1
|
Identification of a Bidirectional Promoter from Trichoderma reesei and Its Application in Dual Gene Expression. J Fungi (Basel) 2022; 8:jof8101059. [PMID: 36294624 PMCID: PMC9604776 DOI: 10.3390/jof8101059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 10/03/2022] [Accepted: 10/08/2022] [Indexed: 11/17/2022] Open
Abstract
The cellulolytic filamentous fungus Trichoderma reesei has a strong capability in protein synthesis and secretion and is increasingly used as a fungal chassis for the production of heterologous proteins or secondary metabolites. However, bidirectional promoters that would significantly facilitate multiple genes’ expression have not been characterized in T. reesei. Herein, we show that a 767-bp intergenic region between two polyketide synthase encoding genes that were involved in the biosynthesis of the typical yellow pigment served as a bidirectional promoter in T. reesei. This region was shown to be able to drive the simultaneous expression of two fluorescence reporter genes when fused to each end. Quantitative RT-PCR analysis demonstrated that the driving strength of this bidirectional promoter from each direction reached about half of that of the commonly used promoter PgpdA. Moreover, the co-expression of two cellulase genes driven by this bidirectional promoter enabled T. reesei to produce cellulases on glucose and improved the total cellulase activities with cellulose Avicel as the carbon source. Our work identified the first bidirectional promoter in T. reesei, which would facilitate gene co-expression and find applications in synthetic biology using fungal systems.
Collapse
|
2
|
Nardone V, Chaves-Sanjuan A, Lapi M, Airoldi C, Saponaro A, Pasqualato S, Dolfini D, Camilloni C, Bernardini A, Gnesutta N, Mantovani R, Nardini M. Structural Basis of Inhibition of the Pioneer Transcription Factor NF-Y by Suramin. Cells 2020; 9:E2370. [PMID: 33138093 PMCID: PMC7692634 DOI: 10.3390/cells9112370] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/25/2020] [Accepted: 10/26/2020] [Indexed: 12/27/2022] Open
Abstract
NF-Y is a transcription factor (TF) comprising three subunits (NF-YA, NF-YB, NF-YC) that binds with high specificity to the CCAAT sequence, a widespread regulatory element in gene promoters of prosurvival, cell-cycle-promoting, and metabolic genes. Tumor cells undergo "metabolic rewiring" through overexpression of genes involved in such pathways, many of which are under NF-Y control. In addition, NF-YA appears to be overexpressed in many tumor types. Thus, limiting NF-Y activity may represent a desirable anti-cancer strategy, which is an ongoing field of research. With virtual-screening docking simulations on a library of pharmacologically active compounds, we identified suramin as a potential NF-Y inhibitor. We focused on suramin given its high water-solubility that is an important factor for in vitro testing, since NF-Y is sensitive to DMSO. By electrophoretic mobility shift assays (EMSA), isothermal titration calorimetry (ITC), STD NMR, X-ray crystallography, and molecular dynamics (MD) simulations, we showed that suramin binds to the histone fold domains (HFDs) of NF-Y, preventing DNA-binding. Our analyses, provide atomic-level detail on the interaction between suramin and NF-Y and reveal a region of the protein, nearby the suramin-binding site and poorly conserved in other HFD-containing TFs, that may represent a promising starting point for rational design of more specific and potent inhibitors with potential therapeutic applications.
Collapse
Affiliation(s)
- Valentina Nardone
- Department of Biosciences, University of Milano, Via Celoria 26, 20133 Milano, Italy; (V.N.); (A.C.-S.); (M.L.); (A.S.); (D.D.); (C.C.); (A.B.); (N.G.); (R.M.)
| | - Antonio Chaves-Sanjuan
- Department of Biosciences, University of Milano, Via Celoria 26, 20133 Milano, Italy; (V.N.); (A.C.-S.); (M.L.); (A.S.); (D.D.); (C.C.); (A.B.); (N.G.); (R.M.)
| | - Michela Lapi
- Department of Biosciences, University of Milano, Via Celoria 26, 20133 Milano, Italy; (V.N.); (A.C.-S.); (M.L.); (A.S.); (D.D.); (C.C.); (A.B.); (N.G.); (R.M.)
| | - Cristina Airoldi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy;
| | - Andrea Saponaro
- Department of Biosciences, University of Milano, Via Celoria 26, 20133 Milano, Italy; (V.N.); (A.C.-S.); (M.L.); (A.S.); (D.D.); (C.C.); (A.B.); (N.G.); (R.M.)
| | - Sebastiano Pasqualato
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Via Adamello 16, 20139 Milan, Italy;
| | - Diletta Dolfini
- Department of Biosciences, University of Milano, Via Celoria 26, 20133 Milano, Italy; (V.N.); (A.C.-S.); (M.L.); (A.S.); (D.D.); (C.C.); (A.B.); (N.G.); (R.M.)
| | - Carlo Camilloni
- Department of Biosciences, University of Milano, Via Celoria 26, 20133 Milano, Italy; (V.N.); (A.C.-S.); (M.L.); (A.S.); (D.D.); (C.C.); (A.B.); (N.G.); (R.M.)
| | - Andrea Bernardini
- Department of Biosciences, University of Milano, Via Celoria 26, 20133 Milano, Italy; (V.N.); (A.C.-S.); (M.L.); (A.S.); (D.D.); (C.C.); (A.B.); (N.G.); (R.M.)
| | - Nerina Gnesutta
- Department of Biosciences, University of Milano, Via Celoria 26, 20133 Milano, Italy; (V.N.); (A.C.-S.); (M.L.); (A.S.); (D.D.); (C.C.); (A.B.); (N.G.); (R.M.)
| | - Roberto Mantovani
- Department of Biosciences, University of Milano, Via Celoria 26, 20133 Milano, Italy; (V.N.); (A.C.-S.); (M.L.); (A.S.); (D.D.); (C.C.); (A.B.); (N.G.); (R.M.)
| | - Marco Nardini
- Department of Biosciences, University of Milano, Via Celoria 26, 20133 Milano, Italy; (V.N.); (A.C.-S.); (M.L.); (A.S.); (D.D.); (C.C.); (A.B.); (N.G.); (R.M.)
| |
Collapse
|
3
|
Pathak A, Nowell RW, Wilson CG, Ryan MJ, Barraclough TG. Comparative genomics of Alexander Fleming's original Penicillium isolate (IMI 15378) reveals sequence divergence of penicillin synthesis genes. Sci Rep 2020; 10:15705. [PMID: 32973216 PMCID: PMC7515868 DOI: 10.1038/s41598-020-72584-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 09/03/2020] [Indexed: 11/18/2022] Open
Abstract
Antibiotics were derived originally from wild organisms and therefore understanding how these compounds evolve among different lineages might help with the design of new antimicrobial drugs. We report the draft genome sequence of Alexander Fleming's original fungal isolate behind the discovery of penicillin, now classified as Penicillium rubens Biourge (1923) (IMI 15378). We compare the structure of the genome and genes involved in penicillin synthesis with those in two 'high producing' industrial strains of P. rubens and the closely related species P. nalgiovense. The main effector genes for producing penicillin G (pcbAB, pcbC and penDE) show amino acid divergence between the Fleming strain and both industrial strains, whereas a suite of regulatory genes are conserved. Homologs of penicillin N effector genes cefD1 and cefD2 were also found and the latter displayed amino acid divergence between the Fleming strain and industrial strains. The draft assemblies contain several partial duplications of penicillin-pathway genes in all three P. rubens strains, to differing degrees, which we hypothesise might be involved in regulation of the pathway. The two industrial strains are identical in sequence across all effector and regulatory genes but differ in duplication of the pcbAB-pcbC-penDE complex and partial duplication of fragments of regulatory genes. We conclude that evolution in the wild encompassed both sequence changes of the effector genes and gene duplication, whereas human-mediated changes through mutagenesis and artificial selection led to duplication of the penicillin pathway genes.
Collapse
Affiliation(s)
- Ayush Pathak
- Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot, Berkshire, SL5 7PY, UK
| | - Reuben W Nowell
- Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot, Berkshire, SL5 7PY, UK
- Department of Zoology, University of Oxford, 11a Mansfield Rd, Oxford, OX1 3SZ, UK
| | - Christopher G Wilson
- Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot, Berkshire, SL5 7PY, UK
- Department of Zoology, University of Oxford, 11a Mansfield Rd, Oxford, OX1 3SZ, UK
| | | | - Timothy G Barraclough
- Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot, Berkshire, SL5 7PY, UK.
- Department of Zoology, University of Oxford, 11a Mansfield Rd, Oxford, OX1 3SZ, UK.
| |
Collapse
|
4
|
Dash A, Gurdaswani V, D'Souza JS, Ghag SB. Functional characterization of an inducible bidirectional promoter from Fusarium oxysporum f. sp. cubense. Sci Rep 2020; 10:2323. [PMID: 32047173 PMCID: PMC7012866 DOI: 10.1038/s41598-020-59159-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 01/16/2020] [Indexed: 01/27/2023] Open
Abstract
Bidirectional promoters (BDPs) are regulatory DNA sequences (~1000 bp long) intervening two genes arranged on opposite strands with their 5' ends in close proximity. These genes are mostly co-expressed; but, instances of anti-correlation and independent transcription have been observed. In fungal systems, BDPs have shown to provide an improved genetic circuit by assembling and regulating transcription of different genes of a common metabolic pathway. We have identified an intergenic region (1063 bp) from the genome of Fusarium oxysporum f. sp. cubense (Foc), a banana root pathogen. This intergenic region regulates the expression of a gene pair required for the breakdown of hemicellulose. For characterization, it was cloned into pCSN44 vector backbone between two reporter genes, namely β-glucuronidase (GUS) and enhanced green fluorescent protein (EGFP). The newly formed vector was transformed into Foc and tested for its bidirectional expression activity. Using histochemical staining and fluorescence microscopy, the kinetics for both, GUS and EGFP expression were tested under different growth conditions respectively. The activity was differentially regulated by inducers such as xylan, arabinogalactan and pectin. This is the first report on the isolation of the intergenic region with inducible bidirectional promoter activity from Fusarium. Characterization of such BDPs will find applications in genetic engineering, metabolic engineering and synthetic biology using fungal systems.
Collapse
Affiliation(s)
- Ashutosh Dash
- School of Biological Sciences, UM-DAE Centre for Excellence in Basic Sciences, Kalina campus, Santacruz (East), Mumbai, 400098, India
| | - Vartika Gurdaswani
- School of Biological Sciences, UM-DAE Centre for Excellence in Basic Sciences, Kalina campus, Santacruz (East), Mumbai, 400098, India
| | - Jacinta S D'Souza
- School of Biological Sciences, UM-DAE Centre for Excellence in Basic Sciences, Kalina campus, Santacruz (East), Mumbai, 400098, India
| | - Siddhesh B Ghag
- School of Biological Sciences, UM-DAE Centre for Excellence in Basic Sciences, Kalina campus, Santacruz (East), Mumbai, 400098, India.
| |
Collapse
|
5
|
The Putative Transcription Factor Gene thaB Regulates Cellulase and Xylanase Production at the Enzymatic and Transcriptional Level in the Fungus Talaromyces cellulolyticus. Appl Biochem Biotechnol 2019; 190:1360-1370. [PMID: 31773396 DOI: 10.1007/s12010-019-03190-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 11/11/2019] [Indexed: 12/17/2022]
Abstract
Talaromyces cellulolyticus is a promising strain for industrial cellulase production. In this study, the thaB gene, which is a homologue of the hap2/B gene in other filamentous fungi, was isolated and characterized. When grown in the presence of cellulose, culture supernatants of a thaB-disrupted strain (YDTha) exhibited decreased cellulase and xylanase enzymatic activities compared to the control strain. Furthermore, YDTha exhibited lower expression of the genes encoding cellulases and xylanases compared to the control strain. When cellobiose and lactose (soluble carbon sources) were used as carbon sources, the expression of the genes encoding cellulases and xylanases was decreased in both the YDTha and the control strains, though the expression levels in YDTha remained lower than those in the control strain. These results suggested that thaB has a positive role in cellulase and xylanase production in T. cellulolyticus.
Collapse
|
6
|
Wang BT, Yu XY, Zhu YJ, Zhuang M, Zhang ZM, Jin L, Jin FJ. Research progress on the basic helix-loop-helix transcription factors of Aspergillus species. ADVANCES IN APPLIED MICROBIOLOGY 2019; 109:31-59. [PMID: 31677646 DOI: 10.1016/bs.aambs.2019.09.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Basic helix-loop-helix (bHLH) proteins belong to a superfamily of transcription factors, and they are widely distributed in eukaryotic organisms. Members of the bHLH protein family can form homodimers or heterodimers with themselves or other family members, and they often play bifunctional roles as activators and repressors to uniquely regulate the transcription of downstream target genes. The bHLH transcription factors are usually involved in developmental processes, including cellular proliferation and differentiation. Therefore, these transcription factors often play crucial roles in regulating growth, development, and differentiation in eukaryotes. Aspergillus species fungi are widely distributed in the environment, and they play important roles not only in the decomposition of organic matter as an important environmental microorganism but also in the fermentation and the food processing industry. Furthermore, some pathogenic fungi, such as Aspergillus flavus and Aspergillus fumigatus, affect the environment and human health in important ways. Recent research has shown that some Aspergillus bHLH proteins are significantly involved in the regulation of asexual and sexual reproduction, secondary metabolite production, carbohydrate metabolism, conidial and sclerotial production, among other processes. Here, we review the regulatory mechanisms and biological functions of the bHLH transcription factors of the Aspergillus genus to provide a theoretical reference for further study on the growth and development of Aspergillus and the functions of bHLHs.
Collapse
Affiliation(s)
- Bao-Teng Wang
- College of Biology and the Environment, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Xing-Ye Yu
- College of Biology and the Environment, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Yun-Jia Zhu
- College of Biology and the Environment, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Miao Zhuang
- College of Biology and the Environment, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Zhi-Min Zhang
- College of Biology and the Environment, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Long Jin
- College of Biology and the Environment, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Feng-Jie Jin
- College of Biology and the Environment, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China.
| |
Collapse
|
7
|
Lv W, Wu J, Xu Z, Dai H, Ma Z, Wang Z. The putative histone-like transcription factor FgHltf1 is required for vegetative growth, sexual reproduction, and virulence in Fusarium graminearum. Curr Genet 2019; 65:981-994. [DOI: 10.1007/s00294-019-00953-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 02/18/2019] [Accepted: 02/20/2019] [Indexed: 12/19/2022]
|
8
|
Shekhova E, Ivanova L, Krüger T, Stroe MC, Macheleidt J, Kniemeyer O, Brakhage AA. Redox Proteomic Analysis Reveals Oxidative Modifications of Proteins by Increased Levels of Intracellular Reactive Oxygen Species during Hypoxia Adaptation of Aspergillus fumigatus. Proteomics 2019; 19:e1800339. [PMID: 30632700 DOI: 10.1002/pmic.201800339] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 12/20/2018] [Indexed: 12/28/2022]
Abstract
Aspergillus fumigatus faces abrupt changes in oxygen concentrations at the site of infection. An increasing number of studies has demonstrated that elevated production of intracellular reactive oxygen species (ROS) under low oxygen conditions plays a regulatory role in modulating cellular responses for adaptation to hypoxia. To learn more about this process in A. fumigatus, intracellular ROS production during hypoxia has been determined. The results confirm increased amounts of intracellular ROS in A. fumigatus exposed to decreased oxygen levels. Moreover, nuclear accumulation of the major oxidative stress regulator AfYap1 is observed after low oxygen cultivation. For further analysis, iodoTMT labeling of redox-sensitive cysteine residues is applied to identify proteins that are reversibly oxidized. This analysis reveals that proteins with important roles in maintaining redox balance and protein folding, such as the thioredoxin Asp f 29 and the disulfide-isomerase PdiA, undergo substantial thiol modification under hypoxia. The data also show that the mitochondrial respiratory complex IV assembly protein Coa6 is significantly oxidized by hypoxic ROS. Deletion of the corresponding gene results in a complete absence of hypoxic growth, indicating the importance of complex IV during adaptation of A. fumigatus to oxygen-limiting conditions.
Collapse
Affiliation(s)
- Elena Shekhova
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), Department of Microbiology and Molecular Biology, Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Lia Ivanova
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), Department of Microbiology and Molecular Biology, Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Thomas Krüger
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), Department of Microbiology and Molecular Biology, Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Maria C Stroe
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), Department of Microbiology and Molecular Biology, Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Juliane Macheleidt
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), Department of Microbiology and Molecular Biology, Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Olaf Kniemeyer
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), Department of Microbiology and Molecular Biology, Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Axel A Brakhage
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), Department of Microbiology and Molecular Biology, Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| |
Collapse
|
9
|
Chelius CL, Ribeiro LFC, Huso W, Kumar J, Lincoln S, Tran B, Goo YA, Srivastava R, Harris SD, Marten MR. Phosphoproteomic and transcriptomic analyses reveal multiple functions for Aspergillus nidulans MpkA independent of cell wall stress. Fungal Genet Biol 2019; 125:1-12. [PMID: 30639305 DOI: 10.1016/j.fgb.2019.01.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 12/18/2018] [Accepted: 01/04/2019] [Indexed: 12/17/2022]
Abstract
The protein kinase MpkA plays a prominent role in the cell wall integrity signaling (CWIS) pathway, acting as the terminal MAPK activating expression of genes which encode cell wall biosynthetic enzymes and other repair functions. Numerous studies focus on MpkA function during cell wall perturbation. Here, we focus on the role MpkA plays outside of cell wall stress, during steady state growth. In an effort to seek other, as yet unknown, connections to this pathway, an mpkA deletion mutant (ΔmpkA) was subjected to phosphoproteomic and transcriptomic analysis. When compared to the control (isogenic parent of ΔmpkA), there is strong evidence suggesting MpkA is involved with maintaining cell wall strength, branching regulation, and the iron starvation pathway, among others. Particle-size analysis during shake flask growth revealed ΔmpkA mycelia were about 4 times smaller than the control strain and more than 90 cell wall related genes show significantly altered expression levels. The deletion mutant had a significantly higher branching rate than the control and phosphoproteomic results show putative branching-regulation proteins, such as CotA, LagA, and Cdc24, have a significantly different level of phosphorylation. When grown in iron limited conditions, ΔmpkA had no difference in growth rate or production of siderophores, whereas the control strain showed decreased growth rate and increased siderophore production. Transcriptomic data revealed over 25 iron related genes with altered transcript levels. Results suggest MpkA is involved with regulation of broad cellular functions in the absence of stress.
Collapse
Affiliation(s)
- Cynthia L Chelius
- Department of Chemical, Biochemical, and Environmental Engineering, University of Maryland Baltimore County, Baltimore, MD 21250, United States
| | - Liliane F C Ribeiro
- Department of Chemical, Biochemical, and Environmental Engineering, University of Maryland Baltimore County, Baltimore, MD 21250, United States
| | - Walker Huso
- Department of Chemical, Biochemical, and Environmental Engineering, University of Maryland Baltimore County, Baltimore, MD 21250, United States
| | - Jyothi Kumar
- Center for Plant Science Innovation and Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, NE 68588, United States
| | - Stephen Lincoln
- Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, CT 06269, United States
| | - Bao Tran
- Mass Spectrometry Center, University of Maryland School of Pharmacy, Baltimore, MD, 21201, United States
| | - Young Ah Goo
- Mass Spectrometry Center, University of Maryland School of Pharmacy, Baltimore, MD, 21201, United States
| | - Ranjan Srivastava
- Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, CT 06269, United States
| | - Steven D Harris
- Center for Plant Science Innovation and Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, NE 68588, United States
| | - Mark R Marten
- Department of Chemical, Biochemical, and Environmental Engineering, University of Maryland Baltimore County, Baltimore, MD 21250, United States.
| |
Collapse
|
10
|
Induction of Mitochondrial Reactive Oxygen Species Production by Itraconazole, Terbinafine, and Amphotericin B as a Mode of Action against Aspergillus fumigatus. Antimicrob Agents Chemother 2017; 61:AAC.00978-17. [PMID: 28848005 DOI: 10.1128/aac.00978-17] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 08/20/2017] [Indexed: 12/16/2022] Open
Abstract
Drug resistance in fungal pathogens is of incredible importance to global health, yet the mechanisms of drug action remain only loosely defined. Antifungal compounds have been shown to trigger the intracellular accumulation of reactive oxygen species (ROS) in human-pathogenic yeasts, but the source of those ROS remained unknown. In the present study, we examined the role of endogenous ROS for the antifungal activity of the three different antifungal substances itraconazole, terbinafine, and amphotericin B, which all target the fungal cell membrane. All three antifungals had an impact on fungal redox homeostasis by causing increased intracellular ROS production. Interestingly, the elevated ROS levels induced by antifungals were abolished by inhibition of the mitochondrial respiratory complex I with rotenone. Further, evaluation of lipid peroxidation using the thiobarbituric acid assay revealed that rotenone pretreatment decreased ROS-induced lipid peroxidation during incubation of Aspergillus fumigatus with itraconazole and terbinafine. By applying the mitochondrion-specific lipid peroxidation probe MitoPerOx, we also confirmed that ROS are induced in mitochondria and subsequently cause significant oxidation of mitochondrial membrane in the presence of terbinafine and amphotericin B. To summarize, our study suggests that the induction of ROS production contributes to the ability of antifungal compounds to inhibit fungal growth. Moreover, mitochondrial complex I is the main source of deleterious ROS production in A. fumigatus challenged with antifungal compounds.
Collapse
|
11
|
Valiante V, Mattern DJ, Schüffler A, Horn F, Walther G, Scherlach K, Petzke L, Dickhaut J, Guthke R, Hertweck C, Nett M, Thines E, Brakhage AA. Discovery of an Extended Austinoid Biosynthetic Pathway in Aspergillus calidoustus. ACS Chem Biol 2017; 12:1227-1234. [PMID: 28233494 DOI: 10.1021/acschembio.7b00003] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Filamentous fungi produce a wide range of natural products that are commonly used in various industrial contexts (e.g., pharmaceuticals and insecticides). Meroterpenoids are natural products of interest because of their various biological activities. Among the meroterpenoids, there is a group of insecticidal compounds known as the austinoids. These compounds have also been studied because of their intriguing spiro-lactone ring formation along with various modifications. Here, we present an extension of the original austinol/dehydroaustinol biosynthesis pathway from Aspergillus nidulans in the recently identified filamentous fungus Aspergillus calidoustus. Besides the discovery and elucidation of further derivatives, genome mining led to the discovery of new putative biosynthetic genes. The genes involved in the biosynthesis of later austinoid products were characterized, and among them was a second polyketide synthase gene in the A. calidoustus cluster that was unusual because it was a noninterative polyketide synthase producing a diketide. This diketide product was then loaded onto the austinoid backbone, resulting in a new insecticidal derivative, calidodehydroaustin.
Collapse
Affiliation(s)
| | | | - Anja Schüffler
- Institute of Biotechnology and Drug Research, Erwin-Schroedinger-Strasse 56, 67663 Kaiserslautern, Germany
- Johannes-Gutenberg-University Mainz, Institute of Biotechnology, Johann-Joachim-Becherweg 15, 55128 Mainz, Germany
| | | | | | | | | | | | | | | | | | - Eckhard Thines
- Institute of Biotechnology and Drug Research, Erwin-Schroedinger-Strasse 56, 67663 Kaiserslautern, Germany
- Johannes-Gutenberg-University Mainz, Institute of Biotechnology, Johann-Joachim-Becherweg 15, 55128 Mainz, Germany
| | | |
Collapse
|
12
|
Ziemons S, Koutsantas K, Becker K, Dahlmann T, Kück U. Penicillin production in industrial strain Penicillium chrysogenum P2niaD18 is not dependent on the copy number of biosynthesis genes. BMC Biotechnol 2017; 17:16. [PMID: 28209150 PMCID: PMC5314624 DOI: 10.1186/s12896-017-0335-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 02/09/2017] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Multi-copy gene integration into microbial genomes is a conventional tool for obtaining improved gene expression. For Penicillium chrysogenum, the fungal producer of the beta-lactam antibiotic penicillin, many production strains carry multiple copies of the penicillin biosynthesis gene cluster. This discovery led to the generally accepted view that high penicillin titers are the result of multiple copies of penicillin genes. Here we investigated strain P2niaD18, a production line that carries only two copies of the penicillin gene cluster. RESULTS We performed pulsed-field gel electrophoresis (PFGE), quantitative qRT-PCR, and penicillin bioassays to investigate production, deletion and overexpression strains generated in the P. chrysogenum P2niaD18 background, in order to determine the copy number of the penicillin biosynthesis gene cluster, and study the expression of one penicillin biosynthesis gene, and the penicillin titer. Analysis of production and recombinant strain showed that the enhanced penicillin titer did not depend on the copy number of the penicillin gene cluster. Our assumption was strengthened by results with a penicillin null strain lacking pcbC encoding isopenicillin N synthase. Reintroduction of one or two copies of the cluster into the pcbC deletion strain restored transcriptional high expression of the pcbC gene, but recombinant strains showed no significantly different penicillin titer compared to parental strains. CONCLUSIONS Here we present a molecular genetic analysis of production and recombinant strains in the P2niaD18 background carrying different copy numbers of the penicillin biosynthesis gene cluster. Our analysis shows that the enhanced penicillin titer does not strictly depend on the copy number of the cluster. Based on these overall findings, we hypothesize that instead, complex regulatory mechanisms are prominently implicated in increased penicillin biosynthesis in production strains.
Collapse
Affiliation(s)
- Sandra Ziemons
- Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr-Universität Bochum, ND7/131, Universitätsstraße 150, 44780, Bochum, Germany
| | - Katerina Koutsantas
- Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr-Universität Bochum, ND7/131, Universitätsstraße 150, 44780, Bochum, Germany
| | - Kordula Becker
- Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr-Universität Bochum, ND7/131, Universitätsstraße 150, 44780, Bochum, Germany
| | - Tim Dahlmann
- Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr-Universität Bochum, ND7/131, Universitätsstraße 150, 44780, Bochum, Germany
| | - Ulrich Kück
- Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr-Universität Bochum, ND7/131, Universitätsstraße 150, 44780, Bochum, Germany.
| |
Collapse
|
13
|
Hortschansky P, Haas H, Huber EM, Groll M, Brakhage AA. The CCAAT-binding complex (CBC) in Aspergillus species. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1860:560-570. [PMID: 27939757 DOI: 10.1016/j.bbagrm.2016.11.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 11/25/2016] [Accepted: 11/26/2016] [Indexed: 11/30/2022]
Abstract
BACKGROUND The CCAAT binding complex (CBC), consisting of a heterotrimeric core structure, is highly conserved in eukaryotes and constitutes an important general transcriptional regulator. Scope of the review. In this review we discuss the scientific history and the current state of knowledge of the multiple gene regulatory functions, protein motifs and structure of the CBC in fungi with a special focus on Aspergillus species. Major conclusions and general significance. Initially identified as a transcriptional activator of respiration in Saccharomyces cerevisiae, in other fungal species the CBC was found to be involved in highly diverse pathways, but a general rationale for its involvement was missing. Subsequently, the CBC was found to sense reactive oxygen species through oxidative modifications of cysteine residues in order to mediate redox regulation. Moreover, via interaction with the iron-sensing bZIP transcription factor HapX, the CBC was shown to mediate adaptation to both iron starvation and iron excess. Due to the control of various pathways in primary and secondary metabolism the CBC is of crucial importance for fungal virulence in both animal and plant hosts as well as antifungal resistance. Consequently, CBC-mediated control affects biological processes that are of high interest in biotechnology, agriculture and infection medicine. This article is part of a Special Issue entitled: Nuclear Factor Y in Development and Disease, edited by Prof. Roberto Mantovani.
Collapse
Affiliation(s)
- Peter Hortschansky
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Beutenbergstr. 11a, D-07745, Jena, Germany
| | - Hubertus Haas
- Division of Molecular Biology, Biocenter, Medical University of Innsbruck, Innrain 80-82, A6020 Innsbruck, Austria
| | - Eva M Huber
- Center for Integrated Protein Science Munich at the Department Chemistry, Technische Universität München, Lichtenbergstr. 4, D-85748, Garching, Germany
| | - Michael Groll
- Center for Integrated Protein Science Munich at the Department Chemistry, Technische Universität München, Lichtenbergstr. 4, D-85748, Garching, Germany
| | - Axel A Brakhage
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Beutenbergstr. 11a, D-07745, Jena, Germany; Department of Microbiology and Molecular Biology, Friedrich Schiller University (FSU), D-07745 Jena, Germany.
| |
Collapse
|
14
|
Nardone V, Chaves-Sanjuan A, Nardini M. Structural determinants for NF-Y/DNA interaction at the CCAAT box. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1860:571-580. [PMID: 27677949 DOI: 10.1016/j.bbagrm.2016.09.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 09/22/2016] [Accepted: 09/23/2016] [Indexed: 12/26/2022]
Abstract
The recently determined crystal structures of the sequence-specific transcription factor NF-Y have illuminated the structural mechanism underlying transcription at the CCAAT box. NF-Y is a trimeric protein complex composed by the NF-YA, NF-YB, and NF-YC subunits. NF-YB and NF-YC contain a histone-like domain and assemble on a head-to-tail fashion to form a dimer, which provides the structural scaffold for the DNA sugar-phosphate backbone binding (mimicking the nucleosome H2A/H2B-DNA assembly) and for the interaction with NF-YA. The NF-YA subunit hosts two structurally extended α-helices; one is involved in NF-YB/NF-YC binding and the other inserts deeply into the DNA minor groove, providing exquisite sequence-specificity for recognition and binding of the CCAAT box. The analysis of these structural data is expected to serve as a powerful guide for future experiments aimed at understanding the role of post-translational modification at NF-Y regulation sites and to unravel the three-dimensional architecture of higher order complexes formed between NF-Y and other transcription factors that act synergistically for transcription activation. Moreover, these structures represent an excellent starting point to challenge the formation of a stable hybrid nucleosome between NF-Y and core histone proteins, and to rationalize the fine molecular details associated with the wide combinatorial association of plant NF-Y subunits. This article is part of a Special Issue entitled: Nuclear Factor Y in Development and Disease, edited by Prof. Roberto Mantovani.
Collapse
Affiliation(s)
- Valentina Nardone
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
| | - Antonio Chaves-Sanjuan
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
| | - Marco Nardini
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy.
| |
Collapse
|
15
|
Identification of the antiphagocytic trypacidin gene cluster in the human-pathogenic fungus Aspergillus fumigatus. Appl Microbiol Biotechnol 2015; 99:10151-61. [PMID: 26278536 DOI: 10.1007/s00253-015-6898-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Revised: 07/26/2015] [Accepted: 07/29/2015] [Indexed: 12/30/2022]
Abstract
The opportunistic human pathogen Aspergillus fumigatus produces numerous different natural products. The genetic basis for the biosynthesis of a number of known metabolites has remained unknown. The gene cluster encoding for the biosynthesis of the conidia-bound metabolite trypacidin is of particular interest because of its antiprotozoal activity and possible role in the infection process. Here, we show that the genes encoding the biosynthesis enzymes of trypacidin reside within an orphan gene cluster in A. fumigatus. Genome mining identified tynC as an uncharacterized polyketide synthase with high similarity to known enzymes, whose products are structurally related to trypacidin including endocrocin and fumicycline. Gene deletion of tynC resulted in the complete absence of trypacidin production, which was fully restored when the mutant strain was complemented with the wild-type gene. When confronted with macrophages, the tynC deletion mutant conidia were more frequently phagocytosed than those of the parental wild-type strain. This was also found for phagocytic amoebae of the species Dictyostelium discoideum, which showed increased phagocytosis of ΔtynC conidia. Both macrophages and amoebae were also sensitive to trypacidin. Therefore, our results suggest that the conidium-bound trypacidin could have a protective function against phagocytes both in the environment and during the infection process.
Collapse
|
16
|
|
17
|
Distinct amino acids of histone H3 control secondary metabolism in Aspergillus nidulans. Appl Environ Microbiol 2013; 79:6102-9. [PMID: 23892751 DOI: 10.1128/aem.01578-13] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Chromatin remodelling events play an important role in the secondary metabolism of filamentous fungi. Previously, we showed that a bacterium, Streptomyces rapamycinicus, is able to reprogram the histone-modifying Spt-Ada-Gcn5-acetyltransferase/ADA (SAGA/ADA) complex of the model fungus Aspergillus nidulans. Consequently, the histone H3 amino acids lysine 9 and lysine 14 at distinct secondary metabolism genes were specifically acetylated during the bacterial fungal interaction, which, furthermore, was associated with the activation of the otherwise silent orsellinic acid gene cluster. To investigate the importance of the histone modifications for distinct gene expression profiles in fungal secondary metabolism, we exchanged several amino acids of histone H3 of A. nidulans. These amino acids included lysine residues 9, 14, 18, and 23 as well as serine 10 and threonine 11. Lysine residues were replaced by arginine or glutamine residues, and serine/threonine residues were replaced by alanine. All generated mutant strains were viable, allowing direct analysis of the consequences of missing posttranslational histone modifications. In the mutant strains, major changes in the expression patterns at both the transcriptional and metabolite levels of the penicillin, sterigmatocystin, and orsellinic acid biosynthesis gene clusters were detected. These effects were due mainly to the substitution of the acetylatable lysine 14 of histone H3 and were enhanced in a lysine 14/lysine 9 double mutant of histone H3. Taken together, our findings show a causal linkage between the acetylation of lysine residue 14 of histone H3 and the transcription and product formation of secondary metabolite gene clusters.
Collapse
|
18
|
Paradkar A, Jensen S, Mosher R. Comparative Genetics and Molecular Biology of ß-Lactam Biosynthesis. ACTA ACUST UNITED AC 2013. [DOI: 10.1201/b14856-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
|
19
|
Huber E, Scharf D, Hortschansky P, Groll M, Brakhage A. DNA Minor Groove Sensing and Widening by the CCAAT-Binding Complex. Structure 2012; 20:1757-68. [DOI: 10.1016/j.str.2012.07.012] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Revised: 07/24/2012] [Accepted: 07/27/2012] [Indexed: 10/28/2022]
|
20
|
Domínguez-Santos R, Martín JF, Kosalková K, Prieto C, Ullán RV, García-Estrada C. The regulatory factor PcRFX1 controls the expression of the three genes of β-lactam biosynthesis in Penicillium chrysogenum. Fungal Genet Biol 2012; 49:866-81. [PMID: 22960281 DOI: 10.1016/j.fgb.2012.08.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Revised: 08/02/2012] [Accepted: 08/04/2012] [Indexed: 10/27/2022]
Abstract
Penicillin biosynthesis is subjected to a complex regulatory network of signalling molecules that may serve as model for other secondary metabolites. The information provided by the new "omics" era about Penicillium chrysogenum and the advances in the knowledge of molecular mechanisms responsible for improved productivity, make this fungus an excellent model to decipher the mechanisms controlling the penicillin biosynthetic pathway. In this work, we have characterized a novel transcription factor PcRFX1, which is an ortholog of the Acremonium chrysogenum CPCR1 and Penicillium marneffei RfxA regulatory proteins. PcRFX1 DNA binding sequences were found in the promoter region of the pcbAB, pcbC and penDE genes. We show in this article that these motifs control the expression of the β-galactosidase lacZ reporter gene, indicating that they may direct the PcRFX1-mediated regulation of the penicillin biosynthetic genes. By means of Pcrfx1 gene knock-down and overexpression techniques we confirmed that PcRFX1 controls penicillin biosynthesis through the regulation of the pcbAB, pcbC and penDE transcription. Morphology and development seemed not to be controlled by this transcription factor under the conditions studied and only sporulation was slightly reduced after the silencing of the Pcrfx1 gene. A genome-wide analysis of processes putatively regulated by this transcription factor was carried out in P. chrysogenum. Results suggested that PcRFX1, in addition to regulate penicillin biosynthesis, is also involved in the control of several pathways of primary metabolism.
Collapse
Affiliation(s)
- Rebeca Domínguez-Santos
- Área de Microbiología, Departamento de Biología Molecular, Universidad de León, 24071 León, Spain
| | | | | | | | | | | |
Collapse
|
21
|
Bacteria-induced natural product formation in the fungus Aspergillus nidulans requires Saga/Ada-mediated histone acetylation. Proc Natl Acad Sci U S A 2011; 108:14282-7. [PMID: 21825172 DOI: 10.1073/pnas.1103523108] [Citation(s) in RCA: 234] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Sequence analyses of fungal genomes have revealed that the potential of fungi to produce secondary metabolites is greatly underestimated. In fact, most gene clusters coding for the biosynthesis of antibiotics, toxins, or pigments are silent under standard laboratory conditions. Hence, it is one of the major challenges in microbiology to uncover the mechanisms required for pathway activation. Recently, we discovered that intimate physical interaction of the important model fungus Aspergillus nidulans with the soil-dwelling bacterium Streptomyces rapamycinicus specifically activated silent fungal secondary metabolism genes, resulting in the production of the archetypal polyketide orsellinic acid and its derivatives. Here, we report that the streptomycete triggers modification of fungal histones. Deletion analysis of 36 of 40 acetyltransferases, including histone acetyltransferases (HATs) of A. nidulans, demonstrated that the Saga/Ada complex containing the HAT GcnE and the AdaB protein is required for induction of the orsellinic acid gene cluster by the bacterium. We also showed that Saga/Ada plays a major role for specific induction of other biosynthesis gene clusters, such as sterigmatocystin, terrequinone, and penicillin. Chromatin immunoprecipitation showed that the Saga/Ada-dependent increase of histone 3 acetylation at lysine 9 and 14 occurs during interaction of fungus and bacterium. Furthermore, the production of secondary metabolites in A. nidulans is accompanied by a global increase in H3K14 acetylation. Increased H3K9 acetylation, however, was only found within gene clusters. This report provides previously undescribed evidence of Saga/Ada dependent histone acetylation triggered by prokaryotes.
Collapse
|
22
|
Yin W, Keller NP. Transcriptional regulatory elements in fungal secondary metabolism. J Microbiol 2011; 49:329-39. [PMID: 21717315 DOI: 10.1007/s12275-011-1009-1] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Accepted: 03/15/2011] [Indexed: 01/19/2023]
Abstract
Filamentous fungi produce a variety of secondary metabolites of diverse beneficial and detrimental activities to humankind. The genes required for a given secondary metabolite are typically arranged in a gene cluster. There is considerable evidence that secondary metabolite gene regulation is, in part, by transcriptional control through hierarchical levels of transcriptional regulatory elements involved in secondary metabolite cluster regulation. Identification of elements regulating secondary metabolism could potentially provide a means of increasing production of beneficial metabolites, decreasing production of detrimental metabolites, aid in the identification of 'silent' natural products and also contribute to a broader understanding of molecular mechanisms by which secondary metabolites are produced. This review summarizes regulation of secondary metabolism associated with transcriptional regulatory elements from a broad view as well as the tremendous advances in discovery of cryptic or novel secondary metabolites by genomic mining.
Collapse
Affiliation(s)
- Wenbing Yin
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | |
Collapse
|
23
|
Multifactorial induction of an orphan PKS-NRPS gene cluster in Aspergillus terreus. ACTA ACUST UNITED AC 2011; 18:198-209. [PMID: 21236704 DOI: 10.1016/j.chembiol.2010.12.011] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2010] [Revised: 11/16/2010] [Accepted: 12/13/2010] [Indexed: 12/26/2022]
Abstract
Mining the genome of the pathogenic fungus Aspergillus terreus revealed the presence of an orphan polyketide-nonribosomal-peptide synthetase (PKS-NRPS) gene cluster. Induced expression of the transcriptional activator gene adjacent to the PKS-NRPS gene was not sufficient for the activation of the silent pathway. Monitoring gene expression, metabolic profiling, and using a lacZ reporter strain allowed for the systematic investigation of physiological conditions that eventually led to the discovery of isoflavipucine and dihydroisoflavipucine. Phytotoxin formation is only activated in the presence of certain amino acids, stimulated at alkaline pH, but strictly repressed in the presence of glucose. Global carbon catabolite repression by CreA cannot be abolished by positive-acting factors such as PacC and overrides the pathway activator. Gene inactivation and stable isotope labeling experiments unveiled the molecular basis for flavipucine/fruit rot toxin biosynthesis.
Collapse
|
24
|
Thön M, Al Abdallah Q, Hortschansky P, Scharf DH, Eisendle M, Haas H, Brakhage AA. The CCAAT-binding complex coordinates the oxidative stress response in eukaryotes. Nucleic Acids Res 2009; 38:1098-113. [PMID: 19965775 PMCID: PMC2831313 DOI: 10.1093/nar/gkp1091] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The heterotrimeric CCAAT-binding complex is evolutionary conserved in eukaryotic organisms. The corresponding Aspergillus nidulans CCAAT- binding factor (AnCF) consists of the subunits HapB, HapC and HapE. All of the three subunits are necessary for DNA binding. Here, we demonstrate that AnCF senses the redox status of the cell via oxidative modification of thiol groups within the histone fold motif of HapC. Mutational and in vitro interaction analyses revealed that two of these cysteine residues are indispensable for stable HapC/HapE subcomplex formation and high-affinity DNA binding of AnCF. Oxidized HapC is unable to participate in AnCF assembly and localizes in the cytoplasm, but can be recycled by the thioredoxin system in vitro and in vivo. Furthermore, deletion of the hapC gene led to an impaired oxidative stress response. Therefore, the central transcription factor AnCF is regulated at the post-transcriptional level by the redox status of the cell serving for a coordinated activation and deactivation of antioxidative defense mechanisms including the specific transcriptional activator NapA, production of enzymes such as catalase, thioredoxin or peroxiredoxin, and maintenance of a distinct glutathione homeostasis. The underlying fine-tuned mechanism very likely represents a general feature of the CCAAT-binding complexes in eukaryotes.
Collapse
Affiliation(s)
- Marcel Thön
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Beutenbergstrasse 11a, D-07745 Jena, Germany
| | | | | | | | | | | | | |
Collapse
|
25
|
Spröte P, Hynes MJ, Hortschansky P, Shelest E, Scharf DH, Wolke SM, Brakhage AA. Identification of the novel penicillin biosynthesis gene aatB of Aspergillus nidulans and its putative evolutionary relationship to this fungal secondary metabolism gene cluster. Mol Microbiol 2008; 70:445-61. [PMID: 18942174 DOI: 10.1111/j.1365-2958.2008.06422.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The final step of penicillin biosynthesis in the filamentous fungus Aspergillus nidulans is catalysed by isopenicillin N acyltransferase encoded by the aatA gene. Because there is no bacterial homologue, its evolutionary origin remained obscure. As shown here,disruption of aatA still enabled penicillin production. Genome mining led to the discovery of the aatB gene(AN6775.3) which has a similar structure and expression pattern as aatA. Disruption of aatB resulted in a reduced penicillin titre. Surface plasmon resonance analysis and Northern blot analysis indicated that the promoters of both aatA and aatB are bound and regulated by the same transcription factors AnCF and AnBH1f. In contrast to aatA, aatB does not encode a peroxisomal targeting signal (PTS1). Overexpression of a mutated aatB(PTS1) gene in an aatA-disruption strain(leading to peroxisomal localization of AatB)increased the penicillin titre more than overexpression of the wild-type aatB. Homologues of aatA are exclusively part of the penicillin biosynthesis gene cluster,whereas aatB homologues also exist in non-producing fungi. Our findings suggest that aatB is a paralogue of aatA. They extend the model of evolution of the penicillin biosynthesis gene cluster by recruitment of a biosynthesis gene and its cis-regulatory sites upon gene duplication.
Collapse
Affiliation(s)
- Petra Spröte
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology, 07745 Jena, Germany
| | | | | | | | | | | | | |
Collapse
|
26
|
Aspergillus nidulans natural product biosynthesis is regulated by mpkB, a putative pheromone response mitogen-activated protein kinase. Appl Environ Microbiol 2008; 74:3596-600. [PMID: 18378656 DOI: 10.1128/aem.02842-07] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Aspergillus nidulans putative mitogen-activated protein kinase encoded by mpkB has a role in natural product biosynthesis. An mpkB mutant exhibited a decrease in sterigmatocystin gene expression and low mycotoxin levels. The mutation also affected the expression of genes involved in penicillin and terrequinone A synthesis. mpkB was necessary for normal expression of laeA, which has been found to regulate secondary metabolism gene clusters.
Collapse
|
27
|
Hortschansky P, Eisendle M, Al-Abdallah Q, Schmidt AD, Bergmann S, Thön M, Kniemeyer O, Abt B, Seeber B, Werner ER, Kato M, Brakhage AA, Haas H. Interaction of HapX with the CCAAT-binding complex--a novel mechanism of gene regulation by iron. EMBO J 2007; 26:3157-68. [PMID: 17568774 PMCID: PMC1914100 DOI: 10.1038/sj.emboj.7601752] [Citation(s) in RCA: 183] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2006] [Accepted: 05/16/2007] [Indexed: 11/08/2022] Open
Abstract
Iron homeostasis requires subtle control systems, as iron is both essential and toxic. In Aspergillus nidulans, iron represses iron acquisition via the GATA factor SreA, and induces iron-dependent pathways at the transcriptional level, by a so far unknown mechanism. Here, we demonstrate that iron-dependent pathways (e.g., heme biosynthesis) are repressed during iron-depleted conditions by physical interaction of HapX with the CCAAT-binding core complex (CBC). Proteome analysis identified putative HapX targets. Mutual transcriptional control between hapX and sreA and synthetic lethality resulting from deletion of both regulatory genes indicate a tight interplay of these control systems. Expression of genes encoding CBC subunits was not influenced by iron availability, and their deletion was deleterious during iron-depleted and iron-replete conditions. Expression of hapX was repressed by iron and its deletion was deleterious during iron-depleted conditions only. These data indicate that the CBC has a general role and that HapX function is confined to iron-depleted conditions. Remarkably, CBC-mediated regulation has an inverse impact on the expression of the same gene set in A. nidulans, compared with Saccharomyces cerevisae.
Collapse
Affiliation(s)
- Peter Hortschansky
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology (HKI), and Friedrich-Schiller-University Jena, Jena, Germany
| | - Martin Eisendle
- Division of Molecular Biology, Biocenter, Innsbruck Medical University, Innsbruck, Austria
| | - Qusai Al-Abdallah
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology (HKI), and Friedrich-Schiller-University Jena, Jena, Germany
| | - André D Schmidt
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology (HKI), and Friedrich-Schiller-University Jena, Jena, Germany
| | - Sebastian Bergmann
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology (HKI), and Friedrich-Schiller-University Jena, Jena, Germany
| | - Marcel Thön
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology (HKI), and Friedrich-Schiller-University Jena, Jena, Germany
| | - Olaf Kniemeyer
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology (HKI), and Friedrich-Schiller-University Jena, Jena, Germany
| | - Beate Abt
- Division of Molecular Biology, Biocenter, Innsbruck Medical University, Innsbruck, Austria
| | - Birgit Seeber
- Division of Molecular Biology, Biocenter, Innsbruck Medical University, Innsbruck, Austria
| | - Ernst R Werner
- Division of Biological Chemistry, Biocenter, Innsbruck Medical University, Innsbruck, Austria
| | - Masashi Kato
- Department of Biological Mechanisms and Functions, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Axel A Brakhage
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology (HKI), and Friedrich-Schiller-University Jena, Jena, Germany
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology (HKI), and Friedrich-Schiller-University Jena, Beutenbergstrasse 11a, 07745 Jena, Germany. Tel.: +49 3641 656601; Fax: +49 3641 656603; E-mail:
| | - Hubertus Haas
- Division of Molecular Biology, Biocenter, Innsbruck Medical University, Innsbruck, Austria
- Division of Molecular Biology, Biocenter, Innsbruck Medical University, Fritz-Pregl-Strasse 3, 6020 Innsbruck, Austria. Tel.: +43 512 9003 70205; Fax: +43 512 9003 73100; E-mail:
| |
Collapse
|
28
|
Spröte P, Brakhage AA. The light-dependent regulator velvet A of Aspergillus nidulans acts as a repressor of the penicillin biosynthesis. Arch Microbiol 2007; 188:69-79. [PMID: 17375284 DOI: 10.1007/s00203-007-0224-y] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2006] [Revised: 01/19/2007] [Accepted: 02/05/2007] [Indexed: 02/05/2023]
Abstract
The biosynthesis of the beta-lactam antibiotic penicillin in Aspergillus nidulans is catalysed by three enzymes that are encoded by the genes acvA, ipnA and aatA. Several studies have indicated that these genes are controlled by a complex regulatory network, including a variety of cis-acting DNA elements and regulatory factors. Until now, however, relatively little information is available on external signals and their transmission influencing the expression of the structural genes. Here, we show that the light-dependent regulator velvet A (VeA) acts as a repressor on the penicillin biosynthesis, mainly via repression of the acvA gene. Expression of a regulatable alcAp-veA gene fusion in an A. nidulans strain carrying, in addition, acvAp-uidA and ipnAp-lacZ gene fusions indicated that under alcAp-inducing conditions, penicillin titres and expression of acvAp-uidA were drastically reduced compared with untransformed wild-type strains. The same level of repression was found irrespective of whether the alcAp-veA gene fusion was expressed in a veA1 or DeltaveA background, with or without light. The expression of the ipnAp-lacZ gene fusion was only moderately affected indicating a less prominent effect. These findings were confirmed by the analysis of a regulatable niiAp-veA gene fusion. Under niiAp-inducing conditions, penicillin titres and acvAp-uidA expression were much lower than in untransformed wild-type strains.
Collapse
Affiliation(s)
- Petra Spröte
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Beutenbergstrasse 11a, 07745 Jena, Germany
| | | |
Collapse
|
29
|
Herrmann M, Spröte P, Brakhage AA. Protein kinase C (PkcA) of Aspergillus nidulans is involved in penicillin production. Appl Environ Microbiol 2006; 72:2957-70. [PMID: 16598003 PMCID: PMC1449056 DOI: 10.1128/aem.72.4.2957-2970.2006] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The biosynthesis of the beta-lactam antibiotic penicillin in the filamentous fungus Aspergillus nidulans is catalyzed by three enzymes that are encoded by the acvA, ipnA, and aatA genes. A variety of cis-acting DNA elements and regulatory factors form a complex regulatory network controlling these beta-lactam biosynthesis genes. Regulators involved include the CCAAT-binding complex AnCF and AnBH1. AnBH1 acts as a repressor of the penicillin biosynthesis gene aatA. Until now, however, little information has been available on the signal transduction cascades leading to the transcription factors. Here we show that inhibition of protein kinase C (Pkc) activity in A. nidulans led to cytoplasmic localization of an AnBH1-enhanced green fluorescent protein (EGFP) fusion protein. Computer analysis of the genome and screening of an A. nidulans gene library revealed that the fungus possesses two putative Pkc-encoding genes, which we designated pkcA and pkcB. Only PkcA showed all the characteristic features of fungal Pkc's. Production of pkcA antisense RNA in A. nidulans led to reduced growth and conidiation in Aspergillus minimal medium, while in fermentation medium it led to enhanced expression of an aatAp-lacZ gene fusion, reduced pencillin production, and predominantly cytoplasmic localization of AnBH1. These data agree with the finding that inhibition of Pkc activity prevented nuclear localization of AnBH1-EGFP. As a result, repression of aatA expression was relieved. The involvement of Pkc in penicillin biosynthesis is also interesting in light of the fact that in the yeast Saccharomyces cerevisiae, Pkc plays a major role in maintaining cell integrity.
Collapse
Affiliation(s)
- Martina Herrmann
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Beutenbergstrasse 11a, D-07745 Jena, Germany
| | | | | |
Collapse
|
30
|
Kim CF, Lee SKY, Price J, Jack RW, Turner G, Kong RYC. Cloning and expression analysis of the pcbAB-pcbC beta-lactam genes in the marine fungus Kallichroma tethys. Appl Environ Microbiol 2003; 69:1308-14. [PMID: 12571064 PMCID: PMC143616 DOI: 10.1128/aem.69.2.1308-1314.2003] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Here we report the identification of the beta-lactam biosynthesis genes pcbAB and pcbC from a cosmid genomic DNA library of the marine fungus Kallichroma tethys. A BLAST homology search showed that they share high sequence identity with the delta-(L-alpha-aminoadipyl)-L-cysteinyl-D-valine (ACV) synthetases and isopenicillin N synthases, respectively, of various fungal and bacterial beta-lactam producers, while phylogenetic analysis indicated a close relationship with homologous genes of the cephalosporin-producing pyrenomycete Acremonium chrysogenum. Expression analysis by reverse transcription-PCR suggested that both genes are highly regulated and are expressed in the late growth phase of K. tethys cultures. Complementation of an Aspergillus nidulans strain deficient in ACV synthetase suggested that at least pcbAB is functional, although attempts to isolate active antibiotic from K. tethys were unsuccessful.
Collapse
Affiliation(s)
- Chi-Fai Kim
- Department of Biology and Chemistry, City University of Hong Kong, Kowloon Tong, Hong Kong Special Administrative Region, People's Republic of China
| | | | | | | | | | | |
Collapse
|
31
|
Caruso ML, Litzka O, Martic G, Lottspeich F, Brakhage AA. Novel basic-region helix-loop-helix transcription factor (AnBH1) of Aspergillus nidulans counteracts the CCAAT-binding complex AnCF in the promoter of a penicillin biosynthesis gene. J Mol Biol 2002; 323:425-39. [PMID: 12381299 DOI: 10.1016/s0022-2836(02)00965-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Cis-acting CCAAT elements are found frequently in eukaryotic promoter regions. Many of the genes containing such elements in their promoters are regulated by a conserved multimeric CCAAT-binding complex. In the fungus Emericella (Aspergillus) nidulans, this complex was designated AnCF (A.nidulans CCAAT-binding factor). AnCF regulates several genes, including the penicillin biosynthesis genes ipnA and aatA. Since it is estimated that the CCAAT-binding complex regulates more than 200 genes, an important question concerns the regulation mechanism that allows so many genes to be regulated by a single complex in a gene-specific manner. One of the answers to this question appears to lie in the interaction of AnCF with other transcription factors. Here, a novel transcription factor designated AnBH1 was isolated. The corresponding anbH1 gene was cloned and found to be located on chromosome IV. The deduced AnBH1 protein belongs to the family of basic-region helix-loop-helix (bHLH) transcription factors. AnBH1 binds in vitro as a homodimer to an, not previously described, asymmetric E-box within the aatA promoter that overlaps with the AnCF-binding site. This is the first report demonstrating that the CCAAT-binding complex and a bHLH transcription factor bind to overlapping sites. Since deletion of anbH1 appears to be lethal, the anbH1 gene was replaced by a regulatable alcAp-anbH1 gene fusion. The analysis of aatAp-lacZ expression in such a strain indicated that AnBH1 acts as a repressor of aatA gene expression and therefore counteracts the positive action of AnCF.
Collapse
Affiliation(s)
- Maria Louise Caruso
- Institut für Mikrobiologie, Universität Hannover, Schneiderberg 50, 30167 Hannover, Germany
| | | | | | | | | |
Collapse
|
32
|
de Vries RP, Visser J. Aspergillus enzymes involved in degradation of plant cell wall polysaccharides. Microbiol Mol Biol Rev 2001; 65:497-522, table of contents. [PMID: 11729262 PMCID: PMC99039 DOI: 10.1128/mmbr.65.4.497-522.2001] [Citation(s) in RCA: 558] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Degradation of plant cell wall polysaccharides is of major importance in the food and feed, beverage, textile, and paper and pulp industries, as well as in several other industrial production processes. Enzymatic degradation of these polymers has received attention for many years and is becoming a more and more attractive alternative to chemical and mechanical processes. Over the past 15 years, much progress has been made in elucidating the structural characteristics of these polysaccharides and in characterizing the enzymes involved in their degradation and the genes of biotechnologically relevant microorganisms encoding these enzymes. The members of the fungal genus Aspergillus are commonly used for the production of polysaccharide-degrading enzymes. This genus produces a wide spectrum of cell wall-degrading enzymes, allowing not only complete degradation of the polysaccharides but also tailored modifications by using specific enzymes purified from these fungi. This review summarizes our current knowledge of the cell wall polysaccharide-degrading enzymes from aspergilli and the genes by which they are encoded.
Collapse
Affiliation(s)
- R P de Vries
- Molecular Genetics of Industrial Microorganisms, Wageningen University, 6703 HA Wageningen, The Netherlands.
| | | |
Collapse
|
33
|
Theilgaard H, van Den Berg M, Mulder C, Bovenberg R, Nielsen J. Quantitative analysis of Penicillium chrysogenum Wis54-1255 transformants overexpressing the penicillin biosynthetic genes. Biotechnol Bioeng 2001; 72:379-88. [PMID: 11180058 DOI: 10.1002/1097-0290(20000220)72:4<379::aid-bit1000>3.0.co;2-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The low penicillin-producing, single gene copy strain Wis54-1255 was used to study the effect of overexpressing the penicillin biosynthetic genes in Penicillium chrysogenum. Transformants of Wis54-1255 were obtained with the amdS expression-cassette using the four combinations: pcbAB, pcbC, pcbC-penDE, and pcbAB-pcbC-penDE of the three penicillin biosynthetic genes. Transformants showing an increased penicillin production were investigated during steady-state continuous cultivations with glucose as the growth-limiting substrate. The transformants were characterized with respect to specific penicillin productivity, the activity of the two pathway enzymes delta-(L-alpha-aminoadipyl)-L-cysteinyl-D-valine synthetase (ACVS) and isopenicillin N synthetase (IPNS) and the intracellular concentration of the metabolites: delta-(L-alpha-aminoadipyl)-L-cysteinyl-D-valine (ACV), bis-delta-(L-alpha-aminoadipyl)-L-cysteinyl-D-valine (bisACV), isopenicillin N (IPN), glutathione (GSH), and glutathione disulphide (GSSG). Transformants with the whole gene cluster amplified showed the largest increase in specific penicillin productivity (r(p))-124% and 176%, respectively, whereas transformation with the pcbC-penDE gene fragment resulted in a decrease in r(p) of 9% relative to Wis54-1255. A marked increase in r(p) is clearly correlated with a balanced amplification of both the ACVS and IPNS activity or a large amplification of either enzyme activity. The increased capacity of a single enzyme occurs surprisingly only in the transformants where all the three biosynthetic genes are overexpressed but is not found within the group of pcbAB or pcbC transformants. The indication of the pcbAB and pcbC genes being closely regulated in fungi might explain why high-yielding strains of P. chrysogenum have been found to contain amplifications of a large region including the whole penicillin gene cluster and not single gene amplifications. Measurements of the total ACV concentration showed a large span of variability, which reflected the individual status of enzyme overexpression and activity found in each strain. The ratio ACV:bisACV remained constant, also at high ACV concentrations, indicating no limitation in the capacity of the thioredoxin-thioredoxin reductase (TR) system, which is assumed to keep the pathway intermediate LLD-ACV in its reduced state. The total GSH pool was at a constant level of approx. 5.7 mM in all cultivations.
Collapse
Affiliation(s)
- H Theilgaard
- Center for Process Biotechnology, Department of Biotechnology, Building 223, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | | | | | | | | |
Collapse
|
34
|
Theilgaard HA, van den Berg MA, Mulder CA, Bovenberg RA, Nielsen J. Quantitative analysis ofPenicillium chrysogenum Wis54-1255 transformants overexpressing the penicillin biosynthetic genes. Biotechnol Bioeng 2001. [DOI: 10.1002/1097-0290(20000220)72:4%3c379::aid-bit1000%3e3.0.co;2-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
35
|
Clustered metabolic pathway genes in filamentous fungi. ACTA ACUST UNITED AC 2001. [DOI: 10.1016/s1874-5334(01)80009-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
36
|
Heinz WJ, Kurzai O, Brakhage AA, Fonzi WA, Korting HC, Frosch M, Mühlschlegel FA. Molecular responses to changes in the environmental pH are conserved between the fungal pathogens Candida dubliniensis and Candida albicans. Int J Med Microbiol 2000; 290:231-8. [PMID: 10959725 DOI: 10.1016/s1438-4221(00)80120-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
In this work we cloned CdPHR1 and CdPHR2 from the human fungal pathogen Candida dubliniensis. The two genes are homologues to the pH-regulated genes PHR1 and PHR2 from Candida albicans. The pH-dependent pattern of expression of CdPHR1 and CdPHR2 was conserved in C. dubliniensis. CdPHR1 could be shown to be functionally equivalent to PHR1. The pH-regulated mode of expression was maintained when CdPHR1 was integrated in C. albicans. This indicates a fundamentally similar mode of expressional regulation in the two species. CdPHR1 was furthermore capable of reversing the aberrant phenotype of a Saccharomyces cerevisiae GAS1 deletion mutant. In this species, however, expression of CdPHR1 was no longer under control of the external pH. Expression of CdPHR1 was not detected when it was introduced into Aspergillus nidulans. In conclusion, C. dubliniensis and C. albicans respond to changes in the environmental pH with a change in cell shape and differential gene expression.
Collapse
Affiliation(s)
- W J Heinz
- Institut für Hygiene und Mikrobiologie, Universität Würzburg, Germany
| | | | | | | | | | | | | |
Collapse
|
37
|
Martín JF. Molecular control of expression of penicillin biosynthesis genes in fungi: regulatory proteins interact with a bidirectional promoter region. J Bacteriol 2000; 182:2355-62. [PMID: 10762232 PMCID: PMC111294 DOI: 10.1128/jb.182.9.2355-2362.2000] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- J F Martín
- Area of Microbiology, Faculty of Biology, University of León, 24071 León, and Institute of Biotechnology (INBIOTEC), Science Park of León, 24006 León, Spain.
| |
Collapse
|
38
|
Van Den Brulle J, Steidl S, Brakhage AA. Cloning and characterization of an Aspergillus nidulans gene involved in the regulation of penicillin biosynthesis. Appl Environ Microbiol 1999; 65:5222-8. [PMID: 10583968 PMCID: PMC91708 DOI: 10.1128/aem.65.12.5222-5228.1999] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To identify regulators of penicillin biosynthesis, a previously isolated mutant of Aspergillus nidulans (Prg-1) which carried the trans-acting prgA1 mutation was used. This mutant also contained fusions of the penicillin biosynthesis genes acvA and ipnA with reporter genes (acvA-uidA and ipnA-lacZ) integrated in a double-copy arrangement at the chromosomal argB gene. The prgA1 mutant strain exhibited only 20 to 50% of the ipnA-lacZ and acvA-uidA expression exhibited by the wild-type strain and had only 20 to 30% of the penicillin produced by the wild-type strain. Here, using complementation with a genomic cosmid library, we isolated a gene (suAprgA1) which complemented the prgA1 phenotype to the wild-type phenotype; i.e., the levels of expression of both gene fusions and penicillin production were nearly wild-type levels. Analysis of the suAprgA1 gene in the prgA1 mutant did not reveal any mutation in the suAprgA1 gene or unusual transcription of the gene. This suggested that the suAprgA1 gene is a suppressor of the prgA1 mutation. The suAprgA1 gene is 1,245 bp long. Its five exons encode a deduced protein that is 303 amino acids long. The putative SUAPRGA1 protein was similar to both the human p32 protein and Mam33p of Saccharomyces cerevisiae. Analysis of the ordered gene library of A. nidulans indicated that suAprgA1 is located on chromosome VI. Deletion of the suAprgA1 gene resulted in an approximately 50% reduction in ipnA-lacZ expression and in a slight reduction in acvA-uidA expression. The DeltasuAprgA1 strain produced about 60% of the amount of penicillin produced by the wild-type strain.
Collapse
Affiliation(s)
- J Van Den Brulle
- Lehrstuhl für Mikrobiologie, Universität München, Munich, Germany
| | | | | |
Collapse
|
39
|
Brakhage AA, Andrianopoulos A, Kato M, Steidl S, Davis MA, Tsukagoshi N, Hynes MJ. HAP-Like CCAAT-binding complexes in filamentous fungi: implications for biotechnology. Fungal Genet Biol 1999; 27:243-52. [PMID: 10441450 DOI: 10.1006/fgbi.1999.1136] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Regulatory CCAAT boxes are found frequently in eukaryotic promoter regions. They are bound by different CCAAT-binding factors. Until now, a single CCAAT-binding complex has been reported in fungi. It is also found in higher eukaryotes and is highly conserved among eukaryotic organisms. This multimeric protein complex is designated HAP, AnCF, CBF, or NF-Y. The complex consists of at least three subunits. In fungi, only the HAP complex of Saccharomyces cerevisiae had been known for a long time. The recent cloning of genes encoding the components of the corresponding complex (AnCF/PENR1) of Aspergillus nidulans and characterization of CCAAT-regulated genes in A. nidulans, as well as other filamentous fungi, led to a deeper insight into the role of this transcription complex, in particular in aerobically growing fungi. An overview of the function of HAP-like complexes in gene regulation in filamentous fungi is presented. Some of the genes that have been found to be regulated by HAP-like complexes encode enzymes of biotechnological interest, like taka-amylase, xylanases, cellobiohydrolase, and penicillin biosynthesis enzymes. The importance of HAP-like complexes in controlling the expression of biotechnologically important genes is discussed.
Collapse
Affiliation(s)
- A A Brakhage
- Institut für Mikrobiologie und Genetik, Technische Universität Darmstadt, Germany.
| | | | | | | | | | | | | |
Collapse
|
40
|
Steidl S, Papagiannopoulos P, Litzka O, Andrianopoulos A, Davis MA, Brakhage AA, Hynes MJ. AnCF, the CCAAT binding complex of Aspergillus nidulans, contains products of the hapB, hapC, and hapE genes and is required for activation by the pathway-specific regulatory gene amdR. Mol Cell Biol 1999; 19:99-106. [PMID: 9858535 PMCID: PMC83869 DOI: 10.1128/mcb.19.1.99] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
CCAAT binding factors (CBFs) positively regulating the expression of the amdS gene (encoding acetamidase) and two penicillin biosynthesis genes (ipnA and aatA) have been previously found in Aspergillus nidulans. The factors were called AnCF and PENR1, respectively. Deletion of the hapC gene, encoding a protein with significant similarity to Hap3p of Saccharomyces cerevisiae, eliminated both AnCF and PENR1 binding activities. We now report the isolation of the genes hapB and hapE, which encode proteins with central regions of high similarity to Hap2p and Hap5p of S. cerevisiae and to the CBF-B and CBF-C proteins of mammals. An additional fungus-specific domain present in HapE was revealed by comparisons with the homologs from S. cerevisiae, Neurospora crassa, and Schizosaccharomyces pombe. The HapB, HapC, and HapE proteins have been shown to be necessary and sufficient for the formation of a CCAAT binding complex in vitro. Strains with deletions of each of the hapB, hapC, and hapE genes have identical phenotypes of slow growth, poor conidiation, and reduced expression of amdS. Furthermore, induction of amdS by omega amino acids, which is mediated by the AmdR pathway-specific activator, is abolished in the hap deletion mutants, as is growth on gamma-aminobutyric acid as a sole nitrogen or carbon source. AmdR and AnCF bind to overlapping sites in the promoters of the amdS and gatA genes. It is known that AnCF can bind independently of AmdR. We suggest that AnCF binding is required for AmdR binding in vivo.
Collapse
Affiliation(s)
- S Steidl
- Department of Genetics, University of Melbourne, Parkville, Victoria 3052, Australia
| | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
Penicillin production by Penicillium chrysogenum is not only commercially important but arguably the most intensively investigated secondary-metabolic pathway in fungi. Isolation of the structural genes encoding the three main penicillin-biosynthetic enzymes has stimulated the use of molecular approaches to optimize yield and permitted genetic analysis of current production strains, which are themselves the products of 50 years of strain and process improvement. Parallel studies on the penicillin-producing genetic model organism Aspergillus nidulans are now addressing questions about the genetic regulation of primary and secondary metabolism, the compartmentalization of biosynthesis and the excretion of the end products.
Collapse
Affiliation(s)
- M A Peñalva
- Centro de Investigaciones Biológicas del CSIC, Madrid, Spain.
| | | | | |
Collapse
|
42
|
Abstract
The most commonly used beta-lactam antibiotics for the therapy of infectious diseases are penicillin and cephalosporin. Penicillin is produced as an end product by some fungi, most notably by Aspergillus (Emericella) nidulans and Penicillium chrysogenum. Cephalosporins are synthesized by both bacteria and fungi, e.g., by the fungus Acremonium chrysogenum (Cephalosporium acremonium). The biosynthetic pathways leading to both secondary metabolites start from the same three amino acid precursors and have the first two enzymatic reactions in common. Penicillin biosynthesis is catalyzed by three enzymes encoded by acvA (pcbAB), ipnA (pcbC), and aatA (penDE). The genes are organized into a cluster. In A. chrysogenum, in addition to acvA and ipnA, a second cluster contains the genes encoding enzymes that catalyze the reactions of the later steps of the cephalosporin pathway (cefEF and cefG). Within the last few years, several studies have indicated that the fungal beta-lactam biosynthesis genes are controlled by a complex regulatory network, e. g., by the ambient pH, carbon source, and amino acids. A comparison with the regulatory mechanisms (regulatory proteins and DNA elements) involved in the regulation of genes of primary metabolism in lower eukaryotes is thus of great interest. This has already led to the elucidation of new regulatory mechanisms. Furthermore, such investigations have contributed to the elucidation of signals leading to the production of beta-lactams and their physiological meaning for the producing fungi, and they can be expected to have a major impact on rational strain improvement programs. The knowledge of biosynthesis genes has already been used to produce new compounds.
Collapse
Affiliation(s)
- A A Brakhage
- Lehrstuhl für Mikrobiologie, Universität München, D-80638 Munich, Germany.
| |
Collapse
|
43
|
Zhu J, Kong R, Wolk CP. Regulation of hepA of Anabaena sp. strain PCC 7120 by elements 5' from the gene and by hepK. J Bacteriol 1998; 180:4233-42. [PMID: 9696774 PMCID: PMC107422 DOI: 10.1128/jb.180.16.4233-4242.1998] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Anabaena spp., synthesis of the heterocyst envelope polysaccharide, required if the cell is to fix dinitrogen under aerobic conditions, is dependent on the gene hepA. A transcriptional start site of hepA was localized 104 bp 5' from its translational initiation codon. A 765-bp open reading frame, denoted hepC, was found farther upstream. Inactivation of hepC led to constitutive expression of hepA and prevented the synthesis of heterocyst envelope polysaccharide. However, the glycolipid layer of the heterocyst envelope was synthesized. A hepK mutation blocked both the synthesis of the heterocyst envelope polysaccharide and induction of hepA. The predicted product of hepK resembles a sensory protein-histidine kinase of a two-component regulatory system. Analysis of the region between hepC and hepA indicated that DNA sequences required for the induction of hepA upon nitrogen deprivation are present between bp -574 and -440 and between bp -340 and -169 relative to the transcriptional start site of hepA. Gel mobility shift assays provided evidence that one or more proteins bind specifically to the latter sequence. The Fox box sequence downstream from hepA appeared inessential for the induction of hepA.
Collapse
Affiliation(s)
- J Zhu
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824, USA
| | | | | |
Collapse
|
44
|
Then Bergh K, Brakhage AA. Regulation of the Aspergillus nidulans penicillin biosynthesis gene acvA (pcbAB) by amino acids: implication for involvement of transcription factor PACC. Appl Environ Microbiol 1998; 64:843-9. [PMID: 9501424 PMCID: PMC106336 DOI: 10.1128/aem.64.3.843-849.1998] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The beta-lactam antibiotic penicillin is produced as an end product by some filamentous fungi only. It is synthesized from the amino acid precursors L-alpha-aminoadipic acid, L-cysteine, and L-valine. Previous data suggested that certain amino acids play a role in the regulation of its biosynthesis. Therefore, in this study the effects of externally added amino acids on both Aspergillus (Emericella) nidulans penicillin production and expression of the bidirectionally oriented biosynthesis genes acvA (pcbAB) and ipnA (pcbC) were comprehensively investigated. Different effects caused by amino acids on the expression of penicillin biosynthesis genes and penicillin production were observed. Amino acids with a major negative effect on the expression of acvA-uidA and ipnA-lacZ gene fusions, i.e., histidine, valine, lysine, and methionine, led to a decreased ambient pH during cultivation of the fungus. An analysis of deletion clones lacking binding sites for the pH-dependent transcriptional factor PACC in the intergenic regions between acvA-uidA and ipnA-lacZ gene fusions and in a pacC5 mutant (PacC5-5) suggested that the negative effects of histidine and valine on acvA-uidA expression were due to reduced activation by PACC under acidic conditions. These data also implied that PACC regulates the expression of acvA, predominantly through PACC binding site ipnA3. The repressing effect caused by lysine and methionine on acvA expression, however, was even enhanced in one of the deletion clones and the pacC5 mutant strain, suggesting that regulators other than PACC are also involved.
Collapse
Affiliation(s)
- K Then Bergh
- Lehrstuhl für Mikrobiologie, Universität München, Federal Republic of Germany
| | | |
Collapse
|
45
|
|
46
|
Brakhage AA. Molecular regulation of penicillin biosynthesis in Aspergillus (Emericella) nidulans. FEMS Microbiol Lett 1997; 148:1-10. [PMID: 9066103 DOI: 10.1111/j.1574-6968.1997.tb10258.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The beta-lactam antibiotic penicillin is produced as end product by only some filamentous fungi, most notably by Aspergillus nidulans and Penicillium chrysogenum. The biosynthesis of this secondary metabolite is catalyzed by three enzymes which are encoded by the following three genes: acvA (pcbAB), ipnA (pcbC) and aat (penDE). The genes are organized into a gene cluster. In A. nidulans, several studies have indicated that the genes are controlled by a complex regulatory network. The wide-domain regulatory protein PACC binds to the intergenic region between acvA and ipnA and, at alkaline pH, increases at least ipnA gene transcription. An additional DNA binding protein (PENR1) was suggested to repress acvA and to activate ipnA and aat expression. Furthermore, three recessive trans-acting mutations have been characterized (prgA1, prgB1, npeE1) which most likely correspond to positively acting regulatory genes of the penicillin biosynthesis genes.
Collapse
Affiliation(s)
- A A Brakhage
- Lehrstuhl für Mikrobiologie, Universität München, Germany.
| |
Collapse
|
47
|
|