1
|
Pei J, Kinch LN, Cong Q. Computational analysis of propeptide-containing proteins and prediction of their post-cleavage conformation changes. Proteins 2024; 92:1206-1219. [PMID: 38775337 DOI: 10.1002/prot.26702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/10/2024] [Accepted: 04/29/2024] [Indexed: 10/26/2024]
Abstract
A propeptide is removed from a precursor protein to generate its active or mature form. Propeptides play essential roles in protein folding, transportation, and activation and are present in about 2.3% of reviewed proteins in the UniProt database. They are often found in secreted or membrane-bound proteins including proteolytic enzymes, hormones, and toxins. We identified a variety of globular and nonglobular Pfam domains in protein sequences designated as propeptides, some of which form intramolecular interactions with other domains in the mature proteins. Propeptide-containing enzymes mostly function as proteases, as they are depleted in other enzyme classes such as hydrolases acting on DNA and RNA, isomerases, and lyases. We applied AlphaFold to generate structural models for over 7000 proteins with propeptides having no less than 20 residues. Analysis of residue contacts in these models revealed conformational changes for over 300 proteins before and after the cleavage of the propeptide. Examples of conformation change occur in several classes of proteolytic enzymes in the families of subtilisins, trypsins, aspartyl proteases, and thermolysin-like metalloproteases. In most of the observed cases, cleavage of the propeptide releases the constraints imposed by the covalent bond between the propeptide and the mature protein, and cleavage enables stronger interactions between the propeptide and the mature protein. These findings suggest that post-cleavage propeptides could play critical roles in regulating the activity of mature proteins.
Collapse
Affiliation(s)
- Jimin Pei
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Lisa N Kinch
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Qian Cong
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
2
|
Song P, Zhang X, Wang S, Xu W, Wang F, Fu R, Wei F. Microbial proteases and their applications. Front Microbiol 2023; 14:1236368. [PMID: 37779686 PMCID: PMC10537240 DOI: 10.3389/fmicb.2023.1236368] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/30/2023] [Indexed: 10/03/2023] Open
Abstract
Proteases (proteinases or peptidases) are a class of hydrolases that cleave peptide chains in proteins. Endopeptidases are a type of protease that hydrolyze the internal peptide bonds of proteins, forming shorter peptides; exopeptidases hydrolyze the terminal peptide bonds from the C-terminal or N-terminal, forming free amino acids. Microbial proteases are a popular instrument in many industrial applications. In this review, the classification, detection, identification, and sources of microbial proteases are systematically introduced, as well as their applications in food, detergents, waste treatment, and biotechnology processes in the industry fields. In addition, recent studies on techniques used to express heterologous microbial proteases are summarized to describe the process of studying proteases. Finally, future developmental trends for microbial proteases are discussed.
Collapse
Affiliation(s)
- Peng Song
- College of Life Sciences, Liaocheng University, Liaocheng, China
- Shandong Aobo Biotech Co. Ltd., Liaocheng, China
- Jiangxi Zymerck Biotech Co. Ltd., Nanchang, China
| | - Xue Zhang
- College of Life Sciences, Liaocheng University, Liaocheng, China
| | - Shuhua Wang
- Shandong Aobo Biotech Co. Ltd., Liaocheng, China
| | - Wei Xu
- College of Life Sciences, Liaocheng University, Liaocheng, China
| | - Fei Wang
- College of Life Sciences, Liaocheng University, Liaocheng, China
| | - Rongzhao Fu
- Jiangxi Zymerck Biotech Co. Ltd., Nanchang, China
| | - Feng Wei
- College of Life Sciences, Liaocheng University, Liaocheng, China
| |
Collapse
|
3
|
Demidyuk I, Chukhontseva K, Kostrov S. Glutamyl Endopeptidases: The Puzzle of Substrate Specificity. Acta Naturae 2017; 9:17-33. [PMID: 28740724 PMCID: PMC5508998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Indexed: 11/24/2022] Open
Abstract
Glutamyl endopeptidases (GEPases) are chymotrypsin-like enzymes that preferentially cleave the peptide bonds of the α-carboxyl groups of glutamic acid. Despite the many years of research, the structural determinants underlying the strong substrate specificity of GEPases still remain unclear. In this review, data concerning the molecular mechanisms that determine the substrate preference of GEPases is generalized. In addition, the biological functions of and modern trends in the research into these enzymes are outlined.
Collapse
Affiliation(s)
- I.V. Demidyuk
- Institute of Molecular Genetics, Russian Academy of Sciences, Kurchatov Sq., 2, Moscow, 123182, Russia
| | - K.N. Chukhontseva
- Institute of Molecular Genetics, Russian Academy of Sciences, Kurchatov Sq., 2, Moscow, 123182, Russia
| | - S.V. Kostrov
- Institute of Molecular Genetics, Russian Academy of Sciences, Kurchatov Sq., 2, Moscow, 123182, Russia
| |
Collapse
|
4
|
Biochemical and molecular characterization of new keratinoytic protease from Actinomadura viridilutea DZ50. Int J Biol Macromol 2016; 92:299-315. [PMID: 27387016 DOI: 10.1016/j.ijbiomac.2016.07.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Revised: 06/30/2016] [Accepted: 07/02/2016] [Indexed: 11/22/2022]
Abstract
A new extracellular thermostable keratinolytic protease, designated KERDZ, was purified and characterized from a thermophilic actinomycetes Actinomadura viridilutea DZ50 isolated from Algerian fishing port. The isolate exhibited high keratinase production when grown in chicken-feather meal media (18,000U/ml) after 96-h of incubation at 45°C. The enzyme was purified by ammonium sulfate precipitation (35-55%)-dialysis and heat treatment (30min at 75°C) followed by UNO S-1 FPLC cation exchange chromatography and size exclusion HPLC column. The biochemical characterizations carried on include physico-chemical determination and spectroscopic analysis. The MALDI-TOF/MS analysis revealed that the purified enzyme was a monomer with a molecular mass of 19536.10-Da. The sequence of the 25 N-terminal residues of KERDZ showed high homology with those of actinomycetes keratinases. Optimal activity was achieved at pH 11 and 80°C. KERDZ was completely inhibited by PMSF and DFP suggested its belonging to the serine keratinase family. KERDZ displayed higher levels of hydrolysis and catalytic efficiency than bacterial keratinases (KERAK-29, Actinase E, and KERAB) and subtilisins (subtilisin Carlsberg and subtilisin Novo). The kerDZ gene encoding KERDZ was isolated and its DNA sequence was determined. These properties make KERDZ a potential, promising and eco-friendly alternative to the conventional chemicals used for industrial applications.
Collapse
|
5
|
Demidyuk IV, Shubin AV, Gasanov EV, Kostrov SV. Propeptides as modulators of functional activity of proteases. Biomol Concepts 2015; 1:305-22. [PMID: 25962005 DOI: 10.1515/bmc.2010.025] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Most proteases are synthesized in the cell as precursor-containing propeptides. These structural elements can determine the folding of the cognate protein, function as an inhibitor/activator peptide, mediate enzyme sorting, and mediate the protease interaction with other molecules and supramolecular structures. The data presented in this review demonstrate modulatory activity of propeptides irrespective of the specific mechanism of action. Changes in propeptide structure, sometimes minor, can crucially alter protein function in the living organism. Modulatory activity coupled with high variation allows us to consider propeptides as specific evolutionary modules that can transform biological properties of proteases without significant changes in the highly conserved catalytic domains. As the considered properties of propeptides are not unique to proteases, propeptide-mediated evolution seems to be a universal biological mechanism.
Collapse
|
6
|
Lee TW, James MNG. 1.2A-resolution crystal structures reveal the second tetrahedral intermediates of streptogrisin B (SGPB). BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2007; 1784:319-34. [PMID: 18157955 DOI: 10.1016/j.bbapap.2007.11.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2007] [Revised: 11/13/2007] [Accepted: 11/15/2007] [Indexed: 11/29/2022]
Abstract
Streptogrisin B (SGPB) has served as one of the models for studying the catalytic activities of serine peptidases. Here we report its native crystal structures at pH 4.2 at a resolution of 1.18A, and at pH 7.3 at a resolution of 1.23A. Unexpectedly, outstanding electron density peaks occurred in the active site and the substrate-binding region of SGPB in the computed maps at both pHs. The densities at pH 4.2 were assigned as a tetrapeptide, Asp-Ala-Ile-Tyr, whereas those at pH 7.3 were assigned as a tyrosine molecule and a leucine molecule existing at equal occupancies in both of the SGPB molecules in the asymmetric unit. Refinement with relaxed geometric restraints resulted in molecular structures representing mixtures of the second tetrahedral intermediates and the enzyme-product complexes of SGPB existing in a pH-dependent equilibrium. Structural comparisons with the complexes of SGPB with turkey ovomucoid third domain (OMTKY3) and its variants have shown that, upon the formation of the tetrahedral intermediate, residues Glu192A to Gly193 of SGPB move towards the alpha-carboxylate O of residue P1 of the bound species, and adjustments in the side-chain conformational angles of His57 and Ser195 of SGPB favor the progression of the catalytic mechanism of SGPB.
Collapse
Affiliation(s)
- Ting-Wai Lee
- Group in Protein Structure and Function, Department of Biochemistry, University of Alberta, Room 4-29, Medical Sciences Building, Edmonton, Alberta T6G 2H7, Canada
| | | |
Collapse
|
7
|
Li J, Shi PJ, Han XY, Meng K, Yang PL, Wang YR, Luo HY, Wu NF, Yao B, Fan YL. Functional expression of the keratinolytic serine protease gene sfp2 from Streptomyces fradiae var. k11 in Pichia pastoris. Protein Expr Purif 2007; 54:79-86. [PMID: 17408967 DOI: 10.1016/j.pep.2007.02.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2006] [Revised: 02/14/2007] [Accepted: 02/16/2007] [Indexed: 11/24/2022]
Abstract
We report the initial characterization and expression of sfp2, a gene encoding a keratinolytic serine protease from Streptomyces fradiae var. k11. Recombinant SFP2 was expressed in and secreted from the yeast Pichia pastoris with a final yield of 78 mg/L (136.2 U/mL caseinolytic activity) after 25 h of induction. The recombinant enzyme was purified using by ammonium sulfate precipitation and gel filtration chromatography to electrophoretic homogeneity, which was appropriately glycosylated and had a molecular mass of 26.0 kDa. The purified recombinant SFP2 was characterized. The optimal pHs and temperatures of SFP2 for proteolysis of casein and keratin azure were pH 10.0, 60 degrees C, and pH 9.0, 55 degrees C, respectively. SFP2 activity was stable from pH 3.0 to pH 11.0. The enzyme activity was inhibited by Co(2+) and Cr(3+) and enhanced by Ni(2+) and Cu(2+). The K(m) of 0.45 mmol/L and V(max) of 19.84 mmol/min mg were calculated using N-succinyl-Ala-Ala-Pro-Phe-pNA as a substrate. We tested the activity of SFP2 with soluble and insoluble substrates; SFP2 was more specific for keratinous substrates compared with proteinase K and other commercial proteases.
Collapse
Affiliation(s)
- Jiang Li
- Microbial Engineering Department, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Jaswal SS, Truhlar SME, Dill KA, Agard DA. Comprehensive Analysis of Protein Folding Activation Thermodynamics Reveals a Universal Behavior Violated by Kinetically Stable Proteases. J Mol Biol 2005; 347:355-66. [PMID: 15740746 DOI: 10.1016/j.jmb.2005.01.032] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2004] [Revised: 12/22/2004] [Accepted: 01/13/2005] [Indexed: 11/23/2022]
Abstract
Alpha-lytic protease (alpha LP) and Streptomyces griseus protease B (SGPB) are two extracellular serine proteases whose folding is absolutely dependent on the existence of their companion pro regions. Moreover, the native states of these proteins are, at best, marginally stable, with the apparent stability resulting from being kinetically trapped in the native state by large barriers to unfolding. Here, in an effort to understand the physical properties that distinguish kinetically and thermodynamically stable proteins, we study the temperature-dependences of the folding and unfolding kinetics of alpha LP and SGPB without their pro regions, and compare their behavior to a comprehensive set of other proteins. For the folding activation thermodynamics, we find some remarkable universal behaviors in the thermodynamically stable proteins that are violated dramatically by alpha LP. Despite significant variations in deltaC(P,F)++, the maximal folding speed occurs within the narrow biological temperature range for all proteins, except for alpha LP, with its maximal folding speed shifted lower by 200 K. This implies evolutionary pressures on folding speed for typical proteins, but not for alpha LP. In addition, the folding free energy barrier in the biological temperature range for most proteins is predominantly enthalpic, but purely entropic for alpha LP. The unfolding of alpha LP and SGPB is distinguished by three properties: a remarkably large deltaC(P,U)++, a very high deltaG(U)++, and a maximum deltaG(u)++ at the optimal growth temperature for the organism. While other proteins display each of these traits to some approximation, the simultaneous optimization of all three occurs only in the kinetically stable proteins, and appears to be required to maximize their unfolding cooperativity, by suppressing local unfolding events, and slowing the rate of global unfolding. Together, these properties extend the lifetime of these enzymes in the highly proteolytic extracellular environment. Attaining such functional properties seems possible only through the gross perturbation of the folding thermodynamics, which in turn has required the co-evolution of pro regions as folding catalysts.
Collapse
Affiliation(s)
- Sheila S Jaswal
- Department of Biochemistry and Biophysics, Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| | | | | | | |
Collapse
|
9
|
Supuran CT, Scozzafava A, Mastrolorenzo A. Bacterial proteases: current therapeutic use and future prospects for the development of new antibiotics. Expert Opin Ther Pat 2005. [DOI: 10.1517/13543776.11.2.221] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
10
|
Joe K, Borgford TJ, Bennet AJ. Generation of a Thermostable and Denaturant-Resistant Peptide Ligase. Biochemistry 2004; 43:7672-7. [PMID: 15196009 DOI: 10.1021/bi0496337] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The construction and characterization of a novel, thermostable, peptide ligase are described. Three amino acid substitutions were introduced into the secreted bacterial protease Streptomyces griseus protease B (SGPB). Mutations were chosen on the basis of two separate observations: (i) that a single substitution of the nucleophilic serine (S195A) created an enzyme with significant peptide-ligation activity, albeit greatly reduced stability [(2000) Chem. Biol. 7, 163], and (ii) that a pair of substitutions in the substrate-binding pocket (T213L and F228H) greatly increased the thermostability of the wild-type enzyme [(1996) J. Mol. Biol. 257, 233]. The triple mutant, named streptoligase, was found to catalyze peptide ligation (aminolysis of both a thiobenzyl ester and a p-nitroanilide-activated peptide) efficiently in nondenaturing and denaturing conditions including SDS (0.5% w/v) and guanidine hydrochloride (4.0 M). Moreover, streptoligase exhibited a half-live for unfolding of 16.3 min at 55 degrees C in the absence of stabilizing substrates. The fraction of the streptoligase-catalyzed reaction that gave coupled product with the acceptor peptide FAASR-NH(2) was greater for the p-nitroanilide donor (Sc-AAPF-pNA) than for the benzyl thioester substrate (Sc-AAPF-SBn). These observations are consistent with ligation proceeding through an acyl-enzyme intermediate involving histidine-57. In the case of the thioester donor the triple mutant promotes the direct attack of water on the thioester carbonyl carbon, in addition to hydrolysis occurring at the stage of the acyl-enzyme intermediate. The strategy of multiple point mutations outlined in this study may provide a general means of converting enzymes with chymotrypsin-like protein folds into peptide ligases.
Collapse
Affiliation(s)
- Koman Joe
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, Canada V5A 1S6
| | | | | |
Collapse
|
11
|
Mitsuiki S, Ichikawa M, Oka T, Sakai M, Moriyama Y, Sameshima Y, Goto M, Furukawa K. Molecular characterization of a keratinolytic enzyme from an alkaliphilic Nocardiopsis sp. TOA-1. Enzyme Microb Technol 2004. [DOI: 10.1016/j.enzmictec.2003.12.011] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
12
|
Truhlar SME, Cunningham EL, Agard DA. The folding landscape of Streptomyces griseus protease B reveals the energetic costs and benefits associated with evolving kinetic stability. Protein Sci 2004; 13:381-90. [PMID: 14718653 PMCID: PMC2286692 DOI: 10.1110/ps.03336804] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Like most extracellular bacterial proteases, Streptomyces griseus protease B (SGPB) and alpha-lytic protease (alphaLP) are synthesized with covalently attached pro regions necessary for their folding. In this article, we characterize the folding free energy landscape of SGPB and compare it to the folding landscapes of alphaLP and trypsin, a mammalian homolog that folds independently of its zymogen peptide. In contrast to the thermodynamically stable native state of trypsin, SGPB and alphaLP fold to native states that are thermodynamically marginally stable or unstable, respectively. Instead, their apparent stability arises kinetically, from unfolding free energy barriers that are both large and highly cooperative. The unique unfolding transitions of SGPB and alphaLP extend their functional lifetimes under highly degradatory conditions beyond that seen for trypsin; however, the penalty for evolving kinetic stability is remarkably large in that each factor of 2.4-8 in protease resistance is accompanied by a cost of ~10(5) in the spontaneous folding rate and ~5-9 kcal/mole in thermodynamic stability. These penalties have been overcome by the coevolution of increasingly effective pro regions to facilitate folding. Despite these costs, kinetic stability appears to be a potent mechanism for developing native-state properties that maximize protease longevity.
Collapse
Affiliation(s)
- Stephanie M E Truhlar
- Howard Hughes Medical Institute and the Department of Biochemistry and Biophysics, University of California, San Francisco, 600 16th Street, Room S412, San Francisco, CA 94143-2240, USA
| | | | | |
Collapse
|
13
|
Bronsoms S, Villanueva J, Canals F, Querol E, Aviles FX. Analysis of the effect of potato carboxypeptidase inhibitor pro-sequence on the folding of the mature protein. EUROPEAN JOURNAL OF BIOCHEMISTRY 2003; 270:3641-50. [PMID: 12919329 DOI: 10.1046/j.1432-1033.2003.03754.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Protein folding can be modulated in vivo by many factors. While chaperones act as folding catalysts and show broad substrate specificity, some pro-peptides specifically facilitate the folding of the mature protein to which they are bound. Potato carboxypeptidase inhibitor (PCI), a 39-residue protein carboxypeptidase inhibitor, is synthesized in vivo as a precursor protein that includes a 27-residue N-terminal and a seven-residue C-terminal pro-regions. In this work the disulfide-coupled folding of mature PCI in vitro has been compared with that of the same protein extended with either the N-terminal pro-sequence (ProNtPCI) or both N- and C-terminal pro-sequences (ProPCI), and also with the N-terminal pro-sequence in trans (ProNt + PCI). No significant differences can be observed in the folding kinetics or efficiencies of all these molecules. In addition, in vivo folding studies in Escherichia coli have been performed using wild-type PCI and three PCI mutant forms with and without the N-terminal pro-sequence, the mutations had been previously reported to affect folding of the PCI mature form. The extent to which the 'native-like' form was secreted to the media by each construction was not affected by the presence of the N-terminal pro-sequence. These results indicate that PCI does not depend on the N-terminal pro-sequence for its folding in both, in vitro and in vivo in E. coli. However, structural analysis by spectroscopy, hydrogen exchange and limited proteolysis by mass spectrometry, indicate the capability of such N-terminal pro-sequence to fold within the precursor form.
Collapse
Affiliation(s)
- Sílvia Bronsoms
- Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | | | | | | | | |
Collapse
|
14
|
Affiliation(s)
- Philip N Bryan
- Center for Advanced Research in Biotechnology, University of Maryland Biotechnology Institute, 9600 Gudelsky Drive, Rockville, Maryland 20850, USA.
| |
Collapse
|
15
|
Abstract
Serine-, cysteine-, and metalloproteases are widely spread in many pathogenic bacteria, where they play critical functions related to colonization and evasion of host immune defenses, acquisition of nutrients for growth and proliferation, facilitation of dissemination, or tissue damage during infection. Since all the antibiotics used clinically at the moment share a common mechanism of action, acting as inhibitors of the bacterial cell wall biosynthesis or affecting protein synthesis on ribosomes, resistance to these pharmacological agents represents a serious medical problem, which might be resolved by using new generation of antibiotics, possessing a different mechanism of action. Bacterial protease inhibitors constitute an interesting such possibility, due to the fact that many specific as well as ubiquitous proteases have recently been characterized in some detail in both gram-positive as well as gram-negative pathogens. Few potent, specific inhibitors for such bacterial proteases have been reported at this moment except for some signal peptidase, clostripain, Clostridium histolyticum collagenase, botulinum neurotoxin, and tetanus neurotoxin inhibitors. No inhibitors of the critically important and ubiquitous AAA proteases, degP or sortase have been reported, although such compounds would presumably constitute a new class of highly effective antibiotics. This review presents the state of the art in the design of such enzyme inhibitors with potential therapeutic applications, as well as recent advances in the use of some of these proteases in therapy.
Collapse
Affiliation(s)
- Claudiu T Supuran
- University of Florence, Dipartimento di Chimica, Laboratorio di Chimica Inorganica e Bioinorganica, Firenze, Italy.
| | | | | |
Collapse
|
16
|
Firbank SJ, Rogers MS, Wilmot CM, Dooley DM, Halcrow MA, Knowles PF, McPherson MJ, Phillips SE. Crystal structure of the precursor of galactose oxidase: an unusual self-processing enzyme. Proc Natl Acad Sci U S A 2001; 98:12932-7. [PMID: 11698678 PMCID: PMC60802 DOI: 10.1073/pnas.231463798] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2001] [Accepted: 08/31/2001] [Indexed: 11/18/2022] Open
Abstract
Galactose oxidase (EC ) is a monomeric enzyme that contains a single copper ion and catalyses the stereospecific oxidation of primary alcohols to their corresponding aldehydes. The protein contains an unusual covalent thioether bond between a tyrosine, which acts as a radical center during the two-electron reaction, and a cysteine. The enzyme is produced in a precursor form lacking the thioether bond and also possessing an additional 17-aa pro-sequence at the N terminus. Previous work has shown that the aerobic addition of Cu(2+) to the precursor is sufficient to generate fully processed mature enzyme. The structure of the precursor protein has been determined to 1.4 A, revealing the location of the pro-sequence and identifying structural differences between the precursor and the mature protein. Structural alignment of the precursor and mature forms of galactose oxidase shows that five regions of main chain and some key residues of the active site differ significantly between the two forms. The precursor structure provides a starting point for modeling the chemistry of thioether bond formation and pro-sequence cleavage.
Collapse
Affiliation(s)
- S J Firbank
- Astbury Centre for Structural Molecular Biology, School of Biochemistry and Molecular Biology, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Elliott RJ, Bennet AJ, Braun CA, MacLeod AM, Borgford TJ. Active-site variants of Streptomyces griseus protease B with peptide-ligation activity. CHEMISTRY & BIOLOGY 2000; 7:163-71. [PMID: 10712933 DOI: 10.1016/s1074-5521(00)00086-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Peptide-ligating technologies facilitate a range of manipulations for the study of protein structure and function that are not possible using conventional genetic or mutagenic methods. To different extents, the currently available enzymatic and nonenzymatic methodologies are synthetically demanding, sequence-dependent and/or sensitive to denaturants. No single coupling method is universally applicable. Accordingly, new strategies for peptide ligation are sought. RESULTS Site-specific variants (Ser195-->Gly, S195G, and Ser195-->Ala, S195A) of Streptomyces griseus protease B (SGPB) were generated that efficiently catalyze peptide ligation (i.e., aminolysis of ester-, thioester- and para-nitroanilide-activated peptides). The variants also showed reduced hydrolytic activity relative to the wild-type enzyme. The ratio of aminolysis to hydrolysis was greater for the S195A variant, which was also capable of catalyzing ligation in concentrations of urea as high as 2 M. CONCLUSIONS Mutagenic substitution of the active-site serine residue of SGPB by either glycine or alanine has created a unique class of peptide-ligating catalysts that are useful for coupling relatively stable ester- and para-nitroanilide-activated substrates. Ligation proceeds through an acyl-enzyme intermediate involving His57. Serine to alanine mutations may provide a general strategy for converting proteases with chymotrypsin-like protein folds into peptide-coupling enzymes.
Collapse
Affiliation(s)
- R J Elliott
- Institute of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, V5A 1S6, Canada
| | | | | | | | | |
Collapse
|
18
|
Shinde U, Inouye M. Intramolecular chaperones: polypeptide extensions that modulate protein folding. Semin Cell Dev Biol 2000; 11:35-44. [PMID: 10736262 DOI: 10.1006/scdb.1999.0349] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Several prokaryotic and eukaryotic proteins are synthesized as precursors in the form of pre-pro-proteins. While the pre-regions function as signal peptides that are involved in transport, the propeptides can often catalyze correct folding of their associated proteins. Such propeptides have been termed intramolecular chaperones. In cases where propeptides may not directly catalyze the folding reaction, it appears that they can facilitate processes such as structural organization and oligomerization, localization, sorting and modulation of enzymatic activity and stability of proteins. Based on the available literature it appears that propeptides may actually function as 'post-translational modulators' of protein structure and function. Propeptides can be classified into two broad categories: Class I propeptides that function as intramolecular chaperones and directly catalyze the folding reaction; and Class II propeptides that are not directly involved in folding.
Collapse
Affiliation(s)
- U Shinde
- Department of Biochemistry, UMDNJ-RWJMS, 675 Hoes Lane, Piscataway, NJ 08854, USA
| | | |
Collapse
|