1
|
Fushimi K, Nakai Y, Nishi A, Suzuki R, Ikegami M, Nimura R, Tomono T, Hidese R, Yasueda H, Tagawa Y, Hasunuma T. Development of the autonomous lab system to support biotechnology research. Sci Rep 2025; 15:6648. [PMID: 39994271 PMCID: PMC11850614 DOI: 10.1038/s41598-025-89069-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 02/03/2025] [Indexed: 02/26/2025] Open
Abstract
In this study, we developed the autonomous lab (ANL), which is a system based on robotics and artificial intelligence (AI) to conduct biotechnology experiments and formulate scientific hypotheses. This system was designed with modular devices and Bayesian optimization algorithms, allowing it to effectively run a closed loop from culturing to preprocessing, measurement, analysis, and hypothesis formulation. As a case study, we used the ANL to optimize medium conditions for a recombinant Escherichia coli strain, which overproduces glutamic acid. The results demonstrated that our autonomous system successfully replicated the experimental techniques, such as sample preparation and data measurement, and improved both the cell growth rate and the maximum cell growth. The ANL offers a versatile and scalable solution for various applications in the field of bioproduction, with the potential to improve efficiency and reliability of experimental processes in the future.
Collapse
Affiliation(s)
- Keiji Fushimi
- Graduate School of Science, Innovation and Technology, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
| | - Yusuke Nakai
- Technology Research Laboratory, Shimadzu Corporation, 3-9-4 Hikaridai, Seika-cho, Soraku-gun, Kyoto, 619-0237, Japan
| | - Akiko Nishi
- Graduate School of Science, Innovation and Technology, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
| | - Ryo Suzuki
- Graduate School of Science, Innovation and Technology, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
| | - Masahiro Ikegami
- Technology Research Laboratory, Shimadzu Corporation, 3-9-4 Hikaridai, Seika-cho, Soraku-gun, Kyoto, 619-0237, Japan
| | - Risa Nimura
- Technology Research Laboratory, Shimadzu Corporation, 3-9-4 Hikaridai, Seika-cho, Soraku-gun, Kyoto, 619-0237, Japan
| | - Taichi Tomono
- Technology Research Laboratory, Shimadzu Corporation, 3-9-4 Hikaridai, Seika-cho, Soraku-gun, Kyoto, 619-0237, Japan
| | - Ryota Hidese
- Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657- 8501, Japan
| | - Hisashi Yasueda
- Graduate School of Science, Innovation and Technology, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
- Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657- 8501, Japan
- Research and Development Center for Precision Medicine, University of Tsukuba, 1-2 Kasuga, Tsukuba, Ibaraki, 305-8550, Japan
| | - Yusuke Tagawa
- Technology Research Laboratory, Shimadzu Corporation, 3-9-4 Hikaridai, Seika-cho, Soraku-gun, Kyoto, 619-0237, Japan.
| | - Tomohisa Hasunuma
- Graduate School of Science, Innovation and Technology, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan.
- Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657- 8501, Japan.
| |
Collapse
|
2
|
Wu CC, Qu JJ, Zhang HT, Gao MJ, Zhu L, Zhan XB. New two-stage pH combined with dissolved oxygen control strategy for cyclic β-1,2 glucans synthesis. Appl Microbiol Biotechnol 2023; 107:2235-2247. [PMID: 36894714 DOI: 10.1007/s00253-023-12463-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 02/17/2023] [Accepted: 02/27/2023] [Indexed: 03/11/2023]
Abstract
On the basis of a novel two-stage pH combined with dissolved oxygen (DO) control strategy in fed-batch fermentation, this research addresses the influence of pH on cyclic β-1,2-glucans (CβGs) biosynthesis and melanin accumulation during the production of CβGs by Rhizobium radiobacter ATCC 13,333. Under these optimal fermentation conditions, the maximum cell concentration and CβGs concentration in a 7-L stirred-tank fermenter were 7.94 g L-1 and 3.12 g L-1, which were the maximum production reported for R. radiobacter. The melanin concentration of the fermentation broth was maintained at a low level, which was beneficial to the subsequent separation and purification of the CβGs. In addition, a neutral extracellular oligosaccharide (COGs-1) purified by the two-stage pH combined with DO control strategy fermentation medium was structurally characterized. Structural analyses indicated that COGs-1 was a family of unbranched cyclic oligosaccharides composed of only β-1,2-linked D-glucopyranose residues with degree of polymerization between 17 and 23, namely CβGs. This research provides a reliable source of CβGs and structural basis for further studies of biological activity and function. KEY POINTS: • A two-stage pH combined with DO control strategy was proposed for CβGs production and melanin biosynthesis by Rhizobium radiobacter. • The final extracellular CβGs production reached 3.12 g L-1, which was the highest achieved by Rhizobium radiobacter. • The existence of CβGs could be detected by TLC quickly and accurately.
Collapse
Affiliation(s)
- Chuan-Chao Wu
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Juan-Juan Qu
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Hong-Tao Zhang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Min-Jie Gao
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Li Zhu
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, Jiangsu, China
- L & F Biotech. Ltd., Burnaby, BC, V5A3P6, Canada
| | - Xiao-Bei Zhan
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, Jiangsu, China.
| |
Collapse
|
3
|
Laroute V, Mazzoli R, Loubière P, Pessione E, Cocaign-Bousquet M. Environmental Conditions Affecting GABA Production in Lactococcus lactis NCDO 2118. Microorganisms 2021; 9:microorganisms9010122. [PMID: 33430203 PMCID: PMC7825684 DOI: 10.3390/microorganisms9010122] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 12/30/2020] [Accepted: 01/04/2021] [Indexed: 01/19/2023] Open
Abstract
GABA (γ-aminobutyric acid) production has been widely described as an adaptive response to abiotic stress, allowing bacteria to survive in harsh environments. This work aimed to clarify and understand the relationship between GABA production and bacterial growth conditions, with particular reference to osmolarity. For this purpose, Lactococcus lactis NCDO 2118, a GABA-producing strain, was grown in glucose-supplemented chemically defined medium containing 34 mM L-glutamic acid, and different concentrations of salts (chloride, sulfate or phosphate ions) or polyols (sorbitol, glycerol). Unexpectedly, our data demonstrated that GABA production was not directly related to osmolarity. Chloride ions were the most significant factor influencing GABA yield in response to acidic stress while sulfate ions did not enhance GABA production. We demonstrated that the addition of chloride ions increased the glutamic acid decarboxylase (GAD) synthesis and the expression of the gadBC genes. Finally, under fed-batch conditions in a complex medium supplemented with 0.3 M NaCl and after a pH shift to 4.6, L. lactis NCDO 2118 was able to produce up to 413 mM GABA from 441 mM L-glutamic acid after only 56 h of culture, revealing the potential of L. lactis strains for intensive production of this bioactive molecule.
Collapse
Affiliation(s)
- Valérie Laroute
- TBI, Université de Toulouse, CNRS, INRAE, INSA, 31077 Toulouse, France;
- Correspondence: (V.L.); (M.C.-B.)
| | - Roberto Mazzoli
- Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123 Turin, Italy; (R.M.); (E.P.)
| | - Pascal Loubière
- TBI, Université de Toulouse, CNRS, INRAE, INSA, 31077 Toulouse, France;
| | - Enrica Pessione
- Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123 Turin, Italy; (R.M.); (E.P.)
| | - Muriel Cocaign-Bousquet
- TBI, Université de Toulouse, CNRS, INRAE, INSA, 31077 Toulouse, France;
- Correspondence: (V.L.); (M.C.-B.)
| |
Collapse
|
4
|
Hakobyan A, Liesack W, Glatter T. Crude-MS Strategy for in-Depth Proteome Analysis of the Methane-Oxidizing Methylocystis sp. strain SC2. J Proteome Res 2018; 17:3086-3103. [DOI: 10.1021/acs.jproteome.8b00216] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
| | - Werner Liesack
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-Universität Marburg, Karl-von-Frisch-Str. 16, D-35043 Marburg, Germany
| | | |
Collapse
|
5
|
Venkata Mohan S, Srikanth S, Nikhil GN. Augmentation of bacterial homeostasis by regulating in situ buffer capacity: Significance of total dissolved salts over acidogenic metabolism. BIORESOURCE TECHNOLOGY 2017; 225:34-39. [PMID: 27875766 DOI: 10.1016/j.biortech.2016.11.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 11/04/2016] [Accepted: 11/05/2016] [Indexed: 06/06/2023]
Abstract
During anaerobic fermentation, consequent accumulation of acidic fermented products leads to the failure of pH homeostasis. The present study aimed to comprehend the changes in buffering capacity with addition of sodium salts of hydroxide, bicarbonate and phosphate. The results showed notable augmentation in buffer capacity and cumulative hydrogen production (CHP) compared to control. The influential factor is the amount of undissociated volatile fatty acids released that affected the cell metabolism and consequently biohydrogen generation. It is inferred that among the tested salts, sodium bicarbonate has substantial buffering capacity (β, 0.035± mol) ensuing maximum CHP (468± mL). Besides, bioelectrochemical analysis revealed variations in redox currents that aligned with biohydrogen production. The study provides valuable information on the role of inorganic dissolved salts that would be required to regulate H2 generation and acidogenesis in the aspects of acid-gas phase system.
Collapse
Affiliation(s)
- S Venkata Mohan
- Bioengineering and Environmental Sciences (BEES), CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500 007, India.
| | - S Srikanth
- Bioengineering and Environmental Sciences (BEES), CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500 007, India
| | - G N Nikhil
- Bioengineering and Environmental Sciences (BEES), CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500 007, India
| |
Collapse
|
6
|
Triyannanto E, Lee KT. Evaluation of Honey and Rice Syrup as Replacements for Sorbitol in the Production of Restructured Duck Jerky. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2016; 29:271-9. [PMID: 26732452 PMCID: PMC4698708 DOI: 10.5713/ajas.15.0431] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 07/23/2015] [Accepted: 09/07/2015] [Indexed: 11/27/2022]
Abstract
The aim of this study was to evaluate the potential of natural humectants such as honey and rice syrup to replace sorbitol in the production of restructured duck jerky. Each humectant was mixed at 3%, 6%, and 10% (wt/wt) concentrations with the marinating solution. The values of water activity and the moisture-to-protein ratio of all of the samples were maintained below 0.75. Jerky samples treated with honey retained more moisture than those exposed to other treatments. Among all samples, those treated with 10% sorbitol produced the highest processing yield and the lowest shear force values. The highest L* value and the lowest b* value were observed for the sorbitol-treated sample, followed by the rice syrup- and honey-treated samples. Duck jerky samples treated with 10% honey showed the highest scores for the sensory parameters evaluated. The overall acceptability scores of samples treated with rice syrup were comparable with those of samples treated with sorbitol. Microscopic observation of restructured duck jerky samples treated with honey showed stable forms and smaller pores when compared with other treatments.
Collapse
|
7
|
Abstract
Escherichia coli and Salmonella encounter osmotic pressure variations in natural environments that include host tissues, food, soil, and water. Osmotic stress causes water to flow into or out of cells, changing their structure, physics, and chemistry in ways that perturb cell functions. E. coli and Salmonella limit osmotically induced water fluxes by accumulating and releasing electrolytes and small organic solutes, some denoted compatible solutes because they accumulate to high levels without disturbing cell functions. Osmotic upshifts inhibit membrane-based energy transduction and macromolecule synthesis while activating existing osmoregulatory systems and specifically inducing osmoregulatory genes. The osmoregulatory response depends on the availability of osmoprotectants (exogenous organic compounds that can be taken up to become compatible solutes). Without osmoprotectants, K+ accumulates with counterion glutamate, and compatible solute trehalose is synthesized. Available osmoprotectants are taken up via transporters ProP, ProU, BetT, and BetU. The resulting compatible solute accumulation attenuates the K+ glutamate response and more effectively restores cell hydration and growth. Osmotic downshifts abruptly increase turgor pressure and strain the cytoplasmic membrane. Mechanosensitive channels like MscS and MscL open to allow nonspecific solute efflux and forestall cell lysis. Research frontiers include (i) the osmoadaptive remodeling of cell structure, (ii) the mechanisms by which osmotic stress alters gene expression, (iii) the mechanisms by which transporters and channels detect and respond to osmotic pressure changes, (iv) the coordination of osmoregulatory programs and selection of available osmoprotectants, and (v) the roles played by osmoregulatory mechanisms as E. coli and Salmonella survive or thrive in their natural environments.
Collapse
|
8
|
Finn S, Rogers L, Händler K, McClure P, Amézquita A, Hinton JCD, Fanning S. Exposure of Salmonella enterica Serovar Typhimurium to Three Humectants Used in the Food Industry Induces Different Osmoadaptation Systems. Appl Environ Microbiol 2015; 81:6800-11. [PMID: 26209672 PMCID: PMC4561688 DOI: 10.1128/aem.01379-15] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 07/15/2015] [Indexed: 11/22/2022] Open
Abstract
Common salt (NaCl) is frequently used by the food industry to add flavor and to act as a humectant in order to reduce the water content of a food product. The improved health awareness of consumers is leading to a demand for food products with reduced salt content; thus, manufacturers require alternative water activity-reducing agents which elicit the same general effects as NaCl. Two examples include KCl and glycerol. These agents lower the water activity of a food matrix and also contribute to limit the growth of the microbiota, including foodborne pathogens. Little is currently known about how foodborne pathogens respond to these water activity-lowering agents. Here we examined the response of Salmonella enterica serovar Typhimurium 4/74 to NaCl, KCl, and glycerol at three time points, using a constant water activity level, compared with the response of a control inoculum. All conditions induced the upregulation of gluconate metabolic genes after 6 h of exposure. Bacteria exposed to NaCl and KCl demonstrated the upregulation of the osmoprotective transporter mechanisms encoded by the proP, proU, and osmU (STM1491 to STM1494) genes. Glycerol exposure elicited the downregulation of these osmoadaptive mechanisms but stimulated an increase in lipopolysaccharide and membrane protein-associated genes after 1 h. The most extensive changes in gene expression occurred following exposure to KCl. Because many of these genes were of unknown function, further characterization may identify KCl-specific adaptive processes that are not stimulated by NaCl. This study shows that the response of S. Typhimurium to different humectants does not simply reflect reduced water activity and likely involves systems that are linked to specific humectants.
Collapse
Affiliation(s)
- Sarah Finn
- UCD Centre for Food Safety, School of Public Health, Physiotherapy & Population Science, University College Dublin, Belfield, Dublin, Ireland
| | - Lisa Rogers
- Conway Institute, UCD School of Biomolecular & Biomedical Science, University College Dublin, Belfield, Dublin, Ireland
| | - Kristian Händler
- Moyne Institute of Preventive Medicine, Trinity College Dublin, Dublin, Ireland
| | - Peter McClure
- Unilever, Safety and Environmental Assurance Centre, Sharnbrook, Bedfordshire, United Kingdom
| | - Alejandro Amézquita
- Unilever, Safety and Environmental Assurance Centre, Sharnbrook, Bedfordshire, United Kingdom
| | - Jay C D Hinton
- Moyne Institute of Preventive Medicine, Trinity College Dublin, Dublin, Ireland Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Séamus Fanning
- UCD Centre for Food Safety, School of Public Health, Physiotherapy & Population Science, University College Dublin, Belfield, Dublin, Ireland Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, Northern Ireland
| |
Collapse
|
9
|
De Biase D, Lund PA. The Escherichia coli Acid Stress Response and Its Significance for Pathogenesis. ADVANCES IN APPLIED MICROBIOLOGY 2015; 92:49-88. [PMID: 26003933 DOI: 10.1016/bs.aambs.2015.03.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Escherichia coli has a remarkable ability to survive low pH and possesses a number of different genetic systems that enable it to do this. These may be expressed constitutively, typically in stationary phase, or induced by growth under a variety of conditions. The activities of these systems have been implicated in the ability of E. coli to pass the acidic barrier of the stomach and to become established in the gastrointestinal tract, something causing serious infections. However, much of the work characterizing these systems has been done on standard laboratory strains of E. coli and under conditions which do not closely resemble those found in the human gut. Here we review what is known about acid resistance in E. coli as a model laboratory organism and in the context of its lifestyle as an inhabitant-sometimes an unwelcome one-of the human gut.
Collapse
|
10
|
Coronado E, Roggo C, van der Meer JR. Identification of genes potentially involved in solute stress response in Sphingomonas wittichii RW1 by transposon mutant recovery. Front Microbiol 2014; 5:585. [PMID: 25408691 PMCID: PMC4219479 DOI: 10.3389/fmicb.2014.00585] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 10/17/2014] [Indexed: 11/13/2022] Open
Abstract
The term water stress refers to the effects of low water availability on microbial growth and physiology. Water availability has been proposed as a major constraint for the use of microorganisms in contaminated sites with the purpose of bioremediation. Sphingomonas wittichii RW1 is a bacterium capable of degrading the xenobiotic compounds dibenzofuran and dibenzo-p-dioxin, and has potential to be used for targeted bioremediation. The aim of the current work was to identify genes implicated in water stress in RW1 by means of transposon mutagenesis and mutant growth experiments. Conditions of low water potential were mimicked by adding NaCl to the growth media. Three different mutant selection or separation method were tested which, however recovered different mutants. Recovered transposon mutants with poorer growth under salt-induced water stress carried insertions in genes involved in proline and glutamate biosynthesis, and further in a gene putatively involved in aromatic compound catabolism. Transposon mutants growing poorer on medium with lowered water potential also included ones that had insertions in genes involved in more general functions such as transcriptional regulation, elongation factor, cell division protein, RNA polymerase β or an aconitase.
Collapse
Affiliation(s)
- Edith Coronado
- Department of Fundamental Microbiology, University of Lausanne Lausanne, Switzerland
| | - Clémence Roggo
- Department of Fundamental Microbiology, University of Lausanne Lausanne, Switzerland
| | - Jan R van der Meer
- Department of Fundamental Microbiology, University of Lausanne Lausanne, Switzerland
| |
Collapse
|
11
|
Lund P, Tramonti A, De Biase D. Coping with low pH: molecular strategies in neutralophilic bacteria. FEMS Microbiol Rev 2014; 38:1091-125. [PMID: 24898062 DOI: 10.1111/1574-6976.12076] [Citation(s) in RCA: 282] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 02/26/2014] [Accepted: 03/14/2014] [Indexed: 12/31/2022] Open
Abstract
As part of their life cycle, neutralophilic bacteria are often exposed to varying environmental stresses, among which fluctuations in pH are the most frequent. In particular, acid environments can be encountered in many situations from fermented food to the gastric compartment of the animal host. Herein, we review the current knowledge of the molecular mechanisms adopted by a range of Gram-positive and Gram-negative bacteria, mostly those affecting human health, for coping with acid stress. Because organic and inorganic acids have deleterious effects on the activity of the biological macromolecules to the point of significantly reducing growth and even threatening their viability, it is not unexpected that neutralophilic bacteria have evolved a number of different protective mechanisms, which provide them with an advantage in otherwise life-threatening conditions. The overall logic of these is to protect the cell from the deleterious effects of a harmful level of protons. Among the most favoured mechanisms are the pumping out of protons, production of ammonia and proton-consuming decarboxylation reactions, as well as modifications of the lipid content in the membrane. Several examples are provided to describe mechanisms adopted to sense the external acidic pH. Particular attention is paid to Escherichia coli extreme acid resistance mechanisms, the activity of which ensure survival and may be directly linked to virulence.
Collapse
Affiliation(s)
- Peter Lund
- School of Biosciences, University of Birmingham, Birmingham, UK
| | | | | |
Collapse
|
12
|
Teo I, Schulten K. A computational kinetic model of diffusion for molecular systems. J Chem Phys 2014; 139:121929. [PMID: 24089741 DOI: 10.1063/1.4820876] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Regulation of biomolecular transport in cells involves intra-protein steps like gating and passage through channels, but these steps are preceded by extra-protein steps, namely, diffusive approach and admittance of solutes. The extra-protein steps develop over a 10-100 nm length scale typically in a highly particular environment, characterized through the protein's geometry, surrounding electrostatic field, and location. In order to account for solute energetics and mobility of solutes in this environment at a relevant resolution, we propose a particle-based kinetic model of diffusion based on a Markov State Model framework. Prerequisite input data consist of diffusion coefficient and potential of mean force maps generated from extensive molecular dynamics simulations of proteins and their environment that sample multi-nanosecond durations. The suggested diffusion model can describe transport processes beyond microsecond duration, relevant for biological function and beyond the realm of molecular dynamics simulation. For this purpose the systems are represented by a discrete set of states specified by the positions, volumes, and surface elements of Voronoi grid cells distributed according to a density function resolving the often intricate relevant diffusion space. Validation tests carried out for generic diffusion spaces show that the model and the associated Brownian motion algorithm are viable over a large range of parameter values such as time step, diffusion coefficient, and grid density. A concrete application of the method is demonstrated for ion diffusion around and through the Eschericia coli mechanosensitive channel of small conductance ecMscS.
Collapse
Affiliation(s)
- Ivan Teo
- Beckman Institute for Advanced Science and Technology, University of Illinois, Urbana, Illinois 61801, USA
| | | |
Collapse
|
13
|
Kim GD, Go GW, Lim HJ, Jung EY, Seo HW, Jeong JY, Joo ST, Yang HS. Physicochemical Characteristics of Beef Jerky Cured with Salted-fermented Anchovy and Shrimp. Korean J Food Sci Anim Resour 2014; 34:99-105. [PMID: 26760751 PMCID: PMC4597832 DOI: 10.5851/kosfa.2014.34.1.99] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Revised: 12/23/2013] [Accepted: 01/24/2014] [Indexed: 12/02/2022] Open
Abstract
The aim of this study is to evaluate the availability of salted and fermented fish (SFF) including salted and fermented anchovy (SFA) and shrimp (SFS) as a marinade of beef jerky. In curing solutions, half (SFA 1 and SFS 1) or whole (SFA 2 and SFS 2) salt-water was replaced with SFF juices. Higher water activity (aw) was found in the beef jerky cured with SFFs than the control (C) (p< 0.05). The SFFs had the effect of causing a decrease in hardness and an increase in cohesiveness (p<0.05). Among the treatment samples, springiness was the highest in SFA2 and SFS2 (p<0.05) and the lowest values of Warner-Bratzler shear force were found in SFA1 and SFA2 (p<0.05). The SFFs also had the effect of increasing the flavor of the sensory properties; however, color measurements from both the instrumental surface color (L*, a*, b*, chroma, and hue angle) and color of sensory evaluation were decreased by addition of SFFs (p<0.05). Therefore, we conclude the SFFs can improve the texture and sensory properties of the beef jerky. In particular, the SFS is a good ingredient for the curing solution. However, studies are still needed on improving the aw, pH, and surface color of the beef jerky to apply the SFFs for making beef jerky.
Collapse
Affiliation(s)
- Gap-Don Kim
- Department of Food Science and Biotechnology, Kyungnam University, Changwon 631-701, Korea
- Corresponding author: Han-Sul Yang, Department of Animal Science, Gyeongsang National University, Jinju 660-701, Korea. Tel: 82-55-772-1948, Fax: 82-55-772-1949, E-mail:
| | - Gwang-woong Go
- The Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06510, USA
- Corresponding author: Han-Sul Yang, Department of Animal Science, Gyeongsang National University, Jinju 660-701, Korea. Tel: 82-55-772-1948, Fax: 82-55-772-1949, E-mail:
| | - Hyun-Jung Lim
- R & D Center, Seawell, Byeoksan E-Centum Classone, Busan 612-050, Korea
| | - Eun-Young Jung
- Division of Applied Life Science (BK21 plus), Gyeongsang National University, Jinju 660-701, Korea
| | - Hyun-Woo Seo
- Division of Applied Life Science (BK21 plus), Gyeongsang National University, Jinju 660-701, Korea
| | - Jin-Yeon Jeong
- Institute of Agriculture & Life Science, Department of Animal Science, Gyeongsang National University, Jinju 660-701, Korea
| | - Seon-Tea Joo
- Institute of Agriculture & Life Science, Department of Animal Science, Gyeongsang National University, Jinju 660-701, Korea
| | - Han-Sul Yang
- Division of Applied Life Science (BK21 plus), Gyeongsang National University, Jinju 660-701, Korea
- Institute of Agriculture & Life Science, Department of Animal Science, Gyeongsang National University, Jinju 660-701, Korea
- These authors equally contribeted
| |
Collapse
|
14
|
Gul N, Poolman B. Functional reconstitution and osmoregulatory properties of the ProU ABC transporter from Escherichia coli. Mol Membr Biol 2012; 30:138-48. [PMID: 23249124 DOI: 10.3109/09687688.2012.754060] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The ATP-binding cassette (ABC) transporter ProU from Escherichia coli translocates a wide range of compatible solutes and contributes to the regulation of cell volume, which is particularly important when the osmolality of the environment fluctuates. We have purified the components of ProU, i.e., the substrate-binding protein ProX, the nucleotide-binding protein ProV and the transmembrane protein ProW, and reconstituted the full transporter complex in liposomes. We engineered a lipid anchor to ProX for surface tethering of this protein to ProVW-containing proteoliposomes. We show that glycine betaine binds to ProX with high-affinity and is transported via ProXVW in an ATP-dependent manner. The activity ProU is salt and anionic lipid-dependent and mimics the ionic strength-gating of transport of the homologous OpuA system.
Collapse
Affiliation(s)
- Nadia Gul
- Department of Biochemistry, Groningen Biomolecular Science and Biotechnology Institute, Netherlands
| | | |
Collapse
|
15
|
Functional dissection of N-acetylglutamate synthase (ArgA) of Pseudomonas aeruginosa and restoration of its ancestral N-acetylglutamate kinase activity. J Bacteriol 2012; 194:2791-801. [PMID: 22447897 DOI: 10.1128/jb.00125-12] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In many microorganisms, the first step of arginine biosynthesis is catalyzed by the classical N-acetylglutamate synthase (NAGS), an enzyme composed of N-terminal amino acid kinase (AAK) and C-terminal histone acetyltransferase (GNAT) domains that bind the feedback inhibitor arginine and the substrates, respectively. In NAGS, three AAK domain dimers are interlinked by their N-terminal helices, conforming a hexameric ring, whereas each GNAT domain sits on the AAK domain of an adjacent dimer. The arginine inhibition of Pseudomonas aeruginosa NAGS was strongly hampered, abolished, or even reverted to modest activation by changes in the length/sequence of the short linker connecting both domains, supporting a crucial role of this linker in arginine regulation. Linker cleavage or recombinant domain production allowed the isolation of each NAGS domain. The AAK domain was hexameric and inactive, whereas the GNAT domain was monomeric/dimeric and catalytically active although with ∼50-fold-increased and ∼3-fold-decreased K(m)(glutamate) and k(cat) values, respectively, with arginine not influencing its activity. The deletion of N-terminal residues 1 to 12 dissociated NAGS into active dimers, catalyzing the reaction with substrate kinetics and arginine insensitivity identical to those for the GNAT domain. Therefore, the interaction between the AAK and GNAT domains from different dimers modulates GNAT domain activity, whereas the hexameric architecture appears to be essential for arginine inhibition. We proved the closeness of the AAK domains of NAGS and N-acetylglutamate kinase (NAGK), the enzyme that catalyzes the next arginine biosynthesis step, shedding light on the origin of classical NAGS, by showing that a double mutation (M26K L240K) in the isolated NAGS AAK domain elicited NAGK activity.
Collapse
|
16
|
Yang LM, Blount P. Manipulating the permeation of charged compounds through the MscL nanovalve. FASEB J 2010; 25:428-34. [PMID: 20930114 DOI: 10.1096/fj.10-170076] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
MscL is a bacterial mechanosensor that serves as a biological emergency release valve, releasing cytoplasmic solutes to the environment on osmotic downshock. Previous studies have recognized that this channel has properties that make it ideal for use as a triggered nanovalve for vesicular-based targeted drug-release devices. One can even change the modality of the sensor. Briefly, the introduction of charges into the MscL pore lumen gates the channel in the absence of membrane tension; thus, by inserting compounds that acquire a charge on exposure to an alternative stimulus, such as light or pH, into the pore of the channel, controllable nanoswitches that detect these alternative modalities have been engineered. However, a charge in the pore lumen could not only encourage actuation of the nanopore but also have a significant influence on the permeation of large charged compounds, which would thus have important implications for the efficiency of drug-release devices. In this study, we used in vivo and electrophysiological approaches to demonstrate that the introduction of a charge into pore lumen of MscL does indeed influence the permeation of charged molecules. These effects were more drastic for larger compounds and, surprisingly, were related to the orientation of the MscL channel in the membrane.
Collapse
Affiliation(s)
- Li-Min Yang
- Department of Physiology, University of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Blvd., Dallas, TX 75390, USA
| | | |
Collapse
|
17
|
Vadyvaloo V, Jarrett C, Sturdevant DE, Sebbane F, Hinnebusch BJ. Transit through the flea vector induces a pretransmission innate immunity resistance phenotype in Yersinia pestis. PLoS Pathog 2010; 6:e1000783. [PMID: 20195507 PMCID: PMC2829055 DOI: 10.1371/journal.ppat.1000783] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2009] [Accepted: 01/20/2010] [Indexed: 11/18/2022] Open
Abstract
Yersinia pestis, the agent of plague, is transmitted to mammals by infected fleas. Y. pestis exhibits a distinct life stage in the flea, where it grows in the form of a cohesive biofilm that promotes transmission. After transmission, the temperature shift to 37 degrees C induces many known virulence factors of Y. pestis that confer resistance to innate immunity. These factors are not produced in the low-temperature environment of the flea, however, suggesting that Y. pestis is vulnerable to the initial encounter with innate immune cells at the flea bite site. In this study, we used whole-genome microarrays to compare the Y. pestis in vivo transcriptome in infective fleas to in vitro transcriptomes in temperature-matched biofilm and planktonic cultures, and to the previously characterized in vivo gene expression profile in the rat bubo. In addition to genes involved in metabolic adaptation to the flea gut and biofilm formation, several genes with known or predicted roles in resistance to innate immunity and pathogenicity in the mammal were upregulated in the flea. Y. pestis from infected fleas were more resistant to phagocytosis by macrophages than in vitro-grown bacteria, in part attributable to a cluster of insecticidal-like toxin genes that were highly expressed only in the flea. Our results suggest that transit through the flea vector induces a phenotype that enhances survival and dissemination of Y. pestis after transmission to the mammalian host.
Collapse
Affiliation(s)
- Viveka Vadyvaloo
- Laboratory of Zoonotic Pathogens, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | | | | | | | | |
Collapse
|
18
|
Shabala L, Bowman J, Brown J, Ross T, McMeekin T, Shabala S. Ion transport and osmotic adjustment in Escherichia coli in response to ionic and non-ionic osmotica. Environ Microbiol 2008; 11:137-48. [PMID: 18793315 DOI: 10.1111/j.1462-2920.2008.01748.x] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Bacteria respond to osmotic stress by a substantial increase in the intracellular osmolality, adjusting their cell turgor for altered growth conditions. Using Escherichia coli as a model organism we demonstrate here that bacterial responses to hyperosmotic stress specifically depend on the nature of osmoticum used. We show that increasing acute hyperosmotic NaCl stress above approximately 1.0 Os kg(-1) causes a dose-dependent K(+) leak from the cell, resulting in a substantial decrease in cytosolic K(+) content and a concurrent accumulation of Na(+) in the cell. At the same time, isotonic sucrose or mannitol treatment (non-ionic osmotica) results in a gradual increase of the net K(+) uptake. Ion flux data are consistent with growth experiments showing that bacterial growth is impaired by NaCl at the concentration resulting in a switch from net K(+) uptake to efflux. Microarray experiments reveal that about 40% of upregulated genes shared no similarity in their responses to NaCl and sucrose treatment, further suggesting specificity of osmotic adjustment in E. coli to ionic and non-ionic osmotica. The observed differences are explained by the specificity of the stress-induced changes in the membrane potential of bacterial cells highlighting the importance of voltage-gated K(+) transporters for bacterial adaptation to hyperosmotic stress.
Collapse
Affiliation(s)
- Lana Shabala
- School of Agricultural Science and Tasmanian Institute of Agricultural Research, University of Tasmania, Private Bag 54, Hobart, Tas 7001, Australia
| | | | | | | | | | | |
Collapse
|
19
|
Effects of salt, acid, and MSG on cold storage survival and subsequent acid tolerance of Escherichia coli O157:H7. Food Microbiol 2004. [DOI: 10.1016/j.fm.2004.02.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
20
|
Park GW, Diez-Gonzalez F. A novel glutamate-dependent acid resistance among strains belonging to the Proteeae tribe of Enterobacteriaceae. FEMS Microbiol Lett 2004. [DOI: 10.1111/j.1574-6968.2004.tb09711.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
21
|
Fate of acid-adapted and non-adapted Escherichia coli O157:H7 inoculated post-drying on beef jerky treated with marinades before drying. Food Microbiol 2003. [DOI: 10.1016/s0740-0020(02)00122-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
22
|
Calicioglu M, Sofos JN, Kendall PA, Smith GC. Effects of acid adaptation and modified marinades on survival of postdrying Salmonella contamination on beef jerky during storage. J Food Prot 2003; 66:396-402. [PMID: 12636291 DOI: 10.4315/0362-028x-66.3.396] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
This study was undertaken to evaluate the survival of acid-adapted and nonadapted Salmonella cultures inoculated after drying on beef jerky that had been treated with marinades before drying at 60 degrees C for 10 h. Beef slices were (i) not treated prior to refrigeration at 4 degrees C for 24 h (control [C]); (ii) marinated with traditional marinade (TM), (iii) marinated with TM modified with 1.2% sodium lactate, 9% acetic acid, and 68% soy sauce containing 5% ethanol (MM) at twice the amount used in the TM treatment; (iv) dipped into 5% acetic acid and then marinated with TM (AATM); and (v) dipped into 1% Tween 20, then dipped into 5% acetic acid, and then marinated with TM (TWTM); after each treatment, meat slices were refrigerated at 4 degrees C for 24 h prior to drying. Dried slices were inoculated with acid-adapted or nonadapted Salmonella (ca. 5.7 log CFU/cm2) prior to aerobic storage at 25 degrees C for 60 days. Tryptic soy agar with 0.1% pyruvate, as well as xylose-lysine-tergitol 4 (XLT4) agar, was used to determine survivor counts. Bacterial decreases achieved with the different treatments were found to be in the following order: TWTM (5.4 to 6.3 log units) > or = AATM > or = MM > C > or = TM (2.9 to 5.1 log units). Acid-adapted Salmonella decreased faster than nonadapted Salmonella for all treatments. Bacterial populations decreased to below the detection limit (-0.4 log CFU/cm2) in as few as 14 days or remained detectable by direct plating after 60 days of storage, depending on acid adaptation, treatment, and agar media. The results of this study indicate that the modified marinades used in jerky processing and the low water activity of the dried product provide antimicrobial effects against possible postprocessing contamination with Salmonella, while the preparation of cultures under acid-adaptation conditions did not increase Salmonella survival during storage and may have reduced it.
Collapse
Affiliation(s)
- Mehmet Calicioglu
- Center for Red Meat Safety, Department of Animal Sciences, Colorado State University, Fort Collins, Colorado 80523-1171, USA
| | | | | | | |
Collapse
|
23
|
Kobayashi H, Saito H, Kakegawa T. Bacterial strategies to inhabit acidic environments. J GEN APPL MICROBIOL 2000; 46:235-243. [PMID: 12483574 DOI: 10.2323/jgam.46.235] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Bacteria can inhabit a wide range of environmental conditions, including extremes in pH ranging from 1 to 11. The primary strategy employed by bacteria in acidic environments is to maintain a constant cytoplasmic pH value. However, many data demonstrate that bacteria can grow under conditions in which pH values are out of the range in which cytoplasmic pH is kept constant. Based on these observations, a novel notion was proposed that bacteria have strategies to survive even if the cytoplasm is acidified by low external pH. Under these conditions, bacteria are obliged to use acid-resistant systems, implying that multiple systems having the same physiological role are operating at different cytoplasmic pH values. If this is true, it is quite likely that bacteria have genes that are induced by environmental stimuli under different pH conditions. In fact, acid-inducible genes often respond to another factor(s) besides pH. Furthermore, distinct genes might be required for growth or survival at acid pH under different environmental conditions because functions of many systems are dependent on external conditions. Systems operating at acid pH have been described to date, but numerous genes remain to be identified that function to protect bacteria from an acid challenge. Identification and analysis of these genes is critical, not only to elucidate bacterial physiology, but also to increase the understanding of bacterial pathogenesis.
Collapse
Affiliation(s)
- Hiroshi Kobayashi
- Faculty of Pharmaceutical Sciences, Chiba University, Chiba 263-8522, Japan
| | | | | |
Collapse
|
24
|
De Biase D, Tramonti A, Bossa F, Visca P. The response to stationary-phase stress conditions in Escherichia coli: role and regulation of the glutamic acid decarboxylase system. Mol Microbiol 1999; 32:1198-211. [PMID: 10383761 DOI: 10.1046/j.1365-2958.1999.01430.x] [Citation(s) in RCA: 213] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Inducible bacterial amino acid decarboxylases are expressed at the end of active cell division to counteract acidification of the extracellular environment during fermentative growth. It has been proposed that acid resistance in some enteric bacteria strictly relies on a glutamic acid-dependent system. The Escherichia coli chromosome contains distinct genes encoding two biochemically identical isoforms of glutamic acid decarboxylase, GadA and GadB. The gadC gene, located downstream of gadB, has been proposed to encode a putative antiporter implicated in the export of gamma-aminobutyrate, the glutamic acid decarboxylation product. In the present work, we provide in vivo evidence that gadC is co-transcribed with gadB and that the functional glutamic acid-dependent system requires the activities of both GadA/B and GadC. We also found that expression of gad genes is positively regulated by acidic shock, salt stress and stationary growth phase. Mutations in hns, the gene for the histone-like protein H-NS, cause derepressed expression of the gad genes, whereas the rpoS mutation abrogates gad transcription even in the hns background. According to our results, the master regulators H-NS and RpoS are hierarchically involved in the transcriptional control of gad expression: H-NS prevents gad expression during the exponential growth whereas the alternative sigma factor RpoS relieves H-NS repression during the stationary phase, directly or indirectly accounting for transcription of gad genes.
Collapse
Affiliation(s)
- D De Biase
- Dipartimento di Scienze Biochimiche 'A. Rossi Fanelli' and Centro di Biologia Molecolare del Consiglio Nazionale delle Ricerche, Università di Roma 'La Sapienza', Piazzale Aldo Moro 5, 00185 Roma, Italy.
| | | | | | | |
Collapse
|
25
|
Castanie-Cornet MP, Penfound TA, Smith D, Elliott JF, Foster JW. Control of acid resistance in Escherichia coli. J Bacteriol 1999; 181:3525-35. [PMID: 10348866 PMCID: PMC93821 DOI: 10.1128/jb.181.11.3525-3535.1999] [Citation(s) in RCA: 457] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Acid resistance (AR) in Escherichia coli is defined as the ability to withstand an acid challenge of pH 2.5 or less and is a trait generally restricted to stationary-phase cells. Earlier reports described three AR systems in E. coli. In the present study, the genetics and control of these three systems have been more clearly defined. Expression of the first AR system (designated the oxidative or glucose-repressed AR system) was previously shown to require the alternative sigma factor RpoS. Consistent with glucose repression, this system also proved to be dependent in many situations on the cyclic AMP receptor protein. The second AR system required the addition of arginine during pH 2.5 acid challenge, the structural gene for arginine decarboxylase (adiA), and the regulator cysB, confirming earlier reports. The third AR system required glutamate for protection at pH 2.5, one of two genes encoding glutamate decarboxylase (gadA or gadB), and the gene encoding the putative glutamate:gamma-aminobutyric acid antiporter (gadC). Only one of the two glutamate decarboxylases was needed for protection at pH 2.5. However, survival at pH 2 required both glutamate decarboxylase isozymes. Stationary phase and acid pH regulation of the gad genes proved separable. Stationary-phase induction of gadA and gadB required the alternative sigma factor sigmaS encoded by rpoS. However, acid induction of these enzymes, which was demonstrated to occur in exponential- and stationary-phase cells, proved to be sigmaS independent. Neither gad gene required the presence of volatile fatty acids for induction. The data also indicate that AR via the amino acid decarboxylase systems requires more than an inducible decarboxylase and antiporter. Another surprising finding was that the sigmaS-dependent oxidative system, originally thought to be acid induced, actually proved to be induced following entry into stationary phase regardless of the pH. However, an inhibitor produced at pH 8 somehow interferes with the activity of this system, giving the illusion of acid induction. The results also revealed that the AR system affording the most effective protection at pH 2 in complex medium (either Luria-Bertani broth or brain heart infusion broth plus 0.4% glucose) is the glutamate-dependent GAD system. Thus, E. coli possesses three overlapping acid survival systems whose various levels of control and differing requirements for activity ensure that at least one system will be available to protect the stationary-phase cell under naturally occurring acidic environments.
Collapse
Affiliation(s)
- M P Castanie-Cornet
- Department of Microbiology and Immunology, University of South Alabama College of Medicine, Mobile, Alabama 36688, USA
| | | | | | | | | |
Collapse
|