1
|
Uskudar-Guclu A, Unlu S, Salih-Dogan H, Yalcin S, Basustaoglu A. Biological and genomic characteristics of three novel bacteriophages and a phage-plasmid of Klebsiella pneumoniae. Can J Microbiol 2024; 70:213-225. [PMID: 38447122 DOI: 10.1139/cjm-2023-0188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Bacteriophages have emerged as promising candidates for the treatment of difficult-to-treat bacterial infections. The aim of this study is to isolate and characterize phages infecting carbapenem-resistant and extended-spectrum beta-lactamase producer Klebsiella pneumoniae isolates. Water samples were taken for the isolation of bacteriophages. One-step growth curve, the optimal multiplicity of infection (MOI), thermal and pH stabilities, transmission electron microscopy and whole-genome sequencing of phages were studied. Four phages were isolated and named Klebsiella phage Kpn02, Kpn17, Kpn74, and Kpn13. The optimal MOI and latent periods of phage Kpn02, Kpn17, Kpn74, and Kpn13 were 10, 1, 0.001, and 100 PFU/CFU and 20, 10, 20, and 30 min, respectively. Burst sizes ranged from 811 to 2363. No known antibiotic resistance and virulence genes were identified. No tRNAs were detected except Klebsiella phage Kpn02 which encodes 24 tRNAs. Interestingly, Klebsiella phage Kpn74 was predicted to be a lysogenic phage whose prophage is a linear plasmid molecule with covalently closed ends. Of the Klebsiella-infecting phages presented in current study, virulent phages suggest that they may represent candidate therapeutic agents against MDR K. pneumoniae, based on short latent period, high burst sizes and no known antibiotic resistance and virulence genes in their genomes.
Collapse
Affiliation(s)
- Aylin Uskudar-Guclu
- Baskent University, Faculty of Medicine, Department of Medical Microbiology, Ankara, Turkiye
| | - Sezin Unlu
- Baskent University, Faculty of Medicine, Department of Medical Microbiology, Ankara, Turkiye
| | - Hanife Salih-Dogan
- Aydin Adnan Menderes University, Recombinant DNA and Recombinant Protein Research Center (REDPROM), Aydin, Turkiye
| | - Suleyman Yalcin
- Ministry of Health General Directorate of Public Health, Microbiology References Laboratory, Ankara, Turkiye
| | - Ahmet Basustaoglu
- Baskent University, Faculty of Medicine, Department of Medical Microbiology, Ankara, Turkiye
| |
Collapse
|
2
|
Hall BM, Roberts SA, Cordes MHJ. Extreme divergence between one-to-one orthologs: the structure of N15 Cro bound to operator DNA and its relationship to the λ Cro complex. Nucleic Acids Res 2020; 47:7118-7129. [PMID: 31180482 PMCID: PMC6649833 DOI: 10.1093/nar/gkz507] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 05/25/2019] [Accepted: 06/01/2019] [Indexed: 11/13/2022] Open
Abstract
The gene cro promotes lytic growth of phages through binding of Cro protein dimers to regulatory DNA sites. Most Cro proteins are one-to-one orthologs, yet their sequence, structure and binding site sequences are quite divergent across lambdoid phages. We report the cocrystal structure of bacteriophage N15 Cro with a symmetric consensus site. We contrast this complex with an orthologous structure from phage λ, which has a dissimilar binding site sequence and a Cro protein that is highly divergent in sequence, dimerization interface and protein fold. The N15 Cro complex has less DNA bending and smaller DNA-induced changes in protein structure. N15 Cro makes fewer direct contacts and hydrogen bonds to bases, relying mostly on water-mediated and Van der Waals contacts to recognize the sequence. The recognition helices of N15 Cro and λ Cro make mostly nonhomologous and nonanalogous contacts. Interface alignment scores show that half-site binding geometries of N15 Cro and λ Cro are less similar to each other than to distantly related CI repressors. Despite this divergence, the Cro family shows several code-like protein–DNA sequence covariations. In some cases, orthologous genes can achieve a similar biological function using very different specific molecular interactions.
Collapse
Affiliation(s)
- Branwen M Hall
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, USA
| | - Sue A Roberts
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, USA
| | - Matthew H J Cordes
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
3
|
A Host-Produced Quorum-Sensing Autoinducer Controls a Phage Lysis-Lysogeny Decision. Cell 2018; 176:268-280.e13. [PMID: 30554875 DOI: 10.1016/j.cell.2018.10.059] [Citation(s) in RCA: 219] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 10/11/2018] [Accepted: 10/29/2018] [Indexed: 11/23/2022]
Abstract
Vibrio cholerae uses a quorum-sensing (QS) system composed of the autoinducer 3,5-dimethylpyrazin-2-ol (DPO) and receptor VqmA (VqmAVc), which together repress genes for virulence and biofilm formation. vqmA genes exist in Vibrio and in one vibriophage, VP882. Phage-encoded VqmA (VqmAPhage) binds to host-produced DPO, launching the phage lysis program via an antirepressor that inactivates the phage repressor by sequestration. The antirepressor interferes with repressors from related phages. Like phage VP882, these phages encode DNA-binding proteins and partner antirepressors, suggesting that they, too, integrate host-derived information into their lysis-lysogeny decisions. VqmAPhage activates the host VqmAVc regulon, whereas VqmAVc cannot induce phage-mediated lysis, suggesting an asymmetry whereby the phage influences host QS while enacting its own lytic-lysogeny program without interference. We reprogram phages to activate lysis in response to user-defined cues. Our work shows that a phage, causing bacterial infections, and V. cholerae, causing human infections, rely on the same signal molecule for pathogenesis.
Collapse
|
4
|
A Linear Plasmid-Like Prophage of Actinomyces odontolyticus Promotes Biofilm Assembly. Appl Environ Microbiol 2018; 84:AEM.01263-18. [PMID: 29915115 DOI: 10.1128/aem.01263-18] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 06/11/2018] [Indexed: 01/08/2023] Open
Abstract
The human oral cavity is home to a large number of bacteria and bacteriophages (phages). However, the biology of oral phages as members of the human microbiome is not well understood. Recently, we isolated Actinomyces odontolyticus subsp. actinosynbacter strain XH001 from the human oral cavity, and genomic analysis revealed the presence of an intact prophage named xhp1. Here, we demonstrated that xhp1 is a linear plasmid-like prophage, which is a newly identified phage of A. odontolyticus The prophage xhp1 genome is a 35-kb linear double-stranded DNA with 10-bp single-stranded, 3' cohesive ends. xhp1 exists extrachromosomally, with an estimated copy number of 5. Annotation of xhp1 revealed 54 open reading frames, while phylogenetic analysis suggests that it has limited similarity with other phages. xhp1 phage particles can be induced by mitomycin C and belong to the Siphoviridae family, according to transmission electron microscopic examination. The released xhp1 particles can reinfect the xhp1-cured XH001 strain and result in tiny blurry plaques. Moreover, xhp1 promotes XH001 biofilm formation through spontaneous induction and the release of host extracellular DNA (eDNA). In conclusion, we identified a linear plasmid-like prophage of A. odontolyticus, which enhances bacterial host biofilm assembly and could be beneficial to the host for its persistence in the oral cavity.IMPORTANCE The biology of phages as members of the human oral microbiome is understudied. Here, we report the characterization of xhp1, a novel linear plasmid-like prophage identified from a human oral isolate, Actinomyces odontolyticus subsp. actinosynbacter strain XH001. xhp1 can be induced and reinfect xhp1-cured XH001. The spontaneous induction of xhp1 leads to the lysis of a subpopulation of bacterial hosts and the release of eDNA that promotes biofilm assembly, thus potentially contributing to the persistence of A. odontolyticus within the oral cavity.
Collapse
|
5
|
Xu Z, Xie J, Yang L, Chen D, Peters BM, Shirtliff ME. Complete Sequence of pCY-CTX, a Plasmid Carrying a Phage-Like Region and an ISEcp1-Mediated Tn2 Element from Enterobacter cloacae. Microb Drug Resist 2017; 24:307-313. [PMID: 28876168 DOI: 10.1089/mdr.2017.0146] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
A plasmid pCY-CTX carrying a phage-like backbone from an extensively drug-resistant Enterobacter cloacae strain Guangzhou-ECL001 (previously known as CY01) was identified in this study. By Illumina MiSeq 2 × 250-bp paired-end sequencing, de novo assembly, and PCR, full sequence of pCY-CTX was obtained. Plasmid pCY-CTX was a circular plasmid with a length of 116,700 bp, harboring 136 putative open reading frames with the average G + C content of 50.8%. The backbone of pCY-CTX showed high identity to previously reported phage-like plasmid pHCM2 and phage SSU5. In addition, pCY-CTX contained a distinctive ISEcp1-mediated Tn2 region with two resistance genes blaTEM-1 and blaCTX-M-3. Transposition unit "ISEcp1- blaCTX-M-3- orf477" was inserted into the Tn2 structure, dividing Tn2 into two parts. This represents the first identification of a plasmid carrying a phage-like backbone and a distinctive ISEcp1-mediated Tn2 region within blaTEM-1 and blaCTX-M-3 in clinical E. cloacae. The finding of phage-like regions located in plasmids provides a new perspective in gene transfer associated with antimicrobial resistance.
Collapse
Affiliation(s)
- Zhenbo Xu
- 1 School of Food Science and Technology, South China University of Technology , Guangzhou, China .,2 Department of Microbial Pathogenesis, School of Dentistry, University of Maryland , Baltimore, Maryland
| | - Jinhong Xie
- 1 School of Food Science and Technology, South China University of Technology , Guangzhou, China
| | - Ling Yang
- 3 Department of Laboratory Medicine, First Affiliated Hospital of Guangzhou Medical University , Guangzhou, China
| | - Dingqiang Chen
- 3 Department of Laboratory Medicine, First Affiliated Hospital of Guangzhou Medical University , Guangzhou, China
| | - Brian M Peters
- 4 Department of Clinical Pharmacy, College of Pharmacy, University of Tennessee Health Sciences Center , Memphis, Tennessee
| | - Mark E Shirtliff
- 2 Department of Microbial Pathogenesis, School of Dentistry, University of Maryland , Baltimore, Maryland
| |
Collapse
|
6
|
Binding Specificities of the Telomere Phage ϕKO2 Prophage Repressor CB and Lytic Repressor Cro. Viruses 2016; 8:v8080213. [PMID: 27527206 PMCID: PMC4997575 DOI: 10.3390/v8080213] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 07/15/2016] [Accepted: 07/25/2016] [Indexed: 11/16/2022] Open
Abstract
Temperate bacteriophages possess a genetic switch which regulates the lytic and lysogenic cycle. The genomes of the temperate telomere phages N15, PY54, and ϕKO2 harbor a primary immunity region (immB) comprising genes for the prophage repressor (cI or cB), the lytic repressor (cro) and a putative antiterminator (q). The roles of these products are thought to be similar to those of the lambda proteins CI (CI prophage repressor), Cro (Cro repressor), and Q (antiterminator Q), respectively. Moreover, the gene order and the location of several operator sites in the prototype telomere phage N15 and in ϕKO2 are reminiscent of lambda-like phages. We determined binding sites of the ϕKO2 prophage repressor CB and lytic repressor Cro on the ϕKO2 genome in detail by electrophoretic mobility shift assay (EMSA) studies. Unexpectedly, ϕKO2 CB and Cro revealed different binding specificities. CB was bound to three OR operators in the intergenic region between cB and cro, two OL operators between cB and the replication gene repA and even to operators of N15. Cro bound exclusively to the 16 bp operator site OR3 upstream of the ϕKO2 prophage repressor gene. The ϕKO2 genes cB and cro are regulated by several strong promoters overlapping with the OR operators. The data suggest that Cro represses cB transcription but not its own synthesis, as already reported for PY54 Cro. Thus, not only PY54, but also phage ϕKO2 possesses a genetic switch that diverges significantly from the switch of lambda-like phages.
Collapse
|
7
|
Abstract
The lambdoid phage N15 of Escherichia coli is very unusual among temperate phages in that its prophage is not integrated into the chromosome but is a linear plasmid molecule with covalently closed ends (telomeres). Upon infection, the phage DNA circularizes via cohesive ends, and then a special phage enzyme of the tyrosine recombinase family, protelomerase, cuts at another site and joins the ends, forming hairpin telomeres of the linear plasmid prophage. Replication of the N15 prophage is initiated at an internally located ori site and proceeds bidirectionally, resulting in the formation of duplicated telomeres. The N15 protelomerase cuts them, generating two linear plasmid molecules with hairpin telomeres. Stable inheritance of the plasmid prophage is ensured by a partitioning operon similar to the F factor sop operon. Unlike the F centromere, the N15 centromere consists of four inverted repeats dispersed in the genome. The multiplicity and dispersion of centromeres are required for efficient partitioning of a linear plasmid. The centromeres are located in the N15 genome regions involved in phage replication and control of lytic development, and binding of partition proteins at these sites regulates these processes. The family of N15-like linear phage-plasmids includes lambdoid phages ɸKO2 and pY54, as well as Myoviridae phages ΦHAP-1, VHML, VP882, Vp58.5, and vB_VpaM_MAR of marine gamma-proteobacteria. The genomes of these phages contain similar protelomerase genes, lysogeny control modules, and replication genes, suggesting that these phages may belong to a group diverged from a common ancestor.
Collapse
|
8
|
Hammerl JA, Jäckel C, Funk E, Pinnau S, Mache C, Hertwig S. The diverse genetic switch of enterobacterial and marine telomere phages. BACTERIOPHAGE 2016; 6:e1148805. [PMID: 27607141 DOI: 10.1080/21597081.2016.1148805] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 01/15/2016] [Accepted: 01/20/2016] [Indexed: 10/22/2022]
Abstract
Temperate bacteriophages possess a genetic switch which regulates the lytic and lysogenic cycle. The genomes of the enterobacterial telomere phages N15, PY54 and ϕKO2 harbor a primary immunity region (immB) comprising genes for the prophage repressor, the lytic repressor and a putative antiterminator, similar to CI, Cro and Q of lambda, respectively. Moreover, N15 and ϕKO2 contain 3 related operator (OR) sites between cI and cro, while only one site (OR3) has been detected in PY54. Marine telomere phages possess a putative cI gene but not a cro-like gene. Instead, a gene is located at the position of cro, whose product shows some similarity to the PY54 ORF42 product, the function of which is unknown. We have determined the transcription start sites of the predicted repressor genes of N15, PY54, ϕKO2 and of the marine telomere phage VP58.5. The influence of the genes on phage propagation was analyzed in E. coli, Y. enterocolitica and V.parahaemolyticus. We show that the repressors and antiterminators of N15, ϕKO2 and PY54 exerted their predicted activities. However, while the proteins of both N15 and ϕKO2 affected lysis and lysogeny by N15, they did not affect PY54 propagation. On the other hand, the respective PY54 proteins exclusively influenced the propagation of this phage. The immB region of VP58.5 contains 2 genes that revealed prophage repressor activity, while a lytic repressor gene could not be identified. The results indicate an unexpected diversity of the growth regulation mechanisms in these temperate phages.
Collapse
Affiliation(s)
- Jens A Hammerl
- Federal Institute for Risk Assessment, Department of Biological Safety , Berlin, Germany
| | - Claudia Jäckel
- Federal Institute for Risk Assessment, Department of Biological Safety , Berlin, Germany
| | - Eugenia Funk
- Federal Institute for Risk Assessment, Department of Biological Safety , Berlin, Germany
| | - Sabrina Pinnau
- Federal Institute for Risk Assessment, Department of Biological Safety , Berlin, Germany
| | - Christin Mache
- Federal Institute for Risk Assessment, Department of Biological Safety , Berlin, Germany
| | - Stefan Hertwig
- Federal Institute for Risk Assessment, Department of Biological Safety , Berlin, Germany
| |
Collapse
|
9
|
Hammerl JA, Roschanski N, Lurz R, Johne R, Lanka E, Hertwig S. The Molecular Switch of Telomere Phages: High Binding Specificity of the PY54 Cro Lytic Repressor to a Single Operator Site. Viruses 2015; 7:2771-93. [PMID: 26043380 PMCID: PMC4488713 DOI: 10.3390/v7062746] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 05/28/2015] [Indexed: 11/16/2022] Open
Abstract
Temperate bacteriophages possess a molecular switch, which regulates the lytic and lysogenic growth. The genomes of the temperate telomere phages N15, PY54 and ϕKO2 harbor a primary immunity region (immB) comprising genes for the prophage repressor, the lytic repressor and a putative antiterminator. The roles of these products are thought to be similar to those of the lambda proteins CI, Cro and Q, respectively. Moreover, the gene order and the location of several operator sites in the prototype telomere phage N15 and in ϕKO2 are also reminiscent of lambda-like phages. By contrast, in silico analyses revealed the presence of only one operator (OR3) in PY54. The purified PY54 Cro protein was used for EMSA studies demonstrating that it exclusively binds to a 16-bp palindromic site (OR3) upstream of the prophage repressor gene. The OR3 operator sequences of PY54 and ϕKO2/N15 only differ by their peripheral base pairs, which are responsible for Cro specificity. PY54 cI and cro transcription is regulated by highly active promoters initiating the synthesis of a homogenious species of leaderless mRNA. The location of the PY54 Cro binding site and of the identified promoters suggests that the lytic repressor suppresses cI transcription but not its own synthesis. The results indicate an unexpected diversity of the growth regulation mechanisms in lambda-related phages.
Collapse
Affiliation(s)
- Jens Andre Hammerl
- Bundesinstitut für Risikobewertung (Federal Institute for Risk Assessment), Department of Biological Safety, Diedersdorfer Weg 1, D-12277 Berlin, Germany.
| | - Nicole Roschanski
- Free University Berlin, Institute of Animal Hygiene and Environmental Health, Robert-von-Ostertag-Str. 7-13, D-14163 Berlin, Germany.
| | - Rudi Lurz
- Max-Planck-Institut für Molekulare Genetik, Ihnestraße 63-73, D-14195 Berlin, Germany.
| | - Reimar Johne
- Bundesinstitut für Risikobewertung (Federal Institute for Risk Assessment), Department of Biological Safety, Diedersdorfer Weg 1, D-12277 Berlin, Germany.
| | - Erich Lanka
- Max-Planck-Institut für Molekulare Genetik, Ihnestraße 63-73, D-14195 Berlin, Germany.
| | - Stefan Hertwig
- Bundesinstitut für Risikobewertung (Federal Institute for Risk Assessment), Department of Biological Safety, Diedersdorfer Weg 1, D-12277 Berlin, Germany.
| |
Collapse
|
10
|
Hall BM, Vaughn EE, Begaye AR, Cordes MHJ. Reengineering Cro protein functional specificity with an evolutionary code. J Mol Biol 2011; 413:914-28. [PMID: 21945527 DOI: 10.1016/j.jmb.2011.08.056] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Revised: 08/13/2011] [Accepted: 08/29/2011] [Indexed: 11/17/2022]
Abstract
Cro proteins from different lambdoid bacteriophages are extremely variable in their target consensus DNA sequences and constitute an excellent model for evolution of transcription factor specificity. We experimentally tested a bioinformatically derived evolutionary code relating switches between pairs of amino acids at three recognition helix sites in Cro proteins to switches between pairs of nucleotide bases in the cognate consensus DNA half-sites. We generated all eight possible code variants of bacteriophage λ Cro and used electrophoretic mobility shift assays to compare binding of each variant to its own putative cognate site and to the wild-type cognate site; we also tested the wild-type protein against all eight DNA sites. Each code variant showed stronger binding to its putative cognate site than to the wild-type site, except some variants containing proline at position 27; each also bound its cognate site better than wild-type Cro bound the same site. Most code variants, however, displayed poorer affinity and specificity than wild-type λ Cro. Fluorescence anisotropy assays on λ Cro and the triple code variant (PSQ) against the two cognate sites confirmed the switch in specificity and showed larger apparent effects on binding affinity and specificity. Bacterial one-hybrid assays of λ Cro and PSQ against libraries of sequences with a single randomized half-site showed the expected switches in specificity at two of three coded positions and no clear switches in specificity at noncoded positions. With a few caveats, these results confirm that the proposed Cro evolutionary code can be used to reengineer Cro specificity.
Collapse
Affiliation(s)
- Branwen M Hall
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, USA
| | | | | | | |
Collapse
|
11
|
Ravin NV. N15: the linear phage-plasmid. Plasmid 2010; 65:102-9. [PMID: 21185326 DOI: 10.1016/j.plasmid.2010.12.004] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Revised: 12/14/2010] [Accepted: 12/17/2010] [Indexed: 11/24/2022]
Abstract
The lambdoid phage N15 of Escherichia coli is very unusual among temperate phages in that its prophage is not integrated into chromosome but is a linear plasmid molecule with covalently closed ends. Upon infection the phage DNA circularises via cohesive ends, then phage-encoded enzyme, protelomerase, cuts at an inverted repeat site and forms hairpin ends (telomeres) of the linear plasmid prophage. Replication of the N15 prophage is initiated at an internally located ori site and proceeds bidirectionally resulting in formation of duplicated telomeres. Then the N15 protelomerase cuts duplicated telomeres generating two linear plasmid molecules with hairpin telomeres. Stable inheritance of the plasmid prophage is ensured by partitioning operon similar to the F factor sop operon. Unlike F sop, the N15 centromere consists of four inverted repeats dispersed in the genome. The multiplicity and dispersion of centromeres are required for efficient partitioning of a linear plasmid. The centromeres are located in N15 genome regions involved in phage replication and control of lysogeny, and binding of partition proteins at these sites regulates these processes. Two N15-related lambdoid Siphoviridae phages, φKO2 in Klebsiella oxytoca and pY54 in Yersinia enterocolitica, also lysogenize their hosts as linear plasmids, as well as Myoviridae marine phages VP882 and VP58.5 in Vibrio parahaemolyticus and ΦHAP-1 in Halomonas aquamarina. The genomes of all these phages contain similar protelomerase genes, lysogeny modules and replication genes, as well as plasmid-partitioning genes, suggesting that these phages may belong to a group diverged from a common ancestor.
Collapse
Affiliation(s)
- Nikolai V Ravin
- Centre "Bioengineering", Russian Academy of Sciences, Prosp. 60-let Oktiabria, bld. 7-1, Moscow 117312, Russia.
| |
Collapse
|
12
|
Ganguly T, Das M, Bandhu A, Chanda PK, Jana B, Mondal R, Sau S. Physicochemical properties and distinct DNA binding capacity of the repressor of temperate Staphylococcus aureus phage φ11. FEBS J 2009; 276:1975-85. [DOI: 10.1111/j.1742-4658.2009.06924.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
13
|
Dubrava MS, Ingram WM, Roberts SA, Weichsel A, Montfort WR, Cordes MHJ. N15 Cro and lambda Cro: orthologous DNA-binding domains with completely different but equally effective homodimer interfaces. Protein Sci 2008; 17:803-12. [PMID: 18369196 DOI: 10.1110/ps.073330808] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Bacteriophage Cro proteins bind to target DNA as dimers but do not all dimerize with equal strength, and differ in fold in the region of the dimer interface. We report the structure of the Cro protein from Enterobacteria phage N15 at 1.05 A resolution. The subunit fold contains five alpha-helices and is closely similar to the structure of P22 Cro (1.3 A backbone room mean square difference over 52 residues), but quite different from that of lambda Cro, a structurally diverged member of this family with a mixed alpha-helix/beta-sheet fold. N15 Cro crystallizes as a biological dimer with an extensive interface (1303 A(2) change in accessible surface area per dimer) and also dimerizes in solution with a K(d) of 5.1 +/- 1.5 microM. Its dimerization is much stronger than that of its structural homolog P22 Cro, which does not self-associate detectably in solution. Instead, the level of self-association and interfacial area for N15 Cro is similar to that of lambda Cro, even though these two orthologs do not share the same fold and have dimer interfaces that are qualitatively different in structure. The common Cro ancestor is thought to be an all-helical monomer similar to P22 Cro. We propose that two Cro descendants independently developed stronger dimerization by entirely different mechanisms.
Collapse
Affiliation(s)
- Matthew S Dubrava
- Department of Biochemistry and Molecular Biophysics, University of Arizona, Tucson, Arizona 85721, USA
| | | | | | | | | | | |
Collapse
|
14
|
Extended function of plasmid partition genes: the Sop system of linear phage-plasmid N15 facilitates late gene expression. J Bacteriol 2008; 190:3538-45. [PMID: 18359814 DOI: 10.1128/jb.01993-07] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The mitotic stability of the linear plasmid-prophage N15 of Escherichia coli depends on a partition system closely related to that of the F plasmid SopABC. The two Sop systems are distinguished mainly by the arrangement of their centromeric SopB-binding sites, clustered in F (sopC) and dispersed in N15 (IR1 to IR4). Because two of the N15 inverted repeat (IR) sites are located close to elements presumed (by analogy with phage lambda) to regulate late gene expression during the lytic growth of N15, we asked whether Sop partition functions play a role in this process. In N15, a putative Q antiterminator gene is located 6 kb upstream of the probable major late promoter and two intrinsic terminator-like sequences, in contrast to lambda, where the Q gene is adjacent to the late promoter. Northern hybridization and lacZ reporter activity confirmed the identity of the N15 late promoter (p52), demonstrated antiterminator activity of the Q analogue, and located terminator sequences between p52 and the first open reading frame. Following prophage induction, N15 mutated in IR2 (downstream from gene Q) or IR3 (upstream of p52) showed a pronounced delay in lysis relative to that for wild-type N15. Expression of ir3(-)-p52::lacZ during N15 wild-type lytic growth was strongly reduced relative to the equivalent ir3(+) fusion. The provision of Q protein and the IR2 and SopAB proteins in trans to ir3(+)-p52::lacZ increased expression beyond that seen in the absence of any one of these factors. These results indicate that the N15 Sop system has a dual role: partition and regulation of late gene transcription during lytic growth.
Collapse
|
15
|
Abstract
In the last 30 years, the study of virus evolution has undergone a transformation. Originally concerned with disease and its emergence, virus evolution had not been well integrated into the general study of evolution. This chapter reviews the developments that have brought us to this new appreciation for the general significance of virus evolution to all life. We now know that viruses numerically dominate all habitats of life, especially the oceans. Theoretical developments in the 1970s regarding quasispecies, error rates, and error thresholds have yielded many practical insights into virus–host dynamics. The human diseases of HIV-1 and hepatitis C virus cannot be understood without this evolutionary framework. Yet recent developments with poliovirus demonstrate that viral fitness can be the result of a consortia, not one fittest type, a basic Darwinian concept in evolutionary biology. Darwinian principles do apply to viruses, such as with Fisher population genetics, but other features, such as reticulated and quasispecies-based evolution distinguish virus evolution from classical studies. The available phylogenetic tools have greatly aided our analysis of virus evolution, but these methods struggle to characterize the role of virus populations. Missing from many of these considerations has been the major role played by persisting viruses in stable virus evolution and disease emergence. In many cases, extreme stability is seen with persisting RNA viruses. Indeed, examples are known in which it is the persistently infected host that has better survival. We have also recently come to appreciate the vast diversity of phage (DNA viruses) of prokaryotes as a system that evolves by genetic exchanges across vast populations (Chapter 10). This has been proposed to be the “big bang” of biological evolution. In the large DNA viruses of aquatic microbes we see surprisingly large, complex and diverse viruses. With both prokaryotic and eukaryotic DNA viruses, recombination is the main engine of virus evolution, and virus host co-evolution is common, although not uniform. Viral emergence appears to be an unending phenomenon and we can currently witness a selective sweep by retroviruses that infect and become endogenized in koala bears.
Collapse
|
16
|
Aihara H, Huang WM, Ellenberger T. An interlocked dimer of the protelomerase TelK distorts DNA structure for the formation of hairpin telomeres. Mol Cell 2007; 27:901-13. [PMID: 17889664 PMCID: PMC2041798 DOI: 10.1016/j.molcel.2007.07.026] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2007] [Revised: 06/11/2007] [Accepted: 07/25/2007] [Indexed: 12/27/2022]
Abstract
The termini of linear chromosomes are protected by specialized DNA structures known as telomeres that also facilitate the complete replication of DNA ends. The simplest type of telomere is a covalently closed DNA hairpin structure found in linear chromosomes of prokaryotes and viruses. Bidirectional replication of a chromosome with hairpin telomeres produces a catenated circular dimer that is subsequently resolved into unit-length chromosomes by a dedicated DNA cleavage-rejoining enzyme known as a hairpin telomere resolvase (protelomerase). Here we report a crystal structure of the protelomerase TelK from Klebsiella oxytoca phage varphiKO2, in complex with the palindromic target DNA. The structure shows the TelK dimer destabilizes base pairing interactions to promote the refolding of cleaved DNA ends into two hairpin ends. We propose that the hairpinning reaction is made effectively irreversible by a unique protein-induced distortion of the DNA substrate that prevents religation of the cleaved DNA substrate.
Collapse
Affiliation(s)
- Hideki Aihara
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, 660 S. Euclid Ave., Campus Box 8231, St. Louis, MO 63110
| | - Wai Mun Huang
- Department of Pathology, EEJ Medical Research Building, Room 5200B 15 N. Medical Dr. East, University of Utah Health Sciences Center, Salt Lake City, Utah 84112
| | - Tom Ellenberger
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, 660 S. Euclid Ave., Campus Box 8231, St. Louis, MO 63110
| |
Collapse
|
17
|
Mardanov AV, Ravin NV. The antirepressor needed for induction of linear plasmid-prophage N15 belongs to the SOS regulon. J Bacteriol 2007; 189:6333-8. [PMID: 17586637 PMCID: PMC1951935 DOI: 10.1128/jb.00599-07] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The physiological conditions and molecular interactions that control phage production have been studied in only a few families of temperate phages. We investigated the mechanisms that regulate activation of lytic development in lysogens of coliphage N15, a prophage that is not integrated into the host chromosome but exists as a linear plasmid with covalently closed ends. We identified the N15 antirepressor gene, antC, and showed that its product binds to and acts against the main phage repressor, CB. LexA binds to and represses the promoter of antC. Mitomycin C-stimulated N15 induction required RecA-dependent autocleavage of LexA and expression of AntC protein. Thus, a cellular repressor whose activity is regulated by DNA damage controls N15 prophage induction.
Collapse
Affiliation(s)
- Andrey V Mardanov
- Centre Bioengineering, Russian Academy of Sciences, Prosp. 60-let Oktiabria, Bldg.7-1, Moscow 117312, Russia
| | | |
Collapse
|
18
|
Mardanov AV, Ravin NV. Initiator protein DnaA of Escherichia coli is a negative replication regulator of linear phage-plasmid N15. RUSS J GENET+ 2007. [DOI: 10.1134/s1022795407010061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
19
|
Hall BM, Lefevre KR, Cordes MHJ. Sequence correlations between Cro recognition helices and cognate O(R) consensus half-sites suggest conserved rules of protein-DNA recognition. J Mol Biol 2005; 350:667-81. [PMID: 15967464 DOI: 10.1016/j.jmb.2005.05.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2005] [Revised: 04/09/2005] [Accepted: 05/12/2005] [Indexed: 11/27/2022]
Abstract
The O(R) regions from several lambdoid bacteriophages contain the three regulatory sites O(R)1, O(R)2 and O(R)3, to which the Cro and CI proteins can bind. These sites show imperfect dyad symmetry, have similar sequences, and generally lie on the same face of the DNA double helix. We have developed a computational method, which analyzes the O(R) regions of additional phages and predicts the location of these three sites. After tuning the method to predict known O(R) sites accurately, we used it to predict unknown sites, and ultimately compiled a database of 32 known and predicted O(R) binding site sets. We then identified sequences of the recognition helices (RH) for the cognate Cro proteins through manual inspection of multiple sequence alignments. Comparison of Cro RH and consensus O(R) half-site sequences revealed strong one-to-one correlations between two amino acids at each of three RH positions and two bases at each of three half-site positions (H1-->2, H3-->5 and H6-->6). In each of these three cases, one of the two amino acid/base-pairings corresponds to a contact observed in the crystal structure of a lambda Cro/consensus operator complex. The alternate amino acid/base combinations were rationalized using structural models. We suggest that the pairs of amino acid residues act as binary switches that efficiently modulate specificity for different consensus half-site variants during evolution. The observation of structurally reasonable amino acid-to-base correlations suggests that Cro proteins share some common rules of recognition despite their functional and structural diversity.
Collapse
Affiliation(s)
- Branwen M Hall
- Department of Biochemistry and Molecular Biophysics, University of Arizona, Tucson, AZ 85721, USA
| | | | | |
Collapse
|
20
|
Ravin NV, Kuprianov VV, Gilcrease EB, Casjens SR. Bidirectional replication from an internal ori site of the linear N15 plasmid prophage. Nucleic Acids Res 2003; 31:6552-60. [PMID: 14602914 PMCID: PMC275552 DOI: 10.1093/nar/gkg856] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2003] [Revised: 09/29/2003] [Accepted: 09/29/2003] [Indexed: 11/14/2022] Open
Abstract
The prophage of coliphage N15 is not integrated into the chromosome but exists as a linear plasmid molecule with covalently closed hairpin ends (telomeres). Upon infection the injected phage DNA circularizes via its cohesive ends. Then, a phage-encoded enzyme, protelomerase, cuts the circle and forms the hairpin telomeres. N15 protelomerase acts as a telomere-resolving enzyme during prophage DNA replication. We characterized the N15 replicon and found that replication of circular N15 miniplasmids requires only the repA gene, which encodes a multidomain protein homologous to replication proteins of bacterial plasmids replicated by a theta-mechanism. Replication of a linear N15 miniplasmid also requires the protelomerase gene and telomere regions. N15 prophage replication is initiated at an internal ori site located within repA and proceeds bidirectionally. Electron microscopy data suggest that after duplication of the left telomere, protelomerase cuts this site generating Y-shaped molecules. Full replication of the molecule and subsequent resolution of the right telomere then results in two linear plasmid molecules. N15 prophage replication thus appears to follow a mechanism that is distinct from that employed by eukaryotic replicons with this type of telomere and suggests the possibility of evolutionarily independent appearances of prokaryotic and eukaryotic replicons with covalently closed telomeres.
Collapse
Affiliation(s)
- Nikolai V Ravin
- Centre Bioengineering, Russian Academy of Sciences, Prosp. 60-let Oktiabria, Building 7-1, Moscow, 117312, Russia.
| | | | | | | |
Collapse
|
21
|
Dorokhov BD, Lane D, Ravin NV. Partition operon expression in the linear plasmid prophage N15 is controlled by both Sop proteins and protelomerase. Mol Microbiol 2003; 50:713-21. [PMID: 14617191 DOI: 10.1046/j.1365-2958.2003.03738.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The temperate coliphage N15, unlike most low copy-number prokaryotic replicons, is maintained as a linear DNA molecule with covalently closed ends. Accurate partitioning of the plasmid prophage is assured by a close homologue of the sop locus of the F plasmid. However, the region upstream of the N15 sopAB genes contains multiple putative promoters, in contrast to F sop whose expression is driven by one negatively autoregulated promoter. In addition, the centromere of N15 is represented by four inverted repeats located at widely separated sites within the region essential for replication and control of lytic functions. We have analysed expression of N15 sop genes. We find that transcription of N15 sop is driven by two major promoters. The first, P1, is similar in sequence and function to the F sop promoter; it is repressed by Sop proteins. The second promoter, P2, is upstream of P1 and is several times stronger. It is insensitive to regulation by Sop proteins but is tightly repressed by protelomerase, the N15 enzyme that completes prophage replication by generating hairpin telomeres. These results establish a regulatory link between the partition system and other processes of N15 maintenance.
Collapse
Affiliation(s)
- Boris D Dorokhov
- Centre Bioengineering, Russian Academy of Sciences, Prosp. 60-let Oktiabria, bld.7-1; Moscow 117312, Russia
| | | | | |
Collapse
|
22
|
Hertwig S, Klein I, Schmidt V, Beck S, Hammerl JA, Appel B. Sequence analysis of the genome of the temperate Yersinia enterocolitica phage PY54. J Mol Biol 2003; 331:605-22. [PMID: 12899832 DOI: 10.1016/s0022-2836(03)00763-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The temperate Yersinia phage PY54 belongs to the unusual group of phages that replicate as linear plasmids with covalently closed ends. Besides Escherichia coli phage N15, PY54 is the only member of this group to be identified. We have determined the complete sequence (46,339 bp) of the PY54 genome. Bioinformatic analyses revealed 67 open reading frames (ORFs) with good coding potential located on both DNA strands. The comparison of the deduced PY54 gene products with known proteins encoded by other phages and bacteria along with functional studies have enabled us to assign the possible functions of 25 ORFs. In the left arm of the PY54 genome, we identified a number of ORFs that obviously code for head and tail proteins. Furthermore, this part of the phage genome contains genes probably involved in plasmid partitioning. Regarding the predicted gene functions and gene order, the PY54 and N15 left arms are similar. However, there are only weak DNA homologies and, in contrast to N15, the Yersinia phage harbours only a few ORFs related to genes found in lambdoid phages. The PY54 right arm comprises mainly regulatory genes as well as genes important for plasmid replication, DNA methylation, and host cell lysis. Out of 36 deduced products of the right arm, 13 revealed strongest database homologies to N15 proteins, of which the protelomerase and the Rep protein are exclusively homologous to their N15 counterparts. A number of PY54 genes essential for the lytic or lysogenic cycle were identified by functional analysis and characterization of phage mutants. In order to study transcription during the lytic and lysogenic stage, we analysed 34 PY54 ORFs by reverse transcriptase (RT)-PCR. The phage transcription patterns in lysogenic bacteria and at the late lytic stage of infection are nearly identical. The reasons for this finding are spontaneous release of phages during lysogeny and a high rate of phages that lysogenize their Yersinia host upon infection.
Collapse
Affiliation(s)
- Stefan Hertwig
- Department of Biological Safety, Robert Koch-Institut, D-13353 Berlin, Germany.
| | | | | | | | | | | |
Collapse
|
23
|
Ravin NV. Mechanisms of replication and telomere resolution of the linear plasmid prophage N15. FEMS Microbiol Lett 2003; 221:1-6. [PMID: 12694903 DOI: 10.1016/s0378-1097(03)00125-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The prophage of coliphage N15 is not integrated into the bacterial chromosome but exists as a linear plasmid molecule with covalently closed ends. Upon infection of an Escherichia coli cell, the phage DNA circularizes via cohensive ends. A phage-encoded enzyme, protelomerase, then cuts at another site, telRL, and forms hairpin ends (telomeres). Purified protelomerase alone processes circular and linear plasmid DNA containing the target site telRL to produce linear double-stranded DNA with covalently closed ends in vitro. N15 protelomerase is necessary for replication of the linear prophage through its action as a telomere-resolving enzyme. Replication of circular N15-based miniplasmids requires the only gene repA that encodes multidomain protein homologous to replication proteins of bacterial plasmids replicated by theta-mechanism, particularly, phage P4 alpha-replication protein. Replication of the N15 prophage is initiated at an internal ori site located within repA. Bidirectional replication results in formation of the circular head-to-head, tail-to-tail dimer molecule. Then the N15 protelomerase cuts both duplicated telomeres generating two linear plasmid molecules with covalently closed ends. The N15 prophage replication thus appears to follow the mechanism distinct from that employed by poxviruses and could serve as a model for other prokaryotic replicons with hairpin ends, and particularly, for linear plasmids and chromosomes of Borrelia burgdorferi.
Collapse
Affiliation(s)
- Nikolai V Ravin
- Centre Bioengineering, Russian Academy of Sciences, Prosp. 60-let Oktiabria, bld. 7-1, Moscow 117312, Russia.
| |
Collapse
|
24
|
Grigoriev PS, Lobocka MB. Determinants of segregational stability of the linear plasmid-prophage N15 of Escherichia coli. Mol Microbiol 2001; 42:355-68. [PMID: 11703660 DOI: 10.1046/j.1365-2958.2001.02632.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
N15 is a bacteriophage of Escherichia coli that resembles lambda, but, unlike lambda, it lysogenizes as a linear plasmid. We show that stable maintenance of this unusual plasmid-prophage depends on the parA and parB genes, relatives of the partition genes of F and P1 plasmids. ParB of N15, like its F- and P1-encoded homologues, destabilizes plasmids carrying its target centromere, when present in excess. Within the genome of N15, we identified four unlinked, palindromic sequences that can promote the ParB-mediated destabilization of a moderate-copy vector in cis. They are distant from the parAB operon, unlike the centromeric sites of F and P1. Each of these palindromes could interact in vivo and in vitro with ParB. Each, when cloned separately, had properties characteristic of centromeric sites: exerted incompatibility against the N15 prophage and mini-N15 plasmids, and stabilized a mini-P1 plasmid depleted of its own partition genes when ParA and ParB of N15 were supplied. A pair of sites was more effective than a single site. Two of the centromeric sites are located in the proximity of promoters of phage genes, suggesting that, in addition to their function in partitioning of N15 prophage, they may control expression of N15 lytic functions.
Collapse
Affiliation(s)
- P S Grigoriev
- Department of Biophysics, State Technical University, 19251 St. Petersburg, Russia
| | | |
Collapse
|
25
|
Lemonnier M, Bouet JY, Libante V, Lane D. Disruption of the F plasmid partition complex in vivo by partition protein SopA. Mol Microbiol 2000; 38:493-505. [PMID: 11069673 DOI: 10.1046/j.1365-2958.2000.02101.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The SopA protein plays an essential, though so far undefined, role in partition of the mini-F plasmid but, when overproduced, it causes loss of mini-F from growing cells. Our investigation of this phenomenon has revealed that excess SopA protein reduces the linking number of mini-F. It appears to do so by disturbing the partition complex, in which SopB normally introduces local positive supercoiling upon binding to the sopC centromere, as it occurs only in plasmids carrying sopC and in the presence of SopB protein. SopA-induced reduction in linking number is not associated with altered sop promoter activity or levels of SopB protein and occurs in the absence of changes in overall supercoil density. SopA protein mutated in the ATPase nucleotide-binding site (K120Q) or lacking the presumed SopB interaction domain does not induce the reduction in linking number, suggesting that excess SopA disrupts the partition complex by interacting with SopB to remove positive supercoils in an ATP-dependent manner. Destabilization of mini-F also depends on sopC and SopB, but the K120Q mutant retains some capacity for destabilizing mini-F. SopA-induced destabilization thus appears to be complex and may involve more than one SopA activity. The results are interpreted in terms of a regulatory role for SopA in the oligomerization of SopB dimers bound to the centromere.
Collapse
Affiliation(s)
- M Lemonnier
- Laboratoire de Microbiologie et Génétique Moléculaire, 118 Route de Narbonne, 31062 Toulouse, France
| | | | | | | |
Collapse
|
26
|
Ravin V, Ravin N, Casjens S, Ford ME, Hatfull GF, Hendrix RW. Genomic sequence and analysis of the atypical temperate bacteriophage N15. J Mol Biol 2000; 299:53-73. [PMID: 10860722 DOI: 10.1006/jmbi.2000.3731] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
N15 is a temperate bacteriophage that forms stable lysogens in Escherichia coli. While its virion is morphologically very similar to phage lambda and its close relatives, it is unusual in that the prophage form replicates autonomously as a linear DNA molecule with closed hairpin telomeres. Here, we describe the genomic architecture of N15, and its global pattern of gene expression, which reveal that N15 contains several plasmid-derived genes that are expressed in N15 lysogens. The tel site, at which processing occurs to form the prophage ends is close to the center of the genome in a similar location to that occupied by the attachment site, attP, in lambda and its relatives and defines the boundary between the left and right arms. The left arm contains a long cluster of structural genes that are closely related to those of the lambda-like phages, but also includes homologs of umuD', which encodes a DNA polymerase accessory protein, and the plasmid partition genes, sopA and sopB. The right arm likewise contains a mixture of apparently phage- and plasmid-derived genes including genes encoding plasmid replication functions, a phage repressor, a transcription antitermination system, as well as phage host cell lysis genes and two putative DNA methylases. The unique structure of the N15 genome suggests that the large global population of bacteriophages may exhibit a much greater diversity of genomic architectures than was previously recognized.
Collapse
MESH Headings
- Bacteriolysis
- Bacteriophage lambda/genetics
- Bacteriophages/enzymology
- Bacteriophages/genetics
- Bacteriophages/ultrastructure
- Base Composition
- Base Sequence
- Escherichia coli/physiology
- Escherichia coli/virology
- Gene Expression Regulation, Bacterial
- Genes, Viral/genetics
- Genome, Viral
- Lysogeny/genetics
- Microscopy, Electron
- Plasmids/genetics
- Promoter Regions, Genetic/genetics
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- RNA, Viral/biosynthesis
- RNA, Viral/genetics
- Response Elements/genetics
- Sequence Analysis, DNA
- Terminator Regions, Genetic/genetics
- Transcription, Genetic/genetics
- Viral Proteins/genetics
Collapse
Affiliation(s)
- V Ravin
- Center for Bioengineering, Russian Academy of Science, Moscow, Russia
| | | | | | | | | | | |
Collapse
|
27
|
Ravin NV, Svarchevsky AN, Dehò G. The anti-immunity system of phage-plasmid N15: identification of the antirepressor gene and its control by a small processed RNA. Mol Microbiol 1999; 34:980-94. [PMID: 10594823 DOI: 10.1046/j.1365-2958.1999.01658.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
N15 is a temperate virus of Escherichia coli related to lambdoid phages. However, unlike all other known phages, the N15 prophage is maintained as a low copy number linear DNA molecule with covalently closed ends. The primary immunity system at the immB locus is structurally and functionally comparable to that of lambdoid phages, and encodes the immunity repressor CB. We have characterized a second locus, immA, in which clear plaque mutations were mapped, and found that it encodes an anti-immunity system involved in the choice between the lytic and the lysogenic cycle. Three open reading frames at the immA locus encode an inhibitor of cell division (icd ), an antirepressor (antA) and a gene that may play an ancillary role in anti-immunity (antB ). These genes may be transcribed from two promoters: the upstream promoter Pa is repressed by the immunity repressor CB, whereas the downstream promoter Pb is constitutive. Full repression of the anti-immunity system is achieved by premature transcription termination elicited by a small RNA (CA RNA) produced by processing of the leader transcript of the anti-immunity operon. The N15 anti-immunity system is structurally and functionally similar to the anti-immunity system of bacteriophage P1 and to the immunity system of satellite phage P4.
Collapse
Affiliation(s)
- N V Ravin
- Dipartimento di Genetica e di Biologia dei microrganismi, Università degli Studi di Milano, Milan, Italy.; Center 'Bioengineering', Russian Academy of Sciences, Moscow, Russia
| | | | | |
Collapse
|
28
|
Ravin N, Lane D. Partition of the linear plasmid N15: interactions of N15 partition functions with the sop locus of the F plasmid. J Bacteriol 1999; 181:6898-906. [PMID: 10559154 PMCID: PMC94163 DOI: 10.1128/jb.181.22.6898-6906.1999] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A locus close to one end of the linear N15 prophage closely resembles the sop operon which governs partition of the F plasmid; the promoter region contains similar operator sites, and the two putative gene products have extensive amino acid identity with the SopA and -B proteins of F. Our aim was to ascertain whether the N15 sop homologue functions in partition, to identify the centromere site, and to examine possible interchangeability of function with the F Sop system. When expressed at a moderate level, N15 SopA and -B proteins partly stabilize mini-F which lacks its own sop operon but retains the sopC centromere. The stabilization does not depend on increased copy number. Likewise, an N15 mutant with most of its sop operon deleted is partly stabilized by F Sop proteins and fully stabilized by its own. Four inverted repeat sequences similar to those of sopC were located in N15. They are distant from the sop operon and from each other. Two of these were shown to stabilize a mini-F sop deletion mutant when N15 Sop proteins were provided. Provision of the SopA homologue to plasmids with a sopA deletion resulted in further destabilization of the plasmid. The N15 Sop proteins exert effective, but incomplete, repression at the F sop promoter. We conclude that the N15 sop locus determines stable inheritance of the prophage by using dispersed centromere sites. The SopB-centromere and SopA-operator interactions show partial functional overlap between N15 and F. SopA of each plasmid appears to interact with SopB of the other, but in a way that is detrimental to plasmid maintenance.
Collapse
Affiliation(s)
- N Ravin
- Bioengineering Centre, Russian Academy of Sciences, Moscow, 117312 Russia
| | | |
Collapse
|
29
|
Forti F, Polo S, Lane KB, Six EW, Sironi G, Dehò G, Ghisotti D. Translation of two nested genes in bacteriophage P4 controls immunity-specific transcription termination. J Bacteriol 1999; 181:5225-33. [PMID: 10464191 PMCID: PMC94026 DOI: 10.1128/jb.181.17.5225-5233.1999] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In phage P4, transcription of the left operon may occur from both the constitutive PLE promoter and the regulated PLL promoter, about 400 nucleotides upstream of PLE. A strong Rho-dependent termination site, timm, is located downstream of both promoters. When P4 immunity is expressed, transcription starting at PLE is efficiently terminated at timm, whereas transcription from PLL is immunity insensitive and reads through timm. We report the identification of two nested genes, kil and eta, located in the P4 left operon. The P4 kil gene, which encodes a 65-amino-acid polypeptide, is the first translated gene downstream of the PLE promoter, and its expression is controlled by P4 immunity. Overexpression of kil causes cell killing. This gene is the terminal part of a longer open reading frame, eta, which begins upstream of PLE. The eta gene is expressed when transcription starts from the PLL promoter. Three likely start codons predict a size between 197 and 199 amino acids for the Eta gene product. Both kil and eta overlap the timm site. By cloning kil upstream of a tRNA reporter gene, we demonstrated that translation of the kil region prevents premature transcription termination at timm. This suggests that P4 immunity might negatively control kil translation, thus enabling transcription termination at timm. Transcription starting from PL proceeds through timm. Mutations that create nonsense codons in eta caused premature termination of transcription starting from PLL. Suppression of the nonsense mutation restored transcription readthrough at timm. Thus, termination of transcription from PLL is prevented by translation of eta.
Collapse
Affiliation(s)
- F Forti
- Dipartimento di Genetica e di Biologia dei Microrganismi, Università di Milano, Milan, Italy
| | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
Coliphage N15 is a temperate bacteriophage whose prophage is a linear plasmid molecule with covalently closed ends (telomeres). The N15 prophage provided the first example of such DNA in prokaryotes and, up to now, it is the only known example of a linear plasmid in Escherichia coli. The linear N15 mature phage DNA has single-stranded cohesive ends. The phage and plasmid prophage DNAs are circularly permuted. The nucleotide structure of the telomere-forming site tel RL in phage DNA corresponds to the structures of the terminal hairpin loops. It suggests a unique mechanism for conversion of the circular phage DNA to the linear plasmid form, which is performed by the prokaryotic telomerase (protelomerase). The results of a comparison of the protelomerase with integrases lead us to suggest that these proteins may have evolved from a common ancestor. The mechanism of plasmid N15 replication is unknown. We propose that the protelomerase participates in linear plasmid replication, acting as a resolvase of replicative intermediates that are tail-to-tail linear dimers. The sequence analysis of the N15 DNA showed that it represents an evolutionary 'link' between plasmids F, P1, P4 and lambdoid bacteriophages.
Collapse
Affiliation(s)
- V N Rybchin
- Department of Biophysics, State Technical University, Saint Petersburg 195251, Russia.
| | | |
Collapse
|
31
|
Polo S, Guerini O, Sosio M, Dehb G. Identification of two linear plasmids in the actinomycete Planobispora rosea. MICROBIOLOGY (READING, ENGLAND) 1998; 144 ( Pt 10):2819-2825. [PMID: 9802023 DOI: 10.1099/00221287-144-10-2819] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Two linear plasmids (pPR1, 27.5 kb, and pPR2, 16 kb) were identified in Planobispora rosea, an actinomycete that produces the antibiotic GE2270, an inhibitor of the elongation factor Tu. Strains lacking both plasmids still produce and are resistant to GE2270. The two plasmids share an internal region of high similarity, but no cross-hybridization was detected between their telomeric regions or between plasmid and chromosomal DNA. The 5' ends of the plasmids appear to be linked to terminal proteins. The telomeric regions of pPR2 were cloned after 3'-end homopolymer tailing and PCR amplification. The approximately 650 nt telomeric DNA sequences of pPR2 are repeated in inverted orientation and are rich in direct and inverted repeats; the 350 bp terminal region is less G + C-rich than the rest of the plasmid. The structural organization of these plasmids appears to be similar to Streptomyces linear replicons.
Collapse
Affiliation(s)
- Simona Polo
- Dipartimento di Geneticae di Biologia dei Microrganismi, Universita degli Studi di MilanoVia Celoria 26, 20133 MilanoItaly
| | - Oscar Guerini
- Dipartimento di Geneticae di Biologia dei Microrganismi, Universita degli Studi di MilanoVia Celoria 26, 20133 MilanoItaly
| | | | - Gianni Dehb
- Dipartimento di Geneticae di Biologia dei Microrganismi, Universita degli Studi di MilanoVia Celoria 26, 20133 MilanoItaly
| |
Collapse
|