1
|
MacNair CR, Rutherford ST, Tan MW. Alternative therapeutic strategies to treat antibiotic-resistant pathogens. Nat Rev Microbiol 2024; 22:262-275. [PMID: 38082064 DOI: 10.1038/s41579-023-00993-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/07/2023] [Indexed: 04/19/2024]
Abstract
Resistance threatens to render antibiotics - which are essential for modern medicine - ineffective, thus posing a threat to human health. The discovery of novel classes of antibiotics able to overcome resistance has been stalled for decades, with the developmental pipeline relying almost entirely on variations of existing chemical scaffolds. Unfortunately, this approach has been unable to keep pace with resistance evolution, necessitating new therapeutic strategies. In this Review, we highlight recent efforts to discover non-traditional antimicrobials, specifically describing the advantages and limitations of antimicrobial peptides and macrocycles, antibodies, bacteriophages and antisense oligonucleotides. These approaches have the potential to stem the tide of resistance by expanding the physicochemical property space and target spectrum occupied by currently approved antibiotics.
Collapse
Affiliation(s)
- Craig R MacNair
- Department of Infectious Diseases, Genentech Inc., South San Francisco, CA, USA
| | - Steven T Rutherford
- Department of Infectious Diseases, Genentech Inc., South San Francisco, CA, USA
| | - Man-Wah Tan
- Department of Infectious Diseases, Genentech Inc., South San Francisco, CA, USA.
| |
Collapse
|
2
|
Khataniar A, Das A, Baruah MJ, Bania KK, Rajkhowa S, Al-Hussain SA, Zaki MEA. An Integrative Approach to Study the Inhibition of Providencia vermicola FabD Using C2-Quaternary Indolinones. Drug Des Devel Ther 2023; 17:3325-3347. [PMID: 38024529 PMCID: PMC10657194 DOI: 10.2147/dddt.s427193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 10/25/2023] [Indexed: 12/01/2023] Open
Abstract
Background The present study investigates the potential bioactivity of twelve experimentally designed C-2 quaternary indolinones against Providencia spp., a bacterial group of the Enterobacteriaceae family known to cause urinary tract infections. The study aims to provide insights into the bioactive properties of the investigated compounds and their potential use in developing novel treatments against Providencia spp. The experimental design of indolinones, combined with their unique chemical structure, makes them attractive candidates for further investigation. The results of this research may contribute to the development of novel therapeutic agents to combat Providencia spp. infections. Methods The synthesized indolinones (moL1-moL12) are evaluated to identify any superior activity, particularly focusing on moL12, which possesses aza functionality. The antimicrobial activities of all twelve compounds are tested in triplicates against six different Gram-positive and Gram-negative organisms, including P. vermicola (P<0.05). Computational methods have been employed to assess the pharmacokinetic properties of the compounds. Results Among the synthesized indolinones, moL12 exhibits superior activity compared to the other compounds with similar skeleton but different functional moieties. All six strains tested, including P. vermicola, demonstrated sensitivity to moL12. Computational studies support the pharmacokinetic properties of moL12, indicating acceptable absorption, distribution, metabolism, excretion, and toxicity characteristics. Conclusion Utilizing the PPI approach, we have identified a promising target, FabD, in Gram-negative bacteria. Our analysis has shown that moL12 exhibits significant potential in binding with FabD, thereby, might inhibit cell wall formation, and display superior antimicrobial activity compared to other compounds. Consequently, moL12 may be a potential therapeutic agent that could be used to combat urinary tract infections caused by Providencia spp. The findings of this research hold significant promise for the development of new and effective treatments for bacterial infections.
Collapse
Affiliation(s)
- Ankita Khataniar
- Centre for Biotechnology and Bioinformatics, Dibrugarh University, Dibrugarh, As-786004, India
| | - Abhichandan Das
- Centre for Biotechnology and Bioinformatics, Dibrugarh University, Dibrugarh, As-786004, India
| | - Manash J Baruah
- Department of Chemical Sciences, Tezpur University, Tezpur, As-784028, India
| | - Kusum K Bania
- Department of Chemical Sciences, Tezpur University, Tezpur, As-784028, India
| | - Sanchaita Rajkhowa
- Centre for Biotechnology and Bioinformatics, Dibrugarh University, Dibrugarh, As-786004, India
| | - Sami A Al-Hussain
- Department of Chemistry, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Magdi E A Zaki
- Department of Chemistry, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| |
Collapse
|
3
|
Caliskan M, Poschmann G, Gudzuhn M, Waldera-Lupa D, Molitor R, Strunk CH, Streit WR, Jaeger KE, Stühler K, Kovacic F. Pseudomonas aeruginosa responds to altered membrane phospholipid composition by adjusting the production of two-component systems, proteases and iron uptake proteins. Biochim Biophys Acta Mol Cell Biol Lipids 2023; 1868:159317. [PMID: 37054907 DOI: 10.1016/j.bbalip.2023.159317] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 03/16/2023] [Accepted: 03/21/2023] [Indexed: 04/15/2023]
Abstract
Membrane protein and phospholipid (PL) composition changes in response to environmental cues and during infections. To achieve these, bacteria use adaptation mechanisms involving covalent modification and remodelling of the acyl chain length of PLs. However, little is known about bacterial pathways regulated by PLs. Here, we investigated proteomic changes in the biofilm of P. aeruginosa phospholipase mutant (∆plaF) with altered membrane PL composition. The results revealed profound alterations in the abundance of many biofilm-related two-component systems (TCSs), including accumulation of PprAB, a key regulator of the transition to biofilm. Furthermore, a unique phosphorylation pattern of transcriptional regulators, transporters and metabolic enzymes, as well as differential production of several proteases, in ∆plaF, indicate that PlaF-mediated virulence adaptation involves complex transcriptional and posttranscriptional response. Moreover, proteomics and biochemical assays revealed the depletion of pyoverdine-mediated iron uptake pathway proteins in ∆plaF, while proteins from alternative iron-uptake systems were accumulated. These suggest that PlaF may function as a switch between different iron-acquisition pathways. The observation that PL-acyl chain modifying and PL synthesis enzymes were overproduced in ∆plaF reveals the interconnection of degradation, synthesis and modification of PLs for proper membrane homeostasis. Although the precise mechanism by which PlaF simultaneously affects multiple pathways remains to be elucidated, we suggest that alteration of PL composition in ∆plaF plays a role for the global adaptive response in P. aeruginosa mediated by TCSs and proteases. Our study revealed the global regulation of virulence and biofilm by PlaF and suggests that targeting this enzyme may have therapeutic potential.
Collapse
Affiliation(s)
- Muttalip Caliskan
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Jülich, Germany
| | - Gereon Poschmann
- Institute of Molecular Medicine, Proteome Research, University Hospital and Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Mirja Gudzuhn
- Department of Microbiology and Biotechnology, University of Hamburg, Ohnhorststr. 18, 22609 Hamburg, Germany
| | - Daniel Waldera-Lupa
- Institute of Molecular Medicine, Proteome Research, University Hospital and Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Rebecka Molitor
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Jülich, Germany
| | | | - Wolfgang R Streit
- Department of Microbiology and Biotechnology, University of Hamburg, Ohnhorststr. 18, 22609 Hamburg, Germany
| | - Karl-Erich Jaeger
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Jülich, Germany; Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Kai Stühler
- Institute of Molecular Medicine, Proteome Research, University Hospital and Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Molecular Proteomics Laboratory, Biologisch-Medizinisches Forschungszentrum, Heinrich-Heine-University, Düsseldorf, Düsseldorf, Germany
| | - Filip Kovacic
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Jülich, Germany.
| |
Collapse
|
4
|
β-oxidation-polyhydroxyalkanoates synthesis relationship in Pseudomonas putida KT2440 revisited. Appl Microbiol Biotechnol 2023; 107:1863-1874. [PMID: 36763117 PMCID: PMC10006253 DOI: 10.1007/s00253-023-12413-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 01/20/2023] [Accepted: 01/25/2023] [Indexed: 02/11/2023]
Abstract
Pseudomonas putida KT2440 is a well-known model organism for the medium-chain-length (mcl) polyhydroxyalkanoate (PHA) accumulation. (R)-Specific enoyl-coenzyme A hydratase (PhaJ) was considered to be the main supplier of monomers for PHA synthesis by converting the β-oxidation intermediate, trans-2-enoyl-CoA to (R)-3-hydroxyacyl-CoA when fatty acids (FA) are used. Three PhaJ homologues, PhaJ1, PhaJ4 and MaoC, are annotated in P. putida KT2440. To investigate the relationship of fatty acids-PHA metabolism and the role of each PhaJ in PHA biosynthesis in P. putida KT2440, a series of P. putida KT2440 knockouts was obtained. PHA content and monomer composition in wild type (WT) and mutants under different growth conditions were analysed. PhaJ4 was the main monomer supplier for PHA synthesis with FA as sole carbon and energy source, with preference towards C8 and C10 substrate, whereas PhaJ1 showed preference for the C6 substrate. However, when all three PhaJ homologues were deleted, the mutant still accumulated PHA up to 10.7% of the cell dry weight (CDW). The deletion of (R)-3-hydroxydecanoyl-ACP:CoA transacylase (PhaG), which connects de novo FA and PHA synthesis pathways, while causing a further 1.8-fold decrease in PHA content, did not abolish PHA accumulation. Further proteome analysis revealed quinoprotein alcohol dehydrogenases PedE and PedH as potential monomer suppliers, but when these were deleted, the PHA level remained at 2.2-14.8% CDW depending on the fatty acid used and whether nitrogen limitation was applied. Therefore, it is likely that some other non-specific dehydrogenases supply monomers for PHA synthesis, demonstrating the redundancy of PHA metabolism. KEY POINTS: • β-oxidation intermediates are converted to PHA monomers by hydratases PhaJ1, PhaJ4 and MaoC in Pseudomonas putida KT2440. • When these are deleted, the PHA level decreases, but it is not abolished. • PHA non-specific enzyme(s) also contributes to PHA metabolism in KT2440.
Collapse
|
5
|
Wong YC, Naeem R, Abd El Ghany M, Hoh CC, Pain A, Nathan S. Genome-wide transposon mutagenesis analysis of Burkholderia pseudomallei reveals essential genes for in vitro and in vivo survival. Front Cell Infect Microbiol 2022; 12:1062682. [PMID: 36619746 PMCID: PMC9816413 DOI: 10.3389/fcimb.2022.1062682] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
Introduction Burkholderia pseudomallei, a soil-dwelling microbe that infects humans and animals is the cause of the fatal disease melioidosis. The molecular mechanisms that underlie B. pseudomallei's versatility to survive within a broad range of environments are still not well defined. Methods We used the genome-wide screening tool TraDIS (Transposon Directed Insertion-site Sequencing) to identify B. pseudomallei essential genes. Transposon-flanking regions were sequenced and gene essentiality was assessed based on the frequency of transposon insertions within each gene. Transposon mutants were grown in LB and M9 minimal medium to determine conditionally essential genes required for growth under laboratory conditions. The Caenorhabditis elegans infection model was used to assess genes associated with in vivo B. pseudomallei survival. Transposon mutants were fed to the worms, recovered from worm intestines, and sequenced. Two selected mutants were constructed and evaluated for the bacteria's ability to survive and proliferate in the nematode intestinal lumen. Results Approximately 500,000 transposon-insertion mutants of B. pseudomallei strain R15 were generated. A total of 848,811 unique transposon insertion sites were identified in the B. pseudomallei R15 genome and 492 genes carrying low insertion frequencies were predicted to be essential. A total of 96 genes specifically required to support growth under nutrient-depleted conditions were identified. Genes most likely to be involved in B. pseudomallei survival and adaptation in the C. elegans intestinal lumen, were identified. When compared to wild type B. pseudomallei, a Tn5 mutant of bpsl2988 exhibited reduced survival in the worm intestine, was attenuated in C. elegans killing and showed decreased colonization in the organs of infected mice. Discussion The B. pseudomallei conditional essential proteins should provide further insights into the bacteria's niche adaptation, pathogenesis, and virulence.
Collapse
Affiliation(s)
- Yee-Chin Wong
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Malaysia
| | - Raeece Naeem
- Bioscience program, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Jeddah, Saudi Arabia
| | - Moataz Abd El Ghany
- Bioscience program, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Jeddah, Saudi Arabia,School of Public Health, The University of Sydney, Sydney, NSW, Australia,Centre for Infectious Disease and Microbiology, The Westmead Institute for Medical Research, Sydney, NSW, Australia,Sydney Institute for Infectious Diseases, The University of Sydney, Sydney, NSW, Australia
| | | | - Arnab Pain
- Bioscience program, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Jeddah, Saudi Arabia
| | - Sheila Nathan
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Malaysia,*Correspondence: Sheila Nathan,
| |
Collapse
|
6
|
Vella P, Rudraraju RS, Lundbäck T, Axelsson H, Almqvist H, Vallin M, Schneider G, Schnell R. A FabG inhibitor targeting an allosteric binding site inhibits several orthologs from Gram-negative ESKAPE pathogens. Bioorg Med Chem 2021; 30:115898. [PMID: 33388594 DOI: 10.1016/j.bmc.2020.115898] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 11/22/2020] [Indexed: 11/26/2022]
Abstract
The spread of antibiotic resistance within the ESKAPE group of human pathogenic bacteria poses severe challenges in the treatment of infections and maintenance of safe hospital environments. This motivates efforts to validate novel target proteins within these species that could be pursued as potential targets for antibiotic development. Genetic data suggest that the enzyme FabG, which is part of the bacterial fatty acid biosynthetic system FAS-II, is essential in several ESKAPE pathogens. FabG catalyzes the NADPH dependent reduction of 3-keto-acyl-ACP during fatty acid elongation, thus enabling lipid supply for production and maintenance of the cell envelope. Here we report on small-molecule screening on the FabG enzymes from A. baumannii and S. typhimurium to identify a set of µM inhibitors, with the most potent representative (1) demonstrating activity against six FabG-orthologues. A co-crystal structure with FabG from A. baumannii (PDB:6T65) confirms inhibitor binding at an allosteric site located in the subunit interface, as previously demonstrated for other sub-µM inhibitors of FabG from P. aeruginosa. We show that inhibitor binding distorts the oligomerization interface in the FabG tetramer and displaces crucial residues involved in the interaction with the co-substrate NADPH. These observations suggest a conserved allosteric site across the FabG family, which can be potentially targeted for interference with fatty acid biosynthesis in clinically relevant ESKAPE pathogens.
Collapse
Affiliation(s)
- Peter Vella
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-17 165 Stockholm, Sweden
| | | | - Thomas Lundbäck
- Chemical Biology Consortium Sweden, Science for Life Laboratory, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 65 Stockholm, Sweden
| | - Hanna Axelsson
- Chemical Biology Consortium Sweden, Science for Life Laboratory, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 65 Stockholm, Sweden
| | - Helena Almqvist
- Chemical Biology Consortium Sweden, Science for Life Laboratory, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 65 Stockholm, Sweden
| | - Michaela Vallin
- Chemical Biology Consortium Sweden, Science for Life Laboratory, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 65 Stockholm, Sweden
| | - Gunter Schneider
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-17 165 Stockholm, Sweden
| | - Robert Schnell
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-17 165 Stockholm, Sweden.
| |
Collapse
|
7
|
Gulevich AY, Skorokhodova AY, Debabov VG. Study of the Potential of the Reversal of the Fatty-Acid Beta-Oxidation Pathway for Stereoselective Biosynthesis of (S)-1,3-Butanediol from Glucose by Recombinant Escherichia coli Strains. APPL BIOCHEM MICRO+ 2020. [DOI: 10.1134/s0003683820080049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Connors E, Soto-Dávila M, Hossain A, Vasquez I, Gnanagobal H, Santander J. Identification and validation of reliable Aeromonas salmonicida subspecies salmonicida reference genes for differential gene expression analyses. INFECTION GENETICS AND EVOLUTION 2019; 73:314-321. [DOI: 10.1016/j.meegid.2019.05.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 05/09/2019] [Accepted: 05/14/2019] [Indexed: 01/19/2023]
|
9
|
Zhang H, Liu Y, Yao C, Cao X, Tian J, Xue S. FabG can function as PhaB for poly-3-hydroxybutyrate biosynthesis in photosynthetic cyanobacteria Synechocystis sp. PCC 6803. Bioengineered 2017; 8:707-715. [PMID: 28494182 DOI: 10.1080/21655979.2017.1317574] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The production of poly-3-hydroxybutyrate (PHB) by photosynthetic cyanobacteria is a potentially sustainable production method for the biodegradable plastics industry. β-Ketoacyl-ACP reductase (FabG), from the photosynthetic cyanobacterium Synechocystis sp. PCC 6803 (SpFabG), is the first NADPH-dependent reductase in the fatty acid biosynthesis pathway. Its structure is similar to that of acetoacetyl-CoA reductase (SpPhaB), which is critical for PHB synthesis and can replace SpPhaB for acetoacetyl-CoA reduction in vitro. However, the specific function of SpFabG in fatty acid synthesis and whether SpFabG could participate in PHB synthesis in vivo were not yet clear. In this study, the role of SpFabG in fatty acid synthesis was first verified in vivo by knocking down and overexpressing of fabG. It was shown that SpFabG was essential yet not rate-limiting for fatty acid biosynthesis. The biochemical characterization of SpFabG using acetoacetyl-CoA as the substrate showed that the optimum temperature, optimum pH, Km and kcat were 30°C, 7, 2.30 mM, and 19.85 s-1, respectively, which exemplified the ability of SpFabG to reduce acetoacetyl-CoA with a relatively low affinity and weak catalytic efficiency. Functional analysis of SpFabG in vivo indicated that SpFabG was able to partially complement SpPhaB under nitrogen-deprived conditions, and overexpression of fabG led to the diversion of partial carbon flux from fatty acid toward PHB synthesis.
Collapse
Affiliation(s)
- Haowei Zhang
- a School of Engineering, Dalian Polytechnic University , Liaoning , Dalian , China
| | - Yinghui Liu
- b Marine Bioengineering Group, Dalian Institute of Chemical Physics , Chinese Academy of Sciences , Dalian , China
| | - Changhong Yao
- c Department of Pharmaceutical & Biological Engineering , School of Chemical Engineering, Sichuan University , Chengdu , Sichuan , China
| | - Xupeng Cao
- b Marine Bioengineering Group, Dalian Institute of Chemical Physics , Chinese Academy of Sciences , Dalian , China
| | - Jing Tian
- a School of Engineering, Dalian Polytechnic University , Liaoning , Dalian , China
| | - Song Xue
- b Marine Bioengineering Group, Dalian Institute of Chemical Physics , Chinese Academy of Sciences , Dalian , China
| |
Collapse
|
10
|
An Eight-Residue Deletion in Escherichia coli FabG Causes Temperature-Sensitive Growth and Lipid Synthesis Plus Resistance to the Calmodulin Inhibitor Trifluoperazine. J Bacteriol 2017; 199:JB.00074-17. [PMID: 28264990 DOI: 10.1128/jb.00074-17] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 02/24/2017] [Indexed: 11/20/2022] Open
Abstract
FabG performs the NADPH-dependent reduction of β-keto acyl-acyl carrier protein substrates in the elongation cycle of fatty acid synthesis. We report the characterization of a temperature-sensitive mutation (fabGΔ8) in Escherichia colifabG that results from an in-frame 8-amino-acid residue deletion in the α6/α7 subdomain. This region forms part of one of the two dimerization interfaces of this tetrameric enzyme and is reported to undergo significant conformational changes upon cofactor binding, which define the entrance to the active-site cleft. The activity of the mutant enzyme is extremely thermolabile and is deficient in forming homodimers at nonpermissive temperatures with a corresponding decrease in fatty acid synthesis both in vivo and in vitro Surprisingly, the fabGΔ8 strain reverts to temperature resistance at a rate reminiscent of that of a point mutant with intragenic pseudorevertants located either on the 2-fold axes of symmetry or at the mouth of the active-site cleft. The fabGΔ8 mutation also confers resistance to the calmodulin inhibitor trifluoperazine and renders the enzyme extremely sensitive to Ca2+in vitro We also observed a significant alteration in the lipid A fatty acid composition of fabGΔ8 strains but only in an lpxC background, probably due to alterations in the permeability of the outer membrane. These observations provide insights into the structural dynamics of FabG and hint at yet another point of regulation between fatty acid and lipid A biosynthesis.IMPORTANCE Membrane lipid homeostasis and its plasticity in a variety of environments are essential for bacterial survival. Since lipid biosynthesis in bacteria and plants is fundamentally distinct from that in animals, it is an ideal target for the development of antibacterial therapeutics. FabG, the subject of this study, catalyzes the first cofactor-dependent reduction in this pathway and is active only as a tetramer. This study examines the interactions responsible for tetramerization through the biochemical characterization of a novel temperature-sensitive mutation caused by a short deletion in an important helix-turn-helix motif. The mutant strain has altered phospholipid and lipid A compositions and is resistant to trifluoperazine, an inhibitor of mammalian calmodulin. Understanding its structural dynamics and its influence on lipid A synthesis also allows us to explore lipid homeostasis as a mechanism for antibiotic resistance.
Collapse
|
11
|
Patel RR, Sundin GW, Yang CH, Wang J, Huntley RB, Yuan X, Zeng Q. Exploration of Using Antisense Peptide Nucleic Acid (PNA)-cell Penetrating Peptide (CPP) as a Novel Bactericide against Fire Blight Pathogen Erwinia amylovora. Front Microbiol 2017; 8:687. [PMID: 28469617 PMCID: PMC5395615 DOI: 10.3389/fmicb.2017.00687] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 04/04/2017] [Indexed: 01/08/2023] Open
Abstract
Erwinia amylovora is a Gram-negative bacterial plant pathogen in the family Enterobacteriaceae and is the causal agent of fire blight, a devastating disease of apple and pear. Fire blight is traditionally managed by the application of the antibiotic streptomycin during bloom, but this strategy has been challenged by the development and spread of streptomycin resistance. Thus, there is an urgent need for effective, specific, and sustainable control alternatives for fire blight. Antisense antimicrobials are oligomers of nucleic acid homologs with antisense sequence of essential genes in bacteria. The binding of these molecules to the mRNA of essential genes can result in translational repression and antimicrobial effect. Here, we explored the possibility of developing antisense antimicrobials against E. amylovora and using these compounds in fire blight control. We determined that a 10-nucleotide oligomer of peptide nucleic acid (PNA) targeting the start codon region of an essential gene acpP is able to cause complete growth inhibition of E. amylovora. We found that conjugation of cell penetrating peptide (CPP) to PNA is essential for the antimicrobial effect, with CPP1 [(KFF)3K] being the most effective against E. amylovora. The minimal inhibitory concentration (MIC) of anti-acpP-CPP1 (2.5 μM) is comparable to the MIC of streptomycin (2 μM). Examination of the antimicrobial mechanisms demonstrated that anti-acpP-CPP1 caused dose-dependent reduction of acpP mRNA in E. amylovora upon treatment and resulted in cell death (bactericidal effect). Anti-acpP-CPP1 (100 μM) is able to effectively limit the pathogen growth on stigmas of apple flowers, although less effective than streptomycin. Finally, unlike streptomycin that does not display any specificity in inhibiting pathogen growth, anti-acpP-CPP1 has more specific antimicrobial effect against E. amylovora. In summary, we demonstrated that PNA-CPP can cause an effective, specific antimicrobial effect against E. amylovora and may provide the basis for a novel approach for fire blight control.
Collapse
Affiliation(s)
- Ravi R. Patel
- Department of Plant Pathology and Ecology, The Connecticut Agricultural Experiment Station, New HavenCT, USA
| | - George W. Sundin
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East LansingMI, USA
| | - Ching-Hong Yang
- Department of Biological Sciences, University of Wisconsin–Milwaukee, MilwaukeeWI, USA
| | - Jie Wang
- Department of Plant Biology, Michigan State University, East LansingMI, USA
| | - Regan B. Huntley
- Department of Plant Pathology and Ecology, The Connecticut Agricultural Experiment Station, New HavenCT, USA
| | - Xiaochen Yuan
- Department of Biological Sciences, University of Wisconsin–Milwaukee, MilwaukeeWI, USA
| | - Quan Zeng
- Department of Plant Pathology and Ecology, The Connecticut Agricultural Experiment Station, New HavenCT, USA
| |
Collapse
|
12
|
Ribaudo N, Li X, Davis B, Wood TK, Huang ZJ. A Genome-Scale Modeling Approach to Quantify Biofilm Component Growth of Salmonella Typhimurium. J Food Sci 2016; 82:154-166. [PMID: 27992644 DOI: 10.1111/1750-3841.13565] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 10/20/2016] [Accepted: 10/24/2016] [Indexed: 12/12/2022]
Abstract
Salmonella typhimurium (S. typhimurium) is an extremely dangerous foodborne bacterium that infects both animal and human subjects, causing fatal diseases around the world. Salmonella's robust virulence, antibiotic-resistant nature, and capacity to survive under harsh conditions are largely due to its ability to form resilient biofilms. Multiple genome-scale metabolic models have been developed to study the complex and diverse nature of this organism's metabolism; however, none of these models fully integrated the reactions and mechanisms required to study the influence of biofilm formation. This work developed a systems-level approach to study the adjustment of intracellular metabolism of S. typhimurium during biofilm formation. The most advanced metabolic reconstruction currently available, STM_v1.0, was 1st extended to include the formation of the extracellular biofilm matrix. Flux balance analysis was then employed to study the influence of biofilm formation on cellular growth rate and the production rates of biofilm components. With biofilm formation present, biomass growth was examined under nutrient rich and nutrient deficient conditions, resulting in overall growth rates of 0.8675 and 0.6238 h-1 respectively. Investigation of intracellular flux variation during biofilm formation resulted in the elucidation of 32 crucial reactions, and associated genes, whose fluxes most significantly adapt during the physiological response. Experimental data were found in the literature to validate the importance of these genes for the biofilm formation of S. typhimurium. This preliminary investigation on the adjustment of intracellular metabolism of S. typhimurium during biofilm formation will serve as a platform to generate hypotheses for further experimental study on the biofilm formation of this virulent bacterium.
Collapse
Affiliation(s)
- Nicholas Ribaudo
- Dept. of Chemical Engineering, Villanova Univ, Villanova, 19085, PA, U.S.A
| | - Xianhua Li
- Dept. of Chemical Engineering, Villanova Univ, Villanova, 19085, PA, U.S.A
| | - Brett Davis
- Dept. of Chemical Engineering, Villanova Univ, Villanova, 19085, PA, U.S.A
| | - Thomas K Wood
- Depts. of Chemical Engineering and Biochemistry and Molecular Biology, Pennsylvania State Univ, Univ. Park, 16802, PA, U.S.A
| | - Zuyi Jacky Huang
- Dept. of Chemical Engineering, Villanova Univ, Villanova, 19085, PA, U.S.A
| |
Collapse
|
13
|
Lai KK, Davis-Richardson AG, Dias R, Triplett EW. Identification of the Genes Required for the Culture of Liberibacter crescens, the Closest Cultured Relative of the Liberibacter Plant Pathogens. Front Microbiol 2016; 7:547. [PMID: 27148230 PMCID: PMC4837290 DOI: 10.3389/fmicb.2016.00547] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 04/04/2016] [Indexed: 11/26/2022] Open
Abstract
Here Tn5 random transposon mutagenesis was used to identify the essential elements for culturing Liberibacter crescens BT-1 that can serve as antimicrobial targets for the closely related pathogens of citrus, Candidatus Liberibacter asiaticus (Las) and tomato and potato, Candidatus Liberibacter solanacearum (Lso). In order to gain insight on the virulence, metabolism, and culturability of the pathogens within the genus Liberibacter, a mini-Tn5 transposon derivative system consisting of a gene specifying resistance to kanamycin, flanked by a 19-base-pair terminal repeat sequence of Tn5, was used for the genome-wide mutagenesis of L. crescens BT-1 and created an insertion mutant library. By analyzing the location of insertions using Sanger and Illumina Mi-Seq sequencing, 314 genes are proposed as essential for the culture of L. crescens BT-1 on BM-7 medium. Of those genes, 76 are not present in the uncultured Liberibacter pathogens and, as a result, suggest molecules necessary for the culturing these pathogens. Those molecules include the aromatic amino acids, several vitamins, histidine, cysteine, lipopolysaccharides, and fatty acids. In addition, the 238 essential genes of L. crescens in common with L. asiaticus are potential targets for the development of therapeutics against the disease.
Collapse
Affiliation(s)
- Kin-Kwan Lai
- Microbiology and Cell Science Department, Institute of Food and Agricultural Sciences, University of Florida Gainesville, FL, USA
| | - Austin G Davis-Richardson
- Microbiology and Cell Science Department, Institute of Food and Agricultural Sciences, University of Florida Gainesville, FL, USA
| | - Raquel Dias
- Microbiology and Cell Science Department, Institute of Food and Agricultural Sciences, University of Florida Gainesville, FL, USA
| | - Eric W Triplett
- Microbiology and Cell Science Department, Institute of Food and Agricultural Sciences, University of Florida Gainesville, FL, USA
| |
Collapse
|
14
|
Dissecting the Structural Elements for the Activation of β-Ketoacyl-(Acyl Carrier Protein) Reductase from Vibrio cholerae. J Bacteriol 2015; 198:463-76. [PMID: 26553852 DOI: 10.1128/jb.00360-15] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 11/03/2015] [Indexed: 01/22/2023] Open
Abstract
UNLABELLED β-Ketoacyl-(acyl carrier protein) reductase (FabG) catalyzes the key reductive reaction in the elongation cycle of fatty acid synthesis (FAS), which is a vital metabolic pathway in bacteria and a promising target for new antibiotic development. The activation of the enzyme is usually linked to the formation of a catalytic triad and cofactor binding, and crystal structures of FabG from different organisms have been captured in either the active or inactive conformation. However, the structural elements which enable activation of FabG require further exploration. Here we report the findings of structural, enzymatic, and binding studies of the FabG protein found in the causative agent of cholera, Vibrio cholerae (vcFabG). vcFabG exists predominantly as a dimer in solution and is able to self-associate to form tetramers, which is the state seen in the crystal structure. The formation of the tetramer may be promoted by the presence of the cofactor NADP(H). The transition between the dimeric and tetrameric states of vcFabG is related to changes in the conformations of the α4/α5 helices on the dimer-dimer interface. Two glycine residues adjacent to the dimer interface (G92 and G141) are identified to be the hinge for the conformational changes, while the catalytic tyrosine (Y155) and a glutamine residue that forms hydrogen bonds to both loop β4-α4 and loop β5-α5 (Q152) stabilize the active conformation. The functions of the aforementioned residues were confirmed by binding and enzymatic assays for the corresponding mutants. IMPORTANCE This paper describes the results of structural, enzymatic, and binding studies of FabG from Vibrio cholerae (vcFabG). In this work, we dissected the structural elements responsible for the activation of vcFabG. The structural information provided here is essential for the development of antibiotics specifically targeting bacterial FabG, especially for the multidrug-resistant strains of V. cholerae.
Collapse
|
15
|
Nanson JD, Forwood JK. Structural Characterisation of FabG from Yersinia pestis, a Key Component of Bacterial Fatty Acid Synthesis. PLoS One 2015; 10:e0141543. [PMID: 26539719 PMCID: PMC4635001 DOI: 10.1371/journal.pone.0141543] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 10/10/2015] [Indexed: 01/14/2023] Open
Abstract
Ketoacyl-acyl carrier protein reductases (FabG) are ubiquitously expressed enzymes that catalyse the reduction of acyl carrier protein (ACP) linked thioesters within the bacterial type II fatty acid synthesis (FASII) pathway. The products of these enzymes, saturated and unsaturated fatty acids, are essential components of the bacterial cell envelope. The FASII reductase enoyl-ACP reductase (FabI) has been the focus of numerous drug discovery efforts, some of which have led to clinical trials, yet few studies have focused on FabG. Like FabI, FabG appears to be essential for survival in many bacteria, similarly indicating the potential of this enzyme as a drug target. FabG enzymes are members of the short-chain alcohol dehydrogenase/reductase (SDR) family, and like other SDRs, exhibit highly conserved secondary and tertiary structures, and contain a number of conserved sequence motifs. Here we describe the crystal structures of FabG from Yersinia pestis (YpFabG), the causative agent of bubonic, pneumonic, and septicaemic plague, and three human pandemics. Y. pestis remains endemic in many parts of North America, South America, Southeast Asia, and Africa, and a threat to human health. YpFabG shares a high degree of structural similarity with bacterial homologues, and the ketoreductase domain of the mammalian fatty acid synthase from both Homo sapiens and Sus scrofa. Structural characterisation of YpFabG, and comparison with other bacterial FabGs and the mammalian fatty acid synthase, provides a strong platform for virtual screening of potential inhibitors, rational drug design, and the development of new antimicrobial agents to combat Y. pestis infections.
Collapse
Affiliation(s)
- Jeffrey D. Nanson
- School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, NSW, 2678, Australia
| | - Jade K. Forwood
- School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, NSW, 2678, Australia
- Graham Centre for Agricultural Innovation, Charles Sturt University, Wagga Wagga, NSW, 2678, Australia
- * E-mail:
| |
Collapse
|
16
|
Abstract
The pathways in Escherichia coli and (largely by analogy) S. enterica remain the paradigm of bacterial lipid synthetic pathways, although recently considerable diversity among bacteria in the specific areas of lipid synthesis has been demonstrated. The structural biology of the fatty acid synthetic proteins is essentially complete. However, the membrane-bound enzymes of phospholipid synthesis remain recalcitrant to structural analyses. Recent advances in genetic technology have allowed the essentialgenes of lipid synthesis to be tested with rigor, and as expected most genes are essential under standard growth conditions. Conditionally lethal mutants are available in numerous genes, which facilitates physiological analyses. The array of genetic constructs facilitates analysis of the functions of genes from other organisms. Advances in mass spectroscopy have allowed very accurate and detailed analyses of lipid compositions as well as detection of the interactions of lipid biosynthetic proteins with one another and with proteins outside the lipid pathway. The combination of these advances has resulted in use of E. coli and S. enterica for discovery of new antimicrobials targeted to lipid synthesis and in deciphering the molecular actions of known antimicrobials. Finally,roles for bacterial fatty acids other than as membrane lipid structural components have been uncovered. For example, fatty acid synthesis plays major roles in the synthesis of the essential enzyme cofactors, biotin and lipoic acid. Although other roles for bacterial fatty acids, such as synthesis of acyl-homoserine quorum-sensing molecules, are not native to E. coli introduction of the relevant gene(s) synthesis of these foreign molecules readily proceeds and the sophisticated tools available can used to decipher the mechanisms of synthesis of these molecules.
Collapse
|
17
|
Kondakova T, D'Heygère F, Feuilloley MJ, Orange N, Heipieper HJ, Duclairoir Poc C. Glycerophospholipid synthesis and functions in Pseudomonas. Chem Phys Lipids 2015; 190:27-42. [PMID: 26148574 DOI: 10.1016/j.chemphyslip.2015.06.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 06/29/2015] [Accepted: 06/30/2015] [Indexed: 11/25/2022]
Abstract
The genus Pseudomonas is one of the most heterogeneous groups of eubacteria, presents in all major natural environments and in wide range of associations with plants and animals. The wide distribution of these bacteria is due to the use of specific mechanisms to adapt to environmental modifications. Generally, bacterial adaptation is only considered under the aspect of genes and protein expression, but lipids also play a pivotal role in bacterial functioning and homeostasis. This review resumes the mechanisms and regulations of pseudomonal glycerophospholipid synthesis, and the roles of glycerophospholipids in bacterial metabolism and homeostasis. Recently discovered specific pathways of P. aeruginosa lipid synthesis indicate the lineage dependent mechanisms of fatty acids homeostasis. Pseudomonas glycerophospholipids ensure structure functions and play important roles in bacterial adaptation to environmental modifications. The lipidome of Pseudomonas contains a typical eukaryotic glycerophospholipid--phosphatidylcholine -, which is involved in bacteria-host interactions. The ability of Pseudomonas to exploit eukaryotic lipids shows specific and original strategies developed by these microorganisms to succeed in their infectious process. All compiled data provide the demonstration of the importance of studying the Pseudomonas lipidome to inhibit the infectious potential of these highly versatile germs.
Collapse
Affiliation(s)
- Tatiana Kondakova
- Normandie University of Rouen, Laboratory of Microbiology Signals and Microenvironment (LMSM), EA 4312, 55 rue St. Germain, 27000 Evreux, France
| | - François D'Heygère
- Centre de Biophysique Moléculaire, CNRS, UPR4301, rue Charles Sadron, 45071 Orléans, France
| | - Marc J Feuilloley
- Normandie University of Rouen, Laboratory of Microbiology Signals and Microenvironment (LMSM), EA 4312, 55 rue St. Germain, 27000 Evreux, France
| | - Nicole Orange
- Normandie University of Rouen, Laboratory of Microbiology Signals and Microenvironment (LMSM), EA 4312, 55 rue St. Germain, 27000 Evreux, France
| | - Hermann J Heipieper
- Department of Environmental Biotechnology, UFZ Helmholtz Centre for Environmental Research, Permoserstr. 15, 04318 Leipzig, Germany
| | - Cécile Duclairoir Poc
- Normandie University of Rouen, Laboratory of Microbiology Signals and Microenvironment (LMSM), EA 4312, 55 rue St. Germain, 27000 Evreux, France.
| |
Collapse
|
18
|
Jiang W, Jiang Y, Bentley GJ, Liu D, Xiao Y, Zhang F. Enhanced production of branched-chain fatty acids by replacing β-ketoacyl-(acyl-carrier-protein) synthase III (FabH). Biotechnol Bioeng 2015; 112:1613-22. [DOI: 10.1002/bit.25583] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 02/09/2015] [Accepted: 02/23/2015] [Indexed: 01/13/2023]
Affiliation(s)
- Wen Jiang
- Department of Energy, Environmental, and Chemical Engineering; Washington University in St. Louis; 1 Brookings Drive, Saint Louis Missouri 63130
| | - Yanfang Jiang
- Department of Energy, Environmental, and Chemical Engineering; Washington University in St. Louis; 1 Brookings Drive, Saint Louis Missouri 63130
| | - Gayle J. Bentley
- Division of Biological & Biomedical Sciences; Washington University in St. Louis; Saint Louis Missouri
| | - Di Liu
- Division of Biological & Biomedical Sciences; Washington University in St. Louis; Saint Louis Missouri
| | - Yi Xiao
- Department of Energy, Environmental, and Chemical Engineering; Washington University in St. Louis; 1 Brookings Drive, Saint Louis Missouri 63130
| | - Fuzhong Zhang
- Department of Energy, Environmental, and Chemical Engineering; Washington University in St. Louis; 1 Brookings Drive, Saint Louis Missouri 63130
- Division of Biological & Biomedical Sciences; Washington University in St. Louis; Saint Louis Missouri
| |
Collapse
|
19
|
Finzel K, Lee DJ, Burkart MD. Using modern tools to probe the structure-function relationship of fatty acid synthases. Chembiochem 2015; 16:528-547. [PMID: 25676190 PMCID: PMC4545599 DOI: 10.1002/cbic.201402578] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Indexed: 12/25/2022]
Abstract
Fatty acid biosynthesis is essential to life and represents one of the most conserved pathways in nature, preserving the same handful of chemical reactions across all species. Recent interest in the molecular details of the de novo fatty acid synthase (FAS) has been heightened by demand for renewable fuels and the emergence of multidrug-resistant bacterial strains. Central to FAS is the acyl carrier protein (ACP), a protein chaperone that shuttles the growing acyl chain between catalytic enzymes within the FAS. Human efforts to alter fatty acid biosynthesis for oil production, chemical feedstock, or antimicrobial purposes has been met with limited success, due in part to a lack of detailed molecular information behind the ACP-partner protein interactions inherent to the pathway. This review will focus on recently developed tools for the modification of ACP and analysis of protein-protein interactions, such as mechanism-based crosslinking, and the studies exploiting them. Discussion specific to each enzymatic domain will focus first on mechanism and known inhibitors, followed by available structures and known interactions with ACP. Although significant unknowns remain, new understandings of the intricacies of FAS point to future advances in manipulating this complex molecular factory.
Collapse
Affiliation(s)
- Kara Finzel
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093-0358 (USA)
| | - D. John Lee
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093-0358 (USA)
| | - Michael D. Burkart
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093-0358 (USA)
| |
Collapse
|
20
|
Beld J, Lee DJ, Burkart MD. Fatty acid biosynthesis revisited: structure elucidation and metabolic engineering. MOLECULAR BIOSYSTEMS 2015; 11:38-59. [PMID: 25360565 PMCID: PMC4276719 DOI: 10.1039/c4mb00443d] [Citation(s) in RCA: 121] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Fatty acids are primary metabolites synthesized by complex, elegant, and essential biosynthetic machinery. Fatty acid synthases resemble an iterative assembly line, with an acyl carrier protein conveying the growing fatty acid to necessary enzymatic domains for modification. Each catalytic domain is a unique enzyme spanning a wide range of folds and structures. Although they harbor the same enzymatic activities, two different types of fatty acid synthase architectures are observed in nature. During recent years, strained petroleum supplies have driven interest in engineering organisms to either produce more fatty acids or specific high value products. Such efforts require a fundamental understanding of the enzymatic activities and regulation of fatty acid synthases. Despite more than one hundred years of research, we continue to learn new lessons about fatty acid synthases' many intricate structural and regulatory elements. In this review, we summarize each enzymatic domain and discuss efforts to engineer fatty acid synthases, providing some clues to important challenges and opportunities in the field.
Collapse
Affiliation(s)
- Joris Beld
- Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0358, USA.
| | | | | |
Collapse
|
21
|
Yang XY, Zhang L, Liu J, Li N, Yu G, Cao K, Han J, Zeng G, Pan Y, Sun X, He QY. Proteomic analysis on the antibacterial activity of a Ru(II) complex against Streptococcus pneumoniae. J Proteomics 2014; 115:107-16. [PMID: 25497219 DOI: 10.1016/j.jprot.2014.11.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 10/23/2014] [Accepted: 11/27/2014] [Indexed: 01/19/2023]
Abstract
UNLABELLED Streptococcus pneumoniae is a Gram-positive pathogen that causes a variety of infection diseases in human. In this project, we determined the antibacterial activity of a Ru(II) complex X-03 against S. pneumoniae in vitro, by comparing its toxicity to host cells A549 and HBE. We performed two-dimensional gel electrophoresis (2-DE)-based proteomic analysis to characterize the protein alterations in S. pneumoniae after treatment with X-03. In total, 50 proteins exhibiting significant differential expressions were identified. RT-PCR was used to confirm the expression differences for selected proteins. Bioinformatics analysis on the proteomic alterations suggested that Ru(II) complex X-03 may obstruct bacterial fatty acid synthesis and oxidation-reduction process to suppress the growth of S. pneumoniae. Metal-uptake experiments revealed that iron-acquisition pathway in the bacterium may be interfered by X-03. These results provide useful clues for further investigations on the mechanism of the antibacterial action of metal compounds. BIOLOGICAL SIGNIFICANCE The appearance of bacterial strains with broad antibiotic resistance is becoming an alarming global health concern. The development of novel efficient antibacterial compound is urgently needed. In the present study, we found that Ru(II) complex X-03 has a significant antibacterial activity and applied proteomic technology combined with bioinformatics analysis to investigate its antimicrobial mechanism in S. pneumoniae. Many proteins were found to be dysregulated, implicating that X-03 may affect various molecular pathways leading to the inhibition of bacterial growth. Metal-uptake experiments demonstrated that X-03 treatment reduced the iron content in the bacterium, suggesting the interference with iron acquisition systems by the complex. This disturbance in iron acquisition may directly or indirectly induce the proteomic response that involved many pathways. In addition, X-03 could selectively suppress Gram-positive bacteria but execute less cytotoxicity to Gram-negative bacteria, with almost no effect on human cells, implicating its potential to be developed as a specific antimicrobial agent. These results provide useful information for further investigations on the mechanism of the antibacterial action of metal drugs and development of efficient antibacterial drugs.
Collapse
Affiliation(s)
- Xiao-Yan Yang
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; The First Affiliated Hospital of Jinan University,Guangzhou 510632, China
| | - Liang Zhang
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Jie Liu
- Department of Chemistry, Jinan University, Guangzhou 510632, China
| | - Nan Li
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Guangchuang Yu
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Kun Cao
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Junlong Han
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Guandi Zeng
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yunlong Pan
- The First Affiliated Hospital of Jinan University,Guangzhou 510632, China
| | - Xuesong Sun
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| | - Qing-Yu He
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
22
|
Screening of a Leptospira biflexa mutant library to identify genes involved in ethidium bromide tolerance. Appl Environ Microbiol 2014; 80:6091-103. [PMID: 25063661 DOI: 10.1128/aem.01619-14] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Leptospira spp. are spirochete bacteria comprising both pathogenic and free-living species. The saprophyte L. biflexa is a model bacterium for studying leptospiral biology due to relative ease of culturing and genetic manipulation. In this study, we constructed a library of 4,996 random transposon mutants in L. biflexa. We screened the library for increased susceptibility to the DNA intercalating agent, ethidium bromide (EtBr), in order to identify genetic determinants that reduce L. biflexa susceptibility to antimicrobial agents. By phenotypic screening, using subinhibitory EtBr concentrations, we identified 29 genes that, when disrupted via transposon insertion, led to increased sensitivity of the bacteria to EtBr. At the functional level, these genes could be categorized by function as follows: regulation and signaling (n=11), transport (n=6), membrane structure (n=5), stress response (n=2), DNA damage repair (n=1), and other processes (n=3), while 1 gene had no predicted function. Genes involved in transport (including efflux pumps) and regulation (two-component systems, anti-sigma factor antagonists, etc.) were overrepresented, demonstrating that these genes are major contributors to EtBr tolerance. This finding suggests that transport genes which would prevent EtBr to enter the cell cytoplasm are critical for EtBr resistance. We identified genes required for the growth of L. biflexa in the presence of sublethal EtBr concentration and characterized their potential as antibiotic resistance determinants. This study will help to delineate mechanisms of adaptation to toxic compounds, as well as potential mechanisms of antibiotic resistance development in pathogenic L. interrogans.
Collapse
|
23
|
Lu P, Zhang Y, Hu Y, Francis MS, Chen S. A cis-encoded sRNA controls the expression of fabH2 in Yersinia. FEBS Lett 2014; 588:1961-6. [PMID: 24735725 DOI: 10.1016/j.febslet.2014.04.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 03/10/2014] [Accepted: 04/03/2014] [Indexed: 11/16/2022]
Abstract
YsrH is a novel cis-encoded sRNA located on the opposite strand to fabH2, which is essential for fatty acid biosynthesis in bacteria. In this study, YsrH-mediated regulation of fabH2 expression was investigated in Yersinia pseudotuberculosis. Constitutive and inducible over-expression of YsrH decreased the mRNA level of fabH2, while expression of downstream fabD and fabG remained unaffected. Polynucleotide phosphorylase (PNPase) also played an important role in this regulation process by mediating YsrH decay in the exponential phase. Thus, our data defines a cis-encoded sRNA that regulates fatty acid synthesis via a regulatory mechanism also involving PNPase.
Collapse
Affiliation(s)
- Pei Lu
- Key Laboratory of Etiology and Biosafety for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Yong Zhang
- Key Laboratory of Etiology and Biosafety for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Yangbo Hu
- Key Laboratory of Etiology and Biosafety for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Matthew S Francis
- Department of Molecular Biology and Umeå Centre for Microbial Research (UCMR), Umeå University, SE-901 87 Umeå, Sweden
| | - Shiyun Chen
- Key Laboratory of Etiology and Biosafety for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China.
| |
Collapse
|
24
|
Bharti RK, Srivastava S, Thakur IS. Proteomic analysis of carbon concentrating chemolithotrophic bacteria Serratia sp. for sequestration of carbon dioxide. PLoS One 2014; 9:e91300. [PMID: 24619032 PMCID: PMC3949746 DOI: 10.1371/journal.pone.0091300] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 02/08/2014] [Indexed: 11/19/2022] Open
Abstract
A chemolithotrophic bacterium enriched in the chemostat in presence of sodium bicarbonate as sole carbon source was identified as Serratia sp. by 16S rRNA sequencing. Carbon dioxide sequestering capacity of bacterium was detected by carbonic anhydrase enzyme and ribulose-1, 5- bisphosphate carboxylase/oxygenase (RuBisCO). The purified carbonic anhydrase showed molecular weight of 29 kDa. Molecular weight of RuBisCO was 550 kDa as determined by fast protein liquid chromatography (FPLC), however, sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) showed presence of two subunits whose molecular weights were 56 and 14 kDa. The Western blot analysis of the crude protein and purified sample cross reacted with RuBisCO large-subunit polypeptides antibodies showed strong band pattern at molecular weight around 56 kDa regions. Whole cell soluble proteins of Serratia sp. grown under autotrophic and heterotrophic conditions were resolved by two-dimensional gel electrophoresis and MALDI-TOF/MS for differential expression of proteins. In proteomic analysis of 63 protein spots, 48 spots were significantly up-regulated in the autotrophically grown cells; seven enzymes showed its utilization in autotrophic carbon fixation pathways and other metabolic activities of bacterium including lipid metabolisms indicated sequestration potency of carbon dioxide and production of biomaterials.
Collapse
Affiliation(s)
- Randhir K. Bharti
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Shaili Srivastava
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Indu Shekhar Thakur
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
25
|
Janßen HJ, Steinbüchel A. Fatty acid synthesis in Escherichia coli and its applications towards the production of fatty acid based biofuels. BIOTECHNOLOGY FOR BIOFUELS 2014; 7:7. [PMID: 24405789 PMCID: PMC3896788 DOI: 10.1186/1754-6834-7-7] [Citation(s) in RCA: 189] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Accepted: 12/24/2013] [Indexed: 05/04/2023]
Abstract
The idea of renewable and regenerative resources has inspired research for more than a hundred years. Ideally, the only spent energy will replenish itself, like plant material, sunlight, thermal energy or wind. Biodiesel or ethanol are examples, since their production relies mainly on plant material. However, it has become apparent that crop derived biofuels will not be sufficient to satisfy future energy demands. Thus, especially in the last decade a lot of research has focused on the production of next generation biofuels. A major subject of these investigations has been the microbial fatty acid biosynthesis with the aim to produce fatty acids or derivatives for substitution of diesel. As an industrially important organism and with the best studied microbial fatty acid biosynthesis, Escherichia coli has been chosen as producer in many of these studies and several reviews have been published in the fields of E. coli fatty acid biosynthesis or biofuels. However, most reviews discuss only one of these topics in detail, despite the fact, that a profound understanding of the involved enzymes and their regulation is necessary for efficient genetic engineering of the entire pathway. The first part of this review aims at summarizing the knowledge about fatty acid biosynthesis of E. coli and its regulation, and it provides the connection towards the production of fatty acids and related biofuels. The second part gives an overview about the achievements by genetic engineering of the fatty acid biosynthesis towards the production of next generation biofuels. Finally, the actual importance and potential of fatty acid-based biofuels will be discussed.
Collapse
Affiliation(s)
- Helge Jans Janßen
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, Corrensstrasse 3, D-48149, Münster, Germany
| | - Alexander Steinbüchel
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, Corrensstrasse 3, D-48149, Münster, Germany
- Environmental Sciences Department, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
26
|
Biochemical and structural studies of NADH-dependent FabG used to increase the bacterial production of fatty acids under anaerobic conditions. Appl Environ Microbiol 2013; 80:497-505. [PMID: 24212572 DOI: 10.1128/aem.03194-13] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Major efforts in bioenergy research have focused on producing fuels that can directly replace petroleum-derived gasoline and diesel fuel through metabolic engineering of microbial fatty acid biosynthetic pathways. Typically, growth and pathway induction are conducted under aerobic conditions, but for operational efficiency in an industrial context, anaerobic culture conditions would be preferred to obviate the need to maintain specific dissolved oxygen concentrations and to maximize the proportion of reducing equivalents directed to biofuel biosynthesis rather than ATP production. A major concern with fermentative growth conditions is elevated NADH levels, which can adversely affect cell physiology. The purpose of this study was to identify homologs of Escherichia coli FabG, an essential reductase involved in fatty acid biosynthesis, that display a higher preference for NADH than for NADPH as a cofactor. Four potential NADH-dependent FabG variants were identified through bioinformatic analyses supported by crystallographic structure determination (1.3- to 2.0-Å resolution). In vitro assays of cofactor (NADH/NADPH) preference in the four variants showed up to ≈ 35-fold preference for NADH, which was observed with the Cupriavidus taiwanensis FabG variant. In addition, FabG homologs were overexpressed in fatty acid- and methyl ketone-overproducing E. coli host strains under anaerobic conditions, and the C. taiwanensis variant led to a 60% higher free fatty acid titer and 75% higher methyl ketone titer relative to the titers of the control strains. With further engineering, this work could serve as a starting point for establishing a microbial host strain for production of fatty acid-derived biofuels (e.g., methyl ketones) under anaerobic conditions.
Collapse
|
27
|
Transcription of the Escherichia coli fatty acid synthesis operon fabHDG is directly activated by FadR and inhibited by ppGpp. J Bacteriol 2013; 195:3784-95. [PMID: 23772072 DOI: 10.1128/jb.00384-13] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Escherichia coli, FadR and FabR are transcriptional regulators that control the expression of fatty acid degradation and unsaturated fatty acid synthesis genes, depending on the availability of fatty acids. In this report, we focus on the dual transcriptional regulator FadR. In the absence of fatty acids, FadR represses the transcription of fad genes required for fatty acid degradation. However, FadR is also an activator, stimulating transcription of the products of the fabA and fabB genes responsible for unsaturated fatty acid synthesis. In this study, we show that FadR directly activates another fatty acid synthesis promoter, PfabH, which transcribes the fabHDG operon, indicating that FadR is a global regulator of both fatty acid degradation and fatty acid synthesis. We also demonstrate that ppGpp and its cofactor DksA, known primarily for their role in regulation of the synthesis of the translational machinery, directly inhibit transcription from the fabH promoter. ppGpp also inhibits the fadR promoter, thereby reducing transcription activation of fabH by FadR indirectly. Our study shows that both ppGpp and FadR have direct roles in the control of fatty acid promoters, linking expression in response to both translation activity and fatty acid availability.
Collapse
|
28
|
Cheng R, Ge Y, Yang B, Zhong X, Lin X, Huang Z. Cloning and functional analysis of putative malonyl-CoA:acyl-carrier protein transacylase gene from the docosahexaenoic acid-producer Schizochytrium sp. TIO1101. World J Microbiol Biotechnol 2013; 29:959-67. [PMID: 23292648 DOI: 10.1007/s11274-013-1253-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Accepted: 01/02/2013] [Indexed: 11/27/2022]
Abstract
Malonyl-CoA:acyl-carrier protein transacylase (MCAT), which transfers the malonyl group from malonyl-CoA to holo-acyl carrier protein (ACP), is a key enzyme in fatty acid biosynthesis. Schizochytrium sp. TIO1101 is a marine protist with high levels of docosahexaenoic acid accumulation. In this study, the putative fabD gene coding MCAT was isolated from Schizochytrium sp. TIO1101. The Schizochytrium MCAT gene (ScTIOfabD) contained an 1176 bp open reading frame encoding a protein of 391 amino acids. The ScTIOfabD gene exhibited high novelty in nucleotide and amino acid sequence. The highest amino acid identity was only 35 % between ScTIOMCAT and the reported MCATs. Further studies demonstrated that ScTIOMCAT could bind malonyl-CoA directly and transfer malonyl group from malonyl-CoA to the ACP domain in vitro. Phylogenetic analysis suggested that ScTIOMCAT was relative close to MCATs of yeast strains. Overexpression of ScTIOMCAT in Saccharomyces cereviseae significantly increased the MCAT activity, without negative effects on the growth rate of the host strain. In addition, ScTIOMCAT generated 16.8 and 62 % increase in biomass and fatty acid accumulation, respectively, and did not alter the profile of fatty acid. Our results indicated that the novel MCAT gene from Schizochytrium sp. TIO1101 was crucial for fatty acid synthesis and had potential applications for genetic modifications of oil-producing species.
Collapse
Affiliation(s)
- Rubin Cheng
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, 548 Binwen Road, Hangzhou 310003, China
| | | | | | | | | | | |
Collapse
|
29
|
Lee S, Lee S, Yoon YJ, Lee J. Enhancement of Long-Chain Fatty Acid Production in Escherichia coli by Coexpressing Genes, Including fabF, Involved in the Elongation Cycle of Fatty Acid Biosynthesis. Appl Biochem Biotechnol 2012; 169:462-76. [DOI: 10.1007/s12010-012-9987-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Accepted: 11/16/2012] [Indexed: 10/27/2022]
|
30
|
Proteome response of an extraintestinal pathogenic Escherichia coli strain with zoonotic potential to human and chicken sera. J Proteomics 2012; 75:4853-62. [PMID: 22677113 DOI: 10.1016/j.jprot.2012.05.044] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Revised: 05/20/2012] [Accepted: 05/29/2012] [Indexed: 12/29/2022]
Abstract
A subset of extraintestinal pathogenic Escherichia coli is zoonotic and has developed strategies to adapt to different host-specific environments. However, the underlying mechanisms of these adaptive strategies have yet to be discerned. Here, the proteomic response of an avian pathogenic E. coli strain, which appears indistinguishable from neonatal meningitis E. coli, was compared following growth in human and avian sera to determine whether it uses the same mechanisms to overcome the antibacterial effects of sera from different host species. Proteins involved in biosynthesis of iron receptors were up-regulated under both sera, suggesting that serum, regardless of the host of origin, is an iron-limited environment. However, several proteins involved in synthesis of nucleic acids, sulfur-containing amino acids and fatty acids, were differentially expressed in response to the sera from different hosts. Mutational analysis showed that this APEC strain required nucleotide biosynthesis during incubation in human, but not avian serum, and deletion of genes involved in the biosynthesis of sulfur-containing amino acids increased its resistance to human serum. Continued investigation of the proteome of 'zoonotic' ExPEC strains, grown under other 'dual' host conditions, will contribute to our understanding of ExPEC pathogenesis and host specificity and development of effective therapies and control strategies.
Collapse
|
31
|
Response of fatty acid synthesis genes to the binding of human salivary amylase by Streptococcus gordonii. Appl Environ Microbiol 2012; 78:1865-75. [PMID: 22247133 DOI: 10.1128/aem.07071-11] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Streptococcus gordonii, an important primary colonizer of dental plaque biofilm, specifically binds to salivary amylase via the surface-associated amylase-binding protein A (AbpA). We hypothesized that a function of amylase binding to S. gordonii may be to modulate the expression of chromosomal genes, which could influence bacterial survival and persistence in the oral cavity. Gene expression profiling by microarray analysis was performed to detect genes in S. gordonii strain CH1 that were differentially expressed in response to the binding of purified human salivary amylase versus exposure to purified heat-denatured amylase. Selected genes found to be differentially expressed were validated by quantitative reverse transcription-PCR (qRT-PCR). Five genes from the fatty acid synthesis (FAS) cluster were highly (10- to 35-fold) upregulated in S. gordonii CH1 cells treated with native amylase relative to those treated with denatured amylase. An abpA-deficient strain of S. gordonii exposed to amylase failed to show a response in FAS gene expression similar to that observed in the parental strain. Predicted phenotypic effects of amylase binding to S. gordonii strain CH1 (associated with increased expression of FAS genes, leading to changes in fatty acid synthesis) were noted; these included increased bacterial growth, survival at low pH, and resistance to triclosan. These changes were not observed in the amylase-exposed abpA-deficient strain, suggesting a role for AbpA in the amylase-induced phenotype. These results provide evidence that the binding of salivary amylase elicits a differential gene response in S. gordonii, resulting in a phenotypic adjustment that is potentially advantageous for bacterial survival in the oral environment.
Collapse
|
32
|
Genetic response to bacteriophage infection in Lactococcus lactis reveals a four-strand approach involving induction of membrane stress proteins, D-alanylation of the cell wall, maintenance of proton motive force, and energy conservation. J Virol 2011; 85:12032-42. [PMID: 21880765 DOI: 10.1128/jvi.00275-11] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In this study, whole-genome microarrays were used to gain insights into the global molecular response of Lactococcus lactis subsp. lactis IL1403 at an early stage of infection with the lytic phage c2. The bacterium differentially regulated the expression of 61 genes belonging to 14 functional categories, including cell envelope processes (12 genes), regulatory functions (11 genes), and carbohydrate metabolism (7 genes). The nature of these genes suggests a complex response involving four main mechanisms: (i) induction of membrane stress proteins, (ii) d-alanylation of cell wall lipoteichoic acids (LTAs), (iii) maintenance of the proton motive force (PMF), and (iv) energy conservation. The phage presence is sensed as a membrane stress in L. lactis subsp. lactis IL1403, which activated a cell wall-targeted response probably orchestrated by the concerted action of membrane phage shock protein C-like homologues, the global regulator SpxB, and the two-component system CesSR. The bacterium upregulated genes (ddl and dltABCD) responsible for incorporation of d-alanine esters into LTAs, an event associated with increased resistance to phage attack in Gram-positive bacteria. The expression of genes (yshC, citE, citF) affecting both PMF components was also regulated to restore the physiological PMF, which was disrupted following phage infection. While mobilizing the response to the phage-mediated stress, the bacterium activated an energy-saving program by repressing growth-related functions and switching to anaerobic respiration, probably to sustain the PMF and the overall cell response to phage. To our knowledge, this represents the first detailed description in L. lactis of the molecular mechanisms involved in the host response to the membrane perturbations mediated by phage infection.
Collapse
|
33
|
Siibak T, Peil L, Dönhöfer A, Tats A, Remm M, Wilson DN, Tenson T, Remme J. Antibiotic-induced ribosomal assembly defects result from changes in the synthesis of ribosomal proteins. Mol Microbiol 2011; 80:54-67. [PMID: 21320180 DOI: 10.1111/j.1365-2958.2011.07555.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Inhibitors of protein synthesis cause defects in the assembly of ribosomal subunits. In response to treatment with the antibiotics erythromycin or chloramphenicol, precursors of both large and small ribosomal subunits accumulate. We have used a pulse-labelling approach to demonstrate that the accumulating subribosomal particles maturate into functional 70S ribosomes. The protein content of the precursor particles is heterogeneous and does not correspond with known assembly intermediates. Mass spectrometry indicates that production of ribosomal proteins in the presence of the antibiotics correlates with the amounts of the individual ribosomal proteins within the precursor particles. Thus, treatment of cells with chloramphenicol or erythromycin leads to an unbalanced synthesis of ribosomal proteins, providing the explanation for formation of assembly-defective particles. The operons for ribosomal proteins show a characteristic pattern of antibiotic inhibition where synthesis of the first proteins is inhibited weakly but gradually increases for the subsequent proteins in the operon. This phenomenon most likely reflects translational coupling and allows us to identify other putative coupled non-ribosomal operons in the Escherichia coli chromosome.
Collapse
Affiliation(s)
- Triinu Siibak
- Institutes of Molecular and Cell Biology Technology, University of Tartu, Tartu, Estonia
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Handke P, Lynch SA, Gill RT. Application and engineering of fatty acid biosynthesis in Escherichia coli for advanced fuels and chemicals. Metab Eng 2011; 13:28-37. [DOI: 10.1016/j.ymben.2010.10.007] [Citation(s) in RCA: 117] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Revised: 10/26/2010] [Accepted: 10/27/2010] [Indexed: 02/01/2023]
|
35
|
Hong SK, Kim KH, Park JK, Jeong KW, Kim Y, Kim EE. New design platform for malonyl-CoA-acyl carrier protein transacylase. FEBS Lett 2010; 584:1240-4. [DOI: 10.1016/j.febslet.2010.02.038] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Revised: 02/02/2010] [Accepted: 02/15/2010] [Indexed: 11/29/2022]
|
36
|
Bratlie MS, Johansen J, Drabløs F. Relationship between operon preference and functional properties of persistent genes in bacterial genomes. BMC Genomics 2010; 11:71. [PMID: 20109203 PMCID: PMC2837039 DOI: 10.1186/1471-2164-11-71] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2009] [Accepted: 01/28/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Genes in bacteria may be organised into operons, leading to strict co-expression of the genes that participate in the same operon. However, comparisons between different bacterial genomes have shown that much of the operon structure is dynamic on an evolutionary time scale. This indicates that there are opposing effects influencing the tendency for operon formation, and these effects may be reflected in properties like evolutionary rate, complex formation, metabolic pathways and gene fusion. RESULTS We have used multi-species protein-protein comparisons to generate a high-quality set of genes that are persistent in bacterial genomes (i.e. they have close to universal distribution). We have analysed these genes with respect to operon participation and important functional properties, including evolutionary rate and protein-protein interactions. CONCLUSIONS Genes for ribosomal proteins show a very slow rate of evolution. This is consistent with a strong tendency for the genes to participate in operons and for their proteins to be involved in essential and well defined complexes. Persistent genes for non-ribosomal proteins can be separated into two classes according to tendency to participate in operons. Those with a strong tendency for operon participation make proteins with fewer interaction partners that seem to participate in relatively static complexes and possibly linear pathways. Genes with a weak tendency for operon participation tend to produce proteins with more interaction partners, but possibly in more dynamic complexes and convergent pathways. Genes that are not regulated through operons are therefore more evolutionary constrained than the corresponding operon-associated genes and will on average evolve more slowly.
Collapse
Affiliation(s)
- Marit S Bratlie
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, N-7006 Trondheim, Norway
| | | | | |
Collapse
|
37
|
Recent Advances in the Inhibition of Bacterial Fatty Acid Biosynthesis. ANNUAL REPORTS IN MEDICINAL CHEMISTRY 2010. [DOI: 10.1016/s0065-7743(10)45018-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
38
|
Goh S, Boberek JM, Nakashima N, Stach J, Good L. Concurrent growth rate and transcript analyses reveal essential gene stringency in Escherichia coli. PLoS One 2009; 4:e6061. [PMID: 19557168 PMCID: PMC2698124 DOI: 10.1371/journal.pone.0006061] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2008] [Accepted: 06/02/2009] [Indexed: 01/29/2023] Open
Abstract
Background Genes essential for bacterial growth are of particular scientific interest. Many putative essential genes have been identified or predicted in several species, however, little is known about gene expression requirement stringency, which may be an important aspect of bacterial physiology and likely a determining factor in drug target development. Methodology/Principal Findings Working from the premise that essential genes differ in absolute requirement for growth, we describe silencing of putative essential genes in E. coli to obtain a titration of declining growth rates and transcript levels by using antisense peptide nucleic acids (PNA) and expressed antisense RNA. The relationship between mRNA decline and growth rate decline reflects the degree of essentiality, or stringency, of an essential gene, which is here defined by the minimum transcript level for a 50% reduction in growth rate (MTL50). When applied to four growth essential genes, both RNA silencing methods resulted in MTL50 values that reveal acpP as the most stringently required of the four genes examined, with ftsZ the next most stringently required. The established antibacterial targets murA and fabI were less stringently required. Conclusions RNA silencing can reveal stringent requirements for gene expression with respect to growth. This method may be used to validate existing essential genes and to quantify drug target requirement.
Collapse
Affiliation(s)
- Shan Goh
- Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, Sweden
- Department of Pathology and Infectious Diseases, Royal Veterinary College, University of London, London, United Kingdom
| | - Jaroslaw M. Boberek
- Department of Pathology and Infectious Diseases, Royal Veterinary College, University of London, London, United Kingdom
| | - Nobutaka Nakashima
- Research Institute of Genome-based biofactory, Toyohira-Ku, Sapporo, Japan
| | - Jem Stach
- School of Biology, University of Newcastle, Newcastle upon Tyne, United Kingdom
| | - Liam Good
- Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, Sweden
- Department of Pathology and Infectious Diseases, Royal Veterinary College, University of London, London, United Kingdom
- * E-mail:
| |
Collapse
|
39
|
fabC of Streptomyces lydicus involvement in the biosynthesis of streptolydigin. Appl Microbiol Biotechnol 2009; 83:305-13. [DOI: 10.1007/s00253-009-1872-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2008] [Revised: 01/11/2009] [Accepted: 01/12/2009] [Indexed: 10/21/2022]
|
40
|
Cronan JE, Thomas J. Bacterial fatty acid synthesis and its relationships with polyketide synthetic pathways. Methods Enzymol 2009; 459:395-433. [PMID: 19362649 DOI: 10.1016/s0076-6879(09)04617-5] [Citation(s) in RCA: 206] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
This review presents the most thoroughly studied bacterial fatty acid synthetic pathway, that of Escherichia coli and then discusses the exceptions to the E. coli pathway present in other bacteria. The known interrelationships between the fatty acid and polyketide synthetic pathways are also assessed, mainly in the Streptomyces group of bacteria. Finally, we present a compendium of methods for analysis of bacterial fatty acid synthetic pathways.
Collapse
Affiliation(s)
- John E Cronan
- Department of Biochemistry, University of Illinois, Urbana, Illinois, USA
| | | |
Collapse
|
41
|
Coulibaly I, Amenan AY, Lognay G, Fauconnier ML, Thonart P. Survival of freeze-dried leuconostoc mesenteroides and Lactobacillus plantarum related to their cellular fatty acids composition during storage. Appl Biochem Biotechnol 2008; 157:70-84. [PMID: 18491235 DOI: 10.1007/s12010-008-8240-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2008] [Accepted: 03/31/2008] [Indexed: 11/26/2022]
Abstract
Lactic acid bacteria strains Lactobacillus plantarum CWBI-B534 and Leuconostoc ssp. mesenteroïdes (L. mesenteroïdes) Kenya MRog2 were produced in bioreactor, concentrated, with or without cryoprotectants. In general, viable population did not change significantly after freeze-drying (p > 0.05). In most cases, viable population for cells added with cryoprotectants was significantly lower than those without (p < 0.05). Cellular fatty acids (CFAs) from the two strains in this study were analyzed before and after freeze-drying. Six CFAs were identified, namely, palmitic (C(16:0)), palmitoleic (C(16:1)), stearic (C(18:0)), oleic (C(18:1)), linoleic (C(18:2)), and linolenic (C(18:3)) acids were identified. Four of them, C(16:0), C(16:1), C(18:0), and C(18:1), make up more than 94% or 93% of the fatty acids in L. mesenteroides and L. plantarum, respectively, with another one, namely, C18:3, making a smaller (on average 5-6%, respectively) contribution. The C(18:2) contributed very small percentages (on average <or= 1%) to the total in each strain. C(16:0) had the highest proportion at most points relative to other fatty acids. Moisture content and water activity (a (w)) increased significantly during the storage period. It was observed that C(16:1)/C(16:0), C(18:0)/C(16:0) and C(18:1)/C(16:0) ratios for freeze-dried L. mesenteroides or L. plantarum, with or without cryoprotectants, did not change significantly during the storage period. According to the packaging mode and storage temperatures, C(18:2)/C(16:0) and C(18:3)/C(16:0) ratios for freeze-dried L. mesenteroides and L. plantarum with or without cryoprotectants decreased as the storage time increased. However, a higher C(18:2)/C(16:0) or C(18:3)/C(16:0) ratio for L. mesenteroides and L. plantarum was noted in the freeze-dried powder held at 4 degrees C or under vacuum and in dark than at 20 degrees C or in the presence of oxygen and light.
Collapse
Affiliation(s)
- Ibourahema Coulibaly
- Unité des Bio-industries, Centre Wallon de Biologie Industrielle, Faculté Universitaire des Sciences Agronomiques de Gembloux, Passage des Déportés, Gembloux, Belgium.
| | | | | | | | | |
Collapse
|
42
|
Jang HJ, Chang MW, Toghrol F, Bentley WE. Microarray analysis of toxicogenomic effects of triclosan on Staphylococcus aureus. Appl Microbiol Biotechnol 2008; 78:695-707. [DOI: 10.1007/s00253-008-1349-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2007] [Revised: 12/31/2007] [Accepted: 01/04/2008] [Indexed: 10/22/2022]
|
43
|
Zaccai NR, Carter LG, Berrow NS, Sainsbury S, Nettleship JE, Walter TS, Harlos K, Owens RJ, Wilson KS, Stuart DI, Esnouf RM. Crystal structure of a 3-oxoacyl-(acylcarrier protein) reductase (BA3989) from Bacillus anthracis at 2.4-A resolution. Proteins 2008; 70:562-7. [PMID: 17894349 DOI: 10.1002/prot.21624] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Nathan R Zaccai
- The Oxford Protein Production Facility, Division of Structural Biology, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, United Kingdom
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Ghadbane H, Brown AK, Kremer L, Besra GS, Fütterer K. Structure of Mycobacterium tuberculosis mtFabD, a malonyl-CoA:acyl carrier protein transacylase (MCAT). Acta Crystallogr Sect F Struct Biol Cryst Commun 2007; 63:831-5. [PMID: 17909282 PMCID: PMC2339739 DOI: 10.1107/s1744309107042455] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2007] [Accepted: 08/29/2007] [Indexed: 11/10/2022]
Abstract
Mycobacteria display a unique and unusual cell-wall architecture, central to which is the membrane-proximal mycolyl-arabinogalactan-peptidoglycan core (mAGP). The biosynthesis of mycolic acids, which form the outermost layer of the mAGP core, involves malonyl-CoA:acyl carrier protein transacylase (MCAT). This essential enzyme catalyses the transfer of malonyl from coenzyme A to acyl carrier protein AcpM, thus feeding these two-carbon units into the chain-elongation cycle of the type II fatty-acid synthase. The crystal structure of M. tuberculosis mtFabD, the mycobacterial MCAT, has been determined to 3.0 A resolution by multi-wavelength anomalous dispersion. Phasing was facilitated by Ni2+ ions bound to the 20-residue N-terminal affinity tag, which packed between the two independent copies of mtFabD.
Collapse
Affiliation(s)
- Hemza Ghadbane
- School of Biosciences, The University of Birmingham, Edgbaston, Birmingham B15 2TT, England
| | - Alistair K. Brown
- School of Biosciences, The University of Birmingham, Edgbaston, Birmingham B15 2TT, England
| | - Laurent Kremer
- Laboratoire de Dynamique des Interactions Membranaires Normales et Pathologiques, Université de Montpellier II et I, CNRS, UMR 5235, Case 107, Place Eugène Bataillon, 34095 Montpellier CEDEX 05, France
- INSERM, DIMNP, Place Eugène Bataillon, 34095 Montpellier CEDEX 05, France
| | - Gurdyal S. Besra
- School of Biosciences, The University of Birmingham, Edgbaston, Birmingham B15 2TT, England
- Correspondence e-mail: ,
| | - Klaus Fütterer
- School of Biosciences, The University of Birmingham, Edgbaston, Birmingham B15 2TT, England
- Correspondence e-mail: ,
| |
Collapse
|
45
|
Karmodiya K, Surolia N. A unique and differential effect of denaturants on cofactor mediated activation of Plasmodium falciparum β-ketoacyl-ACP reductase. Proteins 2007; 70:528-38. [PMID: 17879351 DOI: 10.1002/prot.21530] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The urea and guanidinium chloride (GdmCl) induced unfolding of FabG, a beta-ketoacyl-ACP reductase of Plasmodium falciparum, was examined in detail using intrinsic fluorescence of FabG, UV-circular dichroism (CD), spectrophotometric enzyme activity measurements, glutaraldehyde cross-linking, and size exclusion chromatography. The equilibrium unfolding of FabG by urea is a multistep process as compared with a two-state process by GdmCl. FabG is fully unfolded at 6.0M urea and 4.0M GdmCl. Approximately 90% of the enzyme activity could be recovered on dialyzing the denaturants, showing that denaturation by both urea and GdmCl is reversible. We found two states in the reversible unfolding process of FabG in presence of NADPH; one is an activity-enhanced state and the other, an inactive state in case of equilibrium unfolding with urea. On the contrary, in presence of NADPH, there is no stabilization of FabG in case of equilibrium unfolding with GdmCl. We hypothesize that the hydrogen-bonding network may be reorganized by the denaturant in the activity-enhanced state formed in presence of 1.0M urea, by interrupting the association between dimer-dimer interface and help in accommodating the larger substrate in the substrate binding tunnel thus, increasing the activity. Furthermore, binding of the active site organizer, NADPH leads to compaction of the FabG in presence of urea, as evident by acrylamide quenching. We have shown here for the first time, the detailed inactivation kinetics of FabG, which have not been evaluated in the past from any of the FabG family of enzymes from any of the other sources. These findings provide impetus for exploring the influences of ligands on the structure-activity relationship of Plasmodium beta-ketoacyl-ACP reductase.
Collapse
Affiliation(s)
- Krishanpal Karmodiya
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
| | | |
Collapse
|
46
|
Karmodiya K, Surolia N. Analyses of co-operative transitions in Plasmodium falciparum beta-ketoacyl acyl carrier protein reductase upon co-factor and acyl carrier protein binding. FEBS J 2006; 273:4093-103. [PMID: 16934037 DOI: 10.1111/j.1742-4658.2006.05412.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The type II fatty acid synthase pathway of Plasmodium falciparum is a validated unique target for developing novel antimalarials because of its intrinsic differences from the type I pathway operating in humans. beta-Ketoacyl-acyl carrier protein reductase is the only enzyme of this pathway that has no isoforms and thus selective inhibitors can be developed for this player of the pathway. We report here intensive studies on the direct interactions of Plasmodiumbeta-ketoacyl-acyl carrier protein reductase with its cofactor, NADPH, acyl carrier protein, acetoacetyl-coenzyme A and other ligands in solution, by monitoring the intrinsic fluorescence (lambdamax 334 nM) of the protein as a result of its lone tryptophan, as well as the fluorescence of NADPH (lambdamax 450 nM) upon binding to the enzyme. Binding of the reduced cofactor makes the enzyme catalytically efficient, as it increases the binding affinity of the substrate, acetoacetyl-coenzyme A, by 16-fold. The binding affinity of acyl carrier protein to the enzyme also increases by approximately threefold upon NADPH binding. Plasmodiumbeta-ketoacyl-acyl carrier protein reductase exhibits negative, homotropic co-operative binding for NADPH, which is enhanced in the presence of acyl carrier protein. Acyl carrier protein increases the accessibility of NADPH to beta-ketoacyl-acyl carrier protein reductase, as evident from the increase in the accessibility of the tryptophan of beta-ketoacyl-acyl carrier protein reductase to acrylamide, from 81 to 98%. In the presence of NADP+, the reaction proceeds in the reverse direction (Ka=23.17 microM-1). These findings provide impetus for exploring the influence of ligands on the structure-activity relationship of Plasmodiumbeta-ketoacyl-acyl carrier protein reductase.
Collapse
Affiliation(s)
- Krishanpal Karmodiya
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, India
| | | |
Collapse
|
47
|
Li BH, Zhang R, Du YT, Sun YH, Tian WX. Inactivation mechanism of the β-ketoacyl-[acyl carrier protein] reductase of bacterial type-II fatty acid synthase by epigallocatechin gallate. Biochem Cell Biol 2006; 84:755-62. [PMID: 17167539 DOI: 10.1139/o06-047] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Epigallocatechin gallate (EGCG), a major compound from green tea, reversibly inhibits β-ketoacyl-[acyl carrier protein] reductase (FabG) from Escherichia coli. In this study, we found that EGCG exhibited an atypical time-dependent inhibition of FabG, which possibly resulted from the EGCG-induced aggregation of FabG. It was observed that FabG inactivation and aggregation occurred nearly simultaneously, with a lag time that decreased with increasing EGCG concentration. These results suggest that some chemical reactions, required for aggregation and inactivation, occurred during the lag time. Since EGC was detected by HPLC after the incubation of EGCG with FabG, EGCG probably covalently modified FabG. These further results showed that 1 tetramer of FabG must be modified by several, possibly 4, EGCG molecules before the formation of FabG aggregates. FabG aggregation was a first-order reaction independent of protein concentration. Due to an initial lag time, the first-order rate of aggregation gradually increased, reaching a maximal and constant value. The effect of increasing concentration of EGCG on the first-order rate constant for aggregation indicated that EGCG bound to FabG by affinity labeling. Based on the results, we propose a mechanism for the interaction of EGCG with FabG:EGCG first binds reversibly to each subunit of FabG, followed by covalent modification and then aggregation of the 4 EGCG-modified subunits.
Collapse
Affiliation(s)
- Bing-Hui Li
- Department of Biology, Graduate University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | | | | | | | | |
Collapse
|
48
|
Miller-Williams M, Loewen PC, Oresnik IJ. Isolation of salt-sensitive mutants of Sinorhizobium meliloti strain Rm1021. MICROBIOLOGY-SGM 2006; 152:2049-2059. [PMID: 16804180 DOI: 10.1099/mic.0.28937-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The determinants necessary for adaptation to high NaCl concentrations and competition for nodule occupancy in Sinorhizobium meliloti were investigated genetically. Mutations in fabG as well as smc02909 (transmembrane transglycosylase), trigger factor (tig) and smc00717 (probably ftsE) gave rise to strains that were unable to tolerate high salt and were uncompetitive for nodule occupancy relative to the wild-type. Moreover exoF1, exoA and pgm determinants were determined to be necessary for strain Rm1021 to survive high NaCl and/or MgCl(2) concentrations. The introduction of an expR(+) allele was capable of suppressing the Mg(2+) sensitivity associated with the exoF1, but not the exoA, mutation in a manner independent of exopolysaccharide II (EPS II)-associated mucoidy. The results also show that the EPS II-associated mucoid phenotype was affected by either Mg(2+)or K(+), but not by Li(+), Ca(2+), or high osmolarity.
Collapse
Affiliation(s)
- Mark Miller-Williams
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Peter C Loewen
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Ivan J Oresnik
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| |
Collapse
|
49
|
De Lay NR, Cronan JE. Gene-specific random mutagenesis of Escherichia coli in vivo: isolation of temperature-sensitive mutations in the acyl carrier protein of fatty acid synthesis. J Bacteriol 2006; 188:287-96. [PMID: 16352845 PMCID: PMC1317600 DOI: 10.1128/jb.188.1.287-296.2006] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Acyl carrier proteins (ACPs) are very small acidic proteins that play a key role in fatty acid and complex lipid synthesis. Moreover, recent data indicate that the acyl carrier protein of Escherichia coli has a large protein interaction network that extends beyond lipid synthesis. Despite extensive efforts over many years, no temperature-sensitive mutants with mutations in the structural gene (acpP) that encodes ACP have been isolated. We report the isolation of three such mutants by a new approach that utilizes error-prone PCR mutagenesis, overlap extension PCR, and phage lambda Red-mediated homologous recombination and that should be generally applicable. These mutants plus other experiments demonstrate that ACP function is essential for the growth of E. coli. Each of the mutants was efficiently modified with the phosphopantetheinyl moiety essential for the function of ACP in lipid synthesis, and thus lack of function at the nonpermissive temperature cannot be attributed to a lack of prosthetic group attachment. All of the mutant proteins were largely stable at the nonpermissive temperature except the A68T/N73D mutant protein. Fatty acid synthesis in strains that carried the D38V or A68T/N73D mutations was inhibited upon a shift to the nonpermissive temperature and in the latter case declined to a small percentage of the rate of the wild-type strain.
Collapse
Affiliation(s)
- Nicholas R De Lay
- Department of Microbiology, University of Illinois, B103 Chemical and Life Sciences Laboratory, 601 S. Goodwin Avenue, Urbana, IL 61801, USA
| | | |
Collapse
|
50
|
Badger J, Sauder JM, Adams JM, Antonysamy S, Bain K, Bergseid MG, Buchanan SG, Buchanan MD, Batiyenko Y, Christopher JA, Emtage S, Eroshkina A, Feil I, Furlong EB, Gajiwala KS, Gao X, He D, Hendle J, Huber A, Hoda K, Kearins P, Kissinger C, Laubert B, Lewis HA, Lin J, Loomis K, Lorimer D, Louie G, Maletic M, Marsh CD, Miller I, Molinari J, Muller-Dieckmann HJ, Newman JM, Noland BW, Pagarigan B, Park F, Peat TS, Post KW, Radojicic S, Ramos A, Romero R, Rutter ME, Sanderson WE, Schwinn KD, Tresser J, Winhoven J, Wright TA, Wu L, Xu J, Harris TJR. Structural analysis of a set of proteins resulting from a bacterial genomics project. Proteins 2006; 60:787-96. [PMID: 16021622 DOI: 10.1002/prot.20541] [Citation(s) in RCA: 202] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The targets of the Structural GenomiX (SGX) bacterial genomics project were proteins conserved in multiple prokaryotic organisms with no obvious sequence homolog in the Protein Data Bank of known structures. The outcome of this work was 80 structures, covering 60 unique sequences and 49 different genes. Experimental phase determination from proteins incorporating Se-Met was carried out for 45 structures with most of the remainder solved by molecular replacement using members of the experimentally phased set as search models. An automated tool was developed to deposit these structures in the Protein Data Bank, along with the associated X-ray diffraction data (including refined experimental phases) and experimentally confirmed sequences. BLAST comparisons of the SGX structures with structures that had appeared in the Protein Data Bank over the intervening 3.5 years since the SGX target list had been compiled identified homologs for 49 of the 60 unique sequences represented by the SGX structures. This result indicates that, for bacterial structures that are relatively easy to express, purify, and crystallize, the structural coverage of gene space is proceeding rapidly. More distant sequence-structure relationships between the SGX and PDB structures were investigated using PDB-BLAST and Combinatorial Extension (CE). Only one structure, SufD, has a truly unique topology compared to all folds in the PDB.
Collapse
Affiliation(s)
- J Badger
- Structural GenomiX Inc., San Diego, California, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|