1
|
Harris AWK, Dolan JA, Kelly CL, Anderson J, Papachristodoulou A. Designing Genetic Feedback Controllers. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2015; 9:475-484. [PMID: 26390502 DOI: 10.1109/tbcas.2015.2458435] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
By incorporating feedback around systems we wish to manipulate, it is possible to improve their performance and robustness properties to meet pre-specified design objectives. For decades control engineers have been successfully implementing feedback controllers for complex mechanical and electrical systems such as aircraft and sports cars. Natural biological systems use feedback extensively for regulation and adaptation but apart from the most basic designs, there is no systematic framework for designing feedback controllers in Synthetic Biology. In this paper we describe how classical approaches from linear control theory can be used to close the loop. This includes the design of genetic circuits using feedback control and the presentation of a biological phase lag controller.
Collapse
|
2
|
Billerbeck S, Calles B, Müller CL, de Lorenzo V, Panke S. Towards functional orthogonalisation of protein complexes: individualisation of GroEL monomers leads to distinct quasihomogeneous single rings. Chembiochem 2013; 14:2310-21. [PMID: 24151180 DOI: 10.1002/cbic.201300332] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Indexed: 11/10/2022]
Abstract
The essential molecular chaperonin GroEL is an example of a functionally highly versatile cellular machine with a wide variety of in vitro applications ranging from protein folding to drug release. Directed evolution of new functions for GroEL is considered difficult, due to its structure as a complex homomultimeric double ring and the absence of obvious molecular engineering strategies. In order to investigate the potential to establish an orthogonal GroEL system in Escherichia coli, which might serve as a basis for GroEL evolution, we first successfully individualised groEL genes by inserting different functional peptide tags into a robustly permissive site identified by transposon mutagenesis. These peptides allowed fundamental aspects of the intracellular GroEL complex stoichiometry to be studied and revealed that GroEL single-ring complexes, which assembled in the presence of several functionally equivalent but biochemically distinct monomers, each consist almost exclusively of only one type of monomer. At least in the case of GroEL, individualisation of monomers thus leads to individualisation of homomultimeric protein complexes, effectively providing the prerequisites for evolving an orthogonal intracellular GroEL folding machine.
Collapse
Affiliation(s)
- Sonja Billerbeck
- Department for Biosystems Science and Engineering, ETH Zürich, Mattenstrasse 26, 4058 Basel (Switzerland); Current address: Department of Chemistry, Columbia University, 550 West 120th Street, New York, NY 10027 (USA)
| | | | | | | | | |
Collapse
|
3
|
Verhoeven KD, Altstadt OC, Savinov SN. Intracellular Detection and Evolution of Site-Specific Proteases Using a Genetic Selection System. Appl Biochem Biotechnol 2012; 166:1340-54. [DOI: 10.1007/s12010-011-9522-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Accepted: 12/22/2011] [Indexed: 01/02/2023]
|
4
|
Williams DJ, Puhl HL, Ikeda SR. Rapid modification of proteins using a rapamycin-inducible tobacco etch virus protease system. PLoS One 2009; 4:e7474. [PMID: 19830250 PMCID: PMC2760398 DOI: 10.1371/journal.pone.0007474] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2009] [Accepted: 09/23/2009] [Indexed: 01/03/2023] Open
Abstract
Background The ability to disrupt the function of a specific protein on a rapid time scale provides a powerful tool for biomedical research. Specific proteases provide a potential method to selectively cleave a chosen protein, but rapid control of protease activity is difficult. Methodology/Principal Findings A heterologous expression system for rapid target-directed proteolysis in mammalian cells was developed. The system consists of an inducible NIa protease from the tobacco etch virus (TEVp) and a chosen protein into which a TEVp substrate recognition sequence (TRS) has been inserted. Inducible activity was conferred to the TEVp using rapamycin-controlled TEVp fragment complementation. TEVp activity was assayed using a FRET-based reporter construct. TEVp expression was well tolerated by mammalian cells and complete cleavage of the substrate was possible. Cleavage at 37°C proceeded exponentially with a time constant of approximately 150 minutes. Attempts to improve cleavage efficiency were hampered by substantial background activity, which was attributed to inherent affinity between the TEVp fragments. A second TEVp assay, based on changes in inactivation of a modified KV3.4 channel, showed that functional properties of a channel can be using altered using an inducible TEVp system. Similar levels of background activity and variability were observed in both electrophysiological and FRET assays. Conclusions/Significance The results suggested that an optimum level of TEVp expression leading to sufficient inducible activity (with minimal background activity) exists but the variability in expression levels between cells makes the present system rather impractical for single cell experiments. The system is likely to be more suitable for experiments in which the cell-to-cell variability is less of an issue; for example, in experiments involving large populations of cells.
Collapse
Affiliation(s)
- Damian J. Williams
- Laboratory of Molecular Physiology, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Henry L. Puhl
- Laboratory of Molecular Physiology, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Stephen R. Ikeda
- Laboratory of Molecular Physiology, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
5
|
Rotem S, Katz C, Benyamini H, Lebendiker M, Veprintsev D, Rüdiger S, Danieli T, Friedler A. The structure and interactions of the proline-rich domain of ASPP2. J Biol Chem 2008; 283:18990-9. [PMID: 18448430 DOI: 10.1074/jbc.m708717200] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
ASPP2 is a pro-apoptotic protein that stimulates the p53-mediated apoptotic response. The C terminus of ASPP2 contains ankyrin (Ank) repeats and a SH3 domain, which mediate its interactions with numerous partner proteins such as p53, NFkappaB, and Bcl-2. It also contains a proline-rich domain (ASPP2 Pro), whose structure and function are unclear. Here we used biophysical and biochemical methods to study the structure and the interactions of ASPP2 Pro, to gain insight into its biological role. We show, using biophysical and computational methods, that the ASPP2 Pro domain is natively unfolded. We found that the ASPP2 Pro domain interacts with the ASPP2 Ank-SH3 domains, and mapped the interaction sites in both domains. Using a combination of peptide array screening, biophysical and biochemical techniques, we found that ASPP2 Ank-SH3, but not ASPP2 Pro, mediates interactions of ASPP2 with peptides derived from its partner proteins. ASPP2 Pro-Ank-SH3 bound a peptide derived from its partner protein NFkappaB weaker than ASPP2 Ank-SH3 bound this peptide. This suggested that the presence of the proline-rich domain inhibited the interactions mediated by the Ank-SH3 domains. Furthermore, a peptide from ASPP2 Pro competed with a peptide derived from NFkappaB on binding to ASPP2 Ank-SH3. Based on our results, we propose a model in which the interaction between the ASPP2 domains regulates the intermolecular interactions of ASPP2 with its partner proteins.
Collapse
Affiliation(s)
- Shahar Rotem
- Institute of Chemistry, The Hebrew University of Jerusalem, Safra Campus, Givat Ram, Jerusalem 91904, Israel
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Abstract
The experimental problems associated with in vivo studies of essential proteins or integral membrane proteins have triggered geneticists to generate novel approaches that have often led to insights of general relevance (Shuman and Silhavy, 2003). In order to extend the experimental portfolio, we developed target-directed proteolysis (TDP), an in vivo method allowing structural and functional characterization of target proteins in living cells. TDP is based on the activity of the highly sequence-specific NIa protease from tobacco etch virus. When its recognition site of seven residues is engineered into target proteins and NIa protease is expressed under tight promoter control, substrates can be conditionally processed while other cellular proteins remain unaffected. Applications include conditional inactivation as well as functional characterization of target proteins.
Collapse
Affiliation(s)
- Markus Eser
- School of Biosciences, Cardiff University, Cardiff, Wales, UK
| | | | | | | |
Collapse
|
7
|
Brown E, Maloy S. Facile approach for constructing TEV insertions to probe protein structure in vivo. Biotechniques 2006; 41:721-4. [PMID: 17191617 DOI: 10.2144/000112284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The tobacco etch virus (TEV) protease has been used as a tool to examine protein structure in vivo. TEV cleavage sites (TEVcs) have been introduced via cloning into unique restriction sites or random transposon mutagenesis. We describe a facile, efficient method for introducing TEVcs at precise locations in a gene to test specific predictions about protein structure. The method uses the lamda Red recombination system to construct seamless, in-frame insertions of the TEVcs at any desired location within an open reading frame (ORF). The system was tested using the multifunctional PutA protein Salmonella enterica sv. Typhimurium. The first step involved insertion of a chloramphenicol resistance (Cam(R)) cassette with a transcriptional terminator at the desired location. A second swap then replaces the Cam(R) insertion with the TEVcs. Placing a copy of the lac operon downstream of the putA gene provides a simple counterselection for replacement of the Cam(R) insertion and also provides a reporter gene for monitoring transcription of the mutated gene.
Collapse
Affiliation(s)
- Elysa Brown
- San Diego State University, San Diego, CA 92182-4614, USA
| | | |
Collapse
|
8
|
Strahilevitz J, Onodera Y, Hooper DC. An improved expression plasmid for affinity purification of Staphylococcus aureus gyrase A subunit. Protein Expr Purif 2005; 47:10-5. [PMID: 16289915 DOI: 10.1016/j.pep.2005.08.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2005] [Accepted: 08/18/2005] [Indexed: 11/26/2022]
Abstract
Of the bacterial topoisomerases, the gyrase A subunit (GyrA) of Staphylococcus aureus is particularly difficult to purify because of its tendency to form inclusion bodies. Previous attempts at purification yielded low concentrations of protein with reduced specific activity. To overcome this problem, we modified the commercially available plasmid expression vector, pBAD/Thio-TOPO, via the addition of DNA sequences encoding a hexahistidine tag upstream and a cleavage site for tobacco etch virus protease downstream of the gene encoding thioredoxin. The resulting expression system consisting of the modified plasmid, pSAGA7, and the recommended host strain, Escherichia coli TOP 10, facilitated high level expression of soluble GyrA and its affinity purification to over 95% homogeneity. Purified GyrA had high biological activity as evidenced by a specific activity of 4.3x10(5)U/mg. The pSAGA7/TOP10 expression system also facilitated the expression and purification of a subunit of S. aureus topoisomerase IV, ParE, and a recently discovered protein unrelated to topoisomerases, QnrB, two "hard to purify" proteins. We conclude that pSAGA7 might be useful for high-level soluble expression and purification of diverse microbial proteins.
Collapse
Affiliation(s)
- Jacob Strahilevitz
- Division of Infectious Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | | | | |
Collapse
|
9
|
Yang X, Gregan J, Lindner K, Young H, Kearsey SE. Nuclear distribution and chromatin association of DNA polymerase alpha-primase is affected by TEV protease cleavage of Cdc23 (Mcm10) in fission yeast. BMC Mol Biol 2005; 6:13. [PMID: 15941470 PMCID: PMC1182370 DOI: 10.1186/1471-2199-6-13] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2005] [Accepted: 06/07/2005] [Indexed: 10/25/2022] Open
Abstract
BACKGROUND Cdc23/Mcm10 is required for the initiation and elongation steps of DNA replication but its biochemical function is unclear. Here, we probe its function using a novel approach in fission yeast, involving Cdc23 cleavage by the TEV protease. RESULTS Insertion of a TEV protease cleavage site into Cdc23 allows in vivo removal of the C-terminal 170 aa of the protein by TEV protease induction, resulting in an S phase arrest. This C-terminal fragment of Cdc23 is not retained in the nucleus after cleavage, showing that it lacks a nuclear localization signal and ability to bind to chromatin. Using an in situ chromatin binding procedure we have determined how the S phase chromatin association of DNA polymerase alpha-primase and the GINS (Sld5-Psf1-Psf2-Psf3) complex is affected by Cdc23 inactivation. The chromatin binding and sub-nuclear distribution of DNA primase catalytic subunit (Spp1) is affected by Cdc23 cleavage and also by inactivation of Cdc23 using a degron allele, implying that DNA polymerase alpha-primase function is dependent on Cdc23. In contrast to the effect on Spp1, the chromatin association of the Psf2 subunit of the GINS complex is not affected by Cdc23 inactivation. CONCLUSION An important function of Cdc23 in the elongation step of DNA replication may be to assist in the docking of DNA polymerase alpha-primase to chromatin.
Collapse
Affiliation(s)
- Xiaowen Yang
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX13PS UK
- Current address: Structural Genomics Consortium, Nuffield Department of Clinical Medicine, Botnar Research Centre, University of Oxford, Oxford OX3 7LD, UK
| | - Juraj Gregan
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX13PS UK
- Current address: IMP, Dr. Bohr-Gasse 7, A-1030, Austria
| | - Karola Lindner
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX13PS UK
| | - Hedi Young
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX13PS UK
| | - Stephen E Kearsey
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX13PS UK
| |
Collapse
|
10
|
Henrichs T, Mikhaleva N, Conz C, Deuerling E, Boyd D, Zelazny A, Bibi E, Ban N, Ehrmann M. Target-directed proteolysis at the ribosome. Proc Natl Acad Sci U S A 2005; 102:4246-51. [PMID: 15784745 PMCID: PMC555484 DOI: 10.1073/pnas.0408520102] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Target directed proteolysis allows specific processing of proteins in vivo. This method uses tobacco etch virus (TEV) NIa protease that recognizes a seven-residue consensus sequence. Because of its specificity, proteins engineered to contain a cleavage site are proteolysed, whereas other proteins remain unaffected. Therefore, this approach can be used to study the structure and function of target proteins in their natural environment within living cells. One application is the conditional inactivation of essential proteins, which is based on the concept that a target containing a recognition site can be inactivated by coexpressed TEV protease. We have previously identified one site in the secretion factor SecA that tolerated a TEV protease site insert. Coexpression of TEV protease in the cytoplasm led to incomplete cleavage and a mild secretion defect. To improve the efficiency of proteolysis, TEV protease was attached to the ribosome. We show here that cleaving SecA under these conditions is one way of increasing the efficiency of target directed proteolysis. The implications of recruiting novel biological activities to ribosomes are discussed.
Collapse
Affiliation(s)
- Tanja Henrichs
- School of Biosciences, Cardiff University, Cardiff CF10 3US, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Wang H, Tiirola MA, Puhakka JA, Kulomaa MS. Production and characterization of the recombinant Sphingomonas chlorophenolica pentachlorophenol 4-monooxygenase. Biochem Biophys Res Commun 2001; 289:161-6. [PMID: 11708794 DOI: 10.1006/bbrc.2001.5915] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Pentachlorophenol 4-monooxygenase (PCP4MO) from Sphingomonas chlorophenolica is a flavoprotein that hydroxylates PCP in the presence of NADPH and oxygen. In order to investigate the structure and function of active site, recombinant PCP4MO (rePCP4MO) was produced in Escherichia coli as a glutathione S-transferase (GST) fusion protein. Moreover, a tobacco etch virus (TEV) protease cleavage site (EKLYFQG) was introduced into GST-PCP4MO and a his-tagged TEV protease was employed. Hence, a two-step purification protocol was developed which allowed obtaining 15-20 mg of rePCP4MO from 1 L culture. The rePCP4MO revealed identity with native enzyme by SDS-PAGE and N-terminal sequence analyses. Furthermore, a polyclonal PCP4MO antibody was produced with GST-PCP4MO and purified by immunoaffinity chromatography, where both the native and recombinant forms of PCP4MO showed interaction. However, rePCP4MO was identified as apoprotein with no evidence for a typical flavoprotein spectrum. The catalytic activity could be detected in the presence of FAD. The K(m) and V(max) values for PCP were 50 microM and 30 nmol/min/mg, respectively.
Collapse
Affiliation(s)
- H Wang
- Department of Biological and Environmental Science, University of Jyväskylä, FIN-40351 Jyväskylä, Finland
| | | | | | | |
Collapse
|
12
|
Faber KN, Kram AM, Ehrmann M, Veenhuis M. A novel method to determine the topology of peroxisomal membrane proteins in vivo using the tobacco etch virus protease. J Biol Chem 2001; 276:36501-7. [PMID: 11443138 DOI: 10.1074/jbc.m105828200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Most proteins essential for the biogenesis of peroxisomes (peroxins) that are identified to date are associated with or are integral components of the peroxisomal membrane. A prerequisite in elucidating their function is to determine their topology in the membrane. We have developed a novel tool to analyze the topology of peroxisomal membrane proteins in the yeast Hansenula polymorpha in vivo using the 27-kDa NIa protease subunit from the tobacco etch virus (TEVp). TEVp specifically cleaves peptides containing the consensus sequence, EXXYXQ downward arrowS (tev). We show that cytosolic TEVp and peroxisomal TEVp.SKL are selectively active on soluble cytosolic and peroxisomal tev-containing proteins in vivo, respectively, without affecting the viability of the yeast cells. The tev sequence was introduced in between the primary sequence of the peroxisomal membrane proteins Pex3p or Pex10p and the reporter protein enhanced green fluorescent protein (eGFP). Co-synthesis of these functional tev-GFP tagged proteins with either cytosolic TEVp or peroxisomal TEVp.SKL revealed that the C termini of Pex3p and Pex10p are exposed to the cytosol. Additional applications of the TEV protease to study peroxisome biogenesis are discussed.
Collapse
Affiliation(s)
- K N Faber
- Eukaryotic Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, P. O. Box 14, 9750 AA Haren, The Netherlands.
| | | | | | | |
Collapse
|
13
|
Kapust RB, Waugh DS. Controlled intracellular processing of fusion proteins by TEV protease. Protein Expr Purif 2000; 19:312-8. [PMID: 10873547 DOI: 10.1006/prep.2000.1251] [Citation(s) in RCA: 158] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Here we describe a method for controlled intracellular processing (CIP) of fusion proteins by tobacco etch virus (TEV) protease. A fusion protein containing a TEV protease recognition site is expressed in Escherichia coli cells that also contain a TEV protease expression vector. The fusion protein vector is an IPTG-inducible ColE1-type plasmid, such as a T7 or tac promoter vector. In contrast, the TEV protease is produced by a compatible p15A-type vector that is induced by tetracyclines. Not only is the TEV protease regulated independently of the fusion protein, but its expression is highly repressed in the absence of inducer. Certain fusion partners have been shown to enhance the yield and solubility of their passenger proteins. When CIP is used as a purification step, it is possible to take advantage of these characteristics while both eliminating the need for large amounts of pure protease at a later stage and possibly simplifying the purification process. Additionally, we have observed that in some cases the timing of intracellular proteolysis can affect the solubility of the cleaved passenger protein, allowing it to be directed to either the soluble or the insoluble fraction of the crude cell lysate. This method also makes it possible to quickly gauge the efficiency of proteolysis in vivo, before protein purification has begun and in vitro processing is attempted.
Collapse
Affiliation(s)
- R B Kapust
- Program in Structural Biology, National Cancer Institute-Frederick Cancer Research and Development Center, Frederick, Maryland, 21702-1201, USA
| | | |
Collapse
|
14
|
Gao XD, Dean N. Distinct protein domains of the yeast Golgi GDP-mannose transporter mediate oligomer assembly and export from the endoplasmic reticulum. J Biol Chem 2000; 275:17718-27. [PMID: 10748175 DOI: 10.1074/jbc.m909946199] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The substrates for glycan synthesis in the lumen of the Golgi are nucleotide sugars that must be transported from the cytosol by specific membrane-bound transporters. The principal nucleotide sugar used for glycosylation in the Golgi of the yeast Saccharomyces cerevisiae is GDP-mannose, whose lumenal transport is mediated by the VRG4 gene product. As the sole provider of lumenal mannose, the Vrg4 protein functions as a key regulator of glycosylation in the yeast Golgi. We have undertaken a functional analysis of Vrg4p as a model for understanding nucleotide sugar transport in the Golgi. Here, we analyzed epitope-tagged alleles of VRG4. Gel filtration chromatography and co-immunoprecipitation experiments demonstrate that the Vrg4 protein forms homodimers with specificity and high affinity. Deletion analyses identified two regions essential for Vrg4p function. Mutant Vrg4 proteins lacking the predicted C-terminal membrane-spanning domain fail to assemble into oligomers (Abe, M., Hashimoto, H., and Yoda, K. (1999) FEBS Lett. 458, 309-312) and are unstable, while proteins lacking the N-terminal cytosolic tail are stable and multimerize efficiently, but are mislocalized to the endoplasmic reticulum (ER). Fusion of the N terminus of Vrg4p to related ER membrane proteins promote their transport to the Golgi, suggesting that sequences in the N terminus supply information for ER export. The dominant negative phenotype resulting from overexpression of truncated Vrg4-DeltaN proteins provides strong genetic evidence for homodimer formation in vivo. These studies are consistent with a model in which Vrg4p oligomerizes in the ER and is subsequently transported to the Golgi via a mechanism that involves positive sorting rather than passive default.
Collapse
Affiliation(s)
- X D Gao
- Department of Biochemistry and Cell Biology, Institute for Cell and Developmental Biology, State University of New York, Stony Brook, New York 11794-5215, USA
| | | |
Collapse
|
15
|
Ehrmann M, Bolek P, Mondigler M, Boyd D, Lange R. TnTIN and TnTAP: mini-transposons for site-specific proteolysis in vivo. Proc Natl Acad Sci U S A 1997; 94:13111-5. [PMID: 9371808 PMCID: PMC24271 DOI: 10.1073/pnas.94.24.13111] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Tobacco etch virus (TEV) protease recognizes a 7-aa consensus sequence, Glu-Xaa-Xaa-Tyr-Xaa-Gln-Ser, where Xaa can be almost any amino acyl residue. Cleavage occurs between the conserved Gln and Ser residues. Because of its distinct specificity, TEV protease can be expressed in the cytoplasm without interfering with viability. Polypeptides that are not natural substrates of TEV protease are proteolyzed if they carry the appropriate cleavage site. Thus, this protease can be used to study target proteins in their natural environment in vivo, as well as in vitro. We describe two TnS-based mini-transposons that insert TEV protease cleavage sites at random into target proteins. TnTIN introduces TEV cleavage sites into cytoplasmic proteins. TnTAP facilitates the same operation for proteins localized to the bacterial cell envelope. By using two different target proteins, SecA and TolC, we show that such modified proteins can be cleaved in vivo and in vitro by TEV protease. Possible applications of the site-specific proteolysis approach are topological studies of soluble as well as of inner and outer membrane proteins, protein inactivation, insertion mutagenesis experiments, and protein tagging.
Collapse
Affiliation(s)
- M Ehrmann
- Fakultät für Biologie, Universität Konstanz, Germany.
| | | | | | | | | |
Collapse
|