was tested in two recombinant strains. The results obtained showed that K. oxytoca CECT 4460 bearing pUPE2 accumulated 88% less nitrite than the wild-type strain, while the recombinant strain bearing the K. pneumoniae nasB gene in the host chromosome showed a 25% lower level of nitrite accumulation in the culture medium than that of the wild type.
Collapse
|
33
|
Maeda S, Okamura M, Kobayashi M, Omata T. Nitrite-specific active transport system of the cyanobacterium Synechococcus sp. strain PCC 7942. J Bacteriol 1998; 180:6761-3. [PMID: 9852027 PMCID: PMC107786 DOI: 10.1128/jb.180.24.6761-6763.1998] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Studies on the nitrite uptake capability of a mutant of Synechococcus sp. strain PCC 7942 lacking the ATP-binding cassette-type nitrate-nitrite-bispecific transporter revealed the occurrence of a nitrite-specific active transport system with an apparent Km (NO2-) of about 20 microM. Similar to the nitrate-nitrite-bispecific transporter, the nitrite-specific transporter was reversibly inhibited by ammonium in the medium.
Collapse
Affiliation(s)
- S Maeda
- Department of Applied Biological Sciences, School of Agricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | | | | | | |
Collapse
|
34
|
Chai W, Stewart V. NasR, a novel RNA-binding protein, mediates nitrate-responsive transcription antitermination of the Klebsiella oxytoca M5al nasF operon leader in vitro. J Mol Biol 1998; 283:339-51. [PMID: 9769209 DOI: 10.1006/jmbi.1998.2105] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In Klebsiella oxytoca (pneumoniae), enzymes required for nitrate assimilation are encoded by the nasFEDCBA operon. Previous genetic studies led to the conclusion that nitrate and nitrite induction of nasF operon expression is determined by a transcriptional antitermination mechanism. In the presence of nitrate or nitrite, the nasR gene product is hypothesized to inhibit transcription termination at the factor-independent terminator site located in the nasF operon leader region. To test this model in vitro, we first purified NasR as both a maltose binding protein fusion form (MBP-NasR) and a His6-tagged form (His6-NasR). Templates for in vitro transcription contained the nasF operon leader region, with a substitution of the sigma70-dependent tac promoter for the native sigmaN-dependent promoter. We found that in vitro transcription of the leader template terminated at the terminator site, and that MBP-NasR and His6-NasR proteins both caused transcription readthrough of this site in response to nitrate or nitrite. Half-maximal antitermination required nitrate or nitrite at moderate (1 to 10 microM) concentrations, and several other anions tested, including chlorate, were without effect. Previous in vivo analysis of leader deletions identified regions required for both negative regulation (the terminator) and for positive regulation. Results from in vitro transcription of these deletion templates correlated fully with the in vivo analysis. Finally, electrophoresis mobility shift analysis revealed that His6-NasR bound specifically to nasF leader RNA. This binding was independent of nitrate in vitro. These results strongly support the conclusions drawn from previous in vivo analysis, and establish that NasR mediates ligand-responsive transcription antitermination through interaction with nasF leader RNA.
Collapse
Affiliation(s)
- W Chai
- Section of Microbiology, Cornell University, Ithaca, NY, 14853-8101, USA
| | | |
Collapse
|
35
|
Wu Q, Stewart V. NasFED proteins mediate assimilatory nitrate and nitrite transport in Klebsiella oxytoca (pneumoniae) M5al. J Bacteriol 1998; 180:1311-22. [PMID: 9495773 PMCID: PMC107022 DOI: 10.1128/jb.180.5.1311-1322.1998] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Klebsiella oxytoca can use nitrate and nitrite as sole nitrogen sources. The enzymes required for nitrate and nitrite assimilation are encoded by the nasFEDCBA operon. We report here the complete nasFED sequence. Sequence comparisons indicate that the nasFED genes encode components of a conventional periplasmic binding protein-dependent transport system consisting of a periplasmic binding protein (NasF), a homodimeric intrinsic membrane protein (NasE), and a homodimeric ATP-binding cassette (ABC) protein (NasD). The NasF protein and the related NrtA and CmpA proteins of cyanobacteria contain leader (signal) sequences with the double-arginine motif that is hypothesized to direct prefolded proteins to an alternate protein export pathway. The NasE protein and the related NrtB and CmpB proteins of cyanobacteria contain unusual variants of the EAA loop sequence that defines membrane-intrinsic proteins of ABC transporters. To characterize nitrate and nitrite transport, we constructed in-frame nonpolar deletions of the chromosomal nasFED genes. Growth tests coupled with nitrate and nitrite uptake assays revealed that the nasFED genes are essential for nitrate transport and participate in nitrite transport as well. Interestingly, the delta nasF strain exhibited leaky phenotypes, particularly at elevated nitrate concentrations, suggesting that the NasED proteins are not fully dependent on the NasF protein.
Collapse
Affiliation(s)
- Q Wu
- Section of Microbiology, Cornell University, Ithaca, New York 14853-8101, USA
| | | |
Collapse
|
36
|
Abstract
Denitrification is a distinct means of energy conservation, making use of N oxides as terminal electron acceptors for cellular bioenergetics under anaerobic, microaerophilic, and occasionally aerobic conditions. The process is an essential branch of the global N cycle, reversing dinitrogen fixation, and is associated with chemolithotrophic, phototrophic, diazotrophic, or organotrophic metabolism but generally not with obligately anaerobic life. Discovered more than a century ago and believed to be exclusively a bacterial trait, denitrification has now been found in halophilic and hyperthermophilic archaea and in the mitochondria of fungi, raising evolutionarily intriguing vistas. Important advances in the biochemical characterization of denitrification and the underlying genetics have been achieved with Pseudomonas stutzeri, Pseudomonas aeruginosa, Paracoccus denitrificans, Ralstonia eutropha, and Rhodobacter sphaeroides. Pseudomonads represent one of the largest assemblies of the denitrifying bacteria within a single genus, favoring their use as model organisms. Around 50 genes are required within a single bacterium to encode the core structures of the denitrification apparatus. Much of the denitrification process of gram-negative bacteria has been found confined to the periplasm, whereas the topology and enzymology of the gram-positive bacteria are less well established. The activation and enzymatic transformation of N oxides is based on the redox chemistry of Fe, Cu, and Mo. Biochemical breakthroughs have included the X-ray structures of the two types of respiratory nitrite reductases and the isolation of the novel enzymes nitric oxide reductase and nitrous oxide reductase, as well as their structural characterization by indirect spectroscopic means. This revealed unexpected relationships among denitrification enzymes and respiratory oxygen reductases. Denitrification is intimately related to fundamental cellular processes that include primary and secondary transport, protein translocation, cytochrome c biogenesis, anaerobic gene regulation, metalloprotein assembly, and the biosynthesis of the cofactors molybdopterin and heme D1. An important class of regulators for the anaerobic expression of the denitrification apparatus are transcription factors of the greater FNR family. Nitrate and nitric oxide, in addition to being respiratory substrates, have been identified as signaling molecules for the induction of distinct N oxide-metabolizing enzymes.
Collapse
Affiliation(s)
- W G Zumft
- Lehrstuhl für Mikrobiologie, Universität Fridericiana, Karlsruhe, Germany
| |
Collapse
|
37
|
Abstract
Nitrate is a significant nitrogen source for plants and microorganisms. Recent molecular genetic analyses of representative bacterial species have revealed structural and regulatory genes responsible for the nitrate-assimilation phenotype. Together with results from physiological and biochemical studies, this information has unveiled fundamental aspects of bacterial nitrate assimilation and provides the foundation for further investigations. Well-studied genera are: the cyanobacteria, including the unicellular Synechococcus and the filamentous Anabaena; the gamma-proteobacteria Klebsiella and Azotobacter; and a Gram-positive bacterium, Bacillus. Nitrate uptake in most of these groups seems to involve a periplasmic binding protein-dependent system that presumably is energized by ATP hydrolysis (ATP-binding cassette transporters). However, Bacillus may, like fungi and plants, utilize electrogenic uptake through a representative of the major facilitator superfamily of transport proteins. Nitrate reductase contains both molybdenum cofactor and an iron-sulfur cluster. Electron donors for the enzymes from cyanobacteria and Azotobacter are ferredoxin and flavodoxin, respectively, whereas the Klebsiella and Bacillus enzymes apparently accept electrons from a specific NAD(P)H-reducing subunit. These subunits share sequence similarity with the reductase components of bacterial aromatic ring-hydroxylating dehydrogenases such as toluene dioxygenase. Nitrite reductase contains sirohaem and an iron-sulfur cluster. The enzymes from cyanobacteria and plants use ferredoxin as the electron donor, whereas the larger enzymes from other bacteria and fungi contain FAD and NAD(P)H binding sites. Nevertheless, the two forms of nitrite reductase share recognizable sequence and structural similarity. Synthesis of nitrate assimilation enzymes and uptake systems is controlled by nitrogen limitation in all bacteria examined, but the relevant regulatory proteins exhibit considerable structural and mechanistic diversity in different bacterial groups. A second level of control, pathway-specific induction by nitrate and nitrite in Klebsiella, involves transcription antitermination. Several issues await further experimentation, including the mechanism and energetics of nitrate uptake, the pathway(s) for nitrite uptake, the nature of electron flow during nitrate reduction, and the action of transcriptional regulatory circuits. Fundamental knowledge of nitrate assimilation physiology should also enhance the study of nitrate metabolism in soil, water and other natural environments, a challenging topic of considerable interest and importance.
Collapse
Affiliation(s)
- J T Lin
- Section of Biochemistry, Molecular and Cell Biology, Cornell University, Ithaca, New York 14853, USA
| | | |
Collapse
|
38
|
Blasco R, Castillo F, Martínez-Luque M. The assimilatory nitrate reductase from the phototrophic bacterium, Rhodobacter capsulatus E1F1, is a flavoprotein. FEBS Lett 1997; 414:45-9. [PMID: 9305729 DOI: 10.1016/s0014-5793(97)00968-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The assimilatory nitrate reductase from the phototrophic bacterium Rhodobacter capsulatus has been purified to electrophoretic homogeneity and its molecular and kinetic parameters determined. The native nitrate reductase is a dimer of 144 kDa composed of two subunits of 46 and 95 kDa. The purified enzyme catalyzes the electron transfer from NADH, reduced bromophenol blue or reduced viologens to nitrate. The nitrate reductase contains 1 mol FAD per mole of enzyme and also reduces cytochrome c or dichlorophenol indophenol with NADH as the electron donor. The diaphorase activity is located in the small subunit.
Collapse
Affiliation(s)
- R Blasco
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias, Universidad de Córdoba, Spain
| | | | | |
Collapse
|
39
|
Muñoz-Centeno MC, Peciña A, Cejudo FJ, Paneque A. A sensor protein involved in induction of nitrate assimilation in Azotobacter chroococcum. FEBS Lett 1996; 393:7-12. [PMID: 8804413 DOI: 10.1016/0014-5793(96)00843-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Nitrogen-fixing Azotobacter chroococcum cells, but not ammonium- or nitrate-grown cells, exhibited two polypeptide components of 22 and 35 kDa, respectively, that we termed P22 and P35. Bidimensional polyacrylamide gel electrophoresis analysis of preparations from N2-fixing cells that had been transferred to nitrate medium and then incubated for 2 h revealed that P22 had shifted to a more acidic part of the gel while P35 did not change its electrophoretic pattern. Using [32P]orthophosphoric acid it could be demonstrated that the shift in mobility of P22 was due to the phosphorylation of the polypeptide dependent on nitrate (nitrite). The A. chroococcum TR1 strain, which is unable to use nitrate as a nitrogen source and displays activities of nitrogenase, nitrate reductase and nitrite reductase, exhibited both polypeptides. In contrast, P22 and P35 were absent from A. chroococcum MCD1, a mutant strain that cannot assimilate nitrate and lacks the nitrate-reducing enzymatic system. The results suggest that P22 could act as a sensor protein for nitrate in A. chroococcum.
Collapse
Affiliation(s)
- M C Muñoz-Centeno
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla-Consejo Superior de Investigaciones Científicas, Spain
| | | | | | | |
Collapse
|
40
|
Reyes F, Roldán MD, Klipp W, Castillo F, Moreno-Vivián C. Isolation of periplasmic nitrate reductase genes from Rhodobacter sphaeroides DSM 158: structural and functional differences among prokaryotic nitrate reductases. Mol Microbiol 1996; 19:1307-18. [PMID: 8730872 DOI: 10.1111/j.1365-2958.1996.tb02475.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The phototrophic bacterium Rhodobacter sphaeroides DSM 158 has a periplasmic nitrate reductase which is induced by nitrate and it is not repressed by ammonium or oxygen. In a Tn5 mutant lacking nitrate reductase activity, transposon insertion is localized in a 1.2 kb EcoRI fragment. A 0.6 kb BamHI-EcoRI segment of this region was used as a probe to isolate, from the wild-type strain, a 6.8 kb PstI fragment carrying the putative genes coding for the periplasmic nitrate reductase. In vivo protein expression and DNA sequence analysis reveal the presence in this region of three genes, napABC, probably organized in an operon. These genes are required for nitrate reduction, as deduced by mutational and complementation studies. The napA gene codes for a protein with a high homology to the periplasmic nitrate reductase from Alcaligenes eutrophus and, to a lesser extent, to other prokaryotic nitrate reductases and molybdenum-containing enzymes. The napB gene product has two haem c-binding sites and shows a high homology with the cytochrome c-type subunit of the periplasmic nitrate reductase from A. eutrophus. NAPA and NAPB proteins appear to be translated with signal peptides of 29 and 24 residues, respectively, indicating that mature proteins are located in the periplasm. The napC gene codes for a 25 kDa protein with a transmembrane sequence of 17 hydrophobic residues. NAPC has four haem c-binding sites and is homologous to the membrane-bound c-type cytochromes encoded by Pseudomonas stutzeri nirT and Escherichia coli torC genes. The phenotypes of defined insertion mutants constructed for each gene also indicate that periplasmic nitrate reductase from R. sphaeroides DSM 158 is a dimeric complex of a 90 kDa catalytic subunit (NAPA) and a 15 kDa cytochrome c (NAPB), which receives electrons from a membrane-anchored tetrahaem protein (NAPC), thus allowing electron flow between membrane and periplasm. This nitrate-reducing system differs from the assimilatory and respiratory bacterial nitrate reductases at the level of cellular localization, regulatory properties, biochemical characteristics and gene organization.
Collapse
Affiliation(s)
- F Reyes
- Departamento de Bioquimica y Biología Molecular, Facultad de Ciencias, Universidad de Córdoba, Spain
| | | | | | | | | |
Collapse
|
41
|
Cole J. Nitrate reduction to ammonia by enteric bacteria: redundancy, or a strategy for survival during oxygen starvation? FEMS Microbiol Lett 1996; 136:1-11. [PMID: 8919448 DOI: 10.1111/j.1574-6968.1996.tb08017.x] [Citation(s) in RCA: 139] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Anaerobic metabolism of the simplest, best understood enteric bacteria such as Escherichia coli is unexpectedly complex. Recent studies of the biochemistry and genetics of nitrate reduction via nitrite to ammonia by enteric bacteria have provided insights into the reasons for this complexity. An NADH-dependent nitrite reductase in the cytoplasm works in partnership with the respiratory nitrate reductase on the cytoplasmic side of the membrane when nitrate is abundant. There is also an electrogenic, formate-dependent nitrite reductase ready to work in partnership with a periplasmic nitrate reductase when nitrite is available but nitrate is scarce. A third E. coli nitrate reductase, NarZYWV, and the poorly expressed formate dehydrogenase O possibly facilitate rapid adaptation to oxygen starvation pending the synthesis of the major respiratory formate-nitrate oxidoreductase. Although most anaerobically expressed genes are subject to transcription control, none of them are totally switched off. This enables the bacteria to be ready for a change in fortune: when growing anaerobically with nitrate, they can respond equally rapidly whether times get better with the arrival of oxygen, or get worse when the nitrate is depleted. Far from being redundant, the complexity is essential for survival in a changing environment.
Collapse
Affiliation(s)
- J Cole
- School of Biochemistry, University of Birmingham, UK
| |
Collapse
|
42
|
Rubio LM, Herrero A, Flores E. A cyanobacterial narB gene encodes a ferredoxin-dependent nitrate reductase. PLANT MOLECULAR BIOLOGY 1996; 30:845-850. [PMID: 8624415 DOI: 10.1007/bf00019017] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The narB gene from the cyanobacterium Synechococcus sp. PCC 7942 was cloned downstream from the LacI-regulated promoter Ptrc in the Escherichia coli vector pTrc99A, rendering plasmid pCSLM1. Addition of isopropyl-beta-D-thiogalactoside to E. coli (pCSLM1) resulted in the parallel expression of a 76 kDa polypeptide and a nitrate reductase activity with properties identical to those known for nitrate reductase isolated from Synechococcus cells. As is the case for nitrate reductase from Synechococcus cells, either reduced methyl viologen or reduced ferredoxin could be used as an electron donor for the reduction of nitrate catalyzed by E. coli (pCSLM1) extracts. This data shows that narB is a cyanobacterial structural gene for nitrate reductase.
Collapse
Affiliation(s)
- L M Rubio
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla-CSIC, Spain
| | | | | |
Collapse
|
43
|
Berks BC, Ferguson SJ, Moir JW, Richardson DJ. Enzymes and associated electron transport systems that catalyse the respiratory reduction of nitrogen oxides and oxyanions. BIOCHIMICA ET BIOPHYSICA ACTA 1995; 1232:97-173. [PMID: 8534676 DOI: 10.1016/0005-2728(95)00092-5] [Citation(s) in RCA: 399] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- B C Berks
- Centre for Metalloprotein Spectroscopy and Biology, School of Biological Sciences, University of East Anglia, Norwich, UK
| | | | | | | |
Collapse
|
44
|
Ogawa K, Akagawa E, Yamane K, Sun ZW, LaCelle M, Zuber P, Nakano MM. The nasB operon and nasA gene are required for nitrate/nitrite assimilation in Bacillus subtilis. J Bacteriol 1995; 177:1409-13. [PMID: 7868621 PMCID: PMC176753 DOI: 10.1128/jb.177.5.1409-1413.1995] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Bacillus subtilis can use either nitrate or nitrite as a sole source of nitrogen. The isolation of the nasABCDEF genes of B. subtilis, which are required for nitrate/nitrite assimilation, is reported. The probable gene products include subunits of nitrate/nitrite reductases and an enzyme involved in the synthesis of siroheme, a cofactor for nitrite reductase.
Collapse
Affiliation(s)
- K Ogawa
- Institute of Biological Sciences, University of Tsukuba, Ibaraki, Japan
| | | | | | | | | | | | | |
Collapse
|
45
|
Goldman BS, Lin JT, Stewart V. Identification and structure of the nasR gene encoding a nitrate- and nitrite-responsive positive regulator of nasFEDCBA (nitrate assimilation) operon expression in Klebsiella pneumoniae M5al. J Bacteriol 1994; 176:5077-85. [PMID: 8051020 PMCID: PMC196347 DOI: 10.1128/jb.176.16.5077-5085.1994] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Klebsiella pneumoniae can use nitrate and nitrite as sole nitrogen sources through the nitrate assimilatory pathway. The structural genes for assimilatory nitrate and nitrite reductases together with genes necessary for nitrate transport form an operon, nasFEDCBA. Expression of the nasF operon is regulated both by general nitrogen control and also by nitrate or nitrite induction. We have identified a gene, nasR, that is necessary for nitrate and nitrite induction. The nasR gene, located immediately upstream of the nasFEDCBA operon, encodes a 44-kDa protein. The NasR protein shares carboxyl-terminal sequence similarity with the AmiR protein of Pseudomonas aeruginosa, the positive regulator of amiE (aliphatic amidase) gene expression. In addition, we present evidence that the nasF operon is not autogenously regulated.
Collapse
Affiliation(s)
- B S Goldman
- Sections of Microbiology, Cornell University, Ithaca, New York 14853-8101
| | | | | |
Collapse
|
46
|
Stewart V. Regulation of nitrate and nitrite reductase synthesis in enterobacteria. Antonie Van Leeuwenhoek 1994; 66:37-45. [PMID: 7747939 DOI: 10.1007/bf00871631] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Enterobacteria use nitrate and nitrite both as electron acceptors and as sources of nitrogen for biosynthesis. Nitrate is reduced through nitrite to ammonium in both cases. The enzymes and structural genes for nitrate/nitrite respiration and assimilation are distinct, and are subject to different patterns of regulation. Respiratory enzyme synthesis is indifferent to the availability of ammonium, and is induced by anaerobiosis via the FNR protein. Respiratory enzyme synthesis is further induced by nitrate or nitrite via the NARL and NARP proteins, which are response regulators of two-component regulatory systems. The cognate sensor proteins NARX and NARQ monitor the availability of nitrate and nitrite, and control the activity of the NARL and NARP DNA-binding proteins accordingly. Additionally, nitrate represses the synthesis of respiratory nitrite reductase, and this control is mediated by the NARL protein. Assimilatory enzyme synthesis is indifferent to the availability of oxygen, and is induced by ammonium limitation via the NTRC protein. Assimilatory enzyme synthesis is further induced by nitrate or nitrite via the NASR protein, which may act as a transcription antiterminator. Even though the respiratory and assimilatory enzyme systems are genetically distinct and subject to different forms of regulation, the structural and regulatory genes are closely linked on the Klebsiella pneumoniae chromosome.
Collapse
Affiliation(s)
- V Stewart
- Section of Microbiology, Cornell University, Ithaca, NY 14853-8101, USA
| |
Collapse
|