1
|
Buchanan BB, Sirevåg R, Fuchs G, Ivanovsky RN, Igarashi Y, Ishii M, Tabita FR, Berg IA. The Arnon-Buchanan cycle: a retrospective, 1966-2016. PHOTOSYNTHESIS RESEARCH 2017; 134:117-131. [PMID: 29019085 DOI: 10.1007/s11120-017-0429-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 08/03/2017] [Indexed: 06/07/2023]
Abstract
For the first decade following its description in 1954, the Calvin-Benson cycle was considered the sole pathway of autotrophic CO2 assimilation. In the early 1960s, experiments with fermentative bacteria uncovered reactions that challenged this concept. Ferredoxin was found to donate electrons directly for the reductive fixation of CO2 into alpha-keto acids via reactions considered irreversible. Thus, pyruvate and alpha-ketoglutarate could be synthesized from CO2, reduced ferredoxin and acetyl-CoA or succinyl-CoA, respectively. This work opened the door to the discovery that reduced ferredoxin could drive the Krebs citric acid cycle in reverse, converting the pathway from its historical role in carbohydrate breakdown to one fixing CO2. Originally uncovered in photosynthetic green sulfur bacteria, the Arnon-Buchanan cycle has since been divorced from light and shown to function in a variety of anaerobic chemoautotrophs. In this retrospective, colleagues who worked on the cycle at its inception in 1966 and those presently working in the field trace its development from a controversial reception to its present-day inclusion in textbooks. This pathway is now well established in major groups of chemoautotrophic bacteria, instead of the Calvin-Benson cycle, and is increasingly referred to as the Arnon-Buchanan cycle. In this retrospective, separate sections have been written by the authors indicated. Bob Buchanan wrote the abstract and the concluding comments.
Collapse
Affiliation(s)
- Bob B Buchanan
- Department of Plant & Microbial Biology, University of California, 111 Koshland Hall, Berkeley, CA, 94720, USA.
| | - Reidun Sirevåg
- Department of Biosciences, University of Oslo, Blindern, Box 1066, 0316, Oslo, Norway
| | - Georg Fuchs
- Mikrobiologie, Fakultät für Biologie, Albert-Ludwigs-Universität Freiburg, Schänzlestrasse 1, 79104, Freiburg, Germany
| | - Ruslan N Ivanovsky
- Department of Microbiology, M.V. Lomonosov Moscow State University, 1/12 Lenin's Hills, Moscow, Russia, 119991
| | - Yasuo Igarashi
- Southwest University, Chongqing, 2 Tiansheng Rd, Beibei Qu, Chongqing Shi, 400700, China
| | - Masaharu Ishii
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - F Robert Tabita
- Department of Microbiology, The Ohio State University, 484 West 12th Avenue, Columbus, OH, 43210, USA
| | - Ivan A Berg
- Institute for Molecular Microbiology and Biotechnology, University of Münster, Corrensstr. 3, 48149, Münster, Germany
| |
Collapse
|
2
|
Takahashi-Íñiguez T, Aburto-Rodríguez N, Vilchis-González AL, Flores ME. Function, kinetic properties, crystallization, and regulation of microbial malate dehydrogenase *. J Zhejiang Univ Sci B 2016; 17:247-261. [PMCID: PMC4829630 DOI: 10.1631/jzus.b1500219] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 12/14/2015] [Indexed: 09/12/2023]
Abstract
Malate dehydrogenase (MDH) is an enzyme widely distributed among living organisms and is a key protein in the central oxidative pathway. It catalyzes the interconversion between malate and oxaloacetate using NAD+ or NADP+ as a cofactor. Surprisingly, this enzyme has been extensively studied in eukaryotes but there are few reports about this enzyme in prokaryotes. It is necessary to review the relevant information to gain a better understanding of the function of this enzyme. Our review of the data generated from studies in bacteria shows much diversity in their molecular properties, including weight, oligomeric states, cofactor and substrate binding affinities, as well as differences in the direction of the enzymatic reaction. Furthermore, due to the importance of its function, the transcription and activity of this enzyme are rigorously regulated. Crystal structures of MDH from different bacterial sources led to the identification of the regions involved in substrate and cofactor binding and the residues important for the dimer-dimer interface. This structural information allows one to make direct modifications to improve the enzyme catalysis by increasing its activity, cofactor binding capacity, substrate specificity, and thermostability. A comparative analysis of the phylogenetic reconstruction of MDH reveals interesting facts about its evolutionary history, dividing this superfamily of proteins into two principle clades and establishing relationships between MDHs from different cellular compartments from archaea, bacteria, and eukaryotes.
Collapse
|
3
|
Eprintsev AT, Falaleeva MI, Parfenova IV, Lyashchenko MS, Kompantseva EI, Tret’yakova AY. Physicochemical, catalytic, and regulatory properties of malate dehydrogenase from Rhodovulum steppense bacteria, strain A-20s. BIOL BULL+ 2014. [DOI: 10.1134/s1062359014050033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
4
|
Dalhus B, Saarinen M, Sauer UH, Eklund P, Johansson K, Karlsson A, Ramaswamy S, Bjørk A, Synstad B, Naterstad K, Sirevåg R, Eklund H. Structural basis for thermophilic protein stability: structures of thermophilic and mesophilic malate dehydrogenases. J Mol Biol 2002; 318:707-21. [PMID: 12054817 DOI: 10.1016/s0022-2836(02)00050-5] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The three-dimensional structure of four malate dehydrogenases (MDH) from thermophilic and mesophilic phototropic bacteria have been determined by X-ray crystallography and the corresponding structures compared. In contrast to the dimeric quaternary structure of most MDHs, these MDHs are tetramers and are structurally related to tetrameric malate dehydrogenases from Archaea and to lactate dehydrogenases. The tetramers are dimers of dimers, where the structures of each subunit and the dimers are similar to the dimeric malate dehydrogenases. The difference in optimal growth temperature of the corresponding organisms is relatively small, ranging from 32 to 55 degrees C. Nevertheless, on the basis of the four crystal structures, a number of factors that are likely to contribute to the relative thermostability in the present series have been identified. It appears from the results obtained, that the difference in thermostability between MDH from the mesophilic Chlorobium vibrioforme on one hand and from the moderate thermophile Chlorobium tepidum on the other hand is mainly due to the presence of polar residues that form additional hydrogen bonds within each subunit. Furthermore, for the even more thermostable Chloroflexus aurantiacus MDH, the use of charged residues to form additional ionic interactions across the dimer-dimer interface is favored. This enzyme has a favorable intercalation of His-Trp as well as additional aromatic contacts at the monomer-monomer interface in each dimer. A structural alignment of tetrameric and dimeric prokaryotic MDHs reveal that structural elements that differ among dimeric and tetrameric MDHs are located in a few loop regions.
Collapse
Affiliation(s)
- Bjørn Dalhus
- Department of Chemistry, University of Oslo, Box 1033, Blindern, N-0316 Oslo, Norway
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Madern D, Ebel C, Dale HA, Lien T, Steen IH, Birkeland NK, Zaccai G. Differences in the oligomeric states of the LDH-like L-MalDH from the hyperthermophilic archaea Methanococcus jannaschii and Archaeoglobus fulgidus. Biochemistry 2001; 40:10310-6. [PMID: 11513609 DOI: 10.1021/bi010168c] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
L-Malate (MalDH) and L-lactate (LDH) dehydrogenases belong to the same family of NAD-dependent enzymes. To gain insight into molecular relationships within this family, we studied two hyperthermophilic (LDH-like) L-MalDH (proteins with LDH-like structure and MalDH enzymatic activity) from the archaea Archaeoglobus fulgidus (Af) and Methanococcus jannaschii (Mj). The structural parameters of these enzymes determined by neutron scattering and analytical centrifugation showed that the Af (LDH-like) L-MalDH is a dimer whereas the Mj (LDH-like) L-MalDH is a tetramer. The effects of high temperature, cofactor binding, and high phosphate concentration were studied. They did not modify the oligomeric state of either enzyme. The enzymatic activity of the dimeric Af (LDH-like) L-MalDH is controlled by a pH-dependent transition at pH 7 without dissociation of the subunits. The data were analyzed in the light of the crystallographic structure of the LDH-like L-MalDH from Haloarcula marismortui. This showed that a specific loop at the dimer-dimer contact regions in these enzymes controls the tetramer formation.
Collapse
Affiliation(s)
- D Madern
- Laboratoire de Biophysique Moléculaire, Institut de Biologie Structurale, UMR 5075, CEA-CNRS-UJF, 41 rue Jules Horowitz, 38027 Grenoble Cedex 1, France.
| | | | | | | | | | | | | |
Collapse
|
6
|
Madern D. The putative L-lactate dehydrogenase from Methanococcus jannaschii is an NADPH-dependent L-malate dehydrogenase. Mol Microbiol 2000; 37:1515-20. [PMID: 10998181 DOI: 10.1046/j.1365-2958.2000.02113.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The enzyme encoded by Methanococcus jannaschii open reading frame (ORF) 0490 was purified and characterized. It was shown to be an NADPH-dependent [lactate dehydrogenase (LDH)-like] L-malate dehydrogenase (MalDH) and not an L-lactate dehydrogenase, as had been suggested previously on the basis of amino acid sequence similarity. The results show the importance of biochemical data in the assignment of ORF function in genomic sequences and have implications for the phylogenetic distribution of members of the MalDH/LDH enzyme superfamilies within the prokaryotic kingdom.
Collapse
Affiliation(s)
- D Madern
- Institut de Biologie Structurale, CEA-CNRS, Laboratoire de Biophysique Moléculaire, 41 Rue Jules Horowitz, 38027 Grenoble cedex 1, France.
| |
Collapse
|
7
|
Madern D, Ebel C, Mevarech M, Richard SB, Pfister C, Zaccai G. Insights into the molecular relationships between malate and lactate dehydrogenases: structural and biochemical properties of monomeric and dimeric intermediates of a mutant of tetrameric L-[LDH-like] malate dehydrogenase from the halophilic archaeon Haloarcula marismortui. Biochemistry 2000; 39:1001-10. [PMID: 10653644 DOI: 10.1021/bi9910023] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
L-Malate (MalDH) and L-lactate (LDH) dehydrogenases belong to the same family of NAD-dependent enzymes. LDHs are tetramers, whereas MalDHs can be either dimeric or tetrameric. To gain insight into molecular relationships between LDHs and MalDHs, we studied folding intermediates of a mutant of the LDH-like MalDH (a protein with LDH-like structure and MalDH enzymatic activity) from the halophilic archaeon Haloarcula marismortui (Hm MalDH). Crystallographic analysis of Hm MalDH had shown a tetramer made up of two dimers interacting mainly via complex salt bridge clusters. In the R207S/R292S Hm MalDH mutant, these salt bridges are disrupted. Its structural parameters, determined by neutron scattering and analytical centrifugation under different conditions, showed the protein to be a tetramer in 4 M NaCl. At lower salt concentrations, stable oligomeric intermediates could be trapped at a given pH, temperature, or NaCl solvent concentration. The spectroscopic properties and enzymatic behavior of monomeric, dimeric, and tetrameric species were thus characterized. The properties of the dimeric intermediate were compared to those of dimeric intermediates of LDH and dimeric MalDHs. A detailed analysis of the putative dimer-dimer contact regions in these enzymes provided an explanation of why some can form tetramers and others cannot. The study presented here makes Hm MalDH the best characterized example so far of an LDH-like MalDH.
Collapse
Affiliation(s)
- D Madern
- Institut de Biologie Structurale, CEA-CNRS, 41 Avenue des Martyrs, F-38027 Grenoble Cedex 1, France.
| | | | | | | | | | | |
Collapse
|
8
|
Poole P, Reid C, East AK, Allaway D, Day M, Leonard M. Regulation of themdh-sucCDABoperon inRhizobium leguminosarum. FEMS Microbiol Lett 1999. [DOI: 10.1111/j.1574-6968.1999.tb13669.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
9
|
Charnock C. Structural studies of malate dehydrogenases (MDHs): MDHs in Brevundimonas species are the first reported MDHs in Proteobacteria which resemble lactate dehydrogenases in primary structure. J Bacteriol 1997; 179:4066-70. [PMID: 9190829 PMCID: PMC179222 DOI: 10.1128/jb.179.12.4066-4070.1997] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The N-terminal sequences of malate dehydrogenases from 10 bacterial strains, representing seven genera of Proteobacteria, were determined. Of these, the enzyme sequences of species classified in the genus Brevundimonas clearly resembled those malate dehydrogenases with greatest similarity to lactate dehydrogenases. Additional evidence from subunit molecular weights, peptide mapping, and enzyme mobilities suggested that malate dehydrogenases from species of the genus Brevundimonas were structurally distinct from others in the study.
Collapse
Affiliation(s)
- C Charnock
- Department of Microbiology, Institute of Pharmacy, University of Oslo, Blindern, Norway
| |
Collapse
|