1
|
Das D, Chatterjee S. Persistent exclusion process with time-periodic drive. Phys Rev E 2025; 111:034122. [PMID: 40247554 DOI: 10.1103/physreve.111.034122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 02/25/2025] [Indexed: 04/19/2025]
Abstract
We study a persistent exclusion process with time-periodic external potential on a one-dimensional periodic lattice through numerical simulations. A set of run-and-tumble particles move on a lattice of length L and tumbling probability γ≪1 and interact among each other via hard-core exclusion. The effect of the external potential has been modeled as a special site where the tumbling probability is 1. We call it a "defect" site and move its location along the ring lattice with speed u. In the case of γ=0 the system goes to a jammed state when there is no defect. But introduction of the moving defect creates a strongly phase-separated state where almost all active particles are present in a single large cluster, for small and moderate u. This striking effect is caused by the long-range velocity correlation of the active particles, induced by the moving defect. For large u, a single large cluster is no longer stable and breaks into multiple smaller clusters. For nonzero γ a competition develops between the timescales associated with tumbling and defect motion. While the moving defect attempts to create long-range velocity order, bulk tumbling tends to randomize the velocity alignment. If γ is comparable to u/L, then a relatively small number of tumbles take place during the time the moving defect travels through the entire system. In this case, the defect has enough time to restore the order in the system and our simulations show that the long-range order in velocity and density survive for γ values in this range. As γ increases further, long-range order is destroyed and the system develops multiple regions of high and low density. We characterize the density inhomogeneity in this case by measuring subsystem density fluctuations and present a heat map in the γ-u plane showing the regions with most pronounced density inhomogeneities.
Collapse
Affiliation(s)
- Deepsikha Das
- S. N. Bose National Centre for Basic Sciences, Department of Physics of Complex Systems, Block JD, Sector 3, Salt Lake, Kolkata 700106, India
| | - Sakuntala Chatterjee
- S. N. Bose National Centre for Basic Sciences, Department of Physics of Complex Systems, Block JD, Sector 3, Salt Lake, Kolkata 700106, India
| |
Collapse
|
2
|
Li X, Zhang C, Xu X, Miao J, Yao J, Liu R, Zhao Y, Chen X, Yang Y. A single-component light sensor system allows highly tunable and direct activation of gene expression in bacterial cells. Nucleic Acids Res 2020; 48:e33. [PMID: 31989175 PMCID: PMC7102963 DOI: 10.1093/nar/gkaa044] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 01/11/2020] [Accepted: 01/16/2020] [Indexed: 11/23/2022] Open
Abstract
Light-regulated modules offer unprecedented new ways to control cellular behaviour with precise spatial and temporal resolution. Among a variety of bacterial light-switchable gene expression systems, single-component systems consisting of single transcription factors would be more useful due to the advantages of speed, simplicity, and versatility. In the present study, we developed a single-component light-activated bacterial gene expression system (eLightOn) based on a novel LOV domain from Rhodobacter sphaeroides (RsLOV). The eLightOn system showed significant improvements over the existing single-component bacterial light-activated expression systems, with benefits including a high ON/OFF ratio of >500-fold, a high activation level, fast activation kinetics, and/or good adaptability. Additionally, the induction characteristics, including regulatory windows, activation kinetics and light sensitivities, were highly tunable by altering the expression level of LexRO. We demonstrated the usefulness of the eLightOn system in regulating cell division and swimming by controlling the expression of the FtsZ and CheZ genes, respectively, as well as constructing synthetic Boolean logic gates using light and arabinose as the two inputs. Taken together, our data indicate that the eLightOn system is a robust and highly tunable tool for quantitative and spatiotemporal control of bacterial gene expression.
Collapse
Affiliation(s)
- Xie Li
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing Technology, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China.,Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China
| | - Changcheng Zhang
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing Technology, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China.,Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China
| | - Xiaopei Xu
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing Technology, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China.,Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China
| | - Jun Miao
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing Technology, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China.,Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China
| | - Jing Yao
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing Technology, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China.,Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China
| | - Renmei Liu
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing Technology, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China.,Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China
| | - Yuzheng Zhao
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing Technology, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China.,Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China
| | - Xianjun Chen
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing Technology, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China.,Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China.,CAS Center for Excellence in Brain Science, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yi Yang
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing Technology, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China.,Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China.,CAS Center for Excellence in Brain Science, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
3
|
McKay R, Hauk P, Wu HC, Pottash AE, Shang W, Terrell J, Payne GF, Bentley WE. Controlling localization of Escherichia coli populations using a two-part synthetic motility circuit: An accelerator and brake. Biotechnol Bioeng 2017; 114:2883-2895. [PMID: 28755474 DOI: 10.1002/bit.26391] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 06/21/2017] [Accepted: 07/23/2017] [Indexed: 12/30/2022]
Abstract
Probiotics, whether taken as capsules or consumed in foods, have been regarded as safe for human use by regulatory agencies. Being living cells, they serve as "tunable" factories for the synthesis of a vast array of beneficial molecules. The idea of reprogramming probiotics to act as controllable factories, producing potential therapeutic molecules under user-specified conditions, represents a new and powerful concept in drug synthesis and delivery. Probiotics that serve as drug delivery vehicles pose several challenges, one being targeting (as seen with nanoparticle approaches). Here, we employ synthetic biology to control swimming directionality in a process referred to as "pseudotaxis." Escherichia coli, absent the motility regulator cheZ, swim sporadically, missing the traditional "run" in the run:tumble swimming paradigm. Upon introduction of cheZ in trans and its signal-generated upregulation, engineered bacteria can be "programmed" to swim toward the source of the chemical cue. Here, engineered cells that encounter sufficient levels of the small signal molecule pyocyanin, produce an engineered CheZ and swim with programmed directionality. By incorporating a degradation tag at the C-terminus of CheZ, the cells stop running when they exit spaces containing pyocyanin. That is, the engineered CheZ modified with a C-terminal extension derived from the putative DNA-binding transcriptional regulator YbaQ (RREERAAKKVA) is consumed by the ClpXP protease machine at a rate sufficient to "brake" the cells when pyocyanin levels are too low. Through this process, we demonstrate that over time, these engineered E. coli accumulate in pyocyanin-rich locales. We suggest that such approaches may find utility in engineering probiotics so that their beneficial functions can be focused in areas of principal benefit.
Collapse
Affiliation(s)
- Ryan McKay
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland.,Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, Maryland
| | - Pricila Hauk
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland.,Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, Maryland
| | - Hsuan-Chen Wu
- Department of Biochemical Science and Technology, National Taiwan University, Taipei City, Taiwan
| | - Alex Eli Pottash
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland
| | - Wu Shang
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland.,Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, Maryland
| | | | - Gregory F Payne
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland.,Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, Maryland
| | - William E Bentley
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland.,Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, Maryland
| |
Collapse
|
4
|
Chen X, Liu R, Ma Z, Xu X, Zhang H, Xu J, Ouyang Q, Yang Y. An extraordinary stringent and sensitive light-switchable gene expression system for bacterial cells. Cell Res 2016; 26:854-7. [PMID: 27311594 DOI: 10.1038/cr.2016.74] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Xianjun Chen
- Synthetic Biology and Biotechnology Laboratory, State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing Technology, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China.,Optogenetics and Molecular Imaging Interdisciplinary Research Center, CAS Center for Excellence in Brain Science, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China.,Collaborative Innovation Center of Genetics and Development, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China
| | - Renmei Liu
- Synthetic Biology and Biotechnology Laboratory, State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing Technology, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China.,Optogenetics and Molecular Imaging Interdisciplinary Research Center, CAS Center for Excellence in Brain Science, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China
| | - Zhengcai Ma
- Synthetic Biology and Biotechnology Laboratory, State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing Technology, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China
| | - Xiaopei Xu
- Synthetic Biology and Biotechnology Laboratory, State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing Technology, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China.,Optogenetics and Molecular Imaging Interdisciplinary Research Center, CAS Center for Excellence in Brain Science, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China
| | - Haoqian Zhang
- State Key Laboratory for Mesoscopic Physics and School of Physics, Peking University, Beijing, China
| | - Jianhe Xu
- Synthetic Biology and Biotechnology Laboratory, State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing Technology, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China
| | - Qi Ouyang
- State Key Laboratory for Mesoscopic Physics and School of Physics, Peking University, Beijing, China
| | - Yi Yang
- Synthetic Biology and Biotechnology Laboratory, State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing Technology, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China.,Optogenetics and Molecular Imaging Interdisciplinary Research Center, CAS Center for Excellence in Brain Science, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China.,Collaborative Innovation Center of Genetics and Development, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China
| |
Collapse
|
5
|
Lertsethtakarn P, Howitt MR, Castellon J, Amieva MR, Ottemann KM. Helicobacter pylori CheZ(HP) and ChePep form a novel chemotaxis-regulatory complex distinct from the core chemotaxis signaling proteins and the flagellar motor. Mol Microbiol 2015; 97:1063-78. [PMID: 26061894 DOI: 10.1111/mmi.13086] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/08/2015] [Indexed: 12/20/2022]
Abstract
Chemotaxis is important for Helicobacter pylori to colonize the stomach. Like other bacteria, H. pylori uses chemoreceptors and conserved chemotaxis proteins to phosphorylate the flagellar rotational response regulator, CheY, and modulate the flagellar rotational direction. Phosphorylated CheY is returned to its non-phosphorylated state by phosphatases such as CheZ. In previously studied cases, chemotaxis phosphatases localize to the cellular poles by interactions with either the CheA chemotaxis kinase or flagellar motor proteins. We report here that the H. pylori CheZ, CheZ(HP), localizes to the poles independently of the flagellar motor, CheA, and all typical chemotaxis proteins. Instead, CheZ(HP) localization depends on the chemotaxis regulatory protein ChePep, and reciprocally, ChePep requires CheZ(HP) for its polar localization. We furthermore show that these proteins interact directly. Functional domain mapping of CheZ(HP) determined the polar localization motif lies within the central domain of the protein and that the protein has regions outside of the active site that participate in chemotaxis. Our results suggest that CheZ(HP) and ChePep form a distinct complex. These results therefore suggest the intriguing idea that some phosphatases localize independently of the other chemotaxis and motility proteins, possibly to confer unique regulation on these proteins' activities.
Collapse
Affiliation(s)
- Paphavee Lertsethtakarn
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, CA, 95064, USA
| | - Michael R Howitt
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Juan Castellon
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, CA, 95064, USA
| | - Manuel R Amieva
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Karen M Ottemann
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, CA, 95064, USA
| |
Collapse
|
6
|
Liu C, Fu X, Liu L, Ren X, Chau CKL, Li S, Xiang L, Zeng H, Chen G, Tang LH, Lenz P, Cui X, Huang W, Hwa T, Huang JD. Sequential Establishment of Stripe Patterns in an Expanding Cell Population. Science 2011; 334:238-41. [PMID: 21998392 DOI: 10.1126/science.1209042] [Citation(s) in RCA: 204] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Chenli Liu
- Department of Biochemistry, The University of Hong Kong, Pokfulam, Hong Kong, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Action at a distance: amino acid substitutions that affect binding of the phosphorylated CheY response regulator and catalysis of dephosphorylation can be far from the CheZ phosphatase active site. J Bacteriol 2011; 193:4709-18. [PMID: 21764922 DOI: 10.1128/jb.00070-11] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Two-component regulatory systems, in which phosphorylation controls the activity of a response regulator protein, provide signal transduction in bacteria. For example, the phosphorylated CheY response regulator (CheYp) controls swimming behavior. In Escherichia coli, the chemotaxis phosphatase CheZ stimulates the dephosphorylation of CheYp. CheYp apparently binds first to the C terminus of CheZ and then binds to the active site where dephosphorylation occurs. The phosphatase activity of the CheZ(2) dimer exhibits a positively cooperative dependence on CheYp concentration, apparently because the binding of the first CheYp to CheZ(2) is inhibited compared to the binding of the second CheYp. Thus, CheZ phosphatase activity is reduced at low CheYp concentrations. The CheZ21IT gain-of-function substitution, located far from either the CheZ active site or C-terminal CheY binding site, enhances CheYp binding and abolishes cooperativity. To further explore mechanisms regulating CheZ activity, we isolated 10 intragenic suppressor mutations of cheZ21IT that restored chemotaxis. The suppressor substitutions were located along the central portion of CheZ and were not allele specific. Five suppressor mutants tested biochemically diminished the binding of CheYp and/or the catalysis of dephosphorylation, even when the suppressor substitutions were distant from the active site. One suppressor mutant also restored cooperativity to CheZ21IT. Consideration of results from this and previous studies suggests that the binding of CheYp to the CheZ active site (not to the C terminus) is rate limiting and leads to cooperative phosphatase activity. Furthermore, amino acid substitutions distant from the active site can affect CheZ catalytic activity and CheYp binding, perhaps via the propagation of structural or dynamic perturbations through a helical bundle.
Collapse
|
8
|
Abstract
Aspartyl-phosphate phosphatases underlie the rapid responses of bacterial chemotaxis. One such phosphatase, CheZ, was originally proposed to be restricted to beta and gamma proteobacter, suggesting only a small subset of microbes relied on this protein. A putative CheZ phosphatase was identified genetically in the epsilon proteobacter Helicobacter pylori (Mol Micro 61:187). H. pylori utilizes a chemotaxis system consisting of CheAY, three CheVs, CheW, CheY(HP) and the putative CheZ to colonize the host stomach. Here we investigate whether this CheZ has phosphatase activity. We phosphorylated potential targets in vitro using either a phosphodonor or the CheAY kinase and [gamma-(32)P]-ATP, and found that H. pylori CheZ (CheZ(HP)) efficiently dephosphorylates CheY(HP) and CheAY and has additional weak activity on CheV2. We detected no phosphatase activity towards CheV1 or CheV3. Mutations corresponding to Escherichia coli CheZ active site residues or deletion of the C-terminal region inactivate CheZ(HP) phosphatase activity, suggesting the two CheZs function similarly. Bioinformatics analysis suggests that CheZ phosphatases are found in all proteobacteria classes, as well as classes Aquificae, Deferribacteres, Nitrospira and Sphingobacteria, demonstrating that CheZ phosphatases are broadly distributed within Gram-negative bacteria.
Collapse
Affiliation(s)
- Paphavee Lertsethtakarn
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, Santa Cruz, California 95064
| | - Karen M. Ottemann
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, Santa Cruz, California 95064
| |
Collapse
|
9
|
Silversmith RE. Auxiliary phosphatases in two-component signal transduction. Curr Opin Microbiol 2010; 13:177-83. [PMID: 20133180 DOI: 10.1016/j.mib.2010.01.004] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2009] [Revised: 01/05/2010] [Accepted: 01/07/2010] [Indexed: 11/18/2022]
Abstract
Signal termination in two-component systems occurs by loss of the phosphoryl group from the response regulator protein. This review explores our current understanding of the structures, catalytic mechanisms and means of regulation of the known families of phosphatases that catalyze response regulator dephosphorylation. The CheZ and CheC/CheX/FliY families, despite different overall structures, employ identical catalytic strategies using an amide side chain to orient a water molecule for in-line attack of the aspartyl phosphate. Spo0E phosphatases contain sequence and structural features that suggest a strategy similar to the chemotaxis phosphatases but the mechanism used by the Rap phosphatases is not yet elucidated. Identification of features shared by phosphatase families may aid in the identification of currently unrecognized classes of response regulator phosphatases.
Collapse
Affiliation(s)
- Ruth E Silversmith
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC 27599-7290, USA.
| |
Collapse
|
10
|
Abstract
CheZ localizes to chemoreceptor patches by binding CheA-short (CheA(S)). Residues 70 to 134 of CheZ, constituting the apical loops and part of the dimerization domain, suffice for localization. Replacements of Tyr-118, Ile-119, Leu-123, Arg-124, and Leu-126 of CheA interfere with localization. These residues are exposed in the 'P1 domain of CheA(S).
Collapse
|
11
|
Antúnez-Lamas M, Cabrera-Ordóñez E, López-Solanilla E, Raposo R, Trelles-Salazar O, Rodríguez-Moreno A, Rodríguez-Palenzuela P. Role of motility and chemotaxis in the pathogenesis of Dickeya dadantii 3937 (ex Erwinia chrysanthemi 3937). MICROBIOLOGY-SGM 2009; 155:434-442. [PMID: 19202091 DOI: 10.1099/mic.0.022244-0] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Dickeya dadantii 3937 (ex Erwinia chrysanthemi), a member of the Enterobacteriaceae, causes soft rot in many economically important crops. A successful pathogen has to reach the interior of the plant in order to cause disease. To study the role of motility and chemotaxis in the pathogenicity of D. dadantii 3937, genes involved in the chemotactic signal transduction system (cheW, cheB, cheY and cheZ) and in the structure of the flagellar motor (motA) were mutagenized. All the mutant strains grew like the wild-type in culture media, and the production and secretion of pectolytic enzymes was not affected. As expected, the swimming ability of the mutant strains was reduced with respect to the wild-type: motA (94%), cheY (80%), cheW (74%), cheB (54%) and cheZ (48%). The virulence of the mutant strains was analysed in chicory, Saintpaulia and potato. The mutant strains were also tested for their capability to enter into Arabidopsis leaves. All the mutants showed a significant decrease of virulence in certain hosts; however, the degree of virulence reduction varied depending on the virulence assay. The ability to penetrate Arabidopsis leaves was impaired in all the mutants, whereas the capacity to colonize potato tubers after artificial inoculation was affected in only two mutant strains. In general, the virulence of the mutants could be ranked as motA<cheY<cheB=cheW<cheZ, which correlated with the degree to which swimming was affected. These results clearly indicate that motility plays an important role in the pathogenicity of this bacterium.
Collapse
Affiliation(s)
- María Antúnez-Lamas
- Departamento de Biotecnología, Universidad Politécnica de Madrid, E.T.S. Ingenieros Agrónomos, CBGP, Centro de Biotecnología y Genómica de Plantas, Avda Complutense S/N, E-28040 Madrid, Spain
| | - Ezequiel Cabrera-Ordóñez
- Departamento de Biotecnología, Universidad Politécnica de Madrid, E.T.S. Ingenieros Agrónomos, CBGP, Centro de Biotecnología y Genómica de Plantas, Avda Complutense S/N, E-28040 Madrid, Spain
| | - Emilia López-Solanilla
- Departamento de Biotecnología, Universidad Politécnica de Madrid, E.T.S. Ingenieros Agrónomos, CBGP, Centro de Biotecnología y Genómica de Plantas, Avda Complutense S/N, E-28040 Madrid, Spain
| | - Rosa Raposo
- CIFOR, Instituto Nacional Investigaciones Agrarias (INIA), C. Coruña km 7.5, 28040 Madrid, Spain
| | - Oswaldo Trelles-Salazar
- Departamento de Arquitectura de Computadores, E.T.S. de Ingeniería Informática, Campus de Teatinos, E-29071 Málaga, Spain
| | - Andrés Rodríguez-Moreno
- Departamento de Arquitectura de Computadores, E.T.S. de Ingeniería Informática, Campus de Teatinos, E-29071 Málaga, Spain
| | - Pablo Rodríguez-Palenzuela
- Departamento de Biotecnología, Universidad Politécnica de Madrid, E.T.S. Ingenieros Agrónomos, CBGP, Centro de Biotecnología y Genómica de Plantas, Avda Complutense S/N, E-28040 Madrid, Spain
| |
Collapse
|
12
|
Guhaniyogi J, Wu T, Patel SS, Stock AM. Interaction of CheY with the C-terminal peptide of CheZ. J Bacteriol 2008; 190:1419-28. [PMID: 18083806 PMCID: PMC2238206 DOI: 10.1128/jb.01414-07] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2007] [Accepted: 12/04/2007] [Indexed: 01/17/2023] Open
Abstract
Chemotaxis, a means for motile bacteria to sense the environment and achieve directed swimming, is controlled by flagellar rotation. The primary output of the chemotaxis machinery is the phosphorylated form of the response regulator CheY (P-CheY). The steady-state level of P-CheY dictates the direction of rotation of the flagellar motor. The chemotaxis signal in the form of P-CheY is terminated by the phosphatase CheZ. Efficient dephosphorylation of CheY by CheZ requires two distinct protein-protein interfaces: one involving the strongly conserved C-terminal helix of CheZ (CheZ(C)) tethering the two proteins together and the other constituting an active site for catalytic dephosphorylation. In a previous work (J. Guhaniyogi, V. L. Robinson, and A. M. Stock, J. Mol. Biol. 359:624-645, 2006), we presented high-resolution crystal structures of CheY in complex with the CheZ(C) peptide that revealed alternate binding modes subject to the conformational state of CheY. In this study, we report biochemical and structural data that support the alternate-binding-mode hypothesis and identify key recognition elements in the CheY-CheZ(C) interaction. In addition, we present kinetic studies of the CheZ(C)-associated effect on CheY phosphorylation with its physiologically relevant phosphodonor, the histidine kinase CheA. Our results indicate mechanistic differences in phosphotransfer from the kinase CheA versus that from small-molecule phosphodonors, explaining a modest twofold increase of CheY phosphorylation with the former, observed in this study, relative to a 10-fold increase previously documented with the latter.
Collapse
Affiliation(s)
- Jayita Guhaniyogi
- Center for Advanced Biotechnology and Medicine, 679 Hoes Lane, Piscataway, NJ 08854, USA
| | | | | | | |
Collapse
|
13
|
Silversmith RE, Levin MD, Schilling E, Bourret RB. Kinetic characterization of catalysis by the chemotaxis phosphatase CheZ. Modulation of activity by the phosphorylated CheY substrate. J Biol Chem 2008; 283:756-65. [PMID: 17998207 DOI: 10.1074/jbc.m704400200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2025] Open
Abstract
CheZ catalyzes the dephosphorylation of the response regulator CheY in the two-component regulatory system that mediates chemotaxis in Escherichia coli. CheZ is a homodimer with two active sites for dephosphorylation. To gain insight into cellular mechanisms for the precise regulation of intracellular phosphorylated CheY (CheYp) levels, we evaluated the kinetic properties of CheZ. The steady state rate of CheZ-mediated dephosphorylation of CheYp displayed marked sigmoidicity with respect to CheYp concentration and a k(cat) of 4.9 s(-1). In contrast, the gain of function mutant CheZ-I21T with an amino acid substitution far from the active site gave hyperbolic kinetics and required far lower CheYp for half-saturation but had a similar k(cat) value as the wild type enzyme. Stopped flow fluorescence measurements demonstrated a 6-fold faster CheZ/CheYp association rate for CheZ-I21T (k(assoc) = 3.4 x 10(7) M (-1) s(-1)) relative to wild type CheZ (k(assoc) = 5.6 x 10(6) M(-1) s(-1)). Dissociation of the CheZ.CheYBeF(3) complex was slow for both wild type CheZ (k(dissoc) = 0.040 s(-1)) and CheZ-I21T (k(dissoc) = 0.023 s(-1)) and, when taken with the k(assoc) values, implied K(d) values of 7.1 and 0.68 nm, respectively. However, comparison of the k(dissoc) and k(cat) values implied that CheZ and CheYp are not at binding equilibrium during catalysis and that once CheYp binds, it is almost always dephosphorylated. The rate constants were collated to formulate a kinetic model for CheZ-mediated dephosphorylation that includes autoregulation by CheYp and allowed prediction of CheZ activities at CheZ and CheYp concentrations likely to be present in cells.
Collapse
Affiliation(s)
- Ruth E Silversmith
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina 27599-7290, USA.
| | | | | | | |
Collapse
|
14
|
Motaleb MA, Miller MR, Li C, Bakker RG, Goldstein SF, Silversmith RE, Bourret RB, Charon NW. CheX is a phosphorylated CheY phosphatase essential for Borrelia burgdorferi chemotaxis. J Bacteriol 2005; 187:7963-9. [PMID: 16291669 PMCID: PMC1291287 DOI: 10.1128/jb.187.23.7963-7969.2005] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Motility and chemotaxis are believed to be important in the pathogenesis of Lyme disease caused by the spirochete Borrelia burgdorferi. Controlling the phosphorylation state of CheY, a response regulator protein, is essential for regulating bacterial chemotaxis and motility. Rapid dephosphorylation of phosphorylated CheY (CheY-P) is crucial for cells to respond to environmental changes. CheY-P dephosphorylation is accomplished by one or more phosphatases in different species, including CheZ, CheC, CheX, FliY, and/or FliY/N. Only a cheX phosphatase homolog has been identified in the B. burgdorferi genome. However, a role for cheX in chemotaxis has not been established in any bacterial species. Inactivating B. burgdorferi cheX by inserting a flgB-kan cassette resulted in cells (cheX mutant cells) with a distinct motility phenotype. While wild-type cells ran, paused (stopped or flexed), and reversed, the cheX mutant cells continuously flexed and were not able to run or reverse. Furthermore, swarm plate and capillary tube chemotaxis assays demonstrated that cheX mutant cells were deficient in chemotaxis. Wild-type chemotaxis and motility were restored when cheX mutant cells were complemented with a shuttle vector expressing CheX. Furthermore, CheX dephosphorylated CheY3-P in vitro and eluted as a homodimer in gel filtration chromatography. These findings demonstrated that B. burgdorferi CheX is a CheY-P phosphatase that is essential for chemotaxis and motility, which is consistent with CheX being the only CheY-P phosphatase in the B. burgdorferi chemotaxis signal transduction pathway.
Collapse
Affiliation(s)
- M A Motaleb
- Department of Microbiology, Immunology, and Cell Biology, Health Sciences Center, West Virginia University, Morgantown, 26506-9177, USA
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Abstract
The study of chemotaxis describes the cellular processes that control the movement of organisms toward favorable environments. In bacteria and archaea, motility is controlled by a two-component system involving a histidine kinase that senses the environment and a response regulator, a very common type of signal transduction in prokaryotes. Most insights into the processes involved have come from studies of Escherichia coli over the last three decades. However, in the last 10 years, with the sequencing of many prokaryotic genomes, it has become clear that E. coli represents a streamlined example of bacterial chemotaxis. While general features of excitation remain conserved among bacteria and archaea, specific features, such as adaptational processes and hydrolysis of the intracellular signal CheY-P, are quite diverse. The Bacillus subtilis chemotaxis system is considerably more complex and appears to be similar to the one that existed when the bacteria and archaea separated during evolution, so that understanding this mechanism should provide insight into the variety of mechanisms used today by the broad sweep of chemotactic bacteria and archaea. However, processes even beyond those used in E. coli and B. subtilis have been discovered in other organisms. This review emphasizes those used by B. subtilis and these other organisms but also gives an account of the mechanism in E. coli.
Collapse
Affiliation(s)
- Hendrik Szurmant
- Department of Biochemistry, College of Medicine, University of Illinois, Urbana, IL 61801, USA
| | | |
Collapse
|
16
|
Cantwell BJ, Draheim RR, Weart RB, Nguyen C, Stewart RC, Manson MD. CheZ phosphatase localizes to chemoreceptor patches via CheA-short. J Bacteriol 2003; 185:2354-61. [PMID: 12644507 PMCID: PMC151485 DOI: 10.1128/jb.185.7.2354-2361.2003] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have investigated the conditions required for polar localization of the CheZ phosphatase by using a CheZ-green fluorescent protein fusion protein that, when expressed from a single gene in the chromosome, restored chemotaxis to a DeltacheZ strain. Localization was observed in wild-type, DeltacheZ, DeltacheYZ, and DeltacheRB cells but not in cells with cheA, cheW, or all chemoreceptor genes except aer deleted. Cells making only CheA-short (CheA(S)) or CheA lacking the P2 domain also retained normal localization, whereas cells producing only CheA-long or CheA missing the P1 and P2 domains did not. We conclude that CheZ localization requires the truncated C-terminal portion of the P1 domain present in CheA(S). Missense mutations targeting residues 83 through 120 of CheZ also abolished localization. Two of these mutations do not disrupt chemotaxis, indicating that they specifically prevent interaction with CheA(S) while leaving other activities of CheZ intact.
Collapse
Affiliation(s)
- Brian J Cantwell
- Department of Biology, Texas A&M University, College Station, Texas 77843, USA
| | | | | | | | | | | |
Collapse
|
17
|
Almogy G, Stone L, Ben-Tal N. Multi-stage regulation, a key to reliable adaptive biochemical pathways. Biophys J 2001; 81:3016-28. [PMID: 11720972 PMCID: PMC1301766 DOI: 10.1016/s0006-3495(01)75942-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
A general "multi-stage" regulation model, based on linearly connected regulatory units, is formulated to demonstrate how biochemical pathways may achieve high levels of accuracy. The general mechanism, which is robust to changes in biochemical parameters, such as protein concentration and kinetic rate constants, is incorporated into a mathematical model of the bacterial chemotaxis network and provides a new framework for explaining regulation and adaptiveness in this extensively studied system. Although conventional theories suggest that methylation feedback pathways are responsible for chemotactic regulation, the model, which is deduced from known experimental data, indicates that protein interactions downstream of the bacterial receptor complex, such as CheAs and CheZ, may play a crucial and complementary role.
Collapse
Affiliation(s)
- G Almogy
- Biomathematics Unit, Department of Zoology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv 69978, Israel
| | | | | |
Collapse
|
18
|
Boesch KC, Silversmith RE, Bourret RB. Isolation and characterization of nonchemotactic CheZ mutants of Escherichia coli. J Bacteriol 2000; 182:3544-52. [PMID: 10852888 PMCID: PMC101953 DOI: 10.1128/jb.182.12.3544-3552.2000] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The Escherichia coli CheZ protein stimulates dephosphorylation of CheY, a response regulator in the chemotaxis signal transduction pathway, by an unknown mechanism. Genetic analysis of CheZ has lagged behind biochemical and biophysical characterization. To identify putative regions of functional importance in CheZ, we subjected cheZ to random mutagenesis and isolated 107 nonchemotactic CheZ mutants. Missense mutations clustered in six regions of cheZ, whereas nonsense and frameshift mutations were scattered reasonably uniformly across the gene. Intragenic complementation experiments showed restoration of swarming activity when compatible plasmids containing genes for the truncated CheZ(1-189) peptide and either CheZA65V, CheZL90S, or CheZD143G were both present, implying the existence of at least two independent functional domains in each chain of the CheZ dimer. Six mutant CheZ proteins, one from each cluster of loss-of-function missense mutations, were purified and characterized biochemically. All of the tested mutant proteins were defective in their ability to dephosphorylate CheY-P, with activities ranging from 0.45 to 16% of that of wild-type CheZ. There was good correlation between the phosphatase activity of CheZ and the ability to form large chemically cross-linked complexes with CheY in the presence of the CheY phosphodonor acetyl phosphate. In consideration of both the genetic and biochemical data, the most severe functional impairments in this set of CheZ mutants seemed to be concentrated in regions which are located in a proposed large N-terminal domain of the CheZ protein.
Collapse
Affiliation(s)
- K C Boesch
- Department of Microbiology & Immunology, University of North Carolina, Chapel Hill 27599-7290, USA
| | | | | |
Collapse
|
19
|
Djordjevic S, Stock AM. Structural analysis of bacterial chemotaxis proteins: components of a dynamic signaling system. J Struct Biol 1998; 124:189-200. [PMID: 10049806 DOI: 10.1006/jsbi.1998.4034] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Most motile bacteria are capable of directing their movement in response to chemical gradients, a behavior known as chemotaxis. The signal transduction system that mediates chemotaxis in enteric bacteria consists of a set of six cytoplasmic proteins that couple stimuli sensed by a family of transmembrane receptors to behavioral responses generated by the flagellar motors. Signal transduction occurs via a phosphotransfer pathway involving a histidine protein kinase, CheA, and a response regulator protein, CheY, that in its phosphorylated state, modulates the direction of flagellar rotation. Two auxiliary proteins, CheW and CheZ, and two receptor modification enzymes, methylesterase CheB and methyltransferase CheR, influence the flux of phosphoryl groups within this central pathway. This paper focuses on structural characteristics of the four signaling proteins (CheA, CheY, CheB, and CheR) for which NMR or x-ray crystal structures have been determined. The proteins are examined with respect to their signaling activities that involve reversible protein modifications and transient assembly of macromolecular complexes. A variety of data suggest conformational flexibility of these proteins, a feature consistent with their multiple roles in a dynamic signaling pathway.
Collapse
Affiliation(s)
- S Djordjevic
- Center for Advanced Biotechnology and Medicine, Department of Biochemistry, University of Medicine and Dentistry of New Jersey, 679 Hoes Lane, Piscataway, New Jersey, 08854-5638, USA
| | | |
Collapse
|
20
|
Abstract
The behaviors of both cheZ-deleted and wild-type cells of Escherichia coli were found to be very sensitive to the level of expression of CheZ, a protein known to accelerate the dephosphorylation of the response regulator CheY-phosphate (CheY-P). However, cells induced to run and tumble by the unphosphorylated mutant protein CheY13DK106YW (CheY**) failed to respond to CheZ, even when CheZ was expressed at high levels. Therefore, CheZ neither affects the flagellar motors directly nor sequesters CheY**. In in vitro cross-linking studies, CheY** promoted trimerization of CheZ to the same extent as wild-type CheY but failed to induce the formation of complexes of higher molecular weight observed with CheY-P. Also, CheY** could be cross-linked to FliM, the motor receptor protein, nearly as well as CheY-P. Thus, to CheZ, CheY** looks like CheY, but to FliM, it looks like CheY-P.
Collapse
Affiliation(s)
- B E Scharf
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | | | | |
Collapse
|
21
|
Abstract
This map is an update of the edition 9 map by Berlyn et al. (M. K. B. Berlyn, K. B. Low, and K. E. Rudd, p. 1715-1902, in F. C. Neidhardt et al., ed., Escherichia coli and Salmonella: cellular and molecular biology, 2nd ed., vol. 2, 1996). It uses coordinates established by the completed sequence, expressed as 100 minutes for the entire circular map, and adds new genes discovered and established since 1996 and eliminates those shown to correspond to other known genes. The latter are included as synonyms. An alphabetical list of genes showing map location, synonyms, the protein or RNA product of the gene, phenotypes of mutants, and reference citations is provided. In addition to genes known to correspond to gene sequences, other genes, often older, that are described by phenotype and older mapping techniques and that have not been correlated with sequences are included.
Collapse
Affiliation(s)
- M K Berlyn
- Department of Biology and School of Forestry and Environmental Studies, Yale University, New Haven, Connecticut 06520-8104, USA.
| |
Collapse
|
22
|
Falke JJ, Bass RB, Butler SL, Chervitz SA, Danielson MA. The two-component signaling pathway of bacterial chemotaxis: a molecular view of signal transduction by receptors, kinases, and adaptation enzymes. Annu Rev Cell Dev Biol 1997; 13:457-512. [PMID: 9442881 PMCID: PMC2899694 DOI: 10.1146/annurev.cellbio.13.1.457] [Citation(s) in RCA: 394] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The chemosensory pathway of bacterial chemotaxis has become a paradigm for the two-component superfamily of receptor-regulated phosphorylation pathways. This simple pathway illustrates many of the fundamental principles and unanswered questions in the field of signaling biology. A molecular description of pathway function has progressed rapidly because it is accessible to diverse structural, biochemical, and genetic approaches. As a result, structures are emerging for most of the pathway elements, biochemical studies are elucidating the mechanisms of key signaling events, and genetic methods are revealing the intermolecular interactions that transmit information between components. Recent advances include (a) the first molecular picture of a conformational transmembrane signal in a cell surface receptor, (b) four new structures of kinase domains and adaptation enzymes, and (c) significant new insights into the mechanisms of receptor-mediated kinase regulation, receptor adaptation, and the phospho-activation of signaling proteins. Overall, the chemosensory pathway and the propulsion system it regulates provide an ideal system in which to probe molecular principles underlying complex cellular signaling and behavior.
Collapse
Affiliation(s)
- J J Falke
- Department of Chemistry and Biochemistry, University of Colorado, Boulder 80309-0215, USA.
| | | | | | | | | |
Collapse
|