1
|
Molecular, physiological and phylogenetic traits of Lactococcus 936-type phages from distinct dairy environments. Sci Rep 2018; 8:12540. [PMID: 30135597 PMCID: PMC6105707 DOI: 10.1038/s41598-018-30371-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 07/20/2018] [Indexed: 11/13/2022] Open
Abstract
Bacteriophage infection of Lactococcus species can cause serious disruption of dairy fermentation processes. The most common isolates from the dairy environment are Siphoviridae lytic 936-type phages. To gain specific knowledge about this group of phages in Polish dairies, we examined 90 isolates from 8 different locations. Based on restriction fragment length polymorphism analysis, coupled with physiological and molecular studies, the isolated phages were divided into 8 distinct groups. Whole-genome sequencing of single representatives from each phage group provided data about their biology and genetic composition. The phages present an overall conserved genome organization. High sequence homology to another Polish isolate, Lactococcus phage bIBB29, indicates their close phylogenetic relatedness to this strain. Such similarity may be suggestive of a general genome conservation among phages persisting in Polish dairies. Comparative genome analyses with other 936-type phages revealed several discriminative traits, including the presence and position of HNH endonuclease genes, varying number of orfs in the early gene region, and a putative TpeX gene. Interestingly, host range of the sequenced phages was restricted to L. lactis subsp. lactis biovar. diacetylactis strains. The results provide new data regarding phages present in the Polish dairy environment and permit analysis of their biology, genome composition and relatedness to other Lactococcus 936-type phages.
Collapse
|
2
|
Matson EG, Zuerner RL, Stanton TB. Induction and transcription of VSH-1, a prophage-like gene transfer agent of Brachyspira hyodysenteriae. Anaerobe 2007; 13:89-97. [PMID: 17540587 DOI: 10.1016/j.anaerobe.2007.04.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2006] [Revised: 04/06/2007] [Accepted: 04/18/2007] [Indexed: 11/16/2022]
Abstract
The anaerobic spirochete Brachyspira hyodysenteriae is host to a bacteriophage-like agent known as VSH-1. VSH-1 is a novel gene transfer mechanism which does not self-propagate and transfers random 7.5kb fragments of host DNA between B. hyodysenteriae cells. In these investigations early events during VSH-1 induction by mitomycin C were examined. Quantitative PCR analysis revealed that VSH-1 hvp38 and hvp53 genes did not detectably increase in copy numbers during induction. Based on Northern blot hybridization assays, transcription of VSH-1 genes hvp38, hvp53, hvp45, hvp101, and lys increased fivefold to tenfold between 2 and 4h after induction whereas mRNA levels for B. hyodysenteriae flaA1 declined over the same time period. Chloramphenicol prevented the mitomycin C-induced increases in VSH-1 gene transcription. Hydrogen peroxide (300muM) substituted for mitomycin C as an inducer of VSH-1 gene transcription and is a possible 'natural' inducer of VSH-1 production in vivo. Northern blot hybridization, RT PCR, and primer extension analyses showed that VSH-1 genes are co-transcribed at an initiation site upstream of the VSH-1 gene operon. Two direct heptanucleotide repeats (ACTTATA) were identified between the putative -35 and -10 positions of the VSH-1 gene operon and are likely to represent a binding site for transcription proteins. These findings indicate VSH-1 virion production does not require genome replication, consistent with the inability of VSH-1 to self-propagate. Early events in VSH-1 induction include de novo synthesis of protein(s) essential for transcription of VSH-1 genes as polycistronic mRNA initiating upstream of the hvp45 gene.
Collapse
Affiliation(s)
- Eric G Matson
- Department of Microbiology, Iowa State University, Ames, IA 50010, USA
| | | | | |
Collapse
|
3
|
Fortier LC, Bransi A, Moineau S. Genome sequence and global gene expression of Q54, a new phage species linking the 936 and c2 phage species of Lactococcus lactis. J Bacteriol 2006; 188:6101-14. [PMID: 16923877 PMCID: PMC1595367 DOI: 10.1128/jb.00581-06] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The lytic lactococcal phage Q54 was previously isolated from a failed sour cream production. Its complete genomic sequence (26,537 bp) is reported here, and the analysis indicated that it represents a new Lactococcus lactis phage species. A striking feature of phage Q54 is the low level of similarity of its proteome (47 open reading frames) with proteins in databases. A global gene expression study confirmed the presence of two early gene modules in Q54. The unusual configuration of these modules, combined with results of comparative analysis with other lactococcal phage genomes, suggests that one of these modules was acquired through recombination events between c2- and 936-like phages. Proteolytic cleavage and cross-linking of the major capsid protein were demonstrated through structural protein analyses. A programmed translational frameshift between the major tail protein (MTP) and the receptor-binding protein (RBP) was also discovered. A "shifty stop" signal followed by putative secondary structures is likely involved in frameshifting. To our knowledge, this is only the second report of translational frameshifting (+1) in double-stranded DNA bacteriophages and the first case of translational coupling between an MTP and an RBP. Thus, phage Q54 represents a fascinating member of a new species with unusual characteristics that brings new insights into lactococcal phage evolution.
Collapse
Affiliation(s)
- Louis-Charles Fortier
- Département de biochimie et de microbiologie, Faculté des sciences et de génie, Groupe de recherche en écologie buccale, Felix d'Hérelle Reference Centre for Bacterial Viruses, Université Laval, Québec, Canada G1K 7P4
| | | | | |
Collapse
|
4
|
Vegge CS, Neve H, Brøndsted L, Heller KJ, Vogensen FK. Analysis of the collar-whisker structure of temperate lactococcal bacteriophage TP901-1. Appl Environ Microbiol 2006; 72:6815-8. [PMID: 17021234 PMCID: PMC1610273 DOI: 10.1128/aem.01033-06] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2006] [Accepted: 07/19/2006] [Indexed: 11/20/2022] Open
Abstract
Proteins homologous to the protein NPS (neck passage structure) are widespread among lactococcal phages. We investigated the hypothesis that NPS is involved in the infection of phage TP901-1 by analysis of an NPS- mutant. NPS was determined to form a collar-whisker complex but was shown to be nonessential for infection, phage assembly, and stability.
Collapse
Affiliation(s)
- Christina S Vegge
- Department of Food Science, The Royal Veterinary and Agricultural University, Rolighedsvej 30, DK-1958 Frederiksberg C, Denmark
| | | | | | | | | |
Collapse
|
5
|
Mahony J, Deveau H, Mc Grath S, Ventura M, Canchaya C, Moineau S, Fitzgerald GF, van Sinderen D. Sequence and comparative genomic analysis of lactococcal bacteriophages jj50, 712 and P008: evolutionary insights into the 936 phage species. FEMS Microbiol Lett 2006; 261:253-61. [PMID: 16907729 DOI: 10.1111/j.1574-6968.2006.00372.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The complete genome sequences of three lactococcal 936-type bacteriophages, 712, jj50 and P008, were determined. Comparative genomic analysis of these phages with the previously sequenced 936-type phages, sk1 and bIL170, reveals a strict conservation of the overall genetic organization of this geographically diverse phage group. Genetic divergence was mainly observed in the early expressed region of the phage genomes, where a number of deletions, exchanges and insertions appear to have occurred. These genetic differences may be responsible for the observed differential sensitivity to the lactococcal DNA injection blocking protein, Sie(2009), and the abortive infection system, AbiA.
Collapse
Affiliation(s)
- Jennifer Mahony
- Department of Microbiology, University College Cork, Ireland.
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Crutz-Le Coq AM, Cantele F, Lanzavecchia S, Marco S. Insights into structural proteins of 936-type virulent lactococcal bacteriophages. Arch Virol 2006; 151:1039-53. [PMID: 16453083 DOI: 10.1007/s00705-005-0709-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2005] [Accepted: 12/14/2005] [Indexed: 11/30/2022]
Abstract
bIL41 and bIL170, virulent phages of Lactococcus lactis belonging to the 936 group, possess a late gene named l12, coding a putative fiber sharing partial similarity to diverse gene products of dairy phages, including host-range determinants, but whose function is unknown in this group. We observed that the full-size gpl12 gene product is a minor protein constitutive of both phage particles. A derivative of bIL41 deleted for part of this gene was constructed by homologous recombination. The recombinant bIL41DeltaL12 showed normal propagation on strain IL1403 and no altered head and tail structures, demonstrating its non-essential role under our laboratory conditions. bIL170 was investigated for major structural components. Tails were characterized by electron microscopy and image analysis, which indicated that the major repeat unit of the tail occupied a maximum volume of 18.5 nm3, corresponding to a size of 20 kDa for a globular protein. Total protein profiles and head-enriched fractions of bIL170 exhibited a major 38 kDa protein, identified by N-terminal sequence as the product of l13. This result questions some of the functional predictions deduced from synteny relationships assumed for the lambda-supergroup of the family Siphoviridae to which the 936-type phages were proposed to belong.
Collapse
Affiliation(s)
- A-M Crutz-Le Coq
- Laboratoire de Génétique Microbienne, INRA, Jouy-en-Josas, France.
| | | | | | | |
Collapse
|
7
|
Pedersen M, Kilstrup M, Hammer K. Identification of DNA-binding sites for the activator involved in late transcription of the temperate lactococcal phage TP901-1. Virology 2006; 345:446-56. [PMID: 16297953 DOI: 10.1016/j.virol.2005.10.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2005] [Revised: 09/27/2005] [Accepted: 10/08/2005] [Indexed: 11/22/2022]
Abstract
Alt, encoded by the lactococcal phage TP901-1, is needed for late transcription. We identify Alt as a DNA-binding protein, and footprint analysis shows that Alt binds to a region containing four imperfect direct repeats (ALT boxes) located -76 to -32 relative to the P(late) transcriptional start site. The importance of the ALT boxes was confirmed by deletion of one or two ALT boxes and by introducing mutations in ALT boxes 1 and 4. Alt is proposed to act as a tetramer or higher multimer activating transcription of TP901-1 late genes by binding to the four ALT boxes, and bending of the DNA may be important for transcriptional activation of P(late). Furthermore, our results suggest that DNA replication may be required for late transcription in TP901-1. Additionally, we identify gp28 of the related lactococcal phage Tuc2009 as an activator and show that the activators required for late transcription in TP901-1 and Tuc2009 are interchangeable.
Collapse
Affiliation(s)
- Margit Pedersen
- Department of Microbial Physiology and Genetics, BioCentrum-DTU, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | | | | |
Collapse
|
8
|
Lamothe G, Lévesque C, Bissonnette F, Cochu A, Vadeboncoeur C, Frenette M, Duplessis M, Tremblay D, Moineau S. Characterization of the cro-ori region of the Streptococcus thermophilus virulent bacteriophage DT1. Appl Environ Microbiol 2005; 71:1237-46. [PMID: 15746324 PMCID: PMC1065193 DOI: 10.1128/aem.71.3.1237-1246.2005] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The virulent cos-type Streptococcus thermophilus phage DT1 was previously isolated from a mozzarella whey sample, and its complete genomic sequence is available. The putative ori of phage DT1 is characterized by three inverted and two direct repeats located in a noncoding region between orf36 and orf37. As the replication ability of the putative ori and flanking genes could not be established, its ability to confer phage resistance was tested. When ori is cloned on a high-copy-number plasmid, it provides protection to S. thermophilus strains against phage infection during milk fermentation. This protection is phage specific and strain dependent. Then, a detailed transcriptional map was established for the region located between the cro-like gene (orf29) and the ori. The results of the Northern blots indicated that the transcription of this region started 5 min after the onset of phage infection. Comparative analysis of the expression of the cro-ori region in the three S. thermophilus cos-type phages DT1, Sfi19 (virulent), and Sfi21 (temperate) reveals significant differences in the number and size of transcripts. The promoter upstream of orf29 was further investigated by primer extension analysis, and its activity was confirmed by a chloramphenicol acetyltransferase assay, which showed that the phage promoter is more efficient than the constitutive bacterial promoter of the S. thermophilus operon encoding the general proteins of the phosphoenolpyruvate:sugar phosphotransferase system. However, the phage promoter is less efficient than the pts promoter in Lactococcus lactis and in Escherichia coli.
Collapse
Affiliation(s)
- Geneviève Lamothe
- Groupe de Recherche en Ecologie Buccale, Faculté de Médecine Dentaire, Université Laval, Québec, Canada G1K 7P4
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Seegers JFML, Mc Grath S, O'Connell-Motherway M, Arendt EK, van de Guchte M, Creaven M, Fitzgerald GF, van Sinderen D. Molecular and transcriptional analysis of the temperate lactococcal bacteriophage Tuc2009. Virology 2004; 329:40-52. [PMID: 15476873 DOI: 10.1016/j.virol.2004.07.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2004] [Revised: 06/11/2004] [Accepted: 07/02/2004] [Indexed: 10/26/2022]
Abstract
The genome of bacteriophage Tuc2009 consists of 38347 base pairs on which 57 open reading frames (ORFs) were identified, divided in two oppositely transcribed regions. The leftward-transcribed region harbors three ORFs, two of which are involved in the establishment of lysogeny. The rightward-transcribed region contains 54 ORFs, which are assumed to be required for the lytic life cycle. An exception to the above organization is ORF 10, of unknown function, located within the rightward-transcribed region that has an orientation opposite to the ORFs surrounding it. Transcriptional analysis of the Tuc2009 genome following infection of a sensitive host revealed that most ORFs are transcribed in a sequential manner. ORFs that are presumed to form (part of) the genetic switch along with the superinfection exclusion-encoding gene are transcribed immediately after infection, followed by transcription of the presumed replication region. Subsequent to this, several small transcripts could be identified followed by a single 24-kb transcript. This latter transcript was shown to specify most of the identified structural proteins as well as two proteins required for host lysis. Interestingly, the 24-kb mRNA was shown to undergo splicing through the activity of a type I intron whose removal from the mRNA resulted in the formation of an ORF specifying a major structural protein. Primer extension analysis was employed to identify the 5' ends of mRNA transcripts and the genome and transcriptional data are discussed in relation to other lactococcal bacteriophages.
Collapse
Affiliation(s)
- Jos F M L Seegers
- National Food Biotechnology Centre, University College Cork, Cork, Ireland
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Ventura M, Brüssow H. Temporal transcription map of the virulent Streptococcus thermophilus bacteriophage Sfi19. Appl Environ Microbiol 2004; 70:5041-6. [PMID: 15294848 PMCID: PMC492375 DOI: 10.1128/aem.70.8.5041-5046.2004] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A transcription map was developed for the virulent Streptococcus thermophilus phage Sfi19 on the basis of systematic Northern blot hybridizations. All deduced 5' ends were confirmed by primer extension experiments. Three classes of transcripts were detected based on the different times of appearance. Early transcripts were identified in three genome regions; middle transcripts covered cro-like, DNA replication, and transcriptional regulation genes; and late genes consisted of structural and lysis genes. Chloramphenicol treatment suppressed the translation of a putative transcriptional factor necessary for the production of late transcripts and shifted middle transcripts to early transcription times.
Collapse
Affiliation(s)
- Marco Ventura
- Nestlé Research Center, Nestec Ltd., Vers-chez-les-Blanc, CH-1000 Lausanne 26, Switzerland
| | | |
Collapse
|
11
|
Chandry PS, Moore SC, Davidson BE, Hillier AJ. Transduction of concatemeric plasmids containing the cos site of Lactococcus lactis bacteriophage sk1. FEMS Microbiol Lett 2002; 216:85-90. [PMID: 12423757 DOI: 10.1111/j.1574-6968.2002.tb11419.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Lactococcus lactis bacteriophage sk1 can transduce plasmids containing the phage cos site and surrounding DNA sequences at frequencies as high as 2x10(-3) transductants per PFU. Deletion analysis demonstrated that the presence of phage DNA spanning cos and putative R sites were the most important for efficient plasmid transduction. Inserts of 440 bp containing cos and the R sites were sufficient to induce transduction frequencies of 10(-4) transductants per PFU. The role of the R1 site was investigated by altering 14 of the 19 bases in the site. This resulted in a two-fold decrease in transduction frequency compared to a 26-fold decrease in transduction following deletion of the entire site. It was demonstrated that transducing plasmids were packaged as linear trimeric concatemers commencing at the cos site.
Collapse
|
12
|
Ventura M, Foley S, Bruttin A, Chennoufi SC, Canchaya C, Brüssow H. Transcription mapping as a tool in phage genomics: the case of the temperate Streptococcus thermophilus phage Sfi21. Virology 2002; 296:62-76. [PMID: 12036318 DOI: 10.1006/viro.2001.1331] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
For the lytic growth cycle of the temperate cos-site Streptococcus thermophilus phage Sfi21 a transcription map was developed on the basis of systematic Northern blot hybridizations. All deduced 5' ends were confirmed by primer extension analysis. Three time classes of transcripts were observed. Early transcripts were identified in four different genome regions. One prominent early mRNA of 4.8 kb length covered a group of 12 genes located between the origin of replication and the cos-site. Two short early mRNAs represented a single gene from the direct vicinity of the cos-site and the superinfection immunity gene from the lysogeny module, respectively. A fourth early transcript covered a group of four genes located between the lysin and the integrase gene. Middle transcripts of 2.1 and 5.8 kb length covered cro-like and ant-like repressor genes and the DNA replication module, respectively. Four types of late transcripts were identified. The transcripts covered the likely DNA packaging genes, the head morphogenesis module plus the major tail gene, the remainder of the tail genes, and the putative tail fiber plus lysis genes, respectively. Only the transcript from the head morphogenesis genes yielded defined late mRNA species. The transcription map concurred with most of the in silico predictions for the genome organization of phage Sfi21 except for the separation of the DNA replication module from a possible transcription regulation module. Most 5' ends of the transcripts determined in primer-extension experiments were not preceded by a consensus promoter sequence. The involvement of phage-encoded regulators for middle and late transcription was suggested by chloramphenicol-inhibition experiments.
Collapse
Affiliation(s)
- Marco Ventura
- Nestlé Research Center, Nestec Ltd., Vers-chez-les-Blanc, Lausanne 26, CH-1000, Switzerland
| | | | | | | | | | | |
Collapse
|
13
|
Crutz-Le Coq AM, Cesselin B, Commissaire J, Anba J. Sequence analysis of the lactococcal bacteriophage bIL170: insights into structural proteins and HNH endonucleases in dairy phages. MICROBIOLOGY (READING, ENGLAND) 2002; 148:985-1001. [PMID: 11932445 DOI: 10.1099/00221287-148-4-985] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The complete 31754 bp genome of bIL170, a virulent bacteriophage of Lactococcus lactis belonging to the 936 group, was analysed. Sixty-four ORFs were predicted and the function of 16 of them was assigned by significant homology to proteins in databases. Three putative homing endonucleases of the HNH family were found in the early region. An HNH endonuclease with zinc-binding motif was identified in the late cluster, potentially being part of the same functional module as terminase. Three putative structural proteins were analysed in detail and show interesting features among dairy phages. Notably, gpl12 (putative fibre) and gpl20 (putative baseplate protein) of bIL170 are related by at least one of their domains to a number of multi-domain proteins encoded by lactococcal or streptococcal phages. A 110- to 150-aa-long hypervariable domain flanked by two conserved motifs of about 20 aa was identified. The analysis presented here supports the participation of some of these proteins in host-range determination and suggests that specific adsorption to the host may involve a complex multi-component system. Divergences in the genome of phages of the 936 group, that may have important biological properties, were noted. Insertions/deletions of units of one or two ORFs were the main source of divergence in the early clusters of the two entirely sequenced phages, bIL170 and sk1. An exchange of fragments probably affected the regions containing the putative origin of replication. It led to the absence in bIL170 of the direct repeats recognized in sk1 and to the presence of different ORFs in the ori region. Shuffling of protein domains affected the endolysin (putative cell-wall binding part), as well as gpl12 and gpl20.
Collapse
Affiliation(s)
- Anne-Marie Crutz-Le Coq
- Laboratoire de Génétique Microbienne1 and Unité de Recherches Laitières et de Génétique Appliquée2, INRA, 78352 Jouy-en-Josas cedex, France
| | - Bénédicte Cesselin
- Laboratoire de Génétique Microbienne1 and Unité de Recherches Laitières et de Génétique Appliquée2, INRA, 78352 Jouy-en-Josas cedex, France
| | - Jacqueline Commissaire
- Laboratoire de Génétique Microbienne1 and Unité de Recherches Laitières et de Génétique Appliquée2, INRA, 78352 Jouy-en-Josas cedex, France
| | - Jamila Anba
- Laboratoire de Génétique Microbienne1 and Unité de Recherches Laitières et de Génétique Appliquée2, INRA, 78352 Jouy-en-Josas cedex, France
| |
Collapse
|
14
|
Abstract
Bacteriophages of lactic acid bacteria are a threat to industrial milk fermentation. Owing to their economical importance, dairy phages became the most thoroughly sequenced phage group in the database. Comparative genomics identified related cos-site and pac-site phages, respectively, in lactococci, lactic streptococci and lactobacilli. Each group was represented with closely related temperate and virulent phages. Over the structural genes their gene maps resembled that of lambdoid coliphages, suggesting distant evolutionary relationships. Despite a lack of sequence similarity, a number of biochemical characteristics of these dairy phages are lambda-like (genetic switch, DNA packaging, head and tail morphogenesis, and integration, but not excision). These dairy phages thus provide interesting variations to the phage lambda paradigm. The structural gene cluster of Lactococcus phage r1t resembled that of phages from mycobacteria. Virulent lactococcal phages with prolate heads (c2-like genus of Siphoviridae), in contrast, have no known counterparts in other bacterial genera.
Collapse
Affiliation(s)
- H Brussow
- Nestlé Research Center, Nestec Ltd., Vers-chez-les-Blanc, Lausanne 26, CH-1000 Switzerland.
| |
Collapse
|
15
|
Brøndsted L, Pedersen M, Hammer K. An activator of transcription regulates phage TP901-1 late gene expression. Appl Environ Microbiol 2001; 67:5626-33. [PMID: 11722916 PMCID: PMC93353 DOI: 10.1128/aem.67.12.5626-5633.2001] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A promoter active in the late phase of the lytic cycle of lactococcal bacteriophage TP901-1 has been identified. The promoter is tightly regulated and requires the product of the phage TP901-1 orf29 for activity. A deletion analysis of the late promoter region showed that a fragment as small as 99 bp contains both the promoter and the region necessary for activation by ORF29. The transcriptional start site of the promoter was identified by primer extension to position 13073 on the TP901-1 genome, thus located 87 bp downstream of orf29 in a 580-bp intergenic region between orf29 and orf30. Furthermore, the region located -85 to -61 bp upstream of the start site was shown to be necessary for promoter activity. During infection, the transcript arising from the late promoter is fully induced at 40 min postinfection, and our results suggest that a certain level of ORF29 must be reached in order to activate transcription of the promoter. Several lactococcal bacteriophages encode ORF29 homologous proteins, indicating that late transcription may be controlled by a similar mechanism in these phages. With the identification of this novel regulator, our results suggest that within the P335 group of lactococcal phages at least two regulatory systems controlling transcription in the late stage of infection exist.
Collapse
Affiliation(s)
- L Brøndsted
- Department of Microbiology, Technical University of Denmark, Lyngby.
| | | | | |
Collapse
|
16
|
Rincé A, Tangney M, Fitzgerald GF. Identification of a DNA region from lactococcal phage sk1 protecting phage 712 from the abortive infection mechanism AbiF. FEMS Microbiol Lett 2000; 182:185-91. [PMID: 10612752 DOI: 10.1111/j.1574-6968.2000.tb08894.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Bacteriophage 712 is a small isometric-headed phage which is sensitive to the lactococcal abortive infection mechanism AbiF. Its 29.6-kb DNA genome was characterized by restriction mapping and transcriptional analysis. Construction of a gene bank of lactococcal phage sk1, which is insensitive to the action of AbiF, in Lactococcus lactis containing AbiF resulted in the identification of a 324-bp DNA fragment which reduced the effect of the abortive infection mechanism on phage 712. Analysis of this region provided evidence that the action of AbiF is related to the cos ends of small isometric-headed phages. Sequence analysis of a 3.2-kb segment containing the middle operon and the cos ends of phage 712 genome allowed comparison of this part of the phage 712 genome with the equivalent sequences of four other small isometric-headed phages.
Collapse
Affiliation(s)
- A Rincé
- National Food Biotechnology Centre, University College, Cork, Ireland
| | | | | |
Collapse
|
17
|
Lubbers MW, Schofield K, Waterfield NR, Polzin KM. Transcription analysis of the prolate-headed lactococcal bacteriophage c2. J Bacteriol 1998; 180:4487-96. [PMID: 9721287 PMCID: PMC107459 DOI: 10.1128/jb.180.17.4487-4496.1998] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A detailed transcription map of the prolate-headed lactococcal phage c2 has been constructed. Transcription of about one-third of the genome, encoding 22 open reading frames, began within the first 2 min of infection and produced at least 12 overlapping transcripts that persisted until lysis occurred at 30 min after initiation of infection. The remaining two-thirds of the genome, encoding 17 open reading frames, was divergently transcribed, beginning between 4 and 6 min after initiation of infection, and resulted in at least 18 overlapping transcripts that persisted until lysis. Five very strong, simultaneously active, and probably unregulated early promoters and a single positively regulated late promoter were identified. The late promoter had an extended -10 sequence, had a significant basal level of activity in the uninduced state, and was induced to high activity by a phage gene product. The complex overlapping pattern of transcripts resulted from the action of the multiple early promoters, inefficient termination of transcription, and (possibly) processing of a late precursor transcript(s). Phage proteins were not required for these processes, and the host RNA polymerase was probably used for both early and late transcription.
Collapse
Affiliation(s)
- M W Lubbers
- Biological Science Section, New Zealand Dairy Research Institute, Palmerston North, New Zealand.
| | | | | | | |
Collapse
|
18
|
Walker SA, Klaenhammer TR. Molecular characterization of a phage-inducible middle promoter and its transcriptional activator from the lactococcal bacteriophage phi31. J Bacteriol 1998; 180:921-31. [PMID: 9473048 PMCID: PMC106973 DOI: 10.1128/jb.180.4.921-931.1998] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
An inducible middle promoter from the lactococcal bacteriophage phi31 was isolated previously by shotgun cloning an 888-bp fragment (P15A10) upstream of the beta-galactosidase (beta-Gal) gene (lacZ.st) from Streptococcus thermophilus (D. J. O'Sullivan, S. A. Walker, S. G. West, and T. R. Klaenhammer, Bio/Technology 14:82-87, 1996). The promoter showed low levels of constitutive beta-Gal activity which could be induced two- to threefold over baseline levels after phage infection. During this study, the fragment was subcloned and characterized to identify a smaller, tightly regulated promoter fragment which allowed no beta-Gal activity until after phage infection. This fragment, defined within nucleotides 566 to 888 (P(566-888); also called fragment 566-888), contained tandem, phage-inducible transcription start sites at nucleotides 703 and 744 (703/744 start sites). Consensus -10 regions were present upstream of both start sites, but no consensus -35 regions were identified for either start site. A transcriptional activator, encoded by an open reading frame (ORF2) upstream of the 703/744 start sites, was identified for P(566-888). ORF2 activated P(566-888) when provided in trans in Escherichia coli. In addition, when combined with pTRK391 (P15A10::lacZ.st) in Lactococcus lactis NCK203, an antisense ORF2 construct was able to retard induction of the phage-inducible promoter as measured by beta-Gal activity levels. Finally, gel shift assays showed that ORF2 was able to bind to promoter fragment 566-888. Deletion analysis of the region upstream from the tandem promoters identified a possible binding site for transcriptional activation of the phage promoters. The DNA-binding ability of ORF2 was eliminated upon deletion of part of this region, which lies centered approximately 35 bp upstream of start site 703. Deletion analysis and mutagenesis studies also elucidated a critical region downstream of the 703/744 start sites, where mutagenesis resulted in a two- to threefold increase in beta-Gal activity. With these improvements, the level of expression achieved by an explosive-expression strategy was elevated from 3,000 to 11,000 beta-Gal units within 120 min after induction.
Collapse
Affiliation(s)
- S A Walker
- Department of Food Science, Southeast Dairy Foods Research Center, North Carolina State University, Raleigh 27695-7624, USA
| | | |
Collapse
|
19
|
Djordjevic GM, O'Sullivan DJ, Walker SA, Conkling MA, Klaenhammer TR. A triggered-suicide system designed as a defense against bacteriophages. J Bacteriol 1997; 179:6741-8. [PMID: 9352925 PMCID: PMC179604 DOI: 10.1128/jb.179.21.6741-6748.1997] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
A novel bacteriophage protection system for Lactococcus lactis based on a genetic trap, in which a strictly phage-inducible promoter isolated from the lytic phage phi31 is used to activate a bacterial suicide system after infection, was developed. The lethal gene of the suicide system consists of the three-gene restriction cassette LlaIR+, which is lethal across a wide range of gram-positive bacteria. The phage-inducible trigger promoter (phi31P) and the LlaIR+ restriction cassette were cloned in Escherichia coli on a high-copy-number replicon to generate pTRK414H. Restriction activity was not apparent in E. coli or L. lactis prior to phage infection. In phage challenges of L. lactis(pTRK414H) with phi31, the efficiency of plaquing was lowered to 10(-4) and accompanied by a fourfold reduction in burst size. Center-of-infection assays revealed that only 15% of infected cells released progeny phage. In addition to phage phi31, the phi31P/LlaIR+ suicide cassette also inhibited four phi31-derived recombinant phages at levels at least 10-fold greater than that of phi31. The phi31P/LlaIR+-based suicide system is a genetically engineered form of abortive infection that traps and eliminates phages potentially evolving in fermentation environments by destroying the phage genome and killing the propagation host. This type of phage-triggered suicide system could be designed for any bacterium-phage combination, given a universal lethal gene and an inducible promoter which is triggered by the infecting bacteriophage.
Collapse
Affiliation(s)
- G M Djordjevic
- Department of Microbiology, North Carolina State University, Raleigh 27695-7624, USA
| | | | | | | | | |
Collapse
|
20
|
Perrin R, Billard P, Branlant C. Comparative analysis of the genomic DNA terminal regions of the lactococcal bacteriophages from species c2. Res Microbiol 1997; 148:573-83. [PMID: 9765842 DOI: 10.1016/s0923-2508(97)88081-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In an attempt to compare the cos intergenic region and bordering ORFs from Lactococcus lactis bacteriophages of the species c2, the nucleotide sequence of a 2479-bp fragment containing the cos site of phage P001 DNA was determined and compared with the corresponding regions of phages c2, bIL67 and P6 (partial sequence), which belong to species c2. This comparative analysis revealed that some characteristic features of the cos intergenic region are conserved in all members of species c2. Some of them are specific to species c2, as is the case for a GC-rich repeat in phase with the double helix that is located close to cos. One conserved motif seems to be more general, as it is found in all the cos regions of L. lactis bacteriophages that have been sequenced. It consists in a 4-nt indirect repeat TCAN/NACT located in a 15-bp fragment containing cos. This motif may be related to terminase specificity, as most of the cos asymmetric cleavages identified up to now are located within, or at the border of, these indirectly repeated sequences. Finally, some of the conserved DNA motifs of the species c2 cos-intergenic region seem to be even more general, as they are homologous to the lambda-R sites known to be involved in the maturation and the encapsidation of phage lambda DNA. Our comparative analysis also showed that within c2 phage DNAs, large blocks of sequences, i.e. the intergenic cos region and ORF/17 on the one hand, and ORF/16 on the other hand, evolved as distinct entities, probably by block recombination between phage DNAs of the same species.
Collapse
Affiliation(s)
- R Perrin
- Laboratoire d'Enzymologie et de Génie génétique, URA CNRS 457, Université II. Poincaré, Nancy I, Vandoeuvre-lès-Nancy, France
| | | | | |
Collapse
|
21
|
|