1
|
Wang Z, Li Z, Lei Y, Liu Y, Feng Y, Chen D, Ma S, Xiao Z, Hu M, Deng J, Wang Y, Zhang Q, Huang Y, Yang Y. Recombinant Photolyase-Thymine Alleviated UVB-Induced Photodamage in Mice by Repairing CPD Photoproducts and Ameliorating Oxidative Stress. Antioxidants (Basel) 2022; 11:antiox11122312. [PMID: 36552521 PMCID: PMC9774824 DOI: 10.3390/antiox11122312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/15/2022] [Accepted: 11/19/2022] [Indexed: 11/24/2022] Open
Abstract
Cyclobutane pyrimidine dimers (CPDs) are the main mutagenic DNA photoproducts caused by ultraviolet B (UVB) radiation and represent the major cause of photoaging and skin carcinogenesis. CPD photolyase can efficiently and rapidly repair CPD products. Therefore, they are candidates for the prevention of photodamage. However, these photolyases are not present in placental mammals. In this study, we produced a recombinant photolyase-thymine (rPHO) from Thermus thermophilus (T. thermophilus). The rPHO displayed CPD photorepair activity. It prevented UVB-induced DNA damage by repairing CPD photoproducts to pyrimidine monomers. Furthermore, it inhibited UVB-induced ROS production, lipid peroxidation, inflammatory responses, and apoptosis. UVB-induced wrinkle formation, epidermal hyperplasia, and collagen degradation in mice skin was significantly inhibited when the photolyase was applied topically to the skin. These results demonstrated that rPHO has promising protective effects against UVB-induced photodamage and may contribute to the development of anti-UVB skin photodamage drugs and cosmetic products.
Collapse
Affiliation(s)
- Zhaoyang Wang
- Department of Cell Biology, Jinan University, Guangzhou 510632, China
| | - Ziyi Li
- TYRAN Cosmetics Innovation Research Institute, Jinan University, Guangzhou 511447, China
| | - Yaling Lei
- Department of Cell Biology, Jinan University, Guangzhou 510632, China
| | - Yuan Liu
- Department of Cell Biology, Jinan University, Guangzhou 510632, China
| | - Yuqing Feng
- Department of Pharmacology, Jinan University, Guangzhou 510632, China
| | - Derong Chen
- Department of Cell Biology, Jinan University, Guangzhou 510632, China
| | - Siying Ma
- Department of Cell Biology, Jinan University, Guangzhou 510632, China
| | - Ziyan Xiao
- Department of Cell Biology, Jinan University, Guangzhou 510632, China
| | - Meirong Hu
- Department of Cell Biology, Jinan University, Guangzhou 510632, China
| | - Jingxian Deng
- Department of Pharmacology, Jinan University, Guangzhou 510632, China
| | - Yuxin Wang
- Department of Cell Biology, Jinan University, Guangzhou 510632, China
| | - Qihao Zhang
- Department of Cell Biology, Jinan University, Guangzhou 510632, China
- Guangdong Province Key Laboratory of Bioengineering Medicine, Guangzhou 510632, China
| | - Yadong Huang
- Department of Cell Biology, Jinan University, Guangzhou 510632, China
- TYRAN Cosmetics Innovation Research Institute, Jinan University, Guangzhou 511447, China
- Guangdong Province Key Laboratory of Bioengineering Medicine, Guangzhou 510632, China
- Correspondence: (Y.H.); (Y.Y.)
| | - Yan Yang
- Department of Cell Biology, Jinan University, Guangzhou 510632, China
- TYRAN Cosmetics Innovation Research Institute, Jinan University, Guangzhou 511447, China
- Guangdong Province Key Laboratory of Bioengineering Medicine, Guangzhou 510632, China
- Correspondence: (Y.H.); (Y.Y.)
| |
Collapse
|
2
|
Ramírez N, Serey M, Illanes A, Piumetti M, Ottone C. Immobilization strategies of photolyases: Challenges and perspectives for DNA repairing application. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2021; 215:112113. [PMID: 33383556 DOI: 10.1016/j.jphotobiol.2020.112113] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 11/27/2020] [Accepted: 12/19/2020] [Indexed: 02/08/2023]
Abstract
Photolyases are enzymes that repair DNA damage caused by solar radiation. Due to their photorepair potential, photolyases added in topical creams and used in medical treatments has allowed to reverse skin damage and prevent the development of different diseases, including actinic keratosis, premature photoaging and cancer. For this reason, research has been oriented to the study of new photolyases performing in extreme environments, where high doses of UV radiation may be a key factor for these enzymes to have perfected their photorepair potential. Generally, the extracted enzymes are first encapsulated and then added to the topical creams to increase their stability. However, other well consolidated immobilization methods are interesting strategies to be studied that may improve the biocatalyst performance. This review aims to go through the different Antarctic organisms that have exhibited photoreactivation activity, explaining the main mechanisms of photolyase DNA photorepair. The challenges of immobilizing these enzymes on porous and nanostructured supports is also discussed. The comparison of the most reported immobilization methods with respect to the structure of photolyases show that both covalent and ionic immobilization methods produced an increase in their stability. Moreover, the use of nanosized materials as photolyase support would permit the incorporation of the biocatalyst into the target cell, which is a technological requirement that photolyase based biocatalysts must fulfill.
Collapse
Affiliation(s)
- Nicolás Ramírez
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Avenida Brasil 2085, Valparaíso, Chile
| | - Marcela Serey
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Avenida Brasil 2085, Valparaíso, Chile
| | - Andrés Illanes
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Avenida Brasil 2085, Valparaíso, Chile
| | - Marco Piumetti
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy.
| | - Carminna Ottone
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Avenida Brasil 2085, Valparaíso, Chile.
| |
Collapse
|
3
|
Characterization of a cold-adapted DNA photolyase from C. psychrerythraea 34H. Extremophiles 2017; 21:919-932. [PMID: 28726126 DOI: 10.1007/s00792-017-0953-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 07/09/2017] [Indexed: 10/19/2022]
Abstract
The phrB gene encoding a putative cold-adapted DNA photolyase was cloned from the bacterial genomic DNA of Colwellia psychrerythraea 34H, a psychrophilic bacterium. Recombinant DNA photolyase, rCpPL, was overexpressed and purified from three different vectors. rCpPL binds its DNA substrate by flipping a cyclobutane pyrimidine dimer (CPD) into its active site and repairs CPD-containing DNA in vitro. rCpPL contains one catalytic flavin adenine dinucleotide (FAD) cofactor, but displays promiscuity in cofactor binding, in which either a flavin mononucleotide (FMN) or a methenyltetrahydrofolate (MTHF) molecule is bound as an antenna molecule and found in sub-stoichiometric amounts. The UV/Vis spectrum of oxidized rCpPL shows that the FADOX absorption maximum is the most red-shifted reported for a PL, suggesting a unique cavity electrostatic environment. Modest FAD vibronic structure suggests that the binding pocket is more flexible than warmer PLs, corroborating the hypothesis that psychrophilic proteins must be highly flexible to function at low temperatures. Fluorescence excitation data show that the freshly purified flavin cofactor is in its fully reduced state (FADH¯). A homology analysis of PL protein structures spanning 70 °C in growth temperature supports the data that the structure of CpPL is quite different from its warmer cousins.
Collapse
|
4
|
Marizcurrena JJ, Morel MA, Braña V, Morales D, Martinez-López W, Castro-Sowinski S. Searching for novel photolyases in UVC-resistant Antarctic bacteria. Extremophiles 2017; 21:409-418. [DOI: 10.1007/s00792-016-0914-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 12/31/2016] [Indexed: 12/31/2022]
|
5
|
Wijaya IMM, Domratcheva T, Iwata T, Getzoff ED, Kandori H. Single Hydrogen Bond Donation from Flavin N5 to Proximal Asparagine Ensures FAD Reduction in DNA Photolyase. J Am Chem Soc 2016; 138:4368-76. [PMID: 27002596 DOI: 10.1021/jacs.5b10533] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The spread of the absorbance of the stable FADH(•) radical (300-700 nm) allows CPD photolyase to highly efficiently form FADH(-), making it functional for DNA repair. In this study, FTIR spectroscopy detected a strong hydrogen bond, from FAD N5-H to the carbonyl group of the Asn378 side chain, that is modulated by the redox state of FAD. The observed characteristic frequency shifts were reproduced in quantum-mechanical models of the flavin binding site, which were then employed to elucidate redox tuning governed by Asn378. We demonstrate that enhanced hydrogen bonding of the Asn378 side chain with the FADH(•) radical increases thermodynamic stabilization of the radical state, and further ensures kinetic stabilization and accumulation of the fully reduced FADH(-) state.
Collapse
Affiliation(s)
| | - Tatiana Domratcheva
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research , Jahnstrasse 29, Heidelberg 69120, Germany
| | | | - Elizabeth D Getzoff
- Department of Integrative Structural and Computational Biology and The Skaggs Institute for Chemical Biology, The Scripps Research Institute , La Jolla, California 92037, United States
| | | |
Collapse
|
6
|
Abstract
Solar ultraviolet (UV) radiation, mainly UV-B (280-315 nm), is one of the most potent genotoxic agents that adversely affects living organisms by altering their genomic stability. DNA through its nucleobases has absorption maxima in the UV region and is therefore the main target of the deleterious radiation. The main biological relevance of UV radiation lies in the formation of several cytotoxic and mutagenic DNA lesions such as cyclobutane pyrimidine dimers (CPDs), 6-4 photoproducts (6-4PPs), and their Dewar valence isomers (DEWs), as well as DNA strand breaks. However, to counteract these DNA lesions, organisms have developed a number of highly conserved repair mechanisms such as photoreactivation, excision repair, and mismatch repair (MMR). Photoreactivation involving the enzyme photolyase is the most frequently used repair mechanism in a number of organisms. Excision repair can be classified as base excision repair (BER) and nucleotide excision repair (NER) involving a number of glycosylases and polymerases, respectively. In addition to this, double-strand break repair, SOS response, cell-cycle checkpoints, and programmed cell death (apoptosis) are also operative in various organisms to ensure genomic stability. This review concentrates on the UV-induced DNA damage and the associated repair mechanisms as well as various damage detection methods.
Collapse
Affiliation(s)
- Richa
- Laboratory of Photobiology and Molecular Microbiology, Centre of Advanced Study in Botany, Banaras Hindu University, Varanasi, 221005, India
| | | | | |
Collapse
|
7
|
Morita R, Nakane S, Shimada A, Inoue M, Iino H, Wakamatsu T, Fukui K, Nakagawa N, Masui R, Kuramitsu S. Molecular mechanisms of the whole DNA repair system: a comparison of bacterial and eukaryotic systems. J Nucleic Acids 2010; 2010:179594. [PMID: 20981145 PMCID: PMC2957137 DOI: 10.4061/2010/179594] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Accepted: 07/27/2010] [Indexed: 11/20/2022] Open
Abstract
DNA is subjected to many endogenous and exogenous damages. All organisms have developed a complex network of DNA repair mechanisms. A variety of different DNA repair pathways have been reported: direct reversal, base excision repair, nucleotide excision repair, mismatch repair, and recombination repair pathways. Recent studies of the fundamental mechanisms for DNA repair processes have revealed a complexity beyond that initially expected, with inter- and intrapathway complementation as well as functional interactions between proteins involved in repair pathways. In this paper we give a broad overview of the whole DNA repair system and focus on the molecular basis of the repair machineries, particularly in Thermus thermophilus HB8.
Collapse
Affiliation(s)
- Rihito Morita
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
DNA photolyase of enterococci: possible explanation for its low sunlight inactivation rate. Biologia (Bratisl) 2009. [DOI: 10.2478/s11756-009-0168-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
9
|
Expression, purification and characterization of recombinant protein tyrosine phosphatase from Thermus thermophilus HB27. Acta Biochim Biophys Sin (Shanghai) 2009; 41:689-98. [DOI: 10.1093/abbs/gmp057] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
10
|
Enzymatic analysis of a thermostabilized mutant of an Escherichia coli hygromycin B phosphotransferase. Biosci Biotechnol Biochem 2008; 72:2467-71. [PMID: 18776672 DOI: 10.1271/bbb.80285] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
An Escherichia coli hygromycin B phosphotransferase (HPH) and its thermostabilized mutant protein, HPH5, containing five amino acid substitutions, D20G, A118V, S225P, Q226L, and T246A (Nakamura et al., J. Biosci. Bioeng., 100, 158-163 (2005)), obtained by an in vivo directed evolution procedure in Thermus thermophilus, were produced and purified from E. coli recombinants, and enzymatic comparisons were performed. The optimum temperatures for enzyme activity were 50 and 55 degrees C for HPH and HPH5 respectively, but the thermal stability of the enzyme activity and the temperature for protein denaturation of HPH5 increased, from 36 and 37.2 degrees C of HPH to 53 and 58.8 degrees C respectively. Specific activities and steady-state kinetics measured at 25 degrees C showed only slight differences between the two enzymes. From these results we concluded that HPH5 was thermostabilized at the protein level, and that the mutations introduced did not affect its enzyme activity, at least under the assay conditions.
Collapse
|
11
|
Weber S, Bittl R. Studies of Organic Protein Cofactors Using Electron Paramagnetic Resonance. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2007. [DOI: 10.1246/bcsj.80.2270] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
12
|
Discrimination of class I cyclobutane pyrimidine dimer photolyase from blue light photoreceptors by single methionine residue. Biophys J 2007; 94:2194-203. [PMID: 18055535 DOI: 10.1529/biophysj.107.119248] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
DNA photolyase recognizes ultraviolet-damaged DNA and breaks improperly formed covalent bonds within the cyclobutane pyrimidine dimer by a light-activated electron transfer reaction between the flavin adenine dinucleotide, the electron donor, and cyclobutane pyrimidine dimer, the electron acceptor. Theoretical analysis of the electron-tunneling pathways of the DNA photolyase derived from Anacystis nidulans can reveal the active role of the protein environment in the electron transfer reaction. Here, we report the unexpectedly important role of the single methionine residue, Met-353, where busy trafficking of electron-tunneling currents is observed. The amino acid conservation pattern of Met-353 in the homologous sequences perfectly correlates with experimentally verified annotation as photolyases. The bioinformatics sequence analysis also suggests that the residue plays a pivotal role in biological function. Consistent findings from different disciplines of computational biology strongly suggest the pivotal role of Met-353 in the biological function of DNA photolyase.
Collapse
|
13
|
Klar T, Kaiser G, Hennecke U, Carell T, Batschauer A, Essen LO. Natural and non-natural antenna chromophores in the DNA photolyase from Thermus thermophilus. Chembiochem 2007; 7:1798-806. [PMID: 17051659 DOI: 10.1002/cbic.200600206] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
X-ray crystallographic and functional analysis of the class I DNA photolyase from Thermus thermophilus revealed the binding of flavin mononucleotide (FMN) as an antenna chromophore. The binding mode of FMN closely coincides with the binding of a deazaflavin-like chromophore in the related class I DNA photolyase from Anacystis nidulans. Compared to the R46E mutant, which lacks a conserved arginine in the binding site for the antenna chromophore, the FMN-comprising holophotolyase exhibits an eightfold higher activity at 450 nm. The facile incorporation of the flavin cofactors 8-hydroxy-deazariboflavin and 8-iodo-8-demethyl-riboflavin into the binding site for the antenna chromophore paves the way for wavelength-tuning of the activity spectra of DNA photolyases by using synthetic flavins.
Collapse
Affiliation(s)
- Tobias Klar
- Philipps-Universität Marburg, Fachbereich Chemie, Hans-Meerwein-Strasse, 35032 Marburg, Germany
| | | | | | | | | | | |
Collapse
|
14
|
Schleicher E, Hitomi K, Kay CWM, Getzoff ED, Todo T, Weber S. Electron nuclear double resonance differentiates complementary roles for active site histidines in (6-4) photolyase. J Biol Chem 2006; 282:4738-4747. [PMID: 17164245 DOI: 10.1074/jbc.m604734200] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
(6-4) photolyase catalyzes the light-dependent repair of UV-damaged DNA containing (6-4) photoproducts. Blue light excitation of the enzyme generates the neutral FAD radical, FADH., which is believed to be transiently formed during the enzymatic DNA repair. Here (6-4) photolyase has been examined by optical spectroscopy, electron paramagnetic resonance, and pulsed electron nuclear double resonance spectroscopy. Characterization of selected proton hyperfine couplings of FADH., namely those of H(8alpha) and H(1'), yields information on the micropolarity at the site where the DNA substrate is expected to bind. Shifts in the hyperfine couplings as a function of structural modifications induced by point mutations and pH changes distinguish the protonation states of two highly conserved histidines, His(354) and His(358), in Xenopus laevis (6-4) photolyase. These are proposed to catalyze formation of the oxetane intermediate that precedes light-initiated DNA repair. The results show that at pH 9.5, where the enzymatic repair activity is highest, His(358) is deprotonated, whereas His(354) is protonated. Hence, the latter is likely the proton donor that initiates oxetane formation from the (6-4) photoproduct.
Collapse
Affiliation(s)
- Erik Schleicher
- Fachbereich Physik, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Kenichi Hitomi
- Department of Molecular Biology and the Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California 92037
| | - Christopher W M Kay
- Fachbereich Physik, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany; Department of Biology, University College London, Gower Street, London WC1E 6BT, United Kingdom, and the
| | - Elizabeth D Getzoff
- Department of Molecular Biology and the Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California 92037
| | - Takeshi Todo
- Radiation Biology Center, Kyoto University, Yoshidakonoe-cho, Sakyoku, Kyoto 606-8501, Japan
| | - Stefan Weber
- Fachbereich Physik, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany.
| |
Collapse
|
15
|
Fujihashi M, Numoto N, Kobayashi Y, Mizushima A, Tsujimura M, Nakamura A, Kawarabayasi Y, Miki K. Crystal structure of archaeal photolyase from Sulfolobus tokodaii with two FAD molecules: implication of a novel light-harvesting cofactor. J Mol Biol 2006; 365:903-10. [PMID: 17107688 DOI: 10.1016/j.jmb.2006.10.012] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2006] [Revised: 09/29/2006] [Accepted: 10/04/2006] [Indexed: 10/24/2022]
Abstract
UV exposure of DNA molecules induces serious DNA lesions. The cyclobutane pyrimidine dimer (CPD) photolyase repairs CPD-type - lesions by using the energy of visible light. Two chromophores for different roles have been found in this enzyme family; one catalyzes the CPD repair reaction and the other works as an antenna pigment that harvests photon energy. The catalytic cofactor of all known photolyases is FAD, whereas several light-harvesting cofactors are found. Currently, 5,10-methenyltetrahydrofolate (MTHF), 8-hydroxy-5-deaza-riboflavin (8-HDF) and FMN are the known light-harvesting cofactors, and some photolyases lack the chromophore. Three crystal structures of photolyases from Escherichia coli (Ec-photolyase), Anacystis nidulans (An-photolyase), and Thermus thermophilus (Tt-photolyase) have been determined; however, no archaeal photolyase structure is available. A similarity search of archaeal genomic data indicated the presence of a homologous gene, ST0889, on Sulfolobus tokodaii strain7. An enzymatic assay reveals that ST0889 encodes photolyase from S. tokodaii (St-photolyase). We have determined the crystal structure of the St-photolyase protein to confirm its structural features and to investigate the mechanism of the archaeal DNA repair system with light energy. The crystal structure of the St-photolyase is superimposed very well on the three known photolyases including the catalytic cofactor FAD. Surprisingly, another FAD molecule is found at the position of the light-harvesting cofactor. This second FAD molecule is well accommodated in the crystal structure, suggesting that FAD works as a novel light-harvesting cofactor of photolyase. In addition, two of the four CPD recognition residues in the crystal structure of An-photolyase are not found in St-photolyase, which might utilize a different mechanism to recognize the CPD from that of An-photolyase.
Collapse
Affiliation(s)
- Masahiro Fujihashi
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Ueda T, Kato A, Kuramitsu S, Terasawa H, Shimada I. Identification and characterization of a second chromophore of DNA photolyase from Thermus thermophilus HB27. J Biol Chem 2005; 280:36237-43. [PMID: 16118222 DOI: 10.1074/jbc.m507972200] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cyclobutane pyrimidine dimer (CPD) photolyases use light to repair CPDs. For efficient light absorption, CPD photolyases use a second chromophore. We purified Thermus thermophilus CPD photolyase with its second chromophore. UV-visible absorption spectra, reverse-phase HPLC, and NMR analyses of the chromophores revealed that the second chromophore of the enzyme is flavin mononucleotide (FMN). To clarify the role of FMN in the CPD repair reaction, the enzyme without FMN (Enz-FMN(-) and that with a stoichiometric amount of FMN (Enz-FMN(+)) were both successfully obtained. The CPD repair activity of Enz-FMN(+) was higher than that of Enz-FMN(-), and the CPD repair activity ratio of Enz-FMN(+) and Enz-FMN(-) was dependent on the wavelength of light. These results suggest that FMN increases the light absorption efficiency of the enzyme. NMR analyses of Enz-FMN(+) and Enz-FMN(-) revealed that the binding mode of FMN is similar to that of 7,8-didemethyl-8-hydroxy-5-deazariboflavin in Anacystis nidulans CPD photolyase, and thus a direct electron transfer between FMN and CPD is not likely to occur. Based on these results, we concluded that FMN acts as a highly efficient light harvester that gathers light and transfers the energy to FAD.
Collapse
Affiliation(s)
- Takumi Ueda
- Graduate School of Pharmaceutical Sciences, University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | | | |
Collapse
|
17
|
Okajima S, Sakai Y, Yamaguchi T. Development of a regenerable cell culture system that senses and releases dead cells. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2005; 21:4043-4049. [PMID: 15835972 DOI: 10.1021/la046994e] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
We developed a rapidly regenerable cell culture system in which the cell culture substrate detects cell death and selectively releases the dead cells. This culture material was achieved by combining a detector that responds to the signal from the dead cells and an actuator to release the dead cells. Benzo-18-crown-6-acrylamide (BCAm) with a pendant crown ether receptor was used as the sensor to recognize cellular signals and N-isopropylacrylamide (NIPAM) was used as the actuator. This copolymer of NIPAM and BCAm can respond to potassium ions and change its nature from hydrophobic to hydrophilic at the culture temperature of 37 degrees C. Living cells concentrate potassium ion internally; when cells die, potassium ions are released. The polymer surface recognizes the potassium ions released from the dead cells, the NIPAM hydrates, and the dead cells are selectively detached. This in vitro culture system is a novel one in which artificial culture materials work cooperatively with cellular metabolism by responding to this signal from the cells, thereby realizing in vitro tissue regeneration partly mimicking the mechanisms of in vivo homeostasis.
Collapse
Affiliation(s)
- Shuhei Okajima
- Department of Chemical System Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | | | | |
Collapse
|
18
|
Weber S. Light-driven enzymatic catalysis of DNA repair: a review of recent biophysical studies on photolyase. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2005; 1707:1-23. [PMID: 15721603 DOI: 10.1016/j.bbabio.2004.02.010] [Citation(s) in RCA: 257] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2003] [Accepted: 02/02/2004] [Indexed: 11/19/2022]
Abstract
More than 50 years ago, initial experiments on enzymatic photorepair of ultraviolet (UV)-damaged DNA were reported [Proc. Natl. Acad. Sci. U. S. A. 35 (1949) 73]. Soon after this discovery, it was recognized that one enzyme, photolyase, is able to repair UV-induced DNA lesions by effectively reversing their formation using blue light. The enzymatic process named DNA photoreactivation depends on a non-covalently bound cofactor, flavin adenine dinucleotide (FAD). Flavins are ubiquitous redox-active catalysts in one- and two-electron transfer reactions of numerous biological processes. However, in the case of photolyase, not only the ground-state redox properties of the FAD cofactor are exploited but also, and perhaps more importantly, its excited-state properties. In the catalytically active, fully reduced redox form, the FAD absorbs in the blue and near-UV ranges of visible light. Although there is no direct experimental evidence, it appears generally accepted that starting from the excited singlet state, the chromophore initiates a reductive cleavage of the two major DNA photodamages, cyclobutane pyrimidine dimers and (6-4) photoproducts, by short-distance electron transfer to the DNA lesion. Back electron transfer from the repaired DNA segment is believed to eventually restore the initial redox states of the cofactor and the DNA nucleobases, resulting in an overall reaction with net-zero exchanged electrons. Thus, the entire process represents a true catalytic cycle. Many biochemical and biophysical studies have been carried out to unravel the fundamentals of this unique mode of action. The work has culminated in the elucidation of the three-dimensional structure of the enzyme in 1995 that revealed remarkable details, such as the FAD-cofactor arrangement in an unusual U-shaped configuration. With the crystal structure of the enzyme at hand, research on photolyases did not come to an end but, for good reason, intensified: the geometrical structure of the enzyme alone is not sufficient to fully understand the enzyme's action on UV-damaged DNA. Much effort has therefore been invested to learn more about, for example, the geometry of the enzyme-substrate complex, and the mechanism and pathways of intra-enzyme and enzyme <-->DNA electron transfer. Many of the key results from biochemical and molecular biology characterizations of the enzyme or the enzyme-substrate complex have been summarized in a number of reviews. Complementary to these articles, this review focuses on recent biophysical studies of photoreactivation comprising work performed from the early 1990s until the present.
Collapse
Affiliation(s)
- Stefan Weber
- Institute of Experimental Physics, Free University Berlin, Arnimallee 14, 14195 Berlin, Germany.
| |
Collapse
|
19
|
Ueda T, Kato A, Ogawa Y, Torizawa T, Kuramitsu S, Iwai S, Terasawa H, Shimada I. NMR study of repair mechanism of DNA photolyase by FAD-induced paramagnetic relaxation enhancement. J Biol Chem 2004; 279:52574-9. [PMID: 15465818 DOI: 10.1074/jbc.m409942200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cyclobutane pyrimidine dimer (CPD) photolyases, which contain FAD as a cofactor, use light to repair CPDs. We performed structural analyses of the catalytic site of the Thermus thermophilus CPD photolyase-DNA complex, using FAD-induced paramagnetic relaxation enhancement (PRE). The distances between the tryptophan residues and the FAD calculated from the PRE agree well with those observed in the x-ray structure (with an error of <3 A). Subsequently, a single-stranded DNA containing 13C-labeled CPD was prepared, and the FAD-induced PRE of the NMR resonances from the CPD lesion in complex with the CPD photolyase was investigated. The distance between the FAD and the CPD calculated from the PRE is 16 +/- 3 A. The FAD-induced PRE was also observed in the CPD photolyase-double-stranded DNA complex. Based on these results, a model of the CPD photolyase-DNA complex was constructed, and the roles of Arg-201, Lys-240, Trp-247, and Trp-353 in the CPD-repair reaction are discussed.
Collapse
Affiliation(s)
- Takumi Ueda
- Graduate School of Pharmaceutical Sciences, the University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Torizawa T, Ueda T, Kuramitsu S, Hitomi K, Todo T, Iwai S, Morikawa K, Shimada I. Investigation of the cyclobutane pyrimidine dimer (CPD) photolyase DNA recognition mechanism by NMR analyses. J Biol Chem 2004; 279:32950-6. [PMID: 15169780 DOI: 10.1074/jbc.m404536200] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The cyclobutane pyrimidine dimer (CPD) is one of the major forms of DNA damage caused by irradiation with ultraviolet (UV) light. CPD photolyases recognize and repair UV-damaged DNA. The DNA recognition mechanism of the CPD photolyase has remained obscure because of a lack of structural information about DNA-CPD photolyase complexes. In order to elucidate the CPD photolyase DNA binding mode, we performed NMR analyses of the DNA-CPD photolyase complex. Based upon results from (31)P NMR measurements, in combination with site-directed mutagenesis, we have demonstrated the orientation of CPD-containing single-stranded DNA (ssDNA) on the CPD photolyase. In addition, chemical shift perturbation analyses, using stable isotope-labeled DNA, revealed that the CPD is buried in a cavity within CPD photolyase. Finally, NMR analyses of a double-stranded DNA (dsDNA)-CPD photolyase complex indicated that the CPD is flipped out of the dsDNA by the enzyme, to gain access to the active site.
Collapse
Affiliation(s)
- Takuya Torizawa
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | | | | | | | | | |
Collapse
|
21
|
MacFarlane AW, Stanley RJ. Evidence of powerful substrate electric fields in DNA photolyase: implications for thymidine dimer repair. Biochemistry 2001; 40:15203-14. [PMID: 11735403 DOI: 10.1021/bi0114224] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
DNA photolyase is a flavoprotein that repairs cyclobutylpyrimidine dimers by ultrafast photoinduced electron transfer. One unusual feature of this enzyme is the configuration of the FAD cofactor, where the isoalloxazine and adenine rings are nearly in vdW contact. We have measured the steady-state and transient absorption spectra and excited-state decay kinetics of oxidized (FAD-containing, folate-depleted) Escherichia coli DNA photolyase with and without dinucleotide and polynucleotide single-stranded thymidine dimer substrates. The steady-state absorption spectrum for the enzyme-polynucleotide substrate complex showed a blue shift, as seen previously by Jorns et al. (1). No shift was observed for the dinucleotide substrate, suggesting that there are significant differences in the binding geometry of dinucleotide versus polynucleotide dimer lesions. Evidence was obtained from transient absorption experiments for a long-lived charge-transfer complex involving the isoalloxazine of the FAD cofactor. No evidence of excited-state quenching was measurable upon binding either substrate. To explain these data, we hypothesize the existence of a large substrate electric field in the cavity containing the FAD cofactor. A calculation of the magnitude and direction of this dipolar electric field is consistent with electrochromic band shifts for both S(0) --> S(1) and S(0) --> S(2) transitions. These observations suggest that the substrate dipolar electric field may be a critical component in its electron-transfer-mediated repair by photolyase and that the unique relative orientation of the isoalloxazine and adenine rings may have resulted from the consequences of the dipolar substrate field.
Collapse
Affiliation(s)
- A W MacFarlane
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, USA
| | | |
Collapse
|
22
|
Komori H, Masui R, Kuramitsu S, Yokoyama S, Shibata T, Inoue Y, Miki K. Crystal structure of thermostable DNA photolyase: pyrimidine-dimer recognition mechanism. Proc Natl Acad Sci U S A 2001; 98:13560-5. [PMID: 11707580 PMCID: PMC61080 DOI: 10.1073/pnas.241371398] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2001] [Indexed: 11/18/2022] Open
Abstract
DNA photolyase is a pyrimidine-dimer repair enzyme that uses visible light. Photolyase generally contains two chromophore cofactors. One is a catalytic cofactor directly contributing to the repair of a pyrimidine-dimer. The other is a light-harvesting cofactor, which absorbs visible light and transfers energy to the catalytic cofactor. Photolyases are classified according to their second cofactor into either a folate- or deazaflavin-type. The native structures of both types of photolyases have already been determined, but the mechanism of substrate recognition remains largely unclear because of the lack of structural information regarding the photolyase-substrate complex. Photolyase from Thermus thermophilus, the first thermostable class I photolyase found, is favorable for function analysis, but even the type of the second cofactor has not been identified. Here, we report the crystal structures of T. thermophilus photolyase in both forms of the native enzyme and the complex along with a part of its substrate, thymine. A structural comparison with other photolyases suggests that T. thermophilus photolyase has structural features allowing for thermostability and that its light-harvesting cofactor binding site bears a close resemblance to a deazaflavin-type photolyase. One thymine base is found at the hole, a putative substrate-binding site near the catalytic cofactor in the complex form. This structural data for the photolyase-thymine complex allow us to propose a detailed model for the pyrimidine-dimer recognition mechanism.
Collapse
Affiliation(s)
- H Komori
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | | | | | | | | | | | | |
Collapse
|
23
|
Tachiki H, Kato R, Kuramitsu S. DNA binding and protein-protein interaction sites in MutS, a mismatched DNA recognition protein from Thermus thermophilus HB8. J Biol Chem 2000; 275:40703-9. [PMID: 11024056 DOI: 10.1074/jbc.m007124200] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The mismatch repair system repairs mismatched base pairs, which are caused by either DNA replication errors, DNA damage, or genetic recombination. Mismatch repair begins with the recognition of mismatched base pairs in DNA by MutS. Protein denaturation and limited proteolysis experiments suggest that Thermus thermophilus MutS can be divided into three structural domains as follows: A (N-terminal domain), B (central domain), and C (C-terminal domain) (Tachiki, H., Kato, R., Masui, R., Hasegawa, K., Itakura, H., Fukuyama, K., and Kuramitsu, S. (1998) Nucleic Acids Res. 26, 4153-4159). To investigate the functions of each domain in detail, truncated genes corresponding to the domains were designed. The gene products were overproduced in Escherichia coli, purified, and assayed for various activities. The MutS-MutS protein interaction site was determined by size-exclusion chromatography to be located in the B domain. The B domain was also found to possess nonspecific double-stranded DNA-binding ability. The C domain, which contains a Walker's A-type nucleotide-binding motif, demonstrated ATPase activity and specific DNA recognition of mismatched base pairs. These ATPase and specific DNA binding activities were found to be dependent upon C domain dimerization.
Collapse
Affiliation(s)
- H Tachiki
- Department of Biology, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | | | | |
Collapse
|
24
|
Czyz A, Wróbel B, Węgrzyn G. Vibrio harveyi bioluminescence plays a role in stimulation of DNA repair. MICROBIOLOGY (READING, ENGLAND) 2000; 146 ( Pt 2):283-288. [PMID: 10708366 DOI: 10.1099/00221287-146-2-283] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Although the genetics and biochemistry of bacterial luminescence have been investigated extensively, the biological role of this phenomenon remains unclear. Here it is shown that luxA, luxB and luxD mutants (unable to emit light) of the marine bacterium Vibrio harveyi are significantly more sensitive to UV irradiation when cultivated in the dark after irradiation than when cultivated under a white fluorescent lamp. This difference was much less pronounced in the wild-type (luminescent) V. harveyi strain. Survival of UV-irradiated Escherichia coli wild-type cells depended on subsequent cultivation conditions (in the dark or in the presence of external light). However, after UV irradiation, the percentage of surviving E. coli cells that bear V. harveyi genes responsible for luminescence was significantly higher than that of non-luminescent E. coli, irrespective of the subsequent cultivation conditions. Moreover, it is demonstrated that luminescence of V. harveyi can be stimulated by UV irradiation even in diluted cultures, under conditions when light emission by these bacteria is normally impaired due to quorum sensing regulation. It is proposed that luminescent bacteria have an internal source of light which could be used in DNA repair by a photoreactivation process. Therefore, production of internal light ensuring effective DNA repair seems to be at least one of the biological functions of bacterial luminescence.
Collapse
Affiliation(s)
- Agata Czyz
- Department of Molecular Biology, University of Gdańsk, Kładki 24, 80-822 Gdańsk, Poland1
| | - Borys Wróbel
- Marine Biology Center, Polish Academy of Sciences, Św. Wojciecha 5, 81-347 Gdynia, Poland2
| | - Grzegorz Węgrzyn
- Department of Molecular Biology, University of Gdańsk, Kładki 24, 80-822 Gdańsk, Poland1
| |
Collapse
|
25
|
Joux F, Jeffrey WH, Lebaron P, Mitchell DL. Marine bacterial isolates display diverse responses to UV-B radiation. Appl Environ Microbiol 1999; 65:3820-7. [PMID: 10473381 PMCID: PMC99706 DOI: 10.1128/aem.65.9.3820-3827.1999] [Citation(s) in RCA: 101] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The molecular and biological consequences of UV-B radiation were investigated by studying five species of marine bacteria and one enteric bacterium. Laboratory cultures were exposed to an artificial UV-B source and subjected to various post-UV irradiation treatments. Significant differences in survival subsequent to UV-B radiation were observed among the isolates, as measured by culturable counts. UV-B-induced DNA photodamage was investigated by using a highly specific radioimmunoassay to measure cyclobutane pyrimidine dimers (CPDs). The CPDs determined following UV-B exposure were comparable for all of the organisms except Sphingomonas sp. strain RB2256, a facultatively oligotrophic ultramicrobacterium. This organism exhibited little DNA damage and a high level of UV-B resistance. Physiological conditioning by growth phase and starvation did not change the UV-B sensitivity of marine bacteria. The rates of photoreactivation following exposure to UV-B were investigated by using different light sources (UV-A and cool white light). The rates of photoreactivation were greatest during UV-A exposure, although diverse responses were observed. The differences in sensitivity to UV-B radiation between strains were reduced after photoreactivation. The survival and CPD data obtained for Vibrio natriegens when we used two UV-B exposure periods interrupted by a repair period (photoreactivation plus dark repair) suggested that photoadaptation could occur. Our results revealed that there are wide variations in marine bacteria in their responses to UV radiation and subsequent repair strategies, suggesting that UV-B radiation may affect the microbial community structure in surface water.
Collapse
Affiliation(s)
- F Joux
- Center for Environmental Diagnostics and Bioremediation, University of West Florida, Pensacola, Florida 32514, USA.
| | | | | | | |
Collapse
|