1
|
Peng A, Yin G, Zuo W, Zhang L, Du G, Chen J, Wang Y, Kang Z. Regulatory RNAs in Bacillus subtilis: A review on regulatory mechanism and applications in synthetic biology. Synth Syst Biotechnol 2024; 9:223-233. [PMID: 38385150 PMCID: PMC10877136 DOI: 10.1016/j.synbio.2024.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/15/2024] [Accepted: 01/31/2024] [Indexed: 02/23/2024] Open
Abstract
Bacteria exhibit a rich repertoire of RNA molecules that intricately regulate gene expression at multiple hierarchical levels, including small RNAs (sRNAs), riboswitches, and antisense RNAs. Notably, the majority of these regulatory RNAs lack or have limited protein-coding capacity but play pivotal roles in orchestrating gene expression by modulating transcription, post-transcription or translation processes. Leveraging and redesigning these regulatory RNA elements have emerged as pivotal strategies in the domains of metabolic engineering and synthetic biology. While previous investigations predominantly focused on delineating the roles of regulatory RNA in Gram-negative bacterial models such as Escherichia coli and Salmonella enterica, this review aims to summarize the mechanisms and functionalities of endogenous regulatory RNAs inherent to typical Gram-positive bacteria, notably Bacillus subtilis. Furthermore, we explore the engineering and practical applications of these regulatory RNA elements in the arena of synthetic biology, employing B. subtilis as a foundational chassis.
Collapse
Affiliation(s)
- Anqi Peng
- The Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Guobin Yin
- The Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Wenjie Zuo
- The Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Luyao Zhang
- The Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Guocheng Du
- The Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Jian Chen
- The Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Yang Wang
- The Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Zhen Kang
- The Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
2
|
Soni A, Oey I, Silcock P, Ross IK, Bremer PJ. Effect of pulsed electric field with moderate heat (80°C) on inactivation, thermal resistance and differential gene expression in B. cereusspores. J FOOD PROCESS PRES 2020. [DOI: 10.1111/jfpp.14503] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Aswathi Soni
- Department of Food Science University of Otago Dunedin New Zealand
- AgResearch Palmerston North New Zealand
| | - Indrawati Oey
- Department of Food Science University of Otago Dunedin New Zealand
- Riddet Institute Palmerston North New Zealand
| | - Patrick Silcock
- Department of Food Science University of Otago Dunedin New Zealand
| | - Ian K. Ross
- Department of Food Science University of Otago Dunedin New Zealand
| | - Phil J. Bremer
- Department of Food Science University of Otago Dunedin New Zealand
- New Zealand Food Safety Science Research Centre Palmerston North New Zealand
| |
Collapse
|
3
|
Suddala KC, Zhang J. An evolving tale of two interacting RNAs-themes and variations of the T-box riboswitch mechanism. IUBMB Life 2019; 71:1167-1180. [PMID: 31206978 DOI: 10.1002/iub.2098] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 05/10/2019] [Indexed: 01/10/2023]
Abstract
T-box riboswitches are a widespread class of structured noncoding RNAs in Gram-positive bacteria that regulate the expression of amino acid-related genes. They form negative feedback loops to maintain steady supplies of aminoacyl-transfer RNAs (tRNAs) to the translating ribosomes. T-box riboswitches are located in the 5' leader regions of mRNAs that they regulate and directly bind to their cognate tRNA ligands. T-boxes further sense the aminoacylation state of the bound tRNAs and, based on this readout, regulate gene expression at the level of transcription or translation. T-box riboswitches consist of two conserved domains-a 5' Stem I domain that is involved in specific tRNA recognition and a 3' antiterminator/antisequestrator (or discriminator) domain that senses the amino acid on the 3' end of the bound tRNA. Interaction of the 3' end of an uncharged but not charged tRNA with a thermodynamically weak discriminator domain stabilizes it to promote transcription readthrough or translation initiation. Recent biochemical, biophysical, and structural studies have provided high-resolution insights into the mechanism of tRNA recognition by Stem I, several structural models of full-length T-box-tRNA complexes, mechanism of amino acid sensing by the antiterminator domain, as well as kinetic details of tRNA binding to the T-box riboswitches. In addition, translation-regulating T-box riboswitches have been recently characterized, which presented key differences from the canonical transcriptional T-boxes. Here, we review the recent developments in understanding the T-box riboswitch mechanism that have employed various complementary approaches. Further, the regulation of multiple essential genes by T-boxes makes them very attractive drug targets to combat drug resistance. The recent progress in understanding the biochemical, structural, and dynamic aspects of the T-box riboswitch mechanism will enable more precise and effective targeting with small molecules. © 2019 IUBMB Life, 2019 © 2019 IUBMB Life, 71(8):1167-1180, 2019.
Collapse
Affiliation(s)
- Krishna C Suddala
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Jinwei Zhang
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
4
|
Kreuzer KD, Henkin TM. The T-Box Riboswitch: tRNA as an Effector to Modulate Gene Regulation. Microbiol Spectr 2018; 6:10.1128/microbiolspec.rwr-0028-2018. [PMID: 30051797 PMCID: PMC6329474 DOI: 10.1128/microbiolspec.rwr-0028-2018] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Indexed: 01/15/2023] Open
Abstract
The T-box riboswitch is a unique, RNA-based regulatory mechanism that modulates expression of a wide variety of amino acid-related genes, predominantly in Firmicutes. RNAs of this class selectively bind a specific cognate tRNA, utilizing recognition of the tRNA anticodon and other tRNA features. The riboswitch monitors the aminoacylation status of the tRNA to induce expression of the regulated downstream gene(s) at the level of transcription antitermination or derepression of translation initiation in response to reduced tRNA charging via stabilization of an antiterminator or antisequestrator. Recent biochemical and structural studies have revealed new features of tRNA recognition that extend beyond the initially identified Watson-Crick base-pairing of a codon-like sequence in the riboswitch with the tRNA anticodon, and residues in the antiterminator or antisequestrator with the tRNA acceptor end. These studies have revealed new tRNA contacts and new modes of riboswitch function and ligand recognition that expand our understanding of RNA-RNA recognition and the biological roles of tRNA.
Collapse
Affiliation(s)
- Kiel D Kreuzer
- Department of Microbiology and Center for RNA Biology
- Molecular, Cellular and Developmental Biology Graduate Program, The Ohio State University, Columbus, OH 43210
| | - Tina M Henkin
- Department of Microbiology and Center for RNA Biology
| |
Collapse
|
5
|
Sherwood AV, Henkin TM. Riboswitch-Mediated Gene Regulation: Novel RNA Architectures Dictate Gene Expression Responses. Annu Rev Microbiol 2017; 70:361-74. [PMID: 27607554 DOI: 10.1146/annurev-micro-091014-104306] [Citation(s) in RCA: 152] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Riboswitches are RNA elements that act on the mRNA with which they are cotranscribed to modulate expression of that mRNA. These elements are widely found in bacteria, where they have a broad impact on gene expression. The defining feature of riboswitches is that they directly recognize a physiological signal, and the resulting shift in RNA structure affects gene regulation. The majority of riboswitches respond to cellular metabolites, often in a feedback loop to repress synthesis of the enzymes used to produce the metabolite. Related elements respond to the aminoacylation status of a specific tRNA or to a physical parameter, such as temperature or pH. Recent studies have identified new classes of riboswitches and have revealed new insights into the molecular mechanisms of signal recognition and gene regulation. Application of structural and biophysical approaches has complemented previous genetic and biochemical studies, yielding new information about how different riboswitches operate.
Collapse
Affiliation(s)
- Anna V Sherwood
- Department of Microbiology and Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210; .,Molecular, Cellular and Developmental Graduate Program, The Ohio State University, Columbus, Ohio 43210
| | - Tina M Henkin
- Department of Microbiology and Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210;
| |
Collapse
|
6
|
Liu LC, Grundy FJ, Henkin TM. Non-Conserved Residues in Clostridium acetobutylicum tRNA(Ala) Contribute to tRNA Tuning for Efficient Antitermination of the alaS T Box Riboswitch. Life (Basel) 2015; 5:1567-82. [PMID: 26426057 PMCID: PMC4695836 DOI: 10.3390/life5041567] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 09/16/2015] [Accepted: 09/18/2015] [Indexed: 11/16/2022] Open
Abstract
The T box riboswitch regulates expression of amino acid-related genes in Gram-positive bacteria by monitoring the aminoacylation status of a specific tRNA, the binding of which affects the folding of the riboswitch into mutually exclusive terminator or antiterminator structures. Two main pairing interactions between the tRNA and the leader RNA have been demonstrated to be necessary, but not sufficient, for efficient antitermination. In this study, we used the Clostridium acetobutylicum alaS gene, which encodes alanyl-tRNA synthetase, to investigate the specificity of the tRNA response. We show that the homologous C. acetobutylicum tRNAAla directs antitermination of the C. acetobutylicum alaS gene in vitro, but the heterologous Bacillus subtilis tRNAAla (with the same anticodon and acceptor end) does not. Base substitutions at positions that vary between these two tRNAs revealed synergistic and antagonistic effects. Variation occurs primarily at positions that are not conserved in tRNAAla species, which indicates that these non-conserved residues contribute to optimal antitermination of the homologous alaS gene. This study suggests that elements in tRNAAla may have coevolved with the homologous alaS T box leader RNA for efficient antitermination.
Collapse
Affiliation(s)
- Liang-Chun Liu
- Department of Microbiology and Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA.
| | - Frank J Grundy
- Department of Microbiology and Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA.
| | - Tina M Henkin
- Department of Microbiology and Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
7
|
Caserta E, Liu LC, Grundy FJ, Henkin TM. Codon-Anticodon Recognition in the Bacillus subtilis glyQS T Box Riboswitch: RNA-DEPENDENT CODON SELECTION OUTSIDE THE RIBOSOME. J Biol Chem 2015; 290:23336-47. [PMID: 26229106 DOI: 10.1074/jbc.m115.673236] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Indexed: 12/28/2022] Open
Abstract
Many amino acid-related genes in Gram-positive bacteria are regulated by the T box riboswitch. The leader RNA of genes in the T box family controls the expression of downstream genes by monitoring the aminoacylation status of the cognate tRNA. Previous studies identified a three-nucleotide codon, termed the "Specifier Sequence," in the riboswitch that corresponds to the amino acid identity of the downstream genes. Pairing of the Specifier Sequence with the anticodon of the cognate tRNA is the primary determinant of specific tRNA recognition. This interaction mimics codon-anticodon pairing in translation but occurs in the absence of the ribosome. The goal of the current study was to determine the effect of a full range of mismatches for comparison with codon recognition in translation. Mutations were individually introduced into the Specifier Sequence of the glyQS leader RNA and tRNA(Gly) anticodon to test the effect of all possible pairing combinations on tRNA binding affinity and antitermination efficiency. The functional role of the conserved purine 3' of the Specifier Sequence was also verifiedin this study. We found that substitutions at the Specifier Sequence resulted in reduced binding, the magnitude of which correlates well with the predicted stability of the RNA-RNA pairing. However, the tolerance for specific mismatches in antitermination was generally different from that during decoding, which reveals a unique tRNA recognition pattern in the T box antitermination system.
Collapse
Affiliation(s)
- Enrico Caserta
- From the Department of Microbiology and Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210
| | - Liang-Chun Liu
- From the Department of Microbiology and Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210
| | - Frank J Grundy
- From the Department of Microbiology and Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210
| | - Tina M Henkin
- From the Department of Microbiology and Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210
| |
Collapse
|
8
|
Identification and characterization of mutations conferring resistance to D-amino acids in Bacillus subtilis. J Bacteriol 2015; 197:1632-9. [PMID: 25733611 DOI: 10.1128/jb.00009-15] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 02/19/2015] [Indexed: 02/02/2023] Open
Abstract
UNLABELLED Bacteria produce d-amino acids for incorporation into the peptidoglycan and certain nonribosomally produced peptides. However, D-amino acids are toxic if mischarged on tRNAs or misincorporated into protein. Common strains of the Gram-positive bacterium Bacillus subtilis are particularly sensitive to the growth-inhibitory effects of D-tyrosine due to the absence of D-aminoacyl-tRNA deacylase, an enzyme that prevents misincorporation of D-tyrosine and other D-amino acids into nascent proteins. We isolated spontaneous mutants of B. subtilis that survive in the presence of a mixture of D-leucine, D-methionine, D-tryptophan, and D-tyrosine. Whole-genome sequencing revealed that these strains harbored mutations affecting tRNA(Tyr) charging. Three of the most potent mutations enhanced the expression of the gene (tyrS) for tyrosyl-tRNA synthetase. In particular, resistance was conferred by mutations that destabilized the terminator hairpin of the tyrS riboswitch, as well as by a mutation that transformed a tRNA(Phe) into a tyrS riboswitch ligand. The most potent mutation, a substitution near the tyrosine recognition site of tyrosyl-tRNA synthetase, improved enzyme stereoselectivity. We conclude that these mutations promote the proper charging of tRNA(Tyr), thus facilitating the exclusion of D-tyrosine from protein biosynthesis in cells that lack D-aminoacyl-tRNA deacylase. IMPORTANCE Proteins are composed of L-amino acids. Mischarging of tRNAs with D-amino acids or the misincorporation of D-amino acids into proteins causes toxicity. This work reports on mutations that confer resistance to D-amino acids and their mechanisms of action.
Collapse
|
9
|
|
10
|
Henkin TM. The T box riboswitch: A novel regulatory RNA that utilizes tRNA as its ligand. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1839:959-963. [PMID: 24816551 DOI: 10.1016/j.bbagrm.2014.04.022] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 04/25/2014] [Accepted: 04/28/2014] [Indexed: 12/23/2022]
Abstract
The T box riboswitch is a cis-acting regulatory RNA that controls expression of amino acid-related genes in response to the aminoacylation state of a specific tRNA. Multiple genes in the same organism can utilize this mechanism, with each gene responding independently to its cognate tRNA. The uncharged tRNA interacts directly with the regulatory RNA element, and this interaction promotes readthrough of an intrinsic transcriptional termination site upstream of the regulated coding sequence. A second class of T box elements uses a similar tRNA-dependent response to regulate translation initiation. This review will describe the current state of our knowledge about this regulatory system. This article is part of a Special Issue entitled: Riboswitches.
Collapse
Affiliation(s)
- Tina M Henkin
- Department of Microbiology and Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
11
|
Grigg JC, Ke A. Structural determinants for geometry and information decoding of tRNA by T box leader RNA. Structure 2013; 21:2025-32. [PMID: 24095061 PMCID: PMC3879790 DOI: 10.1016/j.str.2013.09.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 09/01/2013] [Accepted: 09/03/2013] [Indexed: 01/07/2023]
Abstract
T box riboswitches are cis-acting RNA elements that bind to tRNA and sense its aminoacylation state to influence gene expression. Here, we present the 3.2 Å resolution X-ray crystal structures of the T box Stem I-tRNA complex and tRNA, in isolation. T box Stem I forms an arched conformation with extensive intermolecular contacts to two key points of tRNA, the anticodon and D/T-loops. Free and complexed tRNA exist in significantly different conformations, with the contacts stabilizing flexible D/T-loops and a rearrangement of the D-loop. Using a designed T box RNA/tRNA system, we demonstrate that the T box riboswitch monitors the length and orientation of two essential contacts. Length or orientation mismatches engineered into the T box riboswitch and tRNA disrupt the complex, whereas simultaneous insertion of full helical turns realigns the interfaces and restores interaction between artificially elongated T box riboswitch and tRNA molecules.
Collapse
Affiliation(s)
- Jason C. Grigg
- Department of Molecular Biology and Genetics, Cornell University, 253 Biotechnology Building, Ithaca, NY 14850, USA
| | - Ailong Ke
- Department of Molecular Biology and Genetics, Cornell University, 253 Biotechnology Building, Ithaca, NY 14850, USA,Correspondence:
| |
Collapse
|
12
|
Grigg JC, Ke A. Sequence, structure, and stacking: specifics of tRNA anchoring to the T box riboswitch. RNA Biol 2013; 10:1761-4. [PMID: 24356646 DOI: 10.4161/rna.26996] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The term riboswitch usually refers to small molecule sensing regulatory modules in the 5' untranslated regions of a mRNA. They are typically comprised of separate ligand binding and regulatory domains. The T box riboswitch is unique from other identified riboswitches because its effector is an essential macromolecule, tRNA. It senses the aminoacylation state of tRNA to regulate genes involved in a variety of functions relating to amino acid metabolism and tRNA aminoacylation. T box riboswitches performs an intuitively simple process using a complex structured RNA element and, until recently, the underlying mechanisms were poorly understood. Only two sequence-specific contacts had been previously identified: (1) between the specifier sequence (codon) and the tRNA anticodon and (2) between an anti-terminator stem loop and the tRNA acceptor arm CCA tail. tRNA aminoacylation blocks the latter interaction and therefore serves as the switch between termination and anti-termination. Outside of these two contacts, the structure and functions of T box riboswitches have come to light in some recent studies. We recently described the X-ray crystal structure of the highly conserved T box riboswitch distal Stem I region and demonstrated that this region interacts with the tRNA elbow to anchor it to the riboswitch. Independently, Lehmann et al. used sequence homology search to arrive at a similar model for Stem I-tRNA interactions. The model was further supported by two recent structures of the Stem I-tRNA complex, determined independently by our group and by Zhang and Ferré-D'Amaré. This article highlights some of these contributions to synthesize an updated model for tRNA recognition by the T box riboswitch.
Collapse
Affiliation(s)
- Jason C Grigg
- The Department of Molecular Biology and Genetics; Cornell University; Ithaca, NY USA
| | - Ailong Ke
- The Department of Molecular Biology and Genetics; Cornell University; Ithaca, NY USA
| |
Collapse
|
13
|
Chang AT, Nikonowicz EP. Solution NMR determination of hydrogen bonding and base pairing between the glyQS T box riboswitch Specifier domain and the anticodon loop of tRNA(Gly). FEBS Lett 2013; 587:3495-9. [PMID: 24036450 DOI: 10.1016/j.febslet.2013.09.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Revised: 08/30/2013] [Accepted: 09/02/2013] [Indexed: 10/26/2022]
Abstract
In Gram-positive bacteria the tRNA-dependent T box riboswitch regulates the expression of many amino acid biosynthetic and aminoacyl-tRNA synthetase genes through a transcription attenuation mechanism. The Specifier domain of the T box riboswitch contains the Specifier sequence that is complementary to the tRNA anticodon and is flanked by a highly conserved purine nucleotide that could result in a fourth base pair involving the invariant U33 of tRNA. We show that the interaction between the T box Specifier domain and tRNA consists of three Watson-Crick base pairs and that U33 confers stability to the complex through intramolecular hydrogen bonding. Enhanced packing within the Specifier domain loop E motif may stabilize the complex and contribute to cognate tRNA selection.
Collapse
Affiliation(s)
- Andrew T Chang
- Department of Biochemistry and Cell Biology, Rice University, Houston, TX 77005-1892, United States
| | | |
Collapse
|
14
|
Saad NY, Stamatopoulou V, Brayé M, Drainas D, Stathopoulos C, Becker HD. Two-codon T-box riboswitch binding two tRNAs. Proc Natl Acad Sci U S A 2013; 110:12756-61. [PMID: 23858450 PMCID: PMC3732954 DOI: 10.1073/pnas.1304307110] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
T-box riboswitches control transcription of downstream genes through the tRNA-binding formation of terminator or antiterminator structures. Previously reported T-boxes were described as single-specificity riboswitches that can bind specific tRNA anticodons through codon-anticodon interactions with the nucleotide triplet of their specifier loop (SL). However, the possibility that T-boxes might exhibit specificity beyond a single tRNA had been overlooked. In Clostridium acetobutylicum, the T-box that regulates the operon for the essential tRNA-dependent transamidation pathway harbors a SL with two potential overlapping codon positions for tRNA(Asn) and tRNA(Glu). To test its specificity, we performed extensive mutagenic, biochemical, and chemical probing analyses. Surprisingly, both tRNAs can efficiently bind the SL in vitro and in vivo. The dual specificity of the T-box is allowed by a single base shift on the SL from one overlapping codon to the next. This feature allows the riboswitch to sense two tRNAs and balance the biosynthesis of two amino acids. Detailed genomic comparisons support our observations and suggest that "flexible" T-box riboswitches are widespread among bacteria, and, moreover, their specificity is dictated by the metabolic interconnection of the pathways under control. Taken together, our results support the notion of a genome-dependent codon ambiguity of the SLs. Furthermore, the existence of two overlapping codons imposes a unique example of tRNA-dependent regulation at the transcriptional level.
Collapse
MESH Headings
- Anticodon/chemistry
- Anticodon/genetics
- Anticodon/metabolism
- Asparagine/biosynthesis
- Asparagine/genetics
- Clostridium acetobutylicum/chemistry
- Clostridium acetobutylicum/genetics
- Clostridium acetobutylicum/metabolism
- Glutamic Acid/biosynthesis
- Glutamic Acid/genetics
- RNA, Bacterial/chemistry
- RNA, Bacterial/genetics
- RNA, Bacterial/metabolism
- RNA, Transfer, Asn/chemistry
- RNA, Transfer, Asn/genetics
- RNA, Transfer, Asn/metabolism
- RNA, Transfer, Glu/chemistry
- RNA, Transfer, Glu/genetics
- RNA, Transfer, Glu/metabolism
- Riboswitch/physiology
Collapse
Affiliation(s)
- Nizar Y. Saad
- Unité Mixte de Recherche 7156 Génétique Moléculaire, Génomique, Microbiologie, Centre National de la Recherche Scientifique, Université de Strasbourg, 67084 Strasbourg, France
- Unité Propre de Recherche Architecture et Réactivité de l’ARN, Centre National de la Recherche Scientifique, Institut de Biologie Moléculaire et Cellulaire, Université de Strasbourg, F-67084 Strasbourg, France; and
| | | | - Mélanie Brayé
- Unité Propre de Recherche Architecture et Réactivité de l’ARN, Centre National de la Recherche Scientifique, Institut de Biologie Moléculaire et Cellulaire, Université de Strasbourg, F-67084 Strasbourg, France; and
| | - Denis Drainas
- Department of Biochemistry, School of Medicine, University of Patras, 26504 Patras, Greece
| | | | - Hubert Dominique Becker
- Unité Mixte de Recherche 7156 Génétique Moléculaire, Génomique, Microbiologie, Centre National de la Recherche Scientifique, Université de Strasbourg, 67084 Strasbourg, France
| |
Collapse
|
15
|
Saad NY, Schiel B, Brayé M, Heap JT, Minton NP, Dürre P, Becker HD. Riboswitch (T-box)-mediated control of tRNA-dependent amidation in Clostridium acetobutylicum rationalizes gene and pathway redundancy for asparagine and asparaginyl-trnaasn synthesis. J Biol Chem 2012; 287:20382-94. [PMID: 22505715 DOI: 10.1074/jbc.m111.332304] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Analysis of the Gram-positive Clostridium acetobutylicum genome reveals an inexplicable level of redundancy for the genes putatively involved in asparagine (Asn) and Asn-tRNA(Asn) synthesis. Besides a duplicated set of gatCAB tRNA-dependent amidotransferase genes, there is a triplication of aspartyl-tRNA synthetase genes and a duplication of asparagine synthetase B genes. This genomic landscape leads to the suspicion of the incoherent simultaneous use of the direct and indirect pathways of Asn and Asn-tRNA(Asn) formation. Through a combination of biochemical and genetic approaches, we show that C. acetobutylicum forms Asn and Asn-tRNA(Asn) by tRNA-dependent amidation. We demonstrate that an entire transamidation pathway composed of aspartyl-tRNA synthetase and one set of GatCAB genes is organized as an operon under the control of a tRNA(Asn)-dependent T-box riboswitch. Finally, our results suggest that this exceptional gene redundancy might be interconnected to control tRNA-dependent Asn synthesis, which in turn might be involved in controlling the metabolic switch from acidogenesis to solventogenesis in C. acetobutylicum.
Collapse
Affiliation(s)
- Nizar Y Saad
- Unité Mixte de Recherche "Génétique Moléculaire, Génomique, Microbiologie," CNRS, Université de Strasbourg, 21 rue René Descartes, 67084 Strasbourg, France
| | | | | | | | | | | | | |
Collapse
|
16
|
Denmon AP, Wang J, Nikonowicz EP. Conformation effects of base modification on the anticodon stem-loop of Bacillus subtilis tRNA(Tyr). J Mol Biol 2011; 412:285-303. [PMID: 21782828 DOI: 10.1016/j.jmb.2011.07.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Revised: 07/05/2011] [Accepted: 07/08/2011] [Indexed: 10/17/2022]
Abstract
tRNA molecules contain 93 chemically unique nucleotide base modifications that expand the chemical and biophysical diversity of RNA and contribute to the overall fitness of the cell. Nucleotide modifications of tRNA confer fidelity and efficiency to translation and are important in tRNA-dependent RNA-mediated regulatory processes. The three-dimensional structure of the anticodon is crucial to tRNA-mRNA specificity, and the diverse modifications of nucleotide bases in the anticodon region modulate this specificity. We have determined the solution structures and thermodynamic properties of Bacillus subtilis tRNA(Tyr) anticodon arms containing the natural base modifications N(6)-dimethylallyl adenine (i(6)A(37)) and pseudouridine (ψ(39)). UV melting and differential scanning calorimetry indicate that the modifications stabilize the stem and may enhance base stacking in the loop. The i(6)A(37) modification disrupts the hydrogen bond network of the unmodified anticodon loop including a C(32)-A(38)(+) base pair and an A(37)-U(33) base-base interaction. Although the i(6)A(37) modification increases the dynamic nature of the loop nucleotides, metal ion coordination reestablishes conformational homogeneity. Interestingly, the i(6)A(37) modification and Mg(2+) are sufficient to promote the U-turn fold of the anticodon loop of Escherichia coli tRNA(Phe), but these elements do not result in this signature feature of the anticodon loop in tRNA(Tyr).
Collapse
Affiliation(s)
- Andria P Denmon
- Department of Biochemistry and Cell Biology, Rice University, Houston, TX 77251-1892, USA
| | | | | |
Collapse
|
17
|
Brill J, Hoffmann T, Putzer H, Bremer E. T-box-mediated control of the anabolic proline biosynthetic genes of Bacillus subtilis. Microbiology (Reading) 2011; 157:977-987. [DOI: 10.1099/mic.0.047357-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Bacillus subtilis possesses interlinked routes for the synthesis of proline. The ProJ–ProA–ProH route is responsible for the production of proline as an osmoprotectant, and the ProB–ProA–ProI route provides proline for protein synthesis. We show here that the transcription of the anabolic proBA and proI genes is controlled in response to proline limitation via a T-box-mediated termination/antitermination regulatory mechanism, a tRNA-responsive riboswitch. Primer extension analysis revealed mRNA leader transcripts of 270 and 269 nt for the proBA and proI genes, respectively, both of which are synthesized from SigA-type promoters. These leader transcripts are predicted to fold into two mutually exclusive secondary mRNA structures, forming either a terminator or an antiterminator configuration. Northern blot analysis allowed the detection of both the leader and the full-length proBA and proI transcripts. Assessment of the level of the proBA transcripts revealed that the amount of the full-length mRNA species strongly increased in proline-starved cultures. Genetic studies with a proB–treA operon fusion reporter strain demonstrated that proBA transcription is sensitively tied to proline availability and is derepressed as soon as cellular starvation for proline sets in. Both the proBA and the proI leader sequences contain a CCU proline-specific specifier codon prone to interact with the corresponding uncharged proline-specific tRNA. By replacing the CCU proline specifier codon in the proBA T-box leader with UUC, a codon recognized by a Phe-specific tRNA, we were able to synthetically re-engineer the proline-specific control of proBA transcription to a control that was responsive to starvation for phenylalanine.
Collapse
Affiliation(s)
- Jeanette Brill
- Philipps-University Marburg, Department of Biology, Laboratory for Microbiology, Karl-von-Frisch-Str. 8, D-35032 Marburg, Germany
| | - Tamara Hoffmann
- Philipps-University Marburg, Department of Biology, Laboratory for Microbiology, Karl-von-Frisch-Str. 8, D-35032 Marburg, Germany
| | - Harald Putzer
- CNRS UPR 9073 Insitut de Biologie Physico-Chimique (affiliated with Université de Paris 7 – Denis Diderot), 13 rue Pierre et Marie Curie, F-75005 Paris, France
| | - Erhard Bremer
- Philipps-University Marburg, Department of Biology, Laboratory for Microbiology, Karl-von-Frisch-Str. 8, D-35032 Marburg, Germany
| |
Collapse
|
18
|
Solution structure of the K-turn and Specifier Loop domains from the Bacillus subtilis tyrS T-box leader RNA. J Mol Biol 2011; 408:99-117. [PMID: 21333656 DOI: 10.1016/j.jmb.2011.02.014] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2010] [Revised: 02/03/2011] [Accepted: 02/04/2011] [Indexed: 01/28/2023]
Abstract
In Gram-positive bacteria, the RNA transcripts of many amino acid biosynthetic and aminoacyl tRNA synthetase genes contain 5' untranslated regions, or leader RNAs, that function as riboswitches. These T-box riboswitches bind cognate tRNA molecules and regulate gene expression by a transcription attenuation mechanism. The Specifier Loop domain of the leader RNA contains nucleotides that pair with nucleotides in the tRNA anticodon loop and is flanked on one side by a kink-turn (K-turn), or GA, sequence motif. We have determined the solution NMR structure of the K-turn sequence element within the context of the Specifier Loop domain. The K-turn sequence motif has several noncanonical base pairs typical of K-turn structures but adopts an extended conformation. The Specifier Loop domain contains a loop E structural motif, and the single-strand Specifier nucleotides stack with their Watson-Crick edges displaced toward the minor groove. Mg(2+) leads to a significant bending of the helix axis at the base of the Specifier Loop domain, but does not alter the K-turn. Isothermal titration calorimetry indicates that the K-turn sequence causes a small enhancement of the interaction between the tRNA anticodon arm and the Specifier Loop domain. One possibility is that the K-turn structure is formed and stabilized when tRNA binds the T-box riboswitch and interacts with Stem I and the antiterminator helix. This motif in turn anchors the orientation of Stem I relative to the 3' half of the leader RNA, further stabilizing the tRNA-T box complex.
Collapse
|
19
|
Jung S, Chun JY, Yim SH, Lee SS, Cheon CI, Song E, Lee MS. Transcriptional regulation of histidine biosynthesis genes in Corynebacterium glutamicum. Can J Microbiol 2010; 56:178-87. [DOI: 10.1139/w09-115] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Corynebacterium glutamicum , a gram-positive bacterium, has been widely used for industrial amino acid production. Corynebacterium glutamicum his genes are located and transcribed in two unlinked loci, hisEG and hisDCB–orf1–orf2–hisHA–impA–hisFI. The latter his operon starts the transcription at the C residue localized 196 bp upstream of the hisD ATG start codon. Our computer-based sequence analysis showed that the region corresponding to the untranslated 5′ end of the transcript, named the hisD leader region, displays the typical features of the T-box transcriptional attenuation mechanism. Therefore, expression of the cat reporter gene under the control of the wild-type or mutated hisD leader regions was tested in multi-copy (pProm and pTer series) and in single-copy (pInt series) systems under conditions of sufficient or limited histidine. Our mutational studies led to the conclusion that the CAU histidine specifier and 5′-UGGA-3′ sequence in the hisD leader region are required for the hisDCB–orf1–orf2–hisHA–impA–hisFI gene regulation. The cat gene expression from the wild-type leader region was negatively regulated by histidine. However, the cat gene expression from mutated leader regions was irresponsive to the level of histidine in the growth medium. Taken together, we propose that a T-box mediated attenuation mechanism is responsible for the gene expression of the hisDCB–orf1–orf2–hisHA–impA–hisFI operon in C. glutamicum.
Collapse
Affiliation(s)
- Samil Jung
- Division of Biological Science and Research Center for Women’s Diseases, Sookmyung Women’s University, Seoul 140-742, Korea
- Samsung Advanced Institute of Technology, Suwon 440-600, Korea
| | - Jae-Yeon Chun
- Division of Biological Science and Research Center for Women’s Diseases, Sookmyung Women’s University, Seoul 140-742, Korea
- Samsung Advanced Institute of Technology, Suwon 440-600, Korea
| | - Sei-Heun Yim
- Division of Biological Science and Research Center for Women’s Diseases, Sookmyung Women’s University, Seoul 140-742, Korea
- Samsung Advanced Institute of Technology, Suwon 440-600, Korea
| | - Soo-Suk Lee
- Division of Biological Science and Research Center for Women’s Diseases, Sookmyung Women’s University, Seoul 140-742, Korea
- Samsung Advanced Institute of Technology, Suwon 440-600, Korea
| | - Choong-Il Cheon
- Division of Biological Science and Research Center for Women’s Diseases, Sookmyung Women’s University, Seoul 140-742, Korea
- Samsung Advanced Institute of Technology, Suwon 440-600, Korea
| | - Eunsook Song
- Division of Biological Science and Research Center for Women’s Diseases, Sookmyung Women’s University, Seoul 140-742, Korea
- Samsung Advanced Institute of Technology, Suwon 440-600, Korea
| | - Myeong-Sok Lee
- Division of Biological Science and Research Center for Women’s Diseases, Sookmyung Women’s University, Seoul 140-742, Korea
- Samsung Advanced Institute of Technology, Suwon 440-600, Korea
| |
Collapse
|
20
|
Wang J, Henkin TM, Nikonowicz EP. NMR structure and dynamics of the Specifier Loop domain from the Bacillus subtilis tyrS T box leader RNA. Nucleic Acids Res 2010; 38:3388-98. [PMID: 20110252 PMCID: PMC2879506 DOI: 10.1093/nar/gkq020] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Gram-positive bacteria utilize a tRNA-responsive transcription antitermination mechanism, designated the T box system, to regulate expression of many amino acid biosynthetic and aminoacyl-tRNA synthetase genes. The RNA transcripts of genes controlled by this mechanism contain 5′ untranslated regions, or leader RNAs, that specifically bind cognate tRNA molecules through pairing of nucleotides in the tRNA anticodon loop with nucleotides in the Specifier Loop domain of the leader RNA. We have determined the solution structure of the Specifier Loop domain of the tyrS leader RNA from Bacillus subtilis. Fifty percent of the nucleotides in the Specifier Loop domain adopt a loop E motif. The Specifier Sequence nucleotides, which pair with the tRNA anticodon, stack with their Watson–Crick edges rotated toward the minor groove and exhibit only modest flexibility. We also show that a Specifier Loop domain mutation that impairs the function of the B. subtilis glyQS T box RNA disrupts the tyrS loop E motif. Our results suggest a mechanism for tRNA–Specifier Loop binding in which the phosphate backbone kink created by the loop E motif causes the Specifier Sequence bases to rotate toward the minor groove, which increases accessibility for pairing with bases in the anticodon loop of tRNA.
Collapse
Affiliation(s)
- Jiachen Wang
- Department of Biochemistry and Cell Biology, Rice University, Houston, TX 77251-1892, USA
| | | | | |
Collapse
|
21
|
Green NJ, Grundy FJ, Henkin TM. The T box mechanism: tRNA as a regulatory molecule. FEBS Lett 2009; 584:318-24. [PMID: 19932103 DOI: 10.1016/j.febslet.2009.11.056] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2009] [Revised: 11/13/2009] [Accepted: 11/16/2009] [Indexed: 11/18/2022]
Abstract
The T box mechanism is widely used in Gram-positive bacteria to regulate expression of aminoacyl-tRNA synthetase genes and genes involved in amino acid biosynthesis and uptake. Binding of a specific uncharged tRNA to a riboswitch element in the nascent transcript causes a structural change in the transcript that promotes expression of the downstream coding sequence. In most cases, this occurs by stabilization of an antiterminator element that competes with formation of a terminator helix. Specific tRNA recognition by the nascent transcript results in increased expression of genes important for tRNA aminoacylation in response to decreased pools of charged tRNA.
Collapse
Affiliation(s)
- Nicholas J Green
- Department of Microbiology, Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| | | | | |
Collapse
|
22
|
Means JA, Simson CM, Zhou S, Rachford AA, Rack JJ, Hines JV. Fluorescence probing of T box antiterminator RNA: insights into riboswitch discernment of the tRNA discriminator base. Biochem Biophys Res Commun 2009; 389:616-21. [PMID: 19755116 DOI: 10.1016/j.bbrc.2009.09.037] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2009] [Accepted: 09/10/2009] [Indexed: 11/28/2022]
Abstract
The T box transcription antitermination riboswitch is one of the main regulatory mechanisms utilized by Gram-positive bacteria to regulate genes that are involved in amino acid metabolism. The details of the antitermination event, including the role that Mg(2+) plays, in this riboswitch have not been completely elucidated. In these studies, details of the antitermination event were investigated utilizing 2-aminopurine to monitor structural changes of a model antiterminator RNA when it was bound to model tRNA. Based on the results of these fluorescence studies, the model tRNA binds the model antiterminator RNA via an induced-fit. This binding is enhanced by the presence of Mg(2+), facilitating the complete base pairing of the model tRNA acceptor end with the complementary bases in the model antiterminator bulge.
Collapse
Affiliation(s)
- John A Means
- Department of Chemistry and Biochemistry, Ohio University, Athens, OH 45701, USA
| | | | | | | | | | | |
Collapse
|
23
|
Fauzi H, Agyeman A, Hines JV. T box transcription antitermination riboswitch: influence of nucleotide sequence and orientation on tRNA binding by the antiterminator element. BIOCHIMICA ET BIOPHYSICA ACTA 2009; 1789:185-91. [PMID: 19152843 PMCID: PMC2656570 DOI: 10.1016/j.bbagrm.2008.12.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2008] [Revised: 12/09/2008] [Accepted: 12/09/2008] [Indexed: 11/18/2022]
Abstract
Many bacteria utilize riboswitch transcription regulation to monitor and appropriately respond to cellular levels of important metabolites or effector molecules. The T box transcription antitermination riboswitch responds to cognate uncharged tRNA by specifically stabilizing an antiterminator element in the 5'-untranslated mRNA leader region and precluding formation of a thermodynamically more stable terminator element. Stabilization occurs when the tRNA acceptor end base pairs with the first four nucleotides in the seven nucleotide bulge of the highly conserved antiterminator element. The significance of the conservation of the antiterminator bulge nucleotides that do not base pair with the tRNA is unknown, but they are required for optimal function. In vitro selection was used to determine if the isolated antiterminator bulge context alone dictates the mode in which the tRNA acceptor end binds the bulge nucleotides. No sequence conservation beyond complementarity was observed and the location was not constrained to the first four bases of the bulge. The results indicate that formation of a structure that recognizes the tRNA acceptor end in isolation is not the determinant driving force for the high phylogenetic sequence conservation observed within the antiterminator bulge. Additional factors or T box leader features more likely influenced the phylogenetic sequence conservation.
Collapse
Affiliation(s)
- Hamid Fauzi
- Department of Chemistry and Biochemistry, Ohio University, Athens, OH, 45701, USA
| | - Akwasi Agyeman
- Department of Chemistry and Biochemistry, Ohio University, Athens, OH, 45701, USA
- Molecular and Cellular Biology Program, Ohio University, Athens, OH, 45701, USA
| | - Jennifer V. Hines
- Department of Chemistry and Biochemistry, Ohio University, Athens, OH, 45701, USA
- Molecular and Cellular Biology Program, Ohio University, Athens, OH, 45701, USA
| |
Collapse
|
24
|
Wels M, Groot Kormelink T, Kleerebezem M, Siezen RJ, Francke C. An in silico analysis of T-box regulated genes and T-box evolution in prokaryotes, with emphasis on prediction of substrate specificity of transporters. BMC Genomics 2008; 9:330. [PMID: 18625071 PMCID: PMC2494555 DOI: 10.1186/1471-2164-9-330] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2008] [Accepted: 07/14/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND T-box anti-termination is an elegant and sensitive mechanism by which many bacteria maintain constant levels of amino acid-charged tRNAs. The amino acid specificity of the regulatory element is related to a so-called specifier codon and can in principle be used to guide the functional annotation of the genes controlled via the T-box anti-termination mechanism. RESULTS Hidden Markov Models were defined to search the T-box regulatory element and were applied to all completed prokaryotic genomes. The vast majority of the genes found downstream of the retrieved elements encoded functionalities related to transport and synthesis of amino acids and the charging of tRNA. This is completely in line with findings reported in literature and with the proposed biological role of the regulatory element. For several species, the functional annotation of a large number of genes encoding proteins involved in amino acid transport could be improved significantly on basis of the amino acid specificity of the identified T-boxes. In addition, these annotations could be extrapolated to a larger number of orthologous systems in other species. Analysis of T-box distribution confirmed that the element is restricted predominantly to species of the phylum Firmicutes. Furthermore, it appeared that the distribution was highly species specific and that in the case of amino acid transport some boxes seemed to "pop-up" only recently. CONCLUSION We have demonstrated that the identification of the molecular specificity of a regulatory element can be of great help in solving notoriously difficult annotation issues, e.g. by defining the substrate specificity of genes encoding amino acid transporters on basis of the amino acid specificity of the regulatory T-box. Furthermore, our analysis of the species-dependency of the occurrence of specific T-boxes indicated that these regulatory elements propagate in a semi-independent way from the genes that they control.
Collapse
Affiliation(s)
- Michiel Wels
- TI Food and Nutrition, Wageningen, The Netherlands.
| | | | | | | | | |
Collapse
|
25
|
Jack K, Means JA, Hines JV. Characterizing riboswitch function: identification of Mg2+ binding site in T box antiterminator RNA. Biochem Biophys Res Commun 2008; 370:306-10. [PMID: 18371302 PMCID: PMC2526249 DOI: 10.1016/j.bbrc.2008.03.079] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2008] [Accepted: 03/19/2008] [Indexed: 11/19/2022]
Abstract
T box bacterial genes utilize a riboswitch mechanism to regulate gene expression at the transcriptional level. Complementary base pairing of the 5'-untranslated mRNA with uncharged cognate tRNA stabilizes formation of an antiterminator element and permits complete transcription. In the absence of tRNA, a mutually exclusive RNA terminator element forms and results in transcription termination. This regulatory mechanism requires divalent metal ions at the antitermination event. The structural effects of Mg(2+) binding to antiterminator model RNA were investigated to ascertain if this requirement is due to the presence of a specific metal ion binding site in the antiterminator. Spectroscopic analysis identified the presence of a hydrated, diffuse Mg(2+) binding site. The results indicate that the mechanistic requirement for divalent metal ions is not due to Mg(2+)-induced pre-formation of a functional antiterminator receptor; rather, Mg(2+) binds in a helical region of high phylogenetic sequence conservation adjacent to the tRNA binding site.
Collapse
Affiliation(s)
- K.D. Jack
- Department of Chemistry & Biochemistry, Ohio University, Athens, OH 45701
| | - J. A. Means
- Department of Chemistry & Biochemistry, Ohio University, Athens, OH 45701
| | - J. V. Hines
- Department of Chemistry & Biochemistry, Ohio University, Athens, OH 45701
| |
Collapse
|
26
|
Vitreschak AG, Mironov AA, Lyubetsky VA, Gelfand MS. Comparative genomic analysis of T-box regulatory systems in bacteria. RNA (NEW YORK, N.Y.) 2008; 14:717-35. [PMID: 18359782 PMCID: PMC2271356 DOI: 10.1261/rna.819308] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2007] [Accepted: 12/31/2007] [Indexed: 05/26/2023]
Abstract
T-box antitermination is one of the main mechanisms of regulation of genes involved in amino acid metabolism in Gram-positive bacteria. T-box regulatory sites consist of conserved sequence and RNA secondary structure elements. Using a set of known T-box sites, we constructed the common pattern and used it to scan available bacterial genomes. New T-boxes were found in various Gram-positive bacteria, some Gram-negative bacteria (delta-proteobacteria), and some other bacterial groups (Deinococcales/Thermales, Chloroflexi, Dictyoglomi). The majority of T-box-regulated genes encode aminoacyl-tRNA synthetases. Two other groups of T-box-regulated genes are amino acid biosynthetic genes and transporters, as well as genes with unknown function. Analysis of candidate T-box sites resulted in new functional annotations. We assigned the amino acid specificity to a large number of candidate amino acid transporters and a possible function to amino acid biosynthesis genes. We then studied the evolution of the T-boxes. Analysis of the constructed phylogenetic trees demonstrated that in addition to the normal evolution consistent with the evolution of regulated genes, T-boxes may be duplicated, transferred to other genes, and change specificity. We observed several cases of recent T-box regulon expansion following the loss of a previously existing regulatory system, in particular, arginine regulon in Clostridium difficile and methionine regulon in Lactobacillaceae. Finally, we described a new structural class of T-boxes containing duplicated terminator-antiterminator elements and unusual reduced T-boxes regulating initiation of translation in the Actinobacteria.
Collapse
MESH Headings
- 5' Untranslated Regions
- Amino Acid Transport Systems/genetics
- Amino Acid Transport Systems/metabolism
- Amino Acids/metabolism
- Bacteria/genetics
- Bacteria/metabolism
- Bacterial Proteins/genetics
- Bacterial Proteins/metabolism
- Base Sequence
- DNA, Bacterial/genetics
- Evolution, Molecular
- Gene Expression Regulation, Bacterial
- Genome, Bacterial
- Genomics
- Models, Biological
- Models, Molecular
- Molecular Sequence Data
- Nucleic Acid Conformation
- Phylogeny
- RNA, Bacterial/chemistry
- RNA, Bacterial/genetics
- RNA, Messenger/chemistry
- RNA, Messenger/genetics
- Regulon
- Sequence Homology, Nucleic Acid
- T-Box Domain Proteins/genetics
- T-Box Domain Proteins/metabolism
Collapse
Affiliation(s)
- Alexey G Vitreschak
- Institute for Information Transmission Problems (The Kharkevich Institute), Russian Academy of Sciences, Moscow 127994, Russia.
| | | | | | | |
Collapse
|
27
|
Henkin TM, Grundy FJ. Sensing metabolic signals with nascent RNA transcripts: the T box and S box riboswitches as paradigms. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2007; 71:231-7. [PMID: 17381302 DOI: 10.1101/sqb.2006.71.020] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Recent studies in a variety of bacterial systems have revealed a number of regulatory systems in which the 5' region of a gene plays a key role in regulation of the downstream coding sequences. These RNA regions act in cis to determine if the full-length transcript will be synthesized or if the coding sequence(s) will be translated. Each class of system includes an RNA element whose structure is modulated in response to a specific regulatory signal, and the signals measured can include small molecules, small RNAs (including tRNA), and physical parameters such as temperature. Multiple sets of genes can be regulated by a particular mechanism, and multiple systems of this type, each of which responds to a specific signal, can be present in a single organism. In addition, different classes of RNA elements can be found that respond to a particular signal, indicating the existence of multiple alternate solutions to the same regulatory problem. The T box and S box systems, which respond to uncharged tRNA and S-adenosylmethionine (SAM), respectively, provide paradigms of two systems of this type.
Collapse
Affiliation(s)
- T M Henkin
- Department of Microbiology and The RNA Group, The Ohio State University, Columbus, Ohio 43210, USA
| | | |
Collapse
|
28
|
Means JA, Wolf S, Agyeman A, Burton JS, Simson CM, Hines JV. T box riboswitch antiterminator affinity modulated by tRNA structural elements. Chem Biol Drug Des 2007; 69:139-45. [PMID: 17381728 DOI: 10.1111/j.1747-0285.2007.00476.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A unique RNA-RNA interaction occurs between uncharged tRNA and the untranslated mRNA leader region of bacterial T box genes. The interaction results in activation of a transcriptional antitermination molecular switch (riboswitch) by stabilizing an antiterminator RNA element and precluding formation of a competing transcriptional terminator RNA element. The stabilization requires the base pairing of cognate tRNA acceptor end nucleotides with the antiterminator. To develop an appropriate model system for detailed structural studies and to screen for small molecule disruption of this important RNA-RNA interaction, steady-state fluorescence measurements of antiterminator model RNAs were used to determine the dissociation constant for model tRNA binding. The antiterminator-binding affinity for the full, minihelix, microhelix, and tetramer tRNA models differed by orders of magnitude. In addition, not all of the tRNA models exhibited functionally relevant binding specificity. The results from these experiments highlight the importance of looking beyond the level of known base pairing interactions when designing functionally relevant models of riboswitch systems.
Collapse
Affiliation(s)
- John A Means
- Department of Chemistry & Biochemistry, Ohio University, Athens, OH 45701, USA
| | | | | | | | | | | |
Collapse
|
29
|
Ryckelynck M, Giegé R, Frugier M. tRNAs and tRNA mimics as cornerstones of aminoacyl-tRNA synthetase regulations. Biochimie 2006; 87:835-45. [PMID: 15925436 DOI: 10.1016/j.biochi.2005.02.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2004] [Revised: 12/31/2004] [Accepted: 02/04/2005] [Indexed: 10/25/2022]
Abstract
Structural plasticity of transfer RNA (tRNA) molecules is essential for interactions with their biological partners in aminoacylation reactions and during ribosome-dependent protein synthesis. This holds true when tRNAs are recruited for other functions than translation. Here we review regulation pathways where tRNAs and tRNA mimics play a pivotal role. We further discuss the importance of the identity signals used in aminoacylation that are also required to specify regulatory mechanisms. Such mechanisms are diverse and intervene in transcription, splicing and translation. Altogether, the review highlights the many manners architectural features of tRNA were selected by evolution to control biological key processes.
Collapse
Affiliation(s)
- Michaël Ryckelynck
- Département Mécanismes et Macromolécules de la Synthèse Protéique et Cristallogenèse, UPR 9002, Institut de Biologie Moléculaire et Cellulaire du CNRS, 15, rue René Descartes, F-67084 Strasbourg cedex, France
| | | | | |
Collapse
|
30
|
Abstract
Riboswitches are structured domains that usually reside in the noncoding regions of mRNAs, where they bind metabolites and control gene expression. Like their protein counterparts, these RNA gene control elements form highly specific binding pockets for the target metabolite and undergo allosteric changes in structure. Numerous classes of riboswitches are present in bacteria and they comprise a common and robust metabolite-sensing system.
Collapse
Affiliation(s)
- Wade C Winkler
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.
| | | |
Collapse
|
31
|
Morbach S, Junger C, Sahm H, Eggeling L. Attenuation control of ilvBNC in Corynebacterium glutamicum: evidence of leader peptide formation without the presence of a ribosome binding site. J Biosci Bioeng 2005; 90:501-7. [PMID: 16232899 DOI: 10.1016/s1389-1723(01)80030-x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2000] [Accepted: 08/01/2000] [Indexed: 11/25/2022]
Abstract
The ilvBNC operon of Corynebacterium glutamicum encodes acetohydroxy acid synthase and isomero-reductase, which are key enzymes of L-isoleucine, L-valine and L-leucine syntheses. In this study we identified the transcript initiation site of ilvBNC operon 292 nucleotides in front of the first structural gene, and detected the formation of a short transcript from the leader region in addition to the full-length transcript of the operon. This identifies the control of ilvBNC transcription by an attenuation mechanism involving antitermination. Mutations in the leader region were made and their effect on the operon expression in ilvB'lacZ fusions was quantified. Although a presumed leader-peptide-coding region is only one nucleotide away from the transcript initiation site determined, there is clear evidence to support the formation of this leader peptide: (i) the substitution of initiation codon ATG of the peptide by AGG reduced lacZ expression of the appropriate fusion construct to 19%; (ii) the replacement of three subsequent Val codons by Ala codons resulted in the loss of Val-dependent expression; and (iii) a leader peptide LacZ fusion resulted in active beta-galactosidase. Based on these results, it is concluded that transcription of ilvBNC is controlled by a translational-coupled attenuation mechanism. The absence of a ribosome binding site for leader peptide formation means that additional mechanisms may contribute to the transcription control at the decoding initiation step in the leader peptide formation.
Collapse
Affiliation(s)
- S Morbach
- Institut für Biochemie der Universität zu Köln, Zülpicher Str. 47, 50674 Köln, Germany
| | | | | | | |
Collapse
|
32
|
Fauzi H, Jack KD, Hines JV. In vitro selection to identify determinants in tRNA for Bacillus subtilis tyrS T box antiterminator mRNA binding. Nucleic Acids Res 2005; 33:2595-602. [PMID: 15879350 PMCID: PMC1090546 DOI: 10.1093/nar/gki546] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The T box transcription antitermination regulatory system, found in Gram-positive bacteria, is dependent on a complex set of interactions between uncharged tRNA and the 5'-untranslated mRNA leader region of the regulated gene. One of these interactions involves the base pairing of the acceptor end of cognate tRNA with four bases in a 7 nt bulge of the antiterminator RNA. In vitro selection of randomized tRNA binding to Bacillus subtilis tyrS antiterminator model RNAs was used to determine what, if any, sequence trends there are for binding beyond the known base pair complementarity. The model antiterminator RNAs were selected for the wild-type tertiary fold of tRNA. While there were no obvious sequence correlations between the selected tRNAs, there were correlations between certain tertiary structural elements and binding efficiency to different antiterminator model RNAs. In addition, one antiterminator model selected primarily for a kissing tRNA T loop-antiterminator bulge interaction, while another antiterminator model resulted in no such selection. The selection results indicate that, at the level of tertiary structure, there are ideal matches between tRNAs and antiterminator model RNAs consistent with in vivo observations and that additional recognition features, beyond base pair complementarity, may play a role in the formation of the complex.
Collapse
Affiliation(s)
| | | | - Jennifer V. Hines
- To whom correspondence should be addressed. Tel: +1 740 517 8482; Fax: +1 740 593 0148;
| |
Collapse
|
33
|
Yousef MR, Grundy FJ, Henkin TM. Structural transitions induced by the interaction between tRNA(Gly) and the Bacillus subtilis glyQS T box leader RNA. J Mol Biol 2005; 349:273-87. [PMID: 15890195 DOI: 10.1016/j.jmb.2005.03.061] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2005] [Revised: 03/18/2005] [Accepted: 03/22/2005] [Indexed: 10/25/2022]
Abstract
The T box system regulates expression of amino acid-related genes in Gram-positive bacteria through premature termination of transcription. Synthesis of the full-length mRNA requires stabilization of an antiterminator element in the 5' untranslated leader RNA by the cognate uncharged tRNA. tRNA(Gly)-dependent antitermination of the Bacillus subtilis glyQS gene (encoding glycyl-tRNA synthetase) can be reproduced in a purified in vitro transcription system, indicating that the nascent transcript is sufficient for interaction with the tRNA. Genetic analyses previously demonstrated base pairing of a single codon in the leader RNA with the tRNA anticodon, and between the antiterminator and the tRNA acceptor end. In this study, we established conditions for specific binding of tRNA(Gly) to glyQS leader RNA generated by phage T7 RNA polymerase. Structural mapping studies revealed tRNA(Gly)-induced protection in the glyQS leader RNA at the two known sites of interaction with the tRNA, as well as at other regions between these sites. The proposed tRNA-dependent structural switch between the competing terminator and antiterminator forms of the leader RNA was demonstrated directly. Changes in tRNA(Gly) upon binding to glyQS leader RNA were detected in the anticodon loop, consistent with pairing with the specifier sequence, and in the highly conserved G19 in the D-loop, similar to effects induced by codon-anticodon interaction in the ribosome. This study provides biochemical evidence for direct interaction of tRNA(Gly) with full-length in vitro transcribed glyQS leader RNA, and an initial view of structural modulations of both RNA partners within the complex.
Collapse
MESH Headings
- 5' Untranslated Regions/chemistry
- 5' Untranslated Regions/genetics
- 5' Untranslated Regions/metabolism
- Bacillus subtilis/genetics
- Glycine-tRNA Ligase/genetics
- Magnesium/pharmacology
- Nucleic Acid Conformation
- Peptide Chain Termination, Translational/genetics
- RNA, Bacterial/chemistry
- RNA, Bacterial/genetics
- RNA, Bacterial/metabolism
- RNA, Transfer, Gly/chemistry
- RNA, Transfer, Gly/genetics
- RNA, Transfer, Gly/metabolism
- Ribonuclease H/metabolism
Collapse
Affiliation(s)
- Mary R Yousef
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA
| | | | | |
Collapse
|
34
|
Grundy FJ, Henkin TM. Kinetic analysis of tRNA-directed transcription antitermination of the Bacillus subtilis glyQS gene in vitro. J Bacteriol 2004; 186:5392-9. [PMID: 15292140 PMCID: PMC490933 DOI: 10.1128/jb.186.16.5392-5399.2004] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Binding of uncharged tRNA to the nascent transcript promotes readthrough of a leader region transcription termination signal in genes regulated by the T box transcription antitermination mechanism. Each gene in the T box family responds independently to its cognate tRNA, with specificity determined by base pairing of the tRNA to the leader at the anticodon and acceptor ends of the tRNA. tRNA binding stabilizes an antiterminator element in the transcript that sequesters sequences that participate in formation of the terminator helix. tRNA(Gly)-dependent antitermination of the Bacillus subtilis glyQS leader was previously demonstrated in a purified in vitro assay system. This assay system was used to investigate the kinetics of transcription through the glyQS leader and the effect of tRNA and transcription elongation factors NusA and NusG on transcriptional pausing and antitermination. Several pause sites, including a major site in the loop of stem III of the leader, were identified, and the effect of modulation of pausing on antitermination efficiency was analyzed. We found that addition of tRNA(Gly) can promote antitermination as long as the tRNA is added before the majority of the transcription complexes reach the termination site, and variations in pausing affect the requirements for timing of tRNA addition.
Collapse
MESH Headings
- 5' Untranslated Regions
- Anticodon
- Bacillus subtilis/genetics
- Bacillus subtilis/metabolism
- Base Pairing
- Base Sequence
- DNA-Directed RNA Polymerases/metabolism
- Escherichia coli Proteins/metabolism
- Gene Expression Regulation, Bacterial
- Genes, Bacterial
- Kinetics
- Models, Molecular
- Molecular Sequence Data
- Nucleic Acid Conformation
- Peptide Elongation Factors/metabolism
- RNA, Bacterial/chemistry
- RNA, Bacterial/metabolism
- RNA, Messenger/metabolism
- RNA, Transfer, Gly/metabolism
- RNA-Binding Proteins/metabolism
- Regulatory Sequences, Nucleic Acid
- Terminator Regions, Genetic
- Transcription Factors/metabolism
- Transcription, Genetic
- Transcriptional Elongation Factors
Collapse
Affiliation(s)
- Frank J Grundy
- Department of Microbiology, The Ohio State University, Columbus, 43210, USA
| | | |
Collapse
|
35
|
Yousef MR, Grundy FJ, Henkin TM. tRNA requirements for glyQS antitermination: a new twist on tRNA. RNA (NEW YORK, N.Y.) 2003; 9:1148-1156. [PMID: 12923262 PMCID: PMC1370478 DOI: 10.1261/rna.5540203] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2003] [Accepted: 05/30/2003] [Indexed: 05/24/2023]
Abstract
Transcription antitermination of the Bacillus subtilis glyQS gene, a member of the T box gene regulation family, can be induced during in vitro transcription in a minimal system using purified B. subtilis RNA polymerase by the addition of unmodified T7 RNA polymerase-transcribed tRNA(Gly). Antitermination was previously shown to depend on base-pairing between the glyQS leader and the tRNA at the anticodon and acceptor ends. In this study, variants of tRNA(Gly) were generated to identify additional tRNA elements required for antitermination activity, and to determine the effect of structural changes in the tRNA. We find that additions to the 3' end of the tRNA blocked antitermination, in agreement with the prediction that uncharged tRNA is the effector in vivo, whereas insertion of 1 nucleotide between the acceptor stem and the 3' UCCA residues had no effect. Disruption of the D-loop/T-loop tertiary interaction inhibited antitermination function, as was previously demonstrated for tRNA(Tyr)-directed antitermination of the B. subtilis tyrS gene in vivo. Insertion of a single base pair in the anticodon stem was tolerated, whereas further insertions abolished antitermination. However, we find that major alterations in the length of the acceptor stem are tolerated, and the insertions exhibited a pattern of periodicity suggesting that there is face-of-the-helix dependence in the positioning of the unpaired UCCA residues at the 3' end of the tRNA for interaction with the antiterminator bulge and antitermination.
Collapse
Affiliation(s)
- Mary R Yousef
- Department of Microbiology, The Ohio State University, Columbus, Ohio 43210, USA
| | | | | |
Collapse
|
36
|
Mironov AS, Gusarov I, Rafikov R, Lopez LE, Shatalin K, Kreneva RA, Perumov DA, Nudler E. Sensing small molecules by nascent RNA: a mechanism to control transcription in bacteria. Cell 2002; 111:747-56. [PMID: 12464185 DOI: 10.1016/s0092-8674(02)01134-0] [Citation(s) in RCA: 519] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Thiamin and riboflavin are precursors of essential coenzymes-thiamin pyrophosphate (TPP) and flavin mononucleotide (FMN)/flavin adenine dinucleotide (FAD), respectively. In Bacillus spp, genes responsible for thiamin and riboflavin biosynthesis are organized in tightly controllable operons. Here, we demonstrate that the feedback regulation of riboflavin and thiamin genes relies on a novel transcription attenuation mechanism. A unique feature of this mechanism is the formation of specific complexes between a conserved leader region of the cognate RNA and FMN or TPP. In each case, the complex allows the termination hairpin to form and interrupt transcription prematurely. Thus, sensing small molecules by nascent RNA controls transcription elongation of riboflavin and thiamin operons and possibly other bacterial operons as well.
Collapse
Affiliation(s)
- Alexander S Mironov
- State Research Institute of Genetics and Selection of Industrial Microorganisms, 113545, Moscow, Russia
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Grundy FJ, Winkler WC, Henkin TM. tRNA-mediated transcription antitermination in vitro: codon-anticodon pairing independent of the ribosome. Proc Natl Acad Sci U S A 2002; 99:11121-6. [PMID: 12165569 PMCID: PMC123220 DOI: 10.1073/pnas.162366799] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Uncharged tRNA acts as the effector for transcription antitermination of genes in the T box family in Bacillus subtilis and other Gram-positive bacteria. Genetic studies suggested that expression of these genes is induced by stabilization of an antiterminator element in the leader RNA of each target gene by the cognate uncharged tRNA. The specificity of the tRNA response is dependent on a single codon in the leader, which was postulated to pair with the anticodon of the corresponding tRNA. It was not known whether the leader RNA-tRNA interaction requires additional factors. We show here that tRNA-dependent antitermination occurs in vitro in a purified transcription system, in the absence of ribosomes or accessory factors, demonstrating that the RNA-RNA interaction is sufficient to control gene expression by antitermination. The tRNA response exhibits similar specificity in vivo and in vitro, and the antitermination reaction in vitro is independent of NusA and functions with either B. subtilis or Escherichia coli RNA polymerase.
Collapse
MESH Headings
- Anticodon/genetics
- Bacillus subtilis/genetics
- Base Sequence
- Chromosomes, Bacterial/genetics
- Codon/genetics
- Gene Expression Regulation, Enzymologic
- Gram-Positive Bacteria/genetics
- Models, Genetic
- Molecular Sequence Data
- Nucleic Acid Conformation
- RNA, Bacterial/chemistry
- RNA, Bacterial/genetics
- RNA, Spliced Leader/chemistry
- RNA, Spliced Leader/genetics
- RNA, Transfer/metabolism
- RNA, Transfer, Gly/genetics
- RNA, Transfer, Tyr/genetics
- Terminator Regions, Genetic/genetics
- Transcription, Genetic
- beta-Galactosidase/genetics
- beta-Galactosidase/metabolism
Collapse
Affiliation(s)
- Frank J Grundy
- Department of Microbiology, Ohio State University, Columbus, OH 43210, USA
| | | | | |
Collapse
|
38
|
Grundy FJ, Moir TR, Haldeman MT, Henkin TM. Sequence requirements for terminators and antiterminators in the T box transcription antitermination system: disparity between conservation and functional requirements. Nucleic Acids Res 2002; 30:1646-55. [PMID: 11917026 PMCID: PMC101844 DOI: 10.1093/nar/30.7.1646] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The T box transcription termination control system is used in Gram-positive bacteria to regulate expression of aminoacyl-tRNA synthetase and other amino acid-related genes. Readthrough of a transcriptional terminator located in the leader region of the target gene is dependent on a specific interaction between the nascent leader transcript and the cognate uncharged tRNA. This interaction is required for formation of an antiterminator structure in the leader, which prevents formation of a competing transcriptional terminator stem-loop. The antiterminators and terminators of genes in this family are highly conserved in both secondary structure and primary sequence; the antiterminator contains the T box sequence, which is the most highly conserved leader element. These conserved features were investigated by phylogenetic and mutational analysis. Changes at highly conserved positions in the bulge and in the helix above the bulge reduced function, while alteration of other positions that were as much as 96% conserved did not have a major effect. The disparity between sequence conservation and function may be due to the requirement for maintaining base pairing in both the antiterminator and terminator structures.
Collapse
Affiliation(s)
- Frank J Grundy
- Department of Microbiology, The Ohio State University, 484 West 12th Avenue, Columbus, OH 43210, USA
| | | | | | | |
Collapse
|
39
|
Gerdeman MS, Henkin TM, Hines JV. In vitro structure-function studies of the Bacillus subtilis tyrS mRNA antiterminator: evidence for factor-independent tRNA acceptor stem binding specificity. Nucleic Acids Res 2002; 30:1065-72. [PMID: 11842119 PMCID: PMC100339 DOI: 10.1093/nar/30.4.1065] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2001] [Revised: 12/04/2001] [Accepted: 12/04/2001] [Indexed: 11/14/2022] Open
Abstract
Expression of many aminoacyl-tRNA synthetase, amino acid biosynthesis and transport genes in Bacillus subtilis is controlled at the level of transcription termination using the T box system and requires the formation of specific secondary structures in the mRNA leader region. One structure functions as a transcriptional terminator, while an alternate form, the antiterminator, is necessary for transcription of the downstream coding regions. We have investigated the interaction of antiterminator model RNAs, based on the B.subtilis tyrS antiterminator with tRNA(Tyr) and tRNA acceptor stem models, using a gel shift assay. Binding of the antiterminator RNA to tRNA(Tyr) was dependent on complimentarity with the acceptor end of the tRNA or microhelix; affinity for the microhelix RNA was reduced relative to the tRNA. Alteration of a conserved position in the non-base pairing region of the bulge greatly reduced tRNA binding, consistent with in vivo studies. Therefore, it appears that some of the antiterminator-tRNA binding specificity is dependent on the structure of the antiterminator bulge alone and the complex it forms with tRNA in the absence of additional trans-acting factors. During the course of these studies we also discovered that the antiterminator can form a 'kissing' bulge complex, a unique RNA motif. The ease of formation of this RNA homodimer illustrates the propensity for the bulge of the antiterminator to bind RNA.
Collapse
MESH Headings
- 5' Untranslated Regions
- Bacillus subtilis/genetics
- Base Pairing
- Base Sequence
- Binding Sites
- Dimerization
- Electrophoretic Mobility Shift Assay
- Molecular Sequence Data
- Nucleic Acid Conformation
- RNA, Bacterial/chemistry
- RNA, Bacterial/metabolism
- RNA, Bacterial/physiology
- RNA, Messenger/chemistry
- RNA, Messenger/metabolism
- RNA, Messenger/physiology
- RNA, Transfer, Tyr/chemistry
- RNA, Transfer, Tyr/metabolism
- Structure-Activity Relationship
Collapse
Affiliation(s)
- Melinda S Gerdeman
- Division of Medicinal Chemistry, College of Pharmacy and Department of Microbiology, Ohio State University, Columbus, OH 43210, USA
| | | | | |
Collapse
|
40
|
Winkler WC, Grundy FJ, Murphy BA, Henkin TM. The GA motif: an RNA element common to bacterial antitermination systems, rRNA, and eukaryotic RNAs. RNA (NEW YORK, N.Y.) 2001; 7:1165-72. [PMID: 11497434 PMCID: PMC1370163 DOI: 10.1017/s1355838201002370] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Two different transcription termination control mechanisms, the T box and S box systems, are used to regulate transcription of many bacterial aminoacyl-tRNA synthetase, amino acid biosynthesis, and amino acid transport genes. Both of these regulatory mechanisms involve an untranslated mRNA leader region capable of adopting alternate structural conformations that result in transcription termination or transcription elongation into the downstream region. Comparative analyses revealed a small RNA secondary structural element, designated the GA motif, that is highly conserved in both T box and S box leader sequences. The motif consists of two short helices separated by an asymmetric internal loop, with highly conserved GA dinucleotide sequences on either side of the internal loop. Site-directed mutagenesis of this motif in model T and S box leader sequences indicated that it is essential for transcriptional regulation in both systems. This motif is similar to the binding site of yeast ribosomal protein L30, the Snu13p binding sites found in U4 snRNA and box C/D snoRNAs, and two elements in 23S rRNA.
Collapse
Affiliation(s)
- W C Winkler
- Department of Microbiology, The Ohio State University, Columbus 43210, USA
| | | | | | | |
Collapse
|
41
|
Grundy FJ, Collins JA, Rollins SM, Henkin TM. tRNA determinants for transcription antitermination of the Bacillus subtilis tyrS gene. RNA (NEW YORK, N.Y.) 2000; 6:1131-41. [PMID: 10943892 PMCID: PMC1369987 DOI: 10.1017/s1355838200992100] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Transcriptional regulation of the T box family of aminoacyl-tRNA synthetase and amino acid biosynthesis genes in Gram-positive bacteria is mediated by a conserved transcription antitermination system, in which readthrough of a termination site in the leader region of the mRNA is directed by a specific interaction with the cognate uncharged tRNA. The specificity of this interaction is determined in part by pairing of the anticodon of the tRNA with a "specifier sequence" in the leader, a codon representing the appropriate amino acid, as well as by pairing of the acceptor end of the tRNA with an unpaired region of the antiterminator. Previous studies have indicated that although these interactions are necessary for antitermination, they are unlikely to be sufficient. In the current study, the effect of multiple mutations in tRNA(Tyr) on readthrough of the tyrS leader region terminator, independent of other tRNA functions, was assessed using a system for in vivo expression of pools of tRNA variants; this system may be generally useful for in vivo expression of RNAs with defined end points. Although alterations in helical regions of tRNA(Tyr) that did not perturb base pairing were generally permitted, substitutions affecting conserved features of tRNAs were not. The long variable arm of tRNA(Tyr) could be replaced by either a short variable arm or a long insertion of a stable stem-loop structure. These results indicate that the tRNA-leader RNA interaction is highly constrained, and is likely to involve recognition of the overall tertiary structure of the tRNA.
Collapse
MESH Headings
- Amino Acyl-tRNA Synthetases/genetics
- Amino Acyl-tRNA Synthetases/metabolism
- Bacillus subtilis/genetics
- Base Sequence
- Blotting, Northern
- Endoribonucleases/metabolism
- Escherichia coli/genetics
- Escherichia coli Proteins
- Gene Expression Regulation, Bacterial
- HIV Long Terminal Repeat/genetics
- Lac Operon
- Models, Genetic
- Molecular Sequence Data
- Mutagenesis, Insertional
- Mutation
- Peptide Chain Termination, Translational
- Plasmids/metabolism
- RNA, Bacterial/genetics
- RNA, Bacterial/metabolism
- RNA, Catalytic/metabolism
- RNA, Transfer/genetics
- RNA, Transfer, Amino Acyl/metabolism
- Ribonuclease P
- Transcription, Genetic
- beta-Galactosidase/metabolism
Collapse
Affiliation(s)
- F J Grundy
- Department of Microbiology, The Ohio State University, Columbus 43210, USA
| | | | | | | |
Collapse
|
42
|
Abstract
Transcription termination is a dynamic process and is subject to control at a number of levels. New information about the molecular mechanisms of transcription elongation and termination, as well as new insights into protein-RNA interactions, are providing a framework for increased understanding of the molecular details of transcription termination control.
Collapse
Affiliation(s)
- T M Henkin
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
43
|
Affiliation(s)
- C Yanofsky
- Department of Biological Sciences, Stanford University, Stanford, California 94305, USA.
| |
Collapse
|
44
|
Becker HD, Kern D. Thermus thermophilus: a link in evolution of the tRNA-dependent amino acid amidation pathways. Proc Natl Acad Sci U S A 1998; 95:12832-7. [PMID: 9789000 PMCID: PMC23616 DOI: 10.1073/pnas.95.22.12832] [Citation(s) in RCA: 122] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Thermus thermophilus possesses an aspartyl-tRNA synthetase (AspRS2) able to aspartylate efficiently tRNAAsp and tRNAAsn. Aspartate mischarged on tRNAAsn then is converted into asparagine by an omega amidase that differs structurally from all known asparagine synthetases. However, aspartate is not misincorporated into proteins because the binding capacity of aminoacylated tRNAAsn to elongation factor Tu is only conferred by conversion of aspartate into asparagine. T. thermophilus additionally contains a second aspartyl-tRNA synthetase (AspRS1) able to aspartylate tRNAAsp and an asparaginyl-tRNA synthetase able to charge tRNAAsn with free asparagine, although the organism does not contain a tRNA-independent asparagine synthetase. In contrast to the duplicated pathway of tRNA asparaginylation, tRNA glutaminylation occurs in the thermophile via the usual pathway by using glutaminyl-tRNA synthetase and free glutamine synthesized by glutamine synthetase that is unique. T. thermophilus is able to ensure tRNA aminoacylation by alternative routes involving either the direct pathway or by conversion of amino acid mischarged on tRNA. These findings shed light on the interrelation between the tRNA-dependent and tRNA-independent pathways of amino acid amidation and on the processes involved in fidelity of the aminoacylation systems.
Collapse
Affiliation(s)
- H D Becker
- Unité Propre de Recherche 9002, "Structure des Macromolécules Biologiques et Mécanismes de Reconnaissance," Institut de Biologie Moléculaire et Cellulaire du Centre National de la Recherche Scientifique, Cédex, France
| | | |
Collapse
|