1
|
Gupta N, Yadav M, Singh G, Chaudhary S, Ghosh C, Rathore JS. Decoding the TAome and computational insights into parDE toxin-antitoxin systems in Pseudomonas aeruginosa. Arch Microbiol 2024; 206:360. [PMID: 39066828 DOI: 10.1007/s00203-024-04085-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/07/2024] [Accepted: 07/17/2024] [Indexed: 07/30/2024]
Abstract
Toxin-antitoxin (TA) modules are widely found in the genomes of pathogenic bacteria. They regulate vital cellular functions like transcription, translation, and DNA replication, and are therefore essential to the survival of bacteria under stress. With a focus on the type II parDE modules, this study thoroughly examines TAome in Pseudomonas aeruginosa, a bacterium well-known for its adaptability and antibiotic resistance. We explored the TAome in three P. aeruginosa strains: ATCC 27,853, PAO1, and PA14, and found 15 type II TAs in ATCC 27,853, 12 in PAO1, and 13 in PA14, with significant variation in the associated mobile genetic elements. Five different parDE homologs were found by further TAome analysis in ATCC 27,853, and their relationships were confirmed by sequence alignments and precise genomic positions. After comparing these ParDE modules' sequences to those of other pathogenic bacteria, it was discovered that they were conserved throughout many taxa, especially Proteobacteria. Nucleic acids were predicted as potential ligands for ParD antitoxins, whereas ParE toxins interacted with a wide range of small molecules, indicating a diverse functional repertoire. The interaction interfaces between ParDE TAs were clarified by protein-protein interaction networks and docking studies, which also highlighted important residues involved in binding. This thorough examination improves our understanding of the diversity, evolutionary dynamics, and functional significance of TA systems in P. aeruginosa, providing insights into their roles in bacterial physiology and pathogenicity.
Collapse
Affiliation(s)
- Nomita Gupta
- School of Biotechnology, Gautam Buddha University, Greater Noida, Yamuna Expressway, Greater Noida, 201312, Uttar Pradesh, India
| | - Mohit Yadav
- School of Biotechnology, Gautam Buddha University, Greater Noida, Yamuna Expressway, Greater Noida, 201312, Uttar Pradesh, India
- Department of Molecular Biology and Biotechnology, Tezpur University, Assam, 784028, India
| | - Garima Singh
- School of Biotechnology, Gautam Buddha University, Greater Noida, Yamuna Expressway, Greater Noida, 201312, Uttar Pradesh, India
| | - Shobhi Chaudhary
- School of Biotechnology, Gautam Buddha University, Greater Noida, Yamuna Expressway, Greater Noida, 201312, Uttar Pradesh, India
| | - Chaitali Ghosh
- Department of Zoology, Gargi College, University of Delhi, Siri Fort Road, New Delhi, 110049, India
| | - Jitendra Singh Rathore
- School of Biotechnology, Gautam Buddha University, Greater Noida, Yamuna Expressway, Greater Noida, 201312, Uttar Pradesh, India.
| |
Collapse
|
2
|
Abstract
In the late 1950s, a number of laboratories took up the study of plasmids once the discovery was made that extrachromosomal antibiotic resistance (R) factors are the responsible agents for the transmissibility of multiple antibiotic resistance among the enterobacteria. The use of incompatibility for the classification of plasmids is now widespread. It seems clear now on the basis of the limited studies to date that the number of incompatibility groups of plasmids will likely be extremely large when one includes plasmids obtained from bacteria that are normal inhabitants of poorly studied natural environments. The presence of both linear chromosomes and linear plasmids is now established for several Streptomyces species. One of the more fascinating developments in plasmid biology was the discovery of linear plasmids in the 1980s. A remarkable feature of the Ti plasmids of Agrobacterium tumefaciens is the presence of two DNA transfer systems. A definitive demonstration that plasmids consisted of duplex DNA came from interspecies conjugal transfer of plasmids followed by separation of plasmid DNA from chromosomal DNA by equilibrium buoyant density centrifugation. The formation of channels for DNA movement and the actual steps involved in DNA transport offer many opportunities for the discovery of proteins with novel activities and for establishing fundamentally new concepts of macromolecular interactions between DNA and specific proteins, membranes, and the peptidoglycan matrix.
Collapse
Affiliation(s)
- Donald R. Helinski
- Division of Biological Sciences, University of California, San Diego, La Jolla, California, USA
| |
Collapse
|
3
|
Law A, Solano O, Brown CJ, Hunter SS, Fagnan M, Top EM, Stalder T. Biosolids as a Source of Antibiotic Resistance Plasmids for Commensal and Pathogenic Bacteria. Front Microbiol 2021; 12:606409. [PMID: 33967971 PMCID: PMC8098119 DOI: 10.3389/fmicb.2021.606409] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 03/09/2021] [Indexed: 12/05/2022] Open
Abstract
Antibiotic resistance (AR) is a threat to modern medicine, and plasmids are driving the global spread of AR by horizontal gene transfer across microbiomes and environments. Determining the mobile resistome responsible for this spread of AR among environments is essential in our efforts to attenuate the current crisis. Biosolids are a wastewater treatment plant (WWTP) byproduct used globally as fertilizer in agriculture. Here, we investigated the mobile resistome of biosolids that are used as fertilizer. This was done by capturing resistance plasmids that can transfer to human pathogens and commensal bacteria. We used a higher-throughput version of the exogenous plasmid isolation approach by mixing several ESKAPE pathogens and a commensal Escherichia coli with biosolids and screening for newly acquired resistance to about 10 antibiotics in these strains. Six unique resistance plasmids transferred to Salmonella typhimurium, Klebsiella aerogenes, and E. coli. All the plasmids were self-transferable and carried 3-6 antibiotic resistance genes (ARG) conferring resistance to 2-4 antibiotic classes. These plasmids-borne resistance genes were further embedded in genetic elements promoting intracellular recombination (i.e., transposons or class 1 integrons). The plasmids belonged to the broad-host-range plasmid (BHR) groups IncP-1 or PromA. Several of them were persistent in their new hosts when grown in the absence of antibiotics, suggesting that the newly acquired drug resistance traits would be sustained over time. This study highlights the role of BHRs in the spread of ARG between environmental bacteria and human pathogens and commensals, where they may persist. The work further emphasizes biosolids as potential vehicles of highly mobile plasmid-borne antibiotic resistance genes.
Collapse
Affiliation(s)
- Aaron Law
- Department of Biological Sciences, University of Idaho, Moscow, ID, United States
| | - Olubunmi Solano
- Department of Biological Sciences, University of Idaho, Moscow, ID, United States
- Department of Biological Sciences, Columbia University, New York, NY, United States
| | - Celeste J. Brown
- Department of Biological Sciences, University of Idaho, Moscow, ID, United States
- Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow, ID, United States
| | - Samuel S. Hunter
- Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow, ID, United States
- UC-Davis Genome Center, Davis, CA, United States
| | - Matt Fagnan
- Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow, ID, United States
| | - Eva M. Top
- Department of Biological Sciences, University of Idaho, Moscow, ID, United States
- Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow, ID, United States
| | - Thibault Stalder
- Department of Biological Sciences, University of Idaho, Moscow, ID, United States
- Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow, ID, United States
| |
Collapse
|
4
|
Bury K, Wegrzyn K, Konieczny I. Handcuffing reversal is facilitated by proteases and replication initiator monomers. Nucleic Acids Res 2017; 45:3953-3966. [PMID: 28335002 PMCID: PMC5397158 DOI: 10.1093/nar/gkx166] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 03/03/2017] [Indexed: 01/04/2023] Open
Abstract
Specific nucleoprotein complexes are formed strictly to prevent over-initiation of DNA replication. An example of those is the so-called handcuff complex, in which two plasmid molecules are coupled together with plasmid-encoded replication initiation protein (Rep). In this work, we elucidate the mechanism of the handcuff complex disruption. In vitro tests, including dissociation progress analysis, demonstrate that the dimeric variants of plasmid RK2 replication initiation protein TrfA are involved in assembling the plasmid handcuff complex which, as we found, reveals high stability. Particular proteases, namely Lon and ClpAP, disrupt the handcuff by degrading TrfA, thus affecting plasmid stability. Moreover, our data demonstrate that TrfA monomers are able to dissociate handcuffed plasmid molecules. Those monomers displace TrfA molecules, which are involved in handcuff formation, and through interaction with the uncoupled plasmid replication origins they re-initiate DNA synthesis. We discuss the relevance of both Rep monomers and host proteases for plasmid maintenance under vegetative and stress conditions.
Collapse
Affiliation(s)
- Katarzyna Bury
- Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-308 Gdansk, Poland
| | - Katarzyna Wegrzyn
- Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-308 Gdansk, Poland
| | - Igor Konieczny
- Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-308 Gdansk, Poland
| |
Collapse
|
5
|
Lobato-Márquez D, Molina-García L, Moreno-Córdoba I, García-Del Portillo F, Díaz-Orejas R. Stabilization of the Virulence Plasmid pSLT of Salmonella Typhimurium by Three Maintenance Systems and Its Evaluation by Using a New Stability Test. Front Mol Biosci 2016; 3:66. [PMID: 27800482 PMCID: PMC5065971 DOI: 10.3389/fmolb.2016.00066] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Accepted: 09/27/2016] [Indexed: 12/27/2022] Open
Abstract
Certain Salmonella enterica serovars belonging to subspecies I carry low-copy-number virulence plasmids of variable size (50–90 kb). All of these plasmids share the spv operon, which is important for systemic infection. Virulence plasmids are present at low copy numbers. Few copies reduce metabolic burden but suppose a risk of plasmid loss during bacterial division. This drawback is counterbalanced by maintenance modules that ensure plasmid stability, including partition systems and toxin-antitoxin (TA) loci. The low-copy number virulence pSLT plasmid of Salmonella enterica serovar Typhimurium encodes three auxiliary maintenance systems: one partition system (parAB) and two TA systems (ccdABST and vapBC2ST). The TA module ccdABST has previously been shown to contribute to pSLT plasmid stability and vapBC2ST to bacterial virulence. Here we describe a novel assay to measure plasmid stability based on the selection of plasmid-free cells following elimination of plasmid-containing cells by ParE toxin, a DNA gyrase inhibitor. Using this new maintenance assay we confirmed a crucial role of parAB in pSLT maintenance. We also showed that vapBC2ST, in addition to contribute to bacterial virulence, is important for plasmid stability. We have previously shown that ccdABST encodes an inactive CcdBST toxin. Using our new stability assay we monitored the contribution to plasmid stability of a ccdABST variant containing a single mutation (R99W) that restores the toxicity of CcdBST. The “activation” of CcdBST (R99W) did not increase pSLT stability by ccdABST. In contrast, ccdABST behaves as a canonical type II TA system in terms of transcriptional regulation. Of interest, ccdABST was shown to control the expression of a polycistronic operon in the pSLT plasmid. Collectively, these results show that the contribution of the CcdBST toxin to pSLT plasmid stability may depend on its role as a co-repressor in coordination with CcdAST antitoxin more than on its toxic activity.
Collapse
Affiliation(s)
- Damián Lobato-Márquez
- Section of Microbiology, Department of Medicine, Centre for Molecular Bacteriology and Infection, Imperial College London London, UK
| | - Laura Molina-García
- Department of Cell and Developmental Biology, University College London London, UK
| | - Inma Moreno-Córdoba
- Departamento de Microbiología Molecular y Biología de las Infecciones, Centro de Investigaciones Biológicas-Spanish National Research Council Madrid, Spain
| | - Francisco García-Del Portillo
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología-Spanish National Research Council Madrid, Spain
| | - Ramón Díaz-Orejas
- Departamento de Microbiología Molecular y Biología de las Infecciones, Centro de Investigaciones Biológicas-Spanish National Research Council Madrid, Spain
| |
Collapse
|
6
|
Abstract
One of the disadvantages of circular plasmids and chromosomes is their high sensitivity to rearrangements caused by homologous recombination. Odd numbers of crossing-over occurring during or after replication of a circular replicon result in the formation of a dimeric molecule in which the two copies of the replicon are fused. If they are not converted back to monomers, the dimers of replicons may fail to correctly segregate at the time of cell division. Resolution of multimeric forms of circular plasmids and chromosomes is mediated by site-specific recombination, and the enzymes that catalyze this type of reaction fall into two families of proteins: the serine and tyrosine recombinase families. Here we give an overview of the variety of site-specific resolution systems found on circular plasmids and chromosomes.
Collapse
|
7
|
Velur Selvamani RS, Telaar M, Friehs K, Flaschel E. Antibiotic-free segregational plasmid stabilization in Escherichia coli owing to the knockout of triosephosphate isomerase (tpiA). Microb Cell Fact 2014; 13:58. [PMID: 24745552 PMCID: PMC4006690 DOI: 10.1186/1475-2859-13-58] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 04/10/2014] [Indexed: 11/22/2022] Open
Abstract
Background Segregational stability of plasmids is of major concern for recombinant bacterial production strains. One of the best strategies to counteract plasmid loss is the use of auxotrophic mutants which are complemented with the lacking gene along with the product-relevant ones. However, these knockout mutants often show unwanted growth in complex standard media or no growth at all under uncomplemented conditions. This led to the choice of a gene for knockout that only connects two essential arms of an essential metabolic pathway – the glycolysis. Results Triosephosphate isomerase was chosen because its knockout will have a tremendous effect on growth on glucose as well as on glycerol. On glycerol the effect is almost absolute whereas on glucose growth is still possible, but with considerably lower rate than usual. This feature is essential because it may render cloning easier. This enzymatic activity was successfully tested as an alternative to antibiotic-based plasmid selection. Expression of a model recombinant β-glucanase in continuous cultivation was possible with stable maintenance of the plasmid. In addition, the complementation of tpiA knockout strains by the corresponding plasmids and their growth characteristics were tested on a series of complex and synthetic media. The accumulation of methylglyoxal during the growth of tpiA-deficient strains was shown to be a possible cause for the growth disadvantage of these strains in comparison to the parent strain for the Keio Collection strain or the complemented knock-out strain. Conclusion Through the use of this new auxotrophic complementation system, antibiotic-free cloning and selection of recombinant plasmid were possible. Continuous cultivation and recombinant protein expression with high segregational stability over an extended time period was also demonstrated.
Collapse
Affiliation(s)
| | | | - Karl Friehs
- Faculty of Technology, Fermentation Engineering, Bielefeld University, D-33594 Bielefeld, Germany.
| | | |
Collapse
|
8
|
Wegrzyn K, Witosinska M, Schweiger P, Bury K, Jenal U, Konieczny I. RK2 plasmid dynamics in Caulobacter crescentus cells--two modes of DNA replication initiation. MICROBIOLOGY-SGM 2013; 159:1010-1022. [PMID: 23538715 DOI: 10.1099/mic.0.065490-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Undisturbed plasmid dynamics is required for the stable maintenance of plasmid DNA in bacterial cells. In this work, we analysed subcellular localization, DNA synthesis and nucleoprotein complex formation of plasmid RK2 during the cell cycle of Caulobacter crescentus. Our microscopic observations showed asymmetrical distribution of plasmid RK2 foci between the two compartments of Caulobacter predivisional cells, resulting in asymmetrical allocation of plasmids to progeny cells. Moreover, using a quantitative PCR (qPCR) method, we estimated that multiple plasmid particles form a single fluorescent focus and that the number of plasmids per focus is approximately equal in both swarmer and predivisional Caulobacter cells. Analysis of the dynamics of TrfA-oriV complex formation during the Caulobacter cell cycle revealed that TrfA binds oriV primarily during the G1 phase, however, plasmid DNA synthesis occurs during the S and G2 phases of the Caulobacter cell cycle. Both in vitro and in vivo analysis of RK2 replication initiation in C. crescentus cells demonstrated that it is independent of the Caulobacter DnaA protein in the presence of the longer version of TrfA protein, TrfA-44. However, in vivo stability tests of plasmid RK2 derivatives suggested that a DnaA-dependent mode of plasmid replication initiation is also possible.
Collapse
Affiliation(s)
- Katarzyna Wegrzyn
- Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology, University of Gdansk, ul. Kladki 24, 80-822 Gdansk, Poland
| | - Monika Witosinska
- Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology, University of Gdansk, ul. Kladki 24, 80-822 Gdansk, Poland
| | - Pawel Schweiger
- Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology, University of Gdansk, ul. Kladki 24, 80-822 Gdansk, Poland
| | - Katarzyna Bury
- Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology, University of Gdansk, ul. Kladki 24, 80-822 Gdansk, Poland
| | - Urs Jenal
- Center for Molecular Life Sciences, University of Basel, Klingelbergstrasse 50/70, CH-4056 Basel, Switzerland
| | - Igor Konieczny
- Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology, University of Gdansk, ul. Kladki 24, 80-822 Gdansk, Poland
| |
Collapse
|
9
|
Powers LG, Mills HJ, Palumbo AV, Zhang C, Delaney K, Sobecky PA. Introduction of a plasmid-encoded phoA gene for constitutive overproduction of alkaline phosphatase in three subsurface Pseudomonas isolates. FEMS Microbiol Ecol 2012; 41:115-23. [PMID: 19709245 DOI: 10.1111/j.1574-6941.2002.tb00972.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Abstract Three bacterial isolates, Pseudomonas fluorescens F1, Pseudomonas rhodesiae R1 and Pseudomonas veronii V1 were genetically modified by introduction of a plasmid, pJH123, with a phoA hybrid gene that directed constitutive overproduction of the enzyme alkaline phosphatase. The presence of the plasmid in the bacterial hosts elevated extracytoplasmic alkaline phosphatase production from 100- to 820-fold. The growth and survival of the plasmid-bearing hosts in sterilized soil slurries was comparable to parental control strains. In the absence of antibiotic selection, pJH123 was maintained in two of the three hosts (P. fluorescens F1 and P. veronii V1) during incubation in minimal medium. The effects of the genetically enhanced pseudomonads on the liberation of inorganic phosphate (PO(4) (3-)) were determined in sterilized soil slurries following the addition of an organophosphorus compound, glycerol-3-phosphate. A significant accumulation of PO(4) (3-) was measured in soil slurries amended with 10 mM glycerol-3-phosphate and any of the three phosphatase-enhanced pseudomonad isolates. In contrast, soil slurries containing unmodified parental strains did not exhibit significant PO(4) (3-) accumulation. Two of the three enhanced phosphate-liberating strains released sufficient PO(4) (3-) that cell-free supernatants from sterilized soil slurry incubations removed significant amounts of uranium (as much as 69%) from solution.
Collapse
Affiliation(s)
- Leigh G Powers
- School of Biology, Georgia Institute of Technology, 310 Ferst Drive, Atlanta, GA 30332-0230, USA
| | | | | | | | | | | |
Collapse
|
10
|
Abstract
Almost all bacteria and many archaea contain genes whose expression inhibits cell growth and may lead to cell death when overproduced, reminiscent of apoptotic genes in higher systems. The cellular targets of these toxins are quite diverse and include DNA replication, mRNA stability, protein synthesis, cell-wall biosynthesis, and ATP synthesis. These toxins are co-expressed and neutralized with their cognate antitoxins from a TA (toxin-antitoxin) operon in normally growing cells. Antitoxins are more labile than toxins and are readily degraded under stress conditions, allowing the toxins to exert their toxic effect. Presence of at least 33 TA systems in Escherichia coli and more than 60 TA systems in Mycobacterium tuberculosis suggests that the TA systems are involved not only in normal bacterial physiology but also in pathogenicity of bacteria. The elucidation of their cellular function and regulation is thus crucial for our understanding of bacterial physiology under various stress conditions.
Collapse
Affiliation(s)
- Yoshihiro Yamaguchi
- Department of Biochemistry, Center for Advanced Biotechnology and Medicine, Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, USA.
| | | | | |
Collapse
|
11
|
Martínez-García E, de Lorenzo V. Engineering multiple genomic deletions in Gram-negative bacteria: analysis of the multi-resistant antibiotic profile of Pseudomonas putida KT2440. Environ Microbiol 2011; 13:2702-16. [DOI: 10.1111/j.1462-2920.2011.02538.x] [Citation(s) in RCA: 269] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
12
|
Yuan J, Sterckx Y, Mitchenall LA, Maxwell A, Loris R, Waldor MK. Vibrio cholerae ParE2 poisons DNA gyrase via a mechanism distinct from other gyrase inhibitors. J Biol Chem 2010; 285:40397-408. [PMID: 20952390 PMCID: PMC3001019 DOI: 10.1074/jbc.m110.138776] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
DNA gyrase is an essential bacterial enzyme required for the maintenance of chromosomal DNA topology. This enzyme is the target of several protein toxins encoded in toxin-antitoxin (TA) loci as well as of man-made antibiotics such as quinolones. The genome of Vibrio cholerae, the cause of cholera, contains three putative TA loci that exhibit modest similarity to the RK2 plasmid-borne parDE TA locus, which is thought to target gyrase although its mechanism of action is uncharacterized. Here we investigated the V. cholerae parDE2 locus. We found that this locus encodes a functional proteic TA pair that is active in Escherichia coli as well as V. cholerae. ParD2 co-purified with ParE2 and interacted with it directly. Unlike many other antitoxins, ParD2 could prevent but not reverse ParE2 toxicity. ParE2, like the unrelated F-encoded toxin CcdB and quinolones, targeted the GyrA subunit and stalled the DNA-gyrase cleavage complex. However, in contrast to other gyrase poisons, ParE2 toxicity required ATP, and it interfered with gyrase-dependent DNA supercoiling but not DNA relaxation. ParE2 did not bind GyrA fragments bound by CcdB and quinolones, and a set of strains resistant to a variety of known gyrase inhibitors all exhibited sensitivity to ParE2. Together, our findings suggest that ParE2 and presumably its many plasmid- and chromosome-encoded homologues inhibit gyrase in a different manner than previously described agents.
Collapse
Affiliation(s)
- Jie Yuan
- Channing Laboratory, Brigham and Women's Hospital, Harvard Medical School, Tufts University School of Medicine, Boston, Massachusetts 02115, USA
| | | | | | | | | | | |
Collapse
|
13
|
Tambalo DD, Del Bel KL, Bustard DE, Greenwood PR, Steedman AE, Hynes MF. Regulation of flagellar, motility and chemotaxis genes in Rhizobium leguminosarum by the VisN/R-Rem cascade. Microbiology (Reading) 2010; 156:1673-1685. [DOI: 10.1099/mic.0.035386-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In this paper, we describe the regulatory roles of VisN, VisR and Rem in the expression of flagellar, motility and chemotaxis genes in Rhizobium leguminosarum biovar viciae strains VF39SM and 3841. Individual mutations in the genes encoding these proteins resulted in a loss of motility and an absence of flagella, indicating that these regulatory genes are essential for flagellar synthesis and function. Transcriptional experiments involving gusA–gene fusions in wild-type and mutant backgrounds were performed to identify the genes under VisN/R and Rem regulation. Results showed that the chemotaxis and motility genes of R. leguminosarum could be separated into two groups: one group under VisN/R-Rem regulation and another group that is independent of this regulation. VisN and VisR regulate the expression of rem, while Rem positively regulates the expression of flaA, flaB, flaC, flaD, motA, motB, che1 and mcpD. All of these genes except mcpD are located within the main motility and chemotaxis gene cluster of R. leguminosarum. Other chemotaxis and motility genes, which are found outside of the main motility gene cluster (che2 operon, flaH for VF39SM, and flaG) or are plasmid-borne (flaE and mcpC), are not part of the VisN/R-Rem regulatory cascade. In addition, all genes exhibited the same regulation pattern in 3841 and in VF39SM, except flaE and flaH. flaE is not regulated by VisN/R-Rem in 3841 but it is repressed by Rem in VF39SM. flaH is under VisN/R-Rem regulation in 3841, but not in VF39SM. A kinetics experiment demonstrated that a subset of the flagellar genes is continuously expressed in all growth phases, indicating the importance of continuous motility for R. leguminosarum under free-living conditions. On the other hand, motility is repressed under symbiotic conditions. Nodulation experiments showed that the transcriptional activators VisN and Rem are dramatically downregulated in the nodules, suggesting that the symbiotic downregulation of motility-related genes could be mediated by repressing the expression of VisN/R and Rem.
Collapse
Affiliation(s)
- Dinah D. Tambalo
- University of Calgary, Department of Biological Sciences, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada
| | - Kate L. Del Bel
- University of Calgary, Department of Biological Sciences, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada
| | - Denise E. Bustard
- University of Calgary, Department of Biological Sciences, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada
| | - Paige R. Greenwood
- University of Calgary, Department of Biological Sciences, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada
| | - Audrey E. Steedman
- University of Calgary, Department of Biological Sciences, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada
| | - Michael F. Hynes
- University of Calgary, Department of Biological Sciences, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada
| |
Collapse
|
14
|
Schlüter A, Szczepanowski R, Pühler A, Top EM. Genomics of IncP-1 antibiotic resistance plasmids isolated from wastewater treatment plants provides evidence for a widely accessible drug resistance gene pool. FEMS Microbiol Rev 2007; 31:449-77. [PMID: 17553065 DOI: 10.1111/j.1574-6976.2007.00074.x] [Citation(s) in RCA: 252] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The dramatic spread of antibiotic resistance is a crisis in the treatment of infectious diseases that affect humans. Several studies suggest that wastewater treatment plants (WWTP) are reservoirs for diverse mobile antibiotic resistance elements. This review summarizes findings derived from genomic analysis of IncP-1 resistance plasmids isolated from WWTP bacteria. Plasmids that belong to the IncP-1 group are self-transmissible, and transfer to and replicate in a wide range of hosts. Their backbone functions are described with respect to their impact on vegetative replication, stable maintenance and inheritance, mobility and plasmid control. Accessory genetic modules, mainly representing mobile genetic elements, are integrated in-between functional plasmid backbone modules. These elements carry determinants conferring resistance to nearly all clinically relevant antimicrobial drug classes, to heavy metals, and quaternary ammonium compounds used as disinfectants. All plasmids analysed here contain integrons that potentially facilitate integration, exchange and dissemination of resistance gene cassettes. Comparative genomics of accessory modules located on plasmids from WWTP and corresponding modules previously identified in other bacterial genomes revealed that animal, human and plant pathogens and other bacteria isolated from different habitats share a common pool of resistance determinants.
Collapse
Affiliation(s)
- Andreas Schlüter
- Fakultät für Biologie, Lehrstuhl für Genetik, Universität Bielefeld, Bielefeld, Germany
| | | | | | | |
Collapse
|
15
|
Verheust C, Helinski DR. The incC korB region of RK2 repositions a mini-RK2 replicon in Escherichia coli. Plasmid 2007; 58:195-204. [PMID: 17521722 DOI: 10.1016/j.plasmid.2007.03.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2006] [Revised: 03/16/2007] [Accepted: 03/16/2007] [Indexed: 11/30/2022]
Abstract
Analysis by fluorescence microscopy has established that plasmid RK2 in Escherichia coli and other gram-negative bacteria is present as discrete clusters that are located inside the nucleoid at the mid- or quarter-cell positions. A mini-RK2 replicon containing an array of tetO repeats was visualized in E. coli cells that express a TetR-EYFP fusion protein. Unlike intact RK2, the RK2 mini-replicon (pCV1) was localized as a cluster at the cell poles outside of the nucleoid. Insertion of the O(B1)incC korB partitioning (par) region of RK2 into pCV1 resulted in a shift of the mini-replicon to within the nucleoid region at the mid- and quarter-cell positions. Despite the repositioning of the mini-RK2 replicon to the cellular positions where intact RK2 is normally located, the insertion of the intact O(B1) incC korB region did not significantly stabilize the mini-RK2 plasmid during cell growth. Deletions within the O(B1)incC or the korB region resulted in a failure of this par region to move pCV1 out of its polar position. The insertion of the par system of plasmid F into pCV1 resulted in a similar shift in the location of pCV1 to the nucleoid region. Unlike O(B1)incC korB, the insertion of the RK2 parABC resolvase system into pCV1 did not affect the polar positioning of pCV1. This effect of O(B1)incC korB on the location of pCV1 provides additional evidence for a partitioning role of this region of plasmid RK2. However, the failure of this region to significantly increase the stability of the mini-RK2 plasmid indicates that the localization of the plasmid to the mid- and quarter cell positions in E. coli is not in itself sufficient for the stable maintenance of plasmid RK2.
Collapse
Affiliation(s)
- Celine Verheust
- Center for Molecular Genetics and Division of Biological Sciences, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0322, USA
| | | |
Collapse
|
16
|
Mojica FJM, Díez-Villaseñor C, García-Martínez J, Soria E. Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. J Mol Evol 2005; 60:174-82. [PMID: 15791728 DOI: 10.1007/s00239-004-0046-3] [Citation(s) in RCA: 1366] [Impact Index Per Article: 68.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Prokaryotes contain short DN repeats known as CRISPR, recognizable by the regular spacing existing between the recurring units. They represent the most widely distributed family of repeats among prokaryotic genomes suggesting a biological function. The origin of the intervening sequences, at present unknown, could provide clues about their biological activities. Here we show that CRISPR spacers derive from preexisting sequences, either chromosomal or within transmissible genetic elements such as bacteriophages and conjugative plasmids. Remarkably, these extrachromosomal elements fail to infect the specific spacer-carrier strain, implying a relationship between CRISPR and immunity against targeted DNA. Bacteriophages and conjugative plasmids are involved in prokaryotic population control, evolution, and pathogenicity. All these biological traits could be influenced by the presence of specific spacers. CRISPR loci can be visualized as mosaics of a repeated unit, separated by sequences at some time present elsewhere in the cell.
Collapse
Affiliation(s)
- Francisco J M Mojica
- Divisón de Microbiología, Departamento de Fisiología, Genética y Microbiología, Universidad de Alicante, Campus de San Vicente, E-03080, Spain.
| | | | | | | |
Collapse
|
17
|
Liu T, Chen JY, Zheng Z, Wang TH, Chen GQ. Construction of highly efficient E. coli expression systems containing low oxygen induced promoter and partition region. Appl Microbiol Biotechnol 2005; 68:346-54. [PMID: 15711794 DOI: 10.1007/s00253-005-1913-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2004] [Revised: 01/03/2004] [Accepted: 01/04/2005] [Indexed: 10/25/2022]
Abstract
A series of high-copy-number Escherichia coli expression vectors equipped with an oxygen-sensitive promoter P(vgb) of Vitreoscilla hemoglobin (encoded by the vgb gene) were constructed and characterized. Plasmid pKVp containing P(vgb) was inducible by low oxygen tension, while plasmid pKVpP containing a partition (par) region from plasmid pSC101 ligated to P(vgb) provided inheritable stability for the vectors in the absence of ampicillin. Plasmid pKVpV had the Vitreoscilla hemoglobin operon vgb ligated to P(vgb), while a construct containing P(vgb), the vgb operon and a par region constituted plasmid pKVpPV. Shake-flask studies demonstrated that plasmids pKVpV and pKVpPV expressed higher levels of Vitreoscilla hemoglobin under low aeration condition (5% air saturation in water) compared with the levels observed under strong aeration (20% air saturation in water). Introduction of either the enhanced green fluorescent protein (eGFP) gene egfp or the toluene dioxygenase (TDO) gene tod into either pKVpV (P(vgb), vgb operon) or pKVpPV (P(vgb), vgb operon, par) slightly attenuated (approximately 30%) the strong expression of VHb under low aeration. However, all displayed approximately a three-fold increase versus that observed for strong aeration. Recombinant E. coli harboring either pKVp-E (P(vgb), egfp) or pKVpP-E (P(vgb), par, egfp) displayed at least a two-fold increase in eGFP expression under conditions of low aeration and absence of antibiotic, compared with that under strong aeration after 24 h of cultivation. Strong expression of TDO was also observed using low aeration in recombinant E. coli harboring pKVpPV-T (P(vgb), vgb operon, par, tod) or pKVpP-T (P(vgb), par, tod). Plasmids containing the par region were stable over 100 generations. These results indicate that the novel expression system combining plasmid stability over the cell growth phase and a promoter inducible by low oxygen tension will be very useful for high-density production of foreign proteins.
Collapse
Affiliation(s)
- Tao Liu
- Department of Biological Science and Biotechnology, Tsinghua University, Beijing, China
| | | | | | | | | |
Collapse
|
18
|
Yost CK, Del Bel KL, Quandt J, Hynes MF. Rhizobium leguminosarum methyl-accepting chemotaxis protein genes are down-regulated in the pea nodule. Arch Microbiol 2004; 182:505-13. [PMID: 15502966 DOI: 10.1007/s00203-004-0736-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2004] [Revised: 09/22/2004] [Accepted: 09/24/2004] [Indexed: 11/26/2022]
Abstract
Regulation of methyl-accepting chemotaxis protein (MCP) genes of Rhizobium leguminosarum was studied under symbiotic conditions. Transcriptional fusions using both beta-galactosidase and beta-glucuronidase genes within two different mcp genes demonstrated that mcp expression decreased significantly during nodulation. Immunoblots using an anti-MCP antibody detected MCPs in free-living cells but not in bacteroids. Down-regulation during nodulation was not dependent upon known regulatory proteins involved in induction of expression of genes involved in nitrogen fixation. Environmental conditions found in the bacteroid that may trigger down-regulation were investigated by growing free-living cultures under a variety of growth conditions. Growth under low oxygen concentration or using succinate as a sole carbon source did not lower expression of the mcp gene fusions.
Collapse
Affiliation(s)
- Christopher K Yost
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | | | | | | |
Collapse
|
19
|
Burall LS, Harro JM, Li X, Lockatell CV, Himpsl SD, Hebel JR, Johnson DE, Mobley HLT. Proteus mirabilis genes that contribute to pathogenesis of urinary tract infection: identification of 25 signature-tagged mutants attenuated at least 100-fold. Infect Immun 2004; 72:2922-38. [PMID: 15102805 PMCID: PMC387873 DOI: 10.1128/iai.72.5.2922-2938.2004] [Citation(s) in RCA: 145] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Proteus mirabilis, a common cause of urinary tract infections (UTI) in individuals with functional or structural abnormalities or with long-term catheterization, forms bladder and kidney stones as a consequence of urease-mediated urea hydrolysis. Known virulence factors, besides urease, are hemolysin, fimbriae, metalloproteases, and flagella. In this study we utilized the CBA mouse model of ascending UTI to evaluate the colonization of mutants of P. mirabilis HI4320 that were generated by signature-tagged mutagenesis. By performing primary screening of 2088 P. mirabilis transposon mutants, we identified 502 mutants that ranged from slightly attenuated to unrecoverable. Secondary screening of these mutants revealed that 114 transposon mutants were reproducibly attenuated. Cochallenge of 84 of these single mutants with the parent strain in the mouse model resulted in identification of 37 consistently out-competed P. mirabilis transposon mutants, 25 of which were out-competed >100-fold for colonization of the bladder and/or kidneys by the parent strain. We determined the sequence flanking the site of transposon insertion in 29 attenuated mutants and identified genes affecting motility, iron acquisition, transcriptional regulation, phosphate transport, urease activity, cell surface structure, and key metabolic pathways as requirements for P. mirabilis infection of the urinary tract. Two mutations localized to a approximately 42-kb plasmid present in the parent strain, suggesting that the plasmid is important for colonization. Isolation of disrupted genes encoding proteins with homologies to known bacterial virulence factors, especially the urease accessory protein UreF and the disulfide formation protein DsbA, showed that the CBA mouse model and mutant pools are a reliable source of attenuated mutants with mutations in virulence genes.
Collapse
Affiliation(s)
- Laurel S Burall
- Department of Microbiology, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Jiang Y, Pogliano J, Helinski DR, Konieczny I. ParE toxin encoded by the broad-host-range plasmid RK2 is an inhibitor of Escherichia coli gyrase. Mol Microbiol 2002; 44:971-9. [PMID: 12010492 DOI: 10.1046/j.1365-2958.2002.02921.x] [Citation(s) in RCA: 218] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Broad-host-range plasmid RK2 encodes a post-segregational killing system, parDE, which contributes to the stable maintenance of this plasmid in Escherichia coli and many distantly related bacteria. The ParE protein is a toxin that inhibits cell growth, causes cell filamentation and eventually cell death. The ParD protein is a specific ParE antitoxin. In this work, the in vitro activities of these two proteins were examined. The ParE protein was found to inhibit DNA synthesis using an E. coli oriC supercoiled template and a replication-proficient E. coli extract. Moreover, ParE inhibited the early stages of both chromosomal and plasmid DNA replication, as measured by the DnaB helicase- and gyrase-dependent formation of FI*, a highly unwound form of supercoiled DNA. The presence of ParD prevented these inhibitory activities of ParE. We also observed that the addition of ParE to supercoiled DNA plus gyrase alone resulted in the formation of a cleavable gyrase-DNA complex that was converted to a linear DNA form upon addition of sodium dodecyl sulphate (SDS). Adding ParD before or after the addition of ParE prevented the formation of this cleavable complex. These results demonstrate that the target of ParE toxin activity in vitro is E. coli gyrase.
Collapse
Affiliation(s)
- Yong Jiang
- Department of Biology and Center for Molecular Genetics, University of California, San Diego, La Jolla, CA 92093-0322, USA
| | | | | | | |
Collapse
|
21
|
Utåker JB, Andersen K, Aakra A, Moen B, Nes IF. Phylogeny and functional expression of ribulose 1,5-bisphosphate carboxylase/oxygenase from the autotrophic ammonia-oxidizing bacterium Nitrosospira sp. isolate 40KI. J Bacteriol 2002; 184:468-78. [PMID: 11751824 PMCID: PMC139566 DOI: 10.1128/jb.184.2.468-478.2002] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2001] [Accepted: 10/11/2001] [Indexed: 11/20/2022] Open
Abstract
The autotrophic ammonia-oxidizing bacteria (AOB), which play an important role in the global nitrogen cycle, assimilate CO(2) by using ribulose 1,5-bisphosphate carboxylase/oxygenase (RubisCO). Here we describe the first detailed study of RubisCO (cbb) genes and proteins from the AOB. The cbbLS genes from Nitrosospira sp. isolate 40KI were cloned and sequenced. Partial sequences of the RubisCO large subunit (CbbL) from 13 other AOB belonging to the beta and gamma subgroups of the class Proteobacteria are also presented. All except one of the beta-subgroup AOB possessed a red-like type I RubisCO with high sequence similarity to the Ralstonia eutropha enzyme. All of these new red-like RubisCOs had a unique six-amino-acid insert in CbbL. Two of the AOB, Nitrosococcus halophilus Nc4 and Nitrosomonas europaea Nm50, had a green-like RubisCO. With one exception, the phylogeny of the AOB CbbL was very similar to that of the 16S rRNA gene. The presence of a green-like RubisCO in N. europaea was surprising, as all of the other beta-subgroup AOB had red-like RubisCOs. The green-like enzyme of N. europaea Nm50 was probably acquired by horizontal gene transfer. Functional expression of Nitrosospira sp. isolate 40KI RubisCO in the chemoautotrophic host R. eutropha was demonstrated. Use of an expression vector harboring the R. eutropha cbb control region allowed regulated expression of Nitrosospira sp. isolate 40KI RubisCO in an R. eutropha cbb deletion strain. The Nitrosospira RubisCO supported autotrophic growth of R. eutropha with a doubling time of 4.6 h. This expression system may allow further functional analysis of AOB cbb genes.
Collapse
Affiliation(s)
- Janne B Utåker
- Laboratory of Microbial Gene Technology, Department of Chemistry and Biotechnology, Agricultural University of Norway, N-1432 As, Norway.
| | | | | | | | | |
Collapse
|
22
|
Engelberg-Kulka H, Glaser G. Addiction modules and programmed cell death and antideath in bacterial cultures. Annu Rev Microbiol 1999; 53:43-70. [PMID: 10547685 DOI: 10.1146/annurev.micro.53.1.43] [Citation(s) in RCA: 281] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In bacteria, programmed cell death is mediated through "addiction modules" consisting of two genes. The product of the second gene is a stable toxin, whereas the product of the first is a labile antitoxin. Here we extensively review what is known about those modules that are borne by one of a number of Escherichia coli extrachromosomal elements and are responsible for the postsegregational killing effect. We focus on a recently discovered chromosomally borne regulatable addiction module in E. coli that responds to nutritional stress and also on an antideath gene of the E. coli bacteriophage lambda. We consider the relation of these two to programmed cell death and antideath in bacterial cultures. Finally, we discuss the similarities between basic features of programmed cell death and antideath in both prokaryotes and eukaryotes and the possibility that they share a common evolutionary origin.
Collapse
Affiliation(s)
- H Engelberg-Kulka
- Department of Molecular Biology, Hebrew University Hadassah-Medical School, Jerusalem, Israel.
| | | |
Collapse
|
23
|
Johnson EP, Mincer T, Schwab H, Burgin AB, Helinski DR. Plasmid RK2 ParB protein: purification and nuclease properties. J Bacteriol 1999; 181:6010-8. [PMID: 10498713 PMCID: PMC103628 DOI: 10.1128/jb.181.19.6010-6018.1999] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The parCBA operon of the 3.2-kb stabilization region of plasmid RK2 encodes three cotranslated proteins. ParA mediates site-specific recombination to resolve plasmid multimers, ParB has been shown to be a nuclease, and the function of ParC is unknown. In this study ParB was overexpressed by cotranslation with ParC in Escherichia coli by using a plasmid construct that contained the parC and parB genes under the control of the T7 promoter. Purification was achieved by treatment of extracts with Polymin P, followed by ammonium sulfate precipitation and heparin and ion-exchange chromatography. Sizing-column analysis indicated that ParB exists as a monomer in solution. Analysis of the enzymatic properties of purified ParB indicated that the protein preferentially cleaves single-stranded DNA. ParB also nicks supercoiled plasmid DNA preferably at sites with potential single-stranded character, like AT-rich regions and sequences that can form cruciform structures. ParB also exhibits 5'-->3' exonuclease activity. This ParB activity on a 5'-end-labeled, double-stranded DNA substrate produces a 3', 5'-phosphorylated dinucleotide which is further cleaved to a 3', 5'-phosphorylated mononucleotide. The role of the ParB endonuclease and exonuclease activities in plasmid RK2 stabilization remains to be determined.
Collapse
Affiliation(s)
- E P Johnson
- Department of Biology and Center for Molecular Genetics, University of California, San Diego, La Jolla, California 92093-0322, USA
| | | | | | | | | |
Collapse
|
24
|
2 The Development of Plasmid Vectors. METHODS IN MICROBIOLOGY 1999. [DOI: 10.1016/s0580-9517(08)70113-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register]
|
25
|
Easter CL, Schwab H, Helinski DR. Role of the parCBA operon of the broad-host-range plasmid RK2 in stable plasmid maintenance. J Bacteriol 1998; 180:6023-30. [PMID: 9811663 PMCID: PMC107679 DOI: 10.1128/jb.180.22.6023-6030.1998] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/1998] [Accepted: 09/09/1998] [Indexed: 11/20/2022] Open
Abstract
The par region of the stably maintained broad-host-range plasmid RK2 is organized as two divergent operons, parCBA and parDE, and a cis-acting site. parDE encodes a postsegregational killing system, and parCBA encodes a resolvase (ParA), a nuclease (ParB), and a protein of unknown function (ParC). The present study was undertaken to further delineate the role of the parCBA region in the stable maintenance of RK2 by first introducing precise deletions in the three genes and then assessing the abilities of the different constructs to stabilize RK2 in three strains of Escherichia coli and two strains of Pseudomonas aeruginosa. The intact parCBA operon was effective in stabilizing a conjugation-defective RK2 derivative in E. coli MC1061K and RR1 but was relatively ineffective in E. coli MV10Deltalac. In the two strains in which the parCBA operon was effective, deletions in parB, parC, or both parB and parC caused an approximately twofold reduction in the stabilizing ability of the operon, while a deletion in the parA gene resulted in a much greater loss of parCBA activity. For P. aeruginosa PAO1161Rifr, the parCBA operon provided little if any plasmid stability, but for P. aeruginosa PAC452Rifr, the RK2 plasmid was stabilized to a substantial extent by parCBA. With this latter strain, parA and res alone were sufficient for stabilization. The cer resolvase system of plasmid ColE1 and the loxP/Cre system of plasmid P1 were tested in comparison with the parCBA operon. We found that, not unlike what was previously observed with MC1061K, cer failed to stabilize the RK2 plasmid with par deletions in strain MV10Deltalac, but this multimer resolution system was effective in stabilizing the plasmid in strain RR1. The loxP/Cre system, on the other hand, was very effective in stabilizing the plasmid in all three E. coli strains. These observations indicate that the parA gene, along with its res site, exhibits a significant level of plasmid stabilization in the absence of the parC and parB genes but that in at least one E. coli strain, all three genes are required for maximum stabilization. It cannot be determined from these results whether or not the stabilization effects seen with parCBA or the cer and loxP/Cre systems are strictly due to a reduction in the level of RK2 dimers and an increase in the number of plasmid monomer units or if these systems play a role in a more complex process of plasmid stabilization that requires as an essential step the resolution of plasmid dimers.
Collapse
Affiliation(s)
- C L Easter
- Department of Biology and Center for Molecular Genetics, University of California, San Diego, La Jolla, California 92093-0322, USA
| | | | | |
Collapse
|
26
|
Thorsted PB, Macartney DP, Akhtar P, Haines AS, Ali N, Davidson P, Stafford T, Pocklington MJ, Pansegrau W, Wilkins BM, Lanka E, Thomas CM. Complete sequence of the IncPbeta plasmid R751: implications for evolution and organisation of the IncP backbone. J Mol Biol 1998; 282:969-90. [PMID: 9753548 DOI: 10.1006/jmbi.1998.2060] [Citation(s) in RCA: 173] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The broad host range IncP plasmids are of particular interest because of their ability to promote gene spread between diverse bacterial species. To facilitate study of these plasmids we have compiled the complete sequence of the IncPbeta plasmid R751. Comparison with the sequence of the IncPalpha plasmids confirms the conservation of the IncP backbone of replication, conjugative transfer and stable inheritance functions between the two branches of this family. As in the IncPalpha genome the DNA of this backbone appears to have been enriched for the GCCG/CGGC motifs characteristic of the genome of organisms with a high G+C content, such as P. aeruginosa, suggesting that IncPbeta plasmids have been subjected during their evolution to similar mutational and selective forces as IncPalpha plasmids and may have evolved in pseudomonad hosts. The IncP genome is consistently interrupted by insertion of phenotypic markers and/or transposable elements between oriV and trfA and between the tra and trb operons. The R751 genome reveals a family of repeated sequences in these regions which may form the basis of a hot spot for insertion of foreign DNA. Sequence analysis of the cryptic transposon Tn4321 revealed that it is not a member of the Tn21 family as we had proposed previously from an inspection of its ends. Rather it is a composite transposon defined by inverted repeats of a 1347 bp IS element belonging to a recently discovered family which is distributed throughout the prokaryotes. The central unique region of Tn4321 encodes two predicted proteins, one of which is a regulatory protein while the other is presumably responsible for an as yet unidentified phenotype. The most striking feature of the IncPalpha plasmids, the global regulation of replication and transfer by the KorA and KorB proteins encoded in the central control operon, is conserved between the two plasmids although there appear to be significant differences in the specificity of repressor-operator interactions. The importance of these global regulatory circuits is emphasised by the observation that the operator sequences for KorB are highly conserved even in contexts where the surrounding region, either a protein coding or intergenic sequence, has diverged considerably. There appears to be no equivalent of the parABCDE region which in the IncPalpha plasmids provides multimer resolution, lethality to plasmid-free segregants and active partitioning functions. However, we found that the continuous sector from co-ordinate 0 to 9100 bp, encoding the co-regulated klc and kle operons as well as the central control region, could confer a high degree of segregational stability on a low copy number test vector. Thus R751 appears to exhibit very clearly what was first revealed by study of the IncPalpha plasmids, namely a fully functional co-ordinately regulated set of replication, transfer and stable inheritance functions.
Collapse
Affiliation(s)
- P B Thorsted
- School of Biological Sciences, University of Birmingham, Birmingham, Edgbaston, B15 2TT, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|