1
|
Pinney MM, Mokhtari DA, Akiva E, Yabukarski F, Sanchez DM, Liang R, Doukov T, Martinez TJ, Babbitt PC, Herschlag D. Parallel molecular mechanisms for enzyme temperature adaptation. Science 2021; 371:371/6533/eaay2784. [PMID: 33674467 DOI: 10.1126/science.aay2784] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 08/23/2020] [Accepted: 01/04/2021] [Indexed: 12/13/2022]
Abstract
The mechanisms that underly the adaptation of enzyme activities and stabilities to temperature are fundamental to our understanding of molecular evolution and how enzymes work. Here, we investigate the molecular and evolutionary mechanisms of enzyme temperature adaption, combining deep mechanistic studies with comprehensive sequence analyses of thousands of enzymes. We show that temperature adaptation in ketosteroid isomerase (KSI) arises primarily from one residue change with limited, local epistasis, and we establish the underlying physical mechanisms. This residue change occurs in diverse KSI backgrounds, suggesting parallel adaptation to temperature. We identify residues associated with organismal growth temperature across 1005 diverse bacterial enzyme families, suggesting widespread parallel adaptation to temperature. We assess the residue properties, molecular interactions, and interaction networks that appear to underly temperature adaptation.
Collapse
Affiliation(s)
- Margaux M Pinney
- Department of Biochemistry, Stanford University, Stanford, CA 94305, USA.
| | - Daniel A Mokhtari
- Department of Biochemistry, Stanford University, Stanford, CA 94305, USA
| | - Eyal Akiva
- Department of Bioengineering and Therapeutic Sciences and Quantitative Biosciences Institute, University of California, San Francisco, CA 94158, USA
| | - Filip Yabukarski
- Department of Biochemistry, Stanford University, Stanford, CA 94305, USA.,Chan Zuckerberg Biohub, San Francisco, CA 94110, USA
| | - David M Sanchez
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA.,Department of Photon Sciences, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Ruibin Liang
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA.,Department of Photon Sciences, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Tzanko Doukov
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Todd J Martinez
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA.,Department of Photon Sciences, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Patricia C Babbitt
- Department of Bioengineering and Therapeutic Sciences and Quantitative Biosciences Institute, University of California, San Francisco, CA 94158, USA
| | - Daniel Herschlag
- Department of Biochemistry, Stanford University, Stanford, CA 94305, USA. .,Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA.,Stanford ChEM-H, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
2
|
Dokuzparmak C, Colak A, Kolcuoglu Y, Akatin MY, Ertunga NS, Tuncay FO. Development of Some Properties of a Thermophilic Recombinant Glucose Isomerase by Mutation. APPL BIOCHEM MICRO+ 2020. [DOI: 10.1134/s0003683820020052] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
3
|
A novel thermostable and efficient Class II glucose isomerase from the thermophilic Caldicoprobacter algeriensis: Biochemical characterization, molecular investigation, and application in High Fructose Syrup production. Int J Biol Macromol 2019; 129:31-40. [DOI: 10.1016/j.ijbiomac.2019.01.150] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 01/18/2019] [Accepted: 01/26/2019] [Indexed: 01/01/2023]
|
4
|
de Sousa M, Manzo RM, García JL, Mammarella EJ, Gonçalves LRB, Pessela BC. Engineering the l-Arabinose Isomerase from Enterococcus Faecium for d-Tagatose Synthesis. Molecules 2017; 22:molecules22122164. [PMID: 29211024 PMCID: PMC6149694 DOI: 10.3390/molecules22122164] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 11/14/2017] [Accepted: 11/29/2017] [Indexed: 11/16/2022] Open
Abstract
l-Arabinose isomerase (EC 5.3.1.4) (l-AI) from Enterococcus faecium DBFIQ E36 was overproduced in Escherichia coli by designing a codon-optimized synthetic araA gene. Using this optimized gene, two N- and C-terminal His-tagged-l-AI proteins were produced. The cloning of the two chimeric genes into regulated expression vectors resulted in the production of high amounts of recombinant N-His-l-AI and C-His-l-AI in soluble and active forms. Both His-tagged enzymes were purified in a single step through metal-affinity chromatography and showed different kinetic and structural characteristics. Analytical ultracentrifugation revealed that C-His-l-AI was preferentially hexameric in solution, whereas N-His-l-AI was mainly monomeric. The specific activity of the N-His-l-AI at acidic pH was higher than that of C-His-l-AI and showed a maximum bioconversion yield of 26% at 50 °C for d-tagatose biosynthesis, with Km and Vmax parameters of 252 mM and 0.092 U mg-1, respectively. However, C-His-l-AI was more active and stable at alkaline pH than N-His-l-AI. N-His-l-AI follows a Michaelis-Menten kinetic, whereas C-His-l-AI fitted to a sigmoidal saturation curve.
Collapse
Affiliation(s)
- Marylane de Sousa
- Department of Chemical Engineering, Federal University of Ceará, Campus do Pici, BL 709, Fortaleza-CE 60455-760, Brazil.
| | - Ricardo M Manzo
- Food and Biotechnology Engineering Group, Institute of Technological Development for the Chemical Industry, National University of the Litoral (UNL), National Council of Scientific and Technical Research (CONICET), RN 168 Km 472 "Paraje El Pozo" S/N, S3000 Santa Fe, Argentina.
| | - José L García
- Center for Biological Research, CIB, Higher Council for Scientific Research, CSIC, C/Ramiro de Maeztu, 9, 28040 Madrid, Spain.
| | - Enrique J Mammarella
- Food and Biotechnology Engineering Group, Institute of Technological Development for the Chemical Industry, National University of the Litoral (UNL), National Council of Scientific and Technical Research (CONICET), RN 168 Km 472 "Paraje El Pozo" S/N, S3000 Santa Fe, Argentina.
| | - Luciana R B Gonçalves
- Department of Chemical Engineering, Federal University of Ceará, Campus do Pici, BL 709, Fortaleza-CE 60455-760, Brazil.
| | - Benevides C Pessela
- Department of Food Biotechnology and Microbiology, Institute of Research in Food Sciences, CIAL, Higher Council for Scientific Research, CSIC, C/Nicolás Cabrera 9, UAM Campus, 28049 Madrid, Spain.
- Department of Engineering and Technology, Polytechnic Institute of Sciences and Technology, Av. Luanda Sul, Rua Lateral Via S10, P.O. Box 1316, Talatona-Luanda Sul, Angola.
| |
Collapse
|
5
|
Lee M, Rozeboom HJ, de Waal PP, de Jong RM, Dudek HM, Janssen DB. Metal Dependence of the Xylose Isomerase from Piromyces sp. E2 Explored by Activity Profiling and Protein Crystallography. Biochemistry 2017; 56:5991-6005. [PMID: 29045784 PMCID: PMC5688467 DOI: 10.1021/acs.biochem.7b00777] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Xylose isomerase from Piromyces sp. E2 (PirXI) can be used to equip Saccharomyces cerevisiae with the capacity to ferment xylose to ethanol. The biochemical properties and structure of the enzyme have not been described even though its metal content, catalytic parameters, and expression level are critical for rapid xylose utilization. We have isolated the enzyme after high-level expression in Escherichia coli, analyzed the metal dependence of its catalytic properties, and determined 12 crystal structures in the presence of different metals, substrates, and substrate analogues. The activity assays revealed that various bivalent metals can activate PirXI for xylose isomerization. Among these metals, Mn2+ is the most favorable for catalytic activity. Furthermore, the enzyme shows the highest affinity for Mn2+, which was established by measuring the activation constants (Kact) for different metals. Metal analysis of the purified enzyme showed that in vivo the enzyme binds a mixture of metals that is determined by metal availability as well as affinity, indicating that the native metal composition can influence activity. The crystal structures show the presence of an active site similar to that of other xylose isomerases, with a d-xylose binding site containing two tryptophans and a catalytic histidine, as well as two metal binding sites that are formed by carboxylate groups of conserved aspartates and glutamates. The binding positions and conformations of the metal-coordinating residues varied slightly for different metals, which is hypothesized to contribute to the observed metal dependence of the isomerase activity.
Collapse
Affiliation(s)
- Misun Lee
- Biochemical Laboratory, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen , Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Henriëtte J Rozeboom
- Biochemical Laboratory, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen , Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Paul P de Waal
- DSM Biotechnology Center , Alexander Fleminglaan 1, 2613 AX Delft, The Netherlands
| | - Rene M de Jong
- DSM Biotechnology Center , Alexander Fleminglaan 1, 2613 AX Delft, The Netherlands
| | - Hanna M Dudek
- Biochemical Laboratory, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen , Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Dick B Janssen
- Biochemical Laboratory, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen , Nijenborgh 4, 9747 AG Groningen, The Netherlands
| |
Collapse
|
6
|
Lajoie CA, Kitner JB, Potochnik SJ, Townsend JM, Beatty CC, Kelly CJ. Cloning, expression and characterization of xylose isomerase from the marine bacteriumFulvimarina pelagiinEscherichia coli. Biotechnol Prog 2016; 32:1230-1237. [DOI: 10.1002/btpr.2309] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 04/27/2016] [Indexed: 01/08/2023]
Affiliation(s)
- Curtis A. Lajoie
- School of Chemical, Biological, and Environmental Engineering; Oregon State University; 101 Covell Hall Corvallis OR 97331-2701
| | - Joshua B. Kitner
- Trillium FiberFuels, Inc.; 720 NE Granger Ave. Corvallis OR 97330-9660
| | | | - Jakob M. Townsend
- School of Chemical, Biological, and Environmental Engineering; Oregon State University; 101 Covell Hall Corvallis OR 97331-2701
| | | | - Christine J. Kelly
- School of Chemical, Biological, and Environmental Engineering; Oregon State University; 101 Covell Hall Corvallis OR 97331-2701
| |
Collapse
|
7
|
Zheng Z, Lin X, Jiang T, Ye W, Ouyang J. Genomic analysis of a xylose operon and characterization of novel xylose isomerase and xylulokinase from Bacillus coagulans NL01. Biotechnol Lett 2016; 38:1331-9. [PMID: 27206341 DOI: 10.1007/s10529-016-2109-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 04/28/2016] [Indexed: 10/21/2022]
Abstract
OBJECTIVE To investigate the xylose operon and properties of xylose isomerase and xylulokinase in Bacillus coagulans that can effectively ferment xylose to lactic acid. RESULTS The xylose operon is widely present in B. coagulans. It is composed of four putative ORFs. Novel xylA and xylB from B. coagulans NL01 were cloned and expressed in Escherichia coli. Sequence of xylose isomerase was more conserved than that of xylulokinase. Both the enzymes exhibited maximum activities at pH 7-8 but with a high temperature maximum of 80-85 °C, divalent metal ion was prerequisite for their activation. Xylose isomerase and xylulokinase were most effectively activated by Ni(2+) and Co(2+), respectively. CONCLUSIONS Genomic analysis of xylose operon has contributed to understanding xylose metabolism in B. coagulans and the novel xylose isomerase and xylulokinase might provide new alternatives for metabolic engineering of other strains to improve their fermentation performance on xylose.
Collapse
Affiliation(s)
- Zhaojuan Zheng
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, People's Republic of China.,Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, Nanjing, 210037, People's Republic of China
| | - Xi Lin
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
| | - Ting Jiang
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
| | - Weihua Ye
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
| | - Jia Ouyang
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, People's Republic of China. .,Key Laboratory of Forest Genetics and Biotechnology of the Ministry of Education, Nanjing, 210037, People's Republic of China.
| |
Collapse
|
8
|
Fatima B, Aftab MN, Haq IU. Cloning, purification, and characterization of xylose isomerase fromThermotoga naphthophilaRKU-10. J Basic Microbiol 2016; 56:949-62. [DOI: 10.1002/jobm.201500589] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Accepted: 03/30/2016] [Indexed: 11/11/2022]
Affiliation(s)
- Bilqees Fatima
- Institute of Industrial Biotechnology (IIB); GC University; Lahore Pakistan
| | | | - Ikram-ul Haq
- Institute of Industrial Biotechnology (IIB); GC University; Lahore Pakistan
| |
Collapse
|
9
|
Accumulation of d-glucose from pentoses by metabolically engineered Escherichia coli. Appl Environ Microbiol 2015; 81:3387-94. [PMID: 25746993 DOI: 10.1128/aem.04058-14] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Accepted: 03/02/2015] [Indexed: 12/30/2022] Open
Abstract
Escherichia coli that is unable to metabolize d-glucose (with knockouts in ptsG, manZ, and glk) accumulates a small amount of d-glucose (yield of about 0.01 g/g) during growth on the pentoses d-xylose or l-arabinose as a sole carbon source. Additional knockouts in the zwf and pfkA genes, encoding, respectively, d-glucose-6-phosphate 1-dehydrogenase and 6-phosphofructokinase I (E. coli MEC143), increased accumulation to greater than 1 g/liter d-glucose and 100 mg/liter d-mannose from 5 g/liter d-xylose or l-arabinose. Knockouts of other genes associated with interconversions of d-glucose-phosphates demonstrate that d-glucose is formed primarily by the dephosphorylation of d-glucose-6-phosphate. Under controlled batch conditions with 20 g/liter d-xylose, MEC143 generated 4.4 g/liter d-glucose and 0.6 g/liter d-mannose. The results establish a direct link between pentoses and hexoses and provide a novel strategy to increase carbon backbone length from five to six carbons by directing flux through the pentose phosphate pathway.
Collapse
|
10
|
Profile of secreted hydrolases, associated proteins, and SlpA in Thermoanaerobacterium saccharolyticum during the degradation of hemicellulose. Appl Environ Microbiol 2014; 80:5001-11. [PMID: 24907337 DOI: 10.1128/aem.00998-14] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Thermoanaerobacterium saccharolyticum, a Gram-positive thermophilic anaerobic bacterium, grows robustly on insoluble hemicellulose, which requires a specialized suite of secreted and transmembrane proteins. We report here the characterization of proteins secreted by this organism. Cultures were grown on hemicellulose, glucose, xylose, starch, and xylan in pH-controlled bioreactors, and samples were analyzed via spotted microarrays and liquid chromatography-mass spectrometry. Key hydrolases and transporters employed by T. saccharolyticum for growth on hemicellulose were, for the most part, hitherto uncharacterized and existed in two clusters (Tsac_1445 through Tsac_1464 for xylan/xylose and Tsac_1344 through Tsac_1349 for starch). A phosphotransferase system subunit, Tsac_0032, also appeared to be exclusive to growth on glucose. Previously identified hydrolases that showed strong conditional expression changes included XynA (Tsac_1459), XynC (Tsac_0897), and a pullulanase, Apu (Tsac_1342). An omnipresent transcript and protein making up a large percentage of the overall secretome, Tsac_0361, was tentatively identified as the primary S-layer component in T. saccharolyticum, and deletion of the Tsac_0361 gene resulted in gross morphological changes to the cells. The view of hemicellulose degradation revealed here will be enabling for metabolic engineering efforts in biofuel-producing organisms that degrade cellulose well but lack the ability to catabolize C5 sugars.
Collapse
|
11
|
Kim BJ, Hong SH, Shin KC, Jo YS, Oh DK. Characterization of a F280N variant of l-arabinose isomerase from Geobacillus thermodenitrificans identified as a d-galactose isomerase. Appl Microbiol Biotechnol 2014; 98:9271-81. [DOI: 10.1007/s00253-014-5827-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 05/07/2014] [Accepted: 05/13/2014] [Indexed: 10/25/2022]
|
12
|
Staudigl P, Haltrich D, Peterbauer CK. L-Arabinose isomerase and D-xylose isomerase from Lactobacillus reuteri: characterization, coexpression in the food grade host Lactobacillus plantarum, and application in the conversion of D-galactose and D-glucose. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:1617-1624. [PMID: 24443973 PMCID: PMC3931408 DOI: 10.1021/jf404785m] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 01/15/2014] [Accepted: 01/20/2014] [Indexed: 06/03/2023]
Abstract
The L-arabinose isomerase (L-AI) and the D-xylose isomerase (D-XI) encoding genes from Lactobacillus reuteri (DSMZ 17509) were cloned and overexpressed in Escherichia coli BL21 (DE3). The proteins were purified to homogeneity by one-step affinity chromatography and characterized biochemically. L-AI displayed maximum activity at 65 °C and pH 6.0, whereas D-XI showed maximum activity at 65 °C and pH 5.0. Both enzymes require divalent metal ions. The genes were also ligated into the inducible lactobacillal expression vectors pSIP409 and pSIP609, the latter containing a food grade auxotrophy marker instead of an antibiotic resistance marker, and the L-AI- and D-XI-encoding sequences/genes were coexpressed in the food grade host Lactobacillus plantarum . The recombinant enzymes were tested for applications in carbohydrate conversion reactions of industrial relevance. The purified L-AI converted D-galactose to D-tagatose with a maximum conversion rate of 35%, and the D-XI isomerized D-glucose to D-fructose with a maximum conversion rate of 48% at 60 °C.
Collapse
|
13
|
Konak L, Kolcuoğlu Y, Ozbek E, Colak A, Ergenoglu B. Purification and characterization of an extremely stable glucose isomerase from Geobacillus thermodenitrificans TH2. APPL BIOCHEM MICRO+ 2013. [DOI: 10.1134/s0003683814010062] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
Prawitwong P, Waeonukul R, Tachaapaikoon C, Pason P, Ratanakhanokchai K, Deng L, Sermsathanaswadi J, Septiningrum K, Mori Y, Kosugi A. Direct glucose production from lignocellulose using Clostridium thermocellum cultures supplemented with a thermostable β-glucosidase. BIOTECHNOLOGY FOR BIOFUELS 2013; 6:184. [PMID: 24359557 PMCID: PMC3878107 DOI: 10.1186/1754-6834-6-184] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Accepted: 12/05/2013] [Indexed: 05/04/2023]
Abstract
BACKGROUND Cellulases continue to be one of the major costs associated with the lignocellulose hydrolysis process. Clostridium thermocellum is an anaerobic, thermophilic, cellulolytic bacterium that produces cellulosomes capable of efficiently degrading plant cell walls. The end-product cellobiose, however, inhibits degradation. To maximize the cellulolytic ability of C. thermocellum, it is important to eliminate this end-product inhibition. RESULTS This work describes a system for biological saccharification that leads to glucose production following hydrolysis of lignocellulosic biomass. C. thermocellum cultures supplemented with thermostable beta-glucosidases make up this system. This approach does not require any supplementation with cellulases and hemicellulases. When C. thermocellum strain S14 was cultured with a Thermoanaerobacter brockii beta-glucosidase (CglT with activity 30 U/g cellulose) in medium containing 100 g/L cellulose (617 mM initial glucose equivalents), we observed not only high degradation of cellulose, but also accumulation of 426 mM glucose in the culture broth. In contrast, cultures without CglT, or with less thermostable beta-glucosidases, did not efficiently hydrolyze cellulose and accumulated high levels of glucose. Glucose production required a cellulose load of over 10 g/L. When alkali-pretreated rice straw containing 100 g/L glucan was used as the lignocellulosic biomass, approximately 72% of the glucan was saccharified, and glucose accumulated to 446 mM in the culture broth. The hydrolysate slurry containing glucose was directly fermented to 694 mM ethanol by addition of Saccharomyces cerevisiae, giving an 85% theoretical yield without any inhibition. CONCLUSIONS Our process is the first instance of biological saccharification with exclusive production and accumulation of glucose from lignocellulosic biomass. The key to its success was the use of C. thermocellum supplemented with a thermostable beta-glucosidase and cultured under a high cellulose load. We named this approach biological simultaneous enzyme production and saccharification (BSES). BSES may resolve a significant barrier to economical production by providing a platform for production of fermentable sugars with reduced enzyme amounts.
Collapse
Affiliation(s)
- Panida Prawitwong
- Biological Resources and Post-harvest Division, Japan International Research Center for Agricultural Sciences (JIRCAS), 1-1 Ohwashi, Tsukuba, Ibaraki 305-8686, Japan
| | - Rattiya Waeonukul
- Pilot Plant Development and Training Institute (PDTI), King Mongkut’s University of Technology Thonburi (KMUTT), Bangkok, Thailand
| | - Chakrit Tachaapaikoon
- Pilot Plant Development and Training Institute (PDTI), King Mongkut’s University of Technology Thonburi (KMUTT), Bangkok, Thailand
| | - Patthra Pason
- Pilot Plant Development and Training Institute (PDTI), King Mongkut’s University of Technology Thonburi (KMUTT), Bangkok, Thailand
| | - Khanok Ratanakhanokchai
- School of Bioresources and Technology, King Mongkut’s University of Technology Thonburi (KMUTT), Bangkok, Thailand
| | - Lan Deng
- Biological Resources and Post-harvest Division, Japan International Research Center for Agricultural Sciences (JIRCAS), 1-1 Ohwashi, Tsukuba, Ibaraki 305-8686, Japan
| | - Junjarus Sermsathanaswadi
- School of Bioresources and Technology, King Mongkut’s University of Technology Thonburi (KMUTT), Bangkok, Thailand
| | - Krisna Septiningrum
- Biological Resources and Post-harvest Division, Japan International Research Center for Agricultural Sciences (JIRCAS), 1-1 Ohwashi, Tsukuba, Ibaraki 305-8686, Japan
- University of Tsukuba Graduate School of Life and Environmental Sciences, 1-1-1 Ten-noudai, Tsukuba, Ibaraki 305-8572, Japan
| | - Yutaka Mori
- Biological Resources and Post-harvest Division, Japan International Research Center for Agricultural Sciences (JIRCAS), 1-1 Ohwashi, Tsukuba, Ibaraki 305-8686, Japan
| | - Akihiko Kosugi
- Biological Resources and Post-harvest Division, Japan International Research Center for Agricultural Sciences (JIRCAS), 1-1 Ohwashi, Tsukuba, Ibaraki 305-8686, Japan
- University of Tsukuba Graduate School of Life and Environmental Sciences, 1-1-1 Ten-noudai, Tsukuba, Ibaraki 305-8572, Japan
| |
Collapse
|
15
|
Karaoglu H, Yanmis D, Sal FA, Celik A, Canakci S, Belduz AO. Biochemical characterization of a novel glucose isomerase from Anoxybacillus gonensis G2T that displays a high level of activity and thermal stability. ACTA ACUST UNITED AC 2013. [DOI: 10.1016/j.molcatb.2013.08.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
16
|
Manzo RM, Simonetta AC, Rubiolo AC, Mammarella EJ. Screening and selection of wild strains for L-arabinose isomerase production. BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING 2013. [DOI: 10.1590/s0104-66322013000400003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
17
|
Ferner-Ortner-Bleckmann J, Gelbmann N, Tesarz M, Egelseer EM, Sleytr UB. Surface-layer lattices as patterning element for multimeric extremozymes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2013; 9:3887-3894. [PMID: 23757161 DOI: 10.1002/smll.201201014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Indexed: 06/02/2023]
Abstract
A promising new approach for the production of biocatalysts comprises the use of surface-layer (S-layer) lattices that present functional multimeric enzymes on their surface, thereby guaranteeing most accurate spatial distribution and orientation, as well as maximal effectiveness and stability of these enzymes. For proof of concept, a tetrameric and a trimeric extremozyme are chosen for the construction of S-layer/extremozyme fusion proteins. By using a flexible peptide linker, either one monomer of the tetrameric xylose isomerase XylA from the thermophilic Thermoanaerobacterium strain JW/SL-YS 489 or, in another approach, one monomer of the trimeric carbonic anhydrase from the methanogenic archaeon Methanosarcina thermophila are genetically linked to one monomer of the S-layer protein SbpA of Lysinibacillus sphaericus CCM 2177. After isolation and purification, the self-assembly properties of both S-layer fusion proteins as well as the specific activity of the fused enzymes are confirmed, thus indicating that the S-layer protein moiety does not influence the nature of the multimeric enzymes and vice versa. By recrystallization of the S-layer/extremozyme fusion proteins on solid supports, the active enzyme multimers are exposed on the surface of the square S-layer lattice with 13.1 nm spacing.
Collapse
|
18
|
Draft Genome Sequence of an Anaerobic and Extremophilic Bacterium, Caldanaerobacter yonseiensis, Isolated from a Geothermal Hot Stream. GENOME ANNOUNCEMENTS 2013; 1:1/6/e00923-13. [PMID: 24201201 PMCID: PMC3820782 DOI: 10.1128/genomea.00923-13] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Caldanaerobacter yonseiensis is a strictly anaerobic, thermophilic, spore-forming bacterium, which was isolated from a geothermal hot stream in Indonesia. This bacterium utilizes xylose and produces a variety of proteases. Here, we report the draft genome sequence of C. yonseiensis, which reveals insights into the pentose phosphate pathway and protein degradation metabolism in thermophilic microorganisms.
Collapse
|
19
|
Men Y, Zhu Y, Zhang L, Kang Z, Izumori K, Sun Y, Ma Y. Enzymatic conversion of D-galactose to D-tagatose: cloning, overexpression and characterization of L-arabinose isomerase from Pediococcus pentosaceus PC-5. Microbiol Res 2013; 169:171-8. [PMID: 23948501 DOI: 10.1016/j.micres.2013.07.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Revised: 06/25/2013] [Accepted: 07/01/2013] [Indexed: 11/30/2022]
Abstract
The gene encoding L-arabinose isomerase from food-grade strain Pediococcus pentosaceus PC-5 was cloned and overexpressed in Escherichia coli. The recombinant protein was purified and characterized. It was optimally active at 50 °C and pH 6.0. Furthermore, this enzyme exhibited a weak requirement for metallic ions for its maximal activity evaluated at 0.6 mM Mn(2+) or 0.8 mM Co(2+). Interestingly, this enzyme was distinguished from other L-AIs, it could not use L-arabinose as its substrate. In addition, a three-dimensional structure of L-AI was built by homology modeling and L-arabinose and D-galactose were docked into the active site pocket of PPAI model to explain the interaction between L-AI and its substrate. The purified P. pentosaceus PC-5 L-AI converted D-galactose into D-tagatose with a high conversion rate of 52% after 24 h at 50 °C, suggesting its excellent potential in D-tagatose production.
Collapse
Affiliation(s)
- Yan Men
- National Engineering Laboratory for Industrial Enzymes, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Yueming Zhu
- National Engineering Laboratory for Industrial Enzymes, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Lili Zhang
- National Engineering Laboratory for Industrial Enzymes, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Zhenkui Kang
- Shanxi Tianjiao Biological Co., Ltd, Shanxin 030006, China
| | - Ken Izumori
- National Engineering Laboratory for Industrial Enzymes, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Yuanxia Sun
- National Engineering Laboratory for Industrial Enzymes, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.
| | - Yanhe Ma
- National Engineering Laboratory for Industrial Enzymes, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| |
Collapse
|
20
|
Ota M, Sakuragi H, Morisaka H, Kuroda K, Miyake H, Tamaru Y, Ueda M. Display ofClostridium cellulovoransxylose isomerase on the cell surface ofSaccharomyces cerevisiaeand its direct application to xylose fermentation. Biotechnol Prog 2013; 29:346-51. [DOI: 10.1002/btpr.1700] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Revised: 01/11/2013] [Indexed: 11/08/2022]
Affiliation(s)
- Miki Ota
- Div. of Applied Life Sciences, Graduate School of Agriculture; Kyoto University; Sakyo Kyoto 606-8502 Japan
| | - Hiroshi Sakuragi
- Div. of Applied Life Sciences, Graduate School of Agriculture; Kyoto University; Sakyo Kyoto 606-8502 Japan
| | - Hironobu Morisaka
- Div. of Applied Life Sciences, Graduate School of Agriculture; Kyoto University; Sakyo Kyoto 606-8502 Japan
| | - Kouichi Kuroda
- Div. of Applied Life Sciences, Graduate School of Agriculture; Kyoto University; Sakyo Kyoto 606-8502 Japan
| | - Hideo Miyake
- Dept. of Life Sciences, Graduate School of Bioresources; Mie University 1577 Kurimamachiya, Tsu, Mie, 514-8507 Japan
| | - Yutaka Tamaru
- Dept. of Life Sciences, Graduate School of Bioresources; Mie University 1577 Kurimamachiya, Tsu, Mie, 514-8507 Japan
| | - Mitsuyoshi Ueda
- Div. of Applied Life Sciences, Graduate School of Agriculture; Kyoto University; Sakyo Kyoto 606-8502 Japan
| |
Collapse
|
21
|
Production and partial characterization of extracellular glucose isomerase using thermophilic Bacillus sp. isolated from agricultural land. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2013. [DOI: 10.1016/j.bcab.2012.10.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
22
|
Chanitnun K, Pinphanichakarn P. Glucose(xylose) isomerase production by Streptomyces sp. CH7 grown on agricultural residues. Braz J Microbiol 2012; 43:1084-93. [PMID: 24031932 PMCID: PMC3768894 DOI: 10.1590/s1517-838220120003000035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Accepted: 06/07/2012] [Indexed: 11/22/2022] Open
Abstract
Streptomyces sp. CH7 was found to efficiently produce glucose(xylose) isomerase when grown on either xylan or agricultural residues. This strain produced a glucose(xylose) isomerase activity of roughly 1.8 U/mg of protein when it was grown in medium containing 1% xylose as a carbon source. Maximal enzymatic activities of about 5 and 3 U/mg were obtained when 1% xylan and 2.5% corn husks were used, respectively. The enzyme was purified from a mycelial extract to 16-fold purity with only two consecutive column chromatography steps using Macro-prep DEAE and Sephacryl-300, respectively. The approximate molecular weight of the purified enzyme is 170 kDa, and it has four identical subunits of 43.6 kDa as estimated by SDS-PAGE. Its K m values for glucose and xylose were found to be 258.96 and 82.77 mM, respectively, and its V max values are 32.42 and 63.64 μM/min/mg, respectively. The purified enzyme is optimally active at 85°C and pH 7.0. It is stable at pH 5.5-8.5 and at temperatures up to 60°C after 30 min. These findings indicate that glucose(xylose) isomerase from Streptomyces sp. CH7 has the potential for industrial applications, especially for high-fructose syrup production and bioethanol fermentation from hemicellulosic hydrolysates by Saccharomyces cerevisiae.
Collapse
Affiliation(s)
- Kankiya Chanitnun
- Department of Microbiology, Faculty of Science, Chulalongkorn University , Bangkok 10330 , Thailand
| | | |
Collapse
|
23
|
Zhou X, Wu JC. Heterologous expression and characterization of Bacillus coagulans L-arabinose isomerase. World J Microbiol Biotechnol 2012; 28:2205-12. [PMID: 22806043 DOI: 10.1007/s11274-012-1026-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Accepted: 02/11/2012] [Indexed: 11/28/2022]
Abstract
Bacillus coagulans has been of great commercial interest over the past decade owing to its strong ability of producing optical pure L: -lactic acid from both hexose and pentose sugars including L: -arabinose with high yield, titer and productivity under thermophilic conditions. The L: -arabinose isomerase (L-AI) from Bacillus coagulans was heterologously over-expressed in Escherichia coli. The open reading frame of the L-AI has 1,422 nucleotides encoding a protein with 474 amino acid residues. The recombinant L-AI was purified to homogeneity by one-step His-tag affinity chromatography. The molecular mass of the enzyme was estimated to be 56 kDa by SDS-PAGE. The enzyme was most active at 70°C and pH 7.0. The metal ion Mn(2+) was shown to be the best activator for enzymatic activity and thermostability. The enzyme showed higher activity at acidic pH than at alkaline pH. The kinetic studies showed that the K (m), V (max) and k (cat)/K (m) for the conversion of L: -arabinose were 106 mM, 84 U/mg and 34.5 mM(-1)min(-1), respectively. The equilibrium ratio of L: -arabinose to L: -ribulose was 78:22 under optimal conditions. L: -ribulose (97 g/L) was obtained from 500 g/l of L: -arabinose catalyzed by the enzyme (8.3 U/mL) under the optimal conditions within 1.5 h, giving at a substrate conversion of 19.4% and a production rate of 65 g L(-1) h(-1).
Collapse
Affiliation(s)
- Xingding Zhou
- Institute of Chemical and Engineering Sciences, Agency for Science, Technology and Research (A STAR), 1 Pesek Road, Jurong Island 627833, Singapore
| | | |
Collapse
|
24
|
Fan L, Zhang Y, Qu W, Wang J, Shao W. Cloning and analysis of the xylAB operon and characterization of xylose isomerase from Thermoanaerobacter ethanolicus. Biotechnol Lett 2010; 33:593-8. [PMID: 21072563 DOI: 10.1007/s10529-010-0463-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2010] [Accepted: 10/27/2010] [Indexed: 10/18/2022]
Abstract
Three genes, xylA-like, xylA and xylB, were cloned and sequenced from the chromosome of Thermoanaerobacter ethanolicus JW200. xylA and xylB share an operon and encode xylose isomerase and xylulokinase, respectively. The xylA-like gene locates upstream of xylAB operon and encodes a hypothetical protein that lacks xylose isomerase activity. The xylose isomerase was expressed in Escherichia coli and purified by heat treatment and an ion-exchange chromatography. The enzyme had highest activity at 85°C and pH 7.0, and a half-life for 1 h at 85°C. The K (m) and V (max) values for xylose were 11 mM and 25 U/mg, respectively. The high level of expression, easy purification, and thermostability of the XylA from T. ethanolicus JW200 suggests industrial usefulness.
Collapse
Affiliation(s)
- Lijuan Fan
- Jiangsu Key Laboratory for Biodiversity and Bio-resources, College of Life Sciences, Nanjing Normal University, Nanjing, 210046, China
| | | | | | | | | |
Collapse
|
25
|
Kluskens LD, Zeilstra J, Geerling ACM, de Vos WM, van der Oost J. Molecular characterization of the glucose isomerase from the thermophilic bacterium Fervidobacterium gondwanense. ENVIRONMENTAL TECHNOLOGY 2010; 31:1083-1090. [PMID: 20718290 DOI: 10.1080/09593330903486673] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The gene coding for xylose isomerase from the thermophilic bacterium Fervidobacterium gondwanense was cloned and overexpressed in Escherichia coli. The produced xylose isomerase (XylA), which closely resembles counterparts from Thermotoga maritima and T. neapolitana, was purified and characterized. It is optimally active at 70 degrees C, pH 7.3, with a specific activity of 15.0 U/mg for the interconversion of glucose to fructose. When compared with T. maritima XylA at 85 degrees C, a higher catalytic efficiency was observed. Divalent metal ions Co2+ and Mg2+ were found to enhance the thermostability.
Collapse
Affiliation(s)
- L D Kluskens
- Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands
| | | | | | | | | |
Collapse
|
26
|
FITRIANI DEWI, SAKSONO BUDI. Cloning of araA Gene Encoding L-Arabinose Isomerase from Marine Geobacillus stearothermophilus Isolated from Tanjung Api, Poso, Indonesia. HAYATI JOURNAL OF BIOSCIENCES 2010. [DOI: 10.4308/hjb.17.2.58] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
27
|
Cloning, expression and characterization of xylose isomerase, XylA, from Caldanaerobacter subterraneus subsp. yonseiensis. Biotechnol Lett 2010; 32:929-33. [DOI: 10.1007/s10529-010-0255-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2010] [Accepted: 03/12/2010] [Indexed: 10/19/2022]
|
28
|
Rozanov AS, Zagrebelny SN, Beklemishev AB. Cloning of Escherichia coli K12 xylose isomerase (glucose isomerase) gene and studying the enzymatic properties of its expression product. APPL BIOCHEM MICRO+ 2009. [DOI: 10.1134/s0003683809010062] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
29
|
Cloning and characterization of a novel l-arabinose isomerase from Bacillus licheniformis. Appl Microbiol Biotechnol 2008; 81:283-90. [DOI: 10.1007/s00253-008-1652-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2008] [Revised: 07/31/2008] [Accepted: 08/02/2008] [Indexed: 10/21/2022]
|
30
|
Häusler H, Weber H, Stütz* AE. D-XYLOSE (D-GLUCOSE) ISOMERASE (EC 5.3.1.5): OBSERVATIONS AND COMMENTS CONCERNING STRUCTURAL REQUIREMENTS OF SUBSTRATES AS WELL AS MECHANISTIC FEATURES. J Carbohydr Chem 2006. [DOI: 10.1081/car-100104860] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Herwig Häusler
- a Glycogroup, Institut für Organische Chemie, Technische Universität Graz , Stremayrgasse 16, Graz, A-8010, Austria
| | - Hansjörg Weber
- a Glycogroup, Institut für Organische Chemie, Technische Universität Graz , Stremayrgasse 16, Graz, A-8010, Austria
| | - Arnold E. Stütz*
- a Glycogroup, Institut für Organische Chemie, Technische Universität Graz , Stremayrgasse 16, Graz, A-8010, Austria
| |
Collapse
|
31
|
Sapunova LI, Lobanok AG, Kazakevich IO, Shlyakhotko EA, Evtushenkov AN. Biosynthetic features and properties of xylose isomerases from Arthrobacter nicotianae, Escherichia coli, and Erwinia carotovora subsp. atroseptica. APPL BIOCHEM MICRO+ 2006. [DOI: 10.1134/s0003683806030045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
32
|
Lee SJ, Lee DW, Choe EA, Hong YH, Kim SB, Kim BC, Pyun YR. Characterization of a thermoacidophilic L-arabinose isomerase from Alicyclobacillus acidocaldarius: role of Lys-269 in pH optimum. Appl Environ Microbiol 2006; 71:7888-96. [PMID: 16332764 PMCID: PMC1317409 DOI: 10.1128/aem.71.12.7888-7896.2005] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The araA gene encoding L-arabinose isomerase (AI) from the thermoacidophilic bacterium Alicyclobacillus acidocaldarius was cloned, sequenced, and expressed in Escherichia coli. Analysis of the sequence revealed that the open reading frame of the araA gene consists of 1,491 bp that encodes a protein of 497 amino acid residues with a calculated molecular mass of 56,043 Da. Comparison of the deduced amino acid sequence of A. acidocaldarius AI (AAAI) with other AIs demonstrated that AAAI has 97% and 66% identities (99% and 83% similarities) to Geobacillus stearothermophilus AI (GSAI) and Bacillus halodurans AI (BHAI), respectively. The recombinant AAAI was purified to homogeneity by heat treatment, ion-exchange chromatography, and gel filtration. The purified enzyme showed maximal activity at pH 6.0 to 6.5 and 65 degrees C under the assay conditions used, and it required divalent cations such as Mn2+, Co2+, and Mg2+ for its activity. The isoelectric point (pI) of the enzyme was about 5.0 (calculated pI of 5.5). The apparent Km values of the recombinant AAAI for L-arabinose and D-galactose were 48.0 mM (Vmax, 35.5 U/mg) and 129 mM (Vmax, 7.5 U/mg), respectively, at pH 6 and 65 degrees C. Interestingly, although the biochemical properties of AAAI are quite similar to those of GSAI and BHAI, the three AIs from A. acidocaldarius (pH 6), G. stearothermophilus (pH 7), and B. halodurans (pH 8) exhibited different pH activity profiles. Based on alignment of the amino acid sequences of these homologous AIs, we propose that the Lys-269 residue of AAAI may be responsible for the ability of the enzyme to act at low pH. To verify the role of Lys-269, we prepared the mutants AAAI-K269E and BHAI-E268K by site-directed mutagenesis and compared their kinetic parameters with those of wild-type AIs at various pHs. The pH optima of both AAAI-K269E and BHAI-E268K were rendered by 1.0 units (pH 6 to 7 and 8 to 7, respectively) compared to the wild-type enzymes. In addition, the catalytic efficiency (kcat/Km) of each mutant at different pHs was significantly affected by an increase or decrease in Vmax. From these results, we propose that the position corresponding to the Lys-269 residue of AAAI could play an important role in the determination of the pH optima of homologous AIs.
Collapse
Affiliation(s)
- Sang-Jae Lee
- Department of Biotechnology, Yonsei University, Seodaemun-Gu, Shinchon-Dong 134, Seoul 120-749, Korea
| | | | | | | | | | | | | |
Collapse
|
33
|
13 Gene Transfer Systems for Obligately Anaerobic Thermophilic Bacteria. METHODS IN MICROBIOLOGY 2006. [DOI: 10.1016/s0580-9517(08)70016-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register]
|
34
|
Antranikian G, Vorgias CE, Bertoldo C. Extreme environments as a resource for microorganisms and novel biocatalysts. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2005; 96:219-62. [PMID: 16566093 DOI: 10.1007/b135786] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
The steady increase in the number of newly isolated extremophilic microorganisms and the discovery of their enzymes by academic and industrial institutions underlines the enormous potential of extremophiles for application in future biotechnological processes. Enzymes from extremophilic microorganisms offer versatile tools for sustainable developments in a variety of industrial application as they show important environmental benefits due to their biodegradability, specific stability under extreme conditions, improved use of raw materials and decreased amount of waste products. Although major advances have been made in the last decade, our knowledge of the physiology, metabolism, enzymology and genetics of this fascinating group of extremophilic microorganisms and their related enzymes is still limited. In-depth information on the molecular properties of the enzymes and their genes, however, has to be obtained to analyze the structure and function of proteins that are catalytically active around the boiling and freezing points of water and extremes of pH. New techniques, such as genomics, metanogenomics, DNA evolution and gene shuffling, will lead to the production of enzymes that are highly specific for countless industrial applications. Due to the unusual properties of enzymes from extremophiles, they are expected to optimize already existing processes or even develop new sustainable technologies.
Collapse
Affiliation(s)
- Garabed Antranikian
- Institute of Technical Microbiology, Technical University Hamburg-Harburg, Kasernenstrasse 12, 21073 Hamburg, Germany.
| | | | | |
Collapse
|
35
|
Abstract
The genes (xylA) encoding xylose isomerase (XI) from two Lactococcus lactis subsp. lactis strains, 210 (Xyl(-)) and IO-1 (Xyl(+)), were cloned, and the activities of their expressed proteins in recombinant strains of Escherichia coli were investigated. The nucleotide and amino acid sequence homologies between the xylA genes were 98.4 and 98.6%, respectively, and only six amino acid residues differed between the two XIs. The purified IO-1 XI was soluble with K(m) and k(cat) being 2.25 mM and 184/s, respectively, while the 210 XI was insoluble and inactive. Site-directed mutagenesis on 210 xylA showed that a triple mutant possessing R202M/Y218D/V275A mutations regained XI activity and was soluble. The K(m) and k(cat) of this mutant were 4.15 mM and 141/s, respectively. One of the IO-1 XI mutants, S388T, was insoluble and showed negligible activity similar to that of 210 XI. The introduction of a K407E mutation to the IO-1 S388T XI mutant restored its activity and solubility. The dissolution of XI activity in L. lactis subsp. lactis involves a series of mutations that collectively eliminate enzyme activity by reducing the solubility of the enzyme.
Collapse
Affiliation(s)
- Joo-Heon Park
- Department of Food Science, Cornell University, Ithaca, NY 14853, USA
| | | |
Collapse
|
36
|
Borgi MA, Srih-Belguith K, Ben Ali M, Mezghani M, Tranier S, Haser R, Bejar S. Glucose isomerase of the Streptomyces sp. SK strain: purification, sequence analysis and implication of alanine 103 residue in the enzyme thermostability and acidotolerance. Biochimie 2004; 86:561-8. [PMID: 15388233 DOI: 10.1016/j.biochi.2004.07.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2004] [Accepted: 07/08/2004] [Indexed: 11/29/2022]
Abstract
The glucose isomerase gene (xylA) from the Streptomyces sp. SK strain encodes a 386-amino-acid protein (42.7 kDa) showing extensive identities with many other bacterial glucose isomerases. We have shown by gel filtration chromatography and SDS-PAGE analysis that the purified recombinant glucose isomerase (SKGI) is a 180 kDa tetramer of four 43 kDa subunits. Sequence inspection revealed that this protein, present some special characteristics like the abundance of hydrophobic residues and some original amino-acid substitutions, which distinguish SKGI from the other GIs previously reported. The presence of an Ala residue at position 103 in SKGI is especially remarkable, since the same amino-acid was found at the equivalent position in the extremely thermostable GIs from Thermus thermophilus and Thermotoga neapolitana; whereas a Gly was found in the majority of less thermostable GIs from Streptomyces. The Ala103Gly mutation, introduced in SKGI, significantly decreases the half-life time at 90 degrees C from 80 to 50 min and also shifts the optimum pH from 6.5 to 7.5. This confirms the implication of the Ala103 residue on SKGI thermostability and activity at low pH. A homology model of SKGI based on the SOGI (that of Streptomyces olivochromogenes) crystal structure has been constructed in order to understand the mutational effects on a molecular scale. Hence, the Ala103Gly mutation, affecting enzyme properties, is presumed to increase molecular flexibility and to destabilize, in particular at elevated temperature, the 91-109 loop that includes the important catalytic residue, Phe94.
Collapse
Affiliation(s)
- Mohamed Ali Borgi
- Laboratoire d'Enzymes et de Métabolites des Procaryotes, Centre de Biotechnologie de Sfax BP K 3038 Sfax, Tunisie
| | | | | | | | | | | | | |
Collapse
|
37
|
Lee DW, Jang HJ, Choe EA, Kim BC, Lee SJ, Kim SB, Hong YH, Pyun YR. Characterization of a thermostable L-arabinose (D-galactose) isomerase from the hyperthermophilic eubacterium Thermotoga maritima. Appl Environ Microbiol 2004; 70:1397-404. [PMID: 15006759 PMCID: PMC368370 DOI: 10.1128/aem.70.3.1397-1404.2004] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The araA gene encoding L-arabinose isomerase (AI) from the hyperthermophilic bacterium Thermotoga maritima was cloned and overexpressed in Escherichia coli as a fusion protein containing a C-terminal hexahistidine sequence. This gene encodes a 497-amino-acid protein with a calculated molecular weight of 56,658. The recombinant enzyme was purified to homogeneity by heat precipitation followed by Ni(2+) affinity chromatography. The native enzyme was estimated by gel filtration chromatography to be a homotetramer with a molecular mass of 232 kDa. The purified recombinant enzyme had an isoelectric point of 5.7 and exhibited maximal activity at 90 degrees C and pH 7.5 under the assay conditions used. Its apparent K(m) values for L-arabinose and D-galactose were 31 and 60 mM, respectively; the apparent V(max) values (at 90 degrees C) were 41.3 U/mg (L-arabinose) and 8.9 U/mg (D-galactose), and the catalytic efficiencies (k(cat)/K(m)) of the enzyme were 74.8 mM(-1).min(-1) (L-arabinose) and 8.5 mM(-1).min(-1) (D-galactose). Although the T. maritima AI exhibited high levels of amino acid sequence similarity (>70%) to other heat-labile mesophilic AIs, it had greater thermostability and higher catalytic efficiency than its mesophilic counterparts at elevated temperatures. In addition, it was more thermostable in the presence of Mn(2+) and/or Co(2+) than in the absence of these ions. The enzyme carried out the isomerization of D-galactose to D-tagatose with a conversion yield of 56% for 6 h at 80 degrees C.
Collapse
Affiliation(s)
- Dong-Woo Lee
- Department of Biotechnology and Bioproducts Research Center, College of Engineering, Yonsei University, Seoul 120-749, Korea
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Tao H, Gonzalez R, Martinez A, Rodriguez M, Ingram LO, Preston JF, Shanmugam KT. Engineering a homo-ethanol pathway in Escherichia coli: increased glycolytic flux and levels of expression of glycolytic genes during xylose fermentation. J Bacteriol 2001; 183:2979-88. [PMID: 11325924 PMCID: PMC95196 DOI: 10.1128/jb.183.10.2979-2988.2001] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Replacement of the native fermentation pathway in Escherichia coli B with a homo-ethanol pathway from Zymomonas mobilis (pdc and adhB genes) resulted in a 30 to 50% increase in growth rate and glycolytic flux during the anaerobic fermentation of xylose. Gene array analysis was used as a tool to investigate differences in expression levels for the 30 genes involved in xylose catabolism in the parent (strain B) and the engineered strain (KO11). Of the 4,290 total open reading frames, only 8% were expressed at a significantly higher level in KO11 (P < 0.05). In contrast, over half of the 30 genes involved in the catabolism of xylose to pyruvate were expressed at 1.5-fold- to 8-fold-higher levels in KO11. For 14 of the 30 genes, higher expression was statistically significant at the 95% confidence level (xylAB, xylE, xylFG, xylR, rpiA, rpiB, pfkA, fbaA, tpiA, gapA, pgk, and pykA) during active fermentation (6, 12, and 24 h). Values at single time points for only four of these genes (eno, fbaA, fbaB, and talA) were higher in strain B than in KO11. The relationship between changes in mRNA (cDNA) levels and changes in specific activities was verified for two genes (xylA and xylB) with good agreement. In KO11, expression levels and activities were threefold higher than in strain B for xylose isomerase (xylA) and twofold higher for xylulokinase (xylB). Increased expression of genes involved in xylose catabolism is proposed as the basis for the increase in growth rate and glycolytic flux in ethanologenic KO11.
Collapse
Affiliation(s)
- H Tao
- Institute of Food and Agricultural Sciences, Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Raykovska V, Dolashka-Angelova P, Paskaleva D, Stoeva S, Abashev J, Kirkov L, Voelter W. Isolation and characterization of a xylose-glucose isomerase from a new strain Streptomyces thermovulgaris 127, var. 7-86. Biochem Cell Biol 2001. [DOI: 10.1139/o00-100] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A thermostable D-xyloseglucose isomerase was isolated from the thermophilic strain Streptomyces thermovulgaris 127, var. 7-86, as a result of mutagenic treatment by γ-irradiation of the parent strain, by precipitation and sequential chromatographies on DEAESephadex A50, TSK-gel, FPLC-Mono Q/HR, and Superose 12 columns. The N-terminal amino acid sequence and amino acid analysis shows 7392% homology with xyloseglucose isomerases from other sources. The native molecular mass, determined by gel filtration on a Superose 12 column, is 180 kDa, and 44.6 and 45 kDa were calculated, based on amino acid analysis and 10% SDS-PAGE, respectively. Both, the activity and stability of the enzyme were investigated toward pH, temperature, and denaturation with guanidine hydrochloride. The enzyme activity showed a clear pH optimum between pH 7.2 and 9.0 with D-glucose and 7.4 and 8.3 with D-xylose as substrates, respectively. The enzyme is active up to 6085°C at pH 7.0, using D-glucose, and up to 5060°C at pH 7.6, using D-xylose as substrates. The activation energy (Ea = 46 kJ·mol1) and the critical temperature (Tc = 60°C) were determined by fluorescence spectroscopy. Tc is in close coincidence with the melting temperature of denaturation (Tm = 59°C), determined by circular dichroism (CD) spectroscopy. The free energy of stabilization in water after denaturation with Gdn.HCl was calculated to be 12 kJ·mol1. The specific activity (km values) for D-xylose-glucose isomerase at 70°C toward different substrates, D-xylose, D-glucose, and D-ribose, were determined to be 4.4, 55.5, and 13.3 mM, recpectively.Key words: D-xylose-glucose isomerase, protein sequencing, protein stability, protein denaturation.
Collapse
|
40
|
Vieille C, Zeikus GJ. Hyperthermophilic enzymes: sources, uses, and molecular mechanisms for thermostability. Microbiol Mol Biol Rev 2001; 65:1-43. [PMID: 11238984 PMCID: PMC99017 DOI: 10.1128/mmbr.65.1.1-43.2001] [Citation(s) in RCA: 1430] [Impact Index Per Article: 59.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Enzymes synthesized by hyperthermophiles (bacteria and archaea with optimal growth temperatures of > 80 degrees C), also called hyperthermophilic enzymes, are typically thermostable (i.e., resistant to irreversible inactivation at high temperatures) and are optimally active at high temperatures. These enzymes share the same catalytic mechanisms with their mesophilic counterparts. When cloned and expressed in mesophilic hosts, hyperthermophilic enzymes usually retain their thermal properties, indicating that these properties are genetically encoded. Sequence alignments, amino acid content comparisons, crystal structure comparisons, and mutagenesis experiments indicate that hyperthermophilic enzymes are, indeed, very similar to their mesophilic homologues. No single mechanism is responsible for the remarkable stability of hyperthermophilic enzymes. Increased thermostability must be found, instead, in a small number of highly specific alterations that often do not obey any obvious traffic rules. After briefly discussing the diversity of hyperthermophilic organisms, this review concentrates on the remarkable thermostability of their enzymes. The biochemical and molecular properties of hyperthermophilic enzymes are described. Mechanisms responsible for protein inactivation are reviewed. The molecular mechanisms involved in protein thermostabilization are discussed, including ion pairs, hydrogen bonds, hydrophobic interactions, disulfide bridges, packing, decrease of the entropy of unfolding, and intersubunit interactions. Finally, current uses and potential applications of thermophilic and hyperthermophilic enzymes as research reagents and as catalysts for industrial processes are described.
Collapse
Affiliation(s)
- C Vieille
- Biochemistry Department, Michigan State University, East Lansing, Michigan 48824, USA
| | | |
Collapse
|
41
|
Mai V, Wiegel J. Advances in development of a genetic system for Thermoanaerobacterium spp.: expression of genes encoding hydrolytic enzymes, development of a second shuttle vector, and integration of genes into the chromosome. Appl Environ Microbiol 2000; 66:4817-21. [PMID: 11055929 PMCID: PMC92385 DOI: 10.1128/aem.66.11.4817-4821.2000] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Despite recent success in transforming various thermophilic gram-type-positive anaerobes with plasmid DNA, use of shuttle vectors for the expression of genes other than antibiotic resistance markers has not previously been described. We constructed new vectors in order to express heterologous hydrolytic enzymes in our model system, Thermoanaerobacterium saccharolyticum JW/SL-YS485. Transformed Thermoanaerobacterium expressed active enzyme, indicating that this system may function as an alternate expression host, especially for genes with a thermophilic origin. To develop further the genetic system for T. saccharolyticum JW/SL-YS485, two improved Escherichia coli-Thermoanaerobacterium shuttle vectors, pRKM1 and pRUKM, were constructed. Furthermore, the kanamycin resistance cassette alone and the kanamycin resistance cassette plus the cellobiohydrolase gene (cbhA) from Clostridium thermocellum JW20 were integrated into the xylanase gene (xynA) region of the Thermoanaerobacterium chromosome via homologous recombination using pUC-based suicide vectors pUXK and pUXKC.
Collapse
Affiliation(s)
- V Mai
- Department of Microbiology and Center for Biological Resource Recovery, University of Georgia, Athens, Georgia 30602, USA
| | | |
Collapse
|
42
|
Abstract
The production of sugars from starch sources is an industry that exists in its present form due to the application of industrial enzymology to solve process related problems. As the industry matures, the demand for more efficient enzymes leading to higher quality products and lower production costs for the starch processor has increased. Researchers are now finding or tailoring enzymes for specific operational needs of the processor using a combination of tools such as protein engineering, directed evolution and improved accessing of natural diversity.
Collapse
Affiliation(s)
- W D Crabb
- Genencor International, Inc., California Technology Center, 925 Page Mill Road, Palo Alto, CA 94304, USA.
| | | |
Collapse
|
43
|
|
44
|
|