1
|
Ichikawa S, Tanoue M, Takeuchi J, Matsuo E, Shimada Y, Singh A. Induced tolerance to UV stress drives survival heterogeneity in isogenic E. coli cell populations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.05.14.654146. [PMID: 40462972 PMCID: PMC12132193 DOI: 10.1101/2025.05.14.654146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/18/2025]
Abstract
The emergence of transiently tolerant bacterial subpopulations challenges our understanding of stress tolerance mechanisms. While much is known about antibiotic tolerance, it remains unclear whether similar mechanisms contribute to survival under ultraviolet (UV) stress. Here, we employed a modified Luria-Delbrück fluctuation test to investigate the presence of pre-existing UV-tolerant subpopulations in Escherichia coli. Our results showed no significant evidence of pre-stress UV tolerance. Instead, the data suggest that survival is primarily driven by inducible DNA repair responses activated after UV exposure. Furthermore, sequential low-dose UV exposures yielded higher-than-expected survival, suggesting that transient tolerance can be induced following initial UV exposure, likely through active DNA repair processes. These findings indicate that E. coli survives UV stress via an induced, rather than pre-existing, mechanism of tolerance.
Collapse
Affiliation(s)
- Shunsuke Ichikawa
- Faculty of Education, Mie University, 1577 Kurimamachiya-cho Tsu, Mie, 514-8507, Japan
- Zebrafish Research Center, Mie University, 1577 Kurimamachiya-cho Tsu, Mie, 514-8507, Japan
| | - Midai Tanoue
- Faculty of Education, Mie University, 1577 Kurimamachiya-cho Tsu, Mie, 514-8507, Japan
| | - Junto Takeuchi
- Faculty of Education, Mie University, 1577 Kurimamachiya-cho Tsu, Mie, 514-8507, Japan
| | - Eri Matsuo
- Faculty of Education, Mie University, 1577 Kurimamachiya-cho Tsu, Mie, 514-8507, Japan
| | - Yasuhito Shimada
- Zebrafish Research Center, Mie University, 1577 Kurimamachiya-cho Tsu, Mie, 514-8507, Japan
- Department of Integrative Pharmacology, Graduate School of Medicine, Mie University, 2-174 Edobashi Tsu, Mie, 514-8507, Japan
| | - Abhyudai Singh
- Department of Electrical and Computer Engineering, Biomedical Engineering and Mathematical Sciences, Center of Bioinformatics and Computational Biology, University of Delaware, Newark, Delaware 19716, USA
| |
Collapse
|
2
|
Adebali O, Sancar A, Selby CP. Dynamics of transcription-coupled repair of cyclobutane pyrimidine dimers and (6-4) photoproducts in Escherichia coli. Proc Natl Acad Sci U S A 2024; 121:e2416877121. [PMID: 39441633 PMCID: PMC11536166 DOI: 10.1073/pnas.2416877121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 09/12/2024] [Indexed: 10/25/2024] Open
Abstract
DNA repair processes modulate genotoxicity, mutagenesis, and adaption. Nucleotide excision repair removes bulky DNA damage, and in Escherichia coli, basal excision repair, carried out by UvrA, B, C, and D, with DNA PolI and DNA ligase, occurs genome-wide. In transcription-coupled repair (TCR), the Mfd protein targets template strand (TS) lesions that block RNA polymerase for accelerated repair by the basal repair enzymes. Accelerated repair is also seen with particular adducts. Notably, of the two major UV photoproducts, basal repair of (6-4) photoproducts [(6-4)PPs] is about 10× faster than repair of cyclobutane pyrimidine dimers (CPDs). To better understand repair prioritization in E. coli, we used XR-seq to measure TCR of UV photoproducts genome-wide. With CPDs, we found that TCR occurred at early time points, increased with transcription level, and was Mfd dependent; later, with completion of TS repair, nontranscribed strand (NTS) repair predominated. With (6-4)PP, when analyzing all genes, TCR was not observed; in fact, among the most highly transcribed genes, slightly more repair of (6-4)PPs in the NTS was evident. Thus, the very rapid basal repair of (6-4)PP in the NTS was faster than TCR of (6-4)PPs in the TS. Overall, TCR is of limited importance in (6-4)PP repair, and TCR of CPDs is limited to the TS of more highly transcribed genes. These results are consistent with the significant role of Mfd in mutagenesis and the modest effect of mfd deletion on UV survival and bear upon the response of E. coli to bulky DNA damage.
Collapse
Affiliation(s)
- Ogϋn Adebali
- Molecular Biology, Genetics and Bioengineering Program, Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul34956, Türkiye
- Department of Computational Science-Biological Sciences, Scientific and Technological Research Council of Türkiye (TUBITAK) Research Institute for Fundamental Sciences, Gebze41470, Türkiye
| | - Aziz Sancar
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, NC27599-7260
| | - Christopher P. Selby
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, NC27599-7260
| |
Collapse
|
3
|
Cao X, Kose C, Selby CP, Sancar A. In vitro DNA repair genomics using XR-seq with Escherichia coli and mammalian cell-free extracts. Proc Natl Acad Sci U S A 2023; 120:e2314233120. [PMID: 37844222 PMCID: PMC10614213 DOI: 10.1073/pnas.2314233120] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 09/16/2023] [Indexed: 10/18/2023] Open
Abstract
The XR-seq (eXcision Repair-sequencing) method has been extensively used to map nucleotide excision repair genome-wide in organisms ranging from Escherichia coli to yeast, Drosophila, Arabidopsis, mice, and humans. The basic feature of the method is to capture the excised oligomers carrying DNA damage, sequence them, and align their sequences to the genome. We wished to perform XR-seq in vitro with cell-free extract supplemented with a damaged DNA substrate so as to have greater flexibility in investigating factors that affect nucleotide excision repair in the cellular context [M. J. Smerdon, J. J. Wyrick, S. Delaney, J. Biol. Chem. 299, 105118 (2023)]. We report here the successful use of ultraviolet light-irradiated plasmids as substrates for repair in vitro and in vivo by E. coli and E. coli cell-free extracts and by mammalian cell-free extract. XR-seq analyses demonstrated common excision product length and sequence characteristics in vitro and in vivo for both the bacterial and mammalian systems. This approach is expected to help understand the effects of epigenetics and other cellular factors and conditions on DNA repair.
Collapse
Affiliation(s)
- Xuemei Cao
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, NC27599
| | - Cansu Kose
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, NC27599
| | - Christopher P. Selby
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, NC27599
| | - Aziz Sancar
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, NC27599
| |
Collapse
|
4
|
Adebali O, Yang Y, Neupane P, Dike NI, Boltz JL, Kose C, Braunstein M, Selby CP, Sancar A, Lindsey-Boltz LA. The Mfd protein is the transcription-repair coupling factor (TRCF) in Mycobacterium smegmatis. J Biol Chem 2023; 299:103009. [PMID: 36775124 PMCID: PMC10023983 DOI: 10.1016/j.jbc.2023.103009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
In vitro and in vivo experiments with Escherichia coli have shown that the Mfd translocase is responsible for transcription-coupled repair, a subpathway of nucleotide excision repair involving the faster rate of repair of the transcribed strand than the nontranscribed strand. Even though the mfd gene is conserved in all bacterial lineages, there is only limited information on whether it performs the same function in other bacterial species. Here, by genome scale analysis of repair of UV-induced cyclobutane pyrimidine dimers, we find that the Mfd protein is the transcription-repair coupling factor in Mycobacterium smegmatis. This finding, combined with the inverted strandedness of UV-induced mutations in WT and mfd-E. coli and Bacillus subtilis indicate that the Mfd protein is the universal transcription-repair coupling factor in bacteria.
Collapse
Affiliation(s)
- Ogun Adebali
- Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, Türkiye; Department of Computational Science - Biological Sciences, TÜBİTAK Research Institute for Fundamental Sciences, Gebze, Türkiye
| | - Yanyan Yang
- Department of Biochemistry and Biophysics, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina, USA
| | - Pradeep Neupane
- Department of Microbiology and Immunology, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina, USA
| | - Nneka I Dike
- Department of Biochemistry and Biophysics, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina, USA
| | - Julia L Boltz
- Department of Biochemistry and Biophysics, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina, USA
| | - Cansu Kose
- Department of Biochemistry and Biophysics, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina, USA
| | - Miriam Braunstein
- Department of Microbiology and Immunology, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina, USA
| | - Christopher P Selby
- Department of Biochemistry and Biophysics, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina, USA
| | - Aziz Sancar
- Department of Biochemistry and Biophysics, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina, USA.
| | - Laura A Lindsey-Boltz
- Department of Biochemistry and Biophysics, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
5
|
Bharati BK, Gowder M, Zheng F, Alzoubi K, Svetlov V, Kamarthapu V, Weaver JW, Epshtein V, Vasilyev N, Shen L, Zhang Y, Nudler E. Crucial role and mechanism of transcription-coupled DNA repair in bacteria. Nature 2022; 604:152-159. [PMID: 35355008 PMCID: PMC9370829 DOI: 10.1038/s41586-022-04530-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 02/07/2022] [Indexed: 01/11/2023]
Abstract
Transcription-coupled DNA repair (TCR) is presumed to be a minor sub-pathway of nucleotide excision repair (NER) in bacteria. Global genomic repair is thought to perform the bulk of repair independently of transcription. TCR is also believed to be mediated exclusively by Mfd-a DNA translocase of a marginal NER phenotype1-3. Here we combined in cellulo cross-linking mass spectrometry with structural, biochemical and genetic approaches to map the interactions within the TCR complex (TCRC) and to determine the actual sequence of events that leads to NER in vivo. We show that RNA polymerase (RNAP) serves as the primary sensor of DNA damage and acts as a platform for the recruitment of NER enzymes. UvrA and UvrD associate with RNAP continuously, forming a surveillance pre-TCRC. In response to DNA damage, pre-TCRC recruits a second UvrD monomer to form a helicase-competent UvrD dimer that promotes backtracking of the TCRC. The weakening of UvrD-RNAP interactions renders cells sensitive to genotoxic stress. TCRC then recruits a second UvrA molecule and UvrB to initiate the repair process. Contrary to the conventional view, we show that TCR accounts for the vast majority of chromosomal repair events; that is, TCR thoroughly dominates over global genomic repair. We also show that TCR is largely independent of Mfd. We propose that Mfd has an indirect role in this process: it participates in removing obstructive RNAPs in front of TCRCs and also in recovering TCRCs from backtracking after repair has been completed.
Collapse
Affiliation(s)
- Binod K Bharati
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, USA.,Howard Hughes Medical Institute, New York University School of Medicine, New York, NY, USA
| | - Manjunath Gowder
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, USA.,Howard Hughes Medical Institute, New York University School of Medicine, New York, NY, USA
| | - Fangfang Zheng
- Key Laboratory of Synthetic Biology, Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Khaled Alzoubi
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, USA
| | - Vladimir Svetlov
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, USA
| | - Venu Kamarthapu
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, USA.,Howard Hughes Medical Institute, New York University School of Medicine, New York, NY, USA
| | - Jacob W Weaver
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, USA
| | - Vitaly Epshtein
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, USA
| | - Nikita Vasilyev
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, USA
| | - Liqiang Shen
- Key Laboratory of Synthetic Biology, Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Yu Zhang
- Key Laboratory of Synthetic Biology, Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China.
| | - Evgeny Nudler
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, USA. .,Howard Hughes Medical Institute, New York University School of Medicine, New York, NY, USA.
| |
Collapse
|
6
|
Wu S, Huang Y, Selby CP, Gao M, Sancar A, Hu J. A new technique for genome-wide mapping of nucleotide excision repair without immunopurification of damaged DNA. J Biol Chem 2022; 298:101863. [PMID: 35339490 PMCID: PMC9034098 DOI: 10.1016/j.jbc.2022.101863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 12/03/2022] Open
Abstract
Nucleotide excision repair functions to protect genome integrity, and ongoing studies using excision repair sequencing (XR-seq) have contributed to our understanding of how cells prioritize repair across the genome. In this method, the products of excision repair bearing damaged DNA are captured, sequenced, and then mapped genome-wide at single-nucleotide resolution. However, reagent requirements and complex procedures have limited widespread usage of this technique. In addition to the expense of these reagents, it has been hypothesized that the immunoprecipitation step using antibodies directed against damaged DNA may introduce bias in different sequence contexts. Here, we describe a newly developed adaptation called dA-tailing and adaptor ligation (ATL)–XR-seq, a relatively simple XR-seq method that avoids the use of immunoprecipitation targeting damaged DNA. ATL-XR-seq captures repair products by 3′-dA-tailing and 5′-adapter ligation instead of the original 5′- and 3′-dual adapter ligation. This new approach avoids adapter dimer formation during subsequent PCR, omits inefficient and time-consuming purification steps, and is very sensitive. In addition, poly(dA) tail length heterogeneity can serve as a molecular identifier, allowing more repair hotspots to be mapped. Importantly, a comparison of both repair mapping methods showed that no major bias is introduced by the anti-UV damage antibodies used in the original XR-seq procedure. Finally, we also coupled the described dA-tailing approach with quantitative PCR in a new method to quantify repair products. These new methods provide powerful and user-friendly tools to qualitatively and quantitatively measure excision repair.
Collapse
Affiliation(s)
- Sizhong Wu
- Shanghai Fifth People's Hospital, Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Yanchao Huang
- Shanghai Fifth People's Hospital, Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Christopher P Selby
- Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina, Chapel Hill, NC 27599-7260, USA
| | - Meng Gao
- Shanghai Fifth People's Hospital, Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Aziz Sancar
- Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina, Chapel Hill, NC 27599-7260, USA.
| | - Jinchuan Hu
- Shanghai Fifth People's Hospital, Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China.
| |
Collapse
|
7
|
Huang R, Zhou PK. DNA damage repair: historical perspectives, mechanistic pathways and clinical translation for targeted cancer therapy. Signal Transduct Target Ther 2021; 6:254. [PMID: 34238917 PMCID: PMC8266832 DOI: 10.1038/s41392-021-00648-7] [Citation(s) in RCA: 399] [Impact Index Per Article: 99.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 04/28/2021] [Accepted: 05/13/2021] [Indexed: 02/06/2023] Open
Abstract
Genomic instability is the hallmark of various cancers with the increasing accumulation of DNA damage. The application of radiotherapy and chemotherapy in cancer treatment is typically based on this property of cancers. However, the adverse effects including normal tissues injury are also accompanied by the radiotherapy and chemotherapy. Targeted cancer therapy has the potential to suppress cancer cells' DNA damage response through tailoring therapy to cancer patients lacking specific DNA damage response functions. Obviously, understanding the broader role of DNA damage repair in cancers has became a basic and attractive strategy for targeted cancer therapy, in particular, raising novel hypothesis or theory in this field on the basis of previous scientists' findings would be important for future promising druggable emerging targets. In this review, we first illustrate the timeline steps for the understanding the roles of DNA damage repair in the promotion of cancer and cancer therapy developed, then we summarize the mechanisms regarding DNA damage repair associated with targeted cancer therapy, highlighting the specific proteins behind targeting DNA damage repair that initiate functioning abnormally duo to extrinsic harm by environmental DNA damage factors, also, the DNA damage baseline drift leads to the harmful intrinsic targeted cancer therapy. In addition, clinical therapeutic drugs for DNA damage and repair including therapeutic effects, as well as the strategy and scheme of relative clinical trials were intensive discussed. Based on this background, we suggest two hypotheses, namely "environmental gear selection" to describe DNA damage repair pathway evolution, and "DNA damage baseline drift", which may play a magnified role in mediating repair during cancer treatment. This two new hypothesis would shed new light on targeted cancer therapy, provide a much better or more comprehensive holistic view and also promote the development of new research direction and new overcoming strategies for patients.
Collapse
Affiliation(s)
- Ruixue Huang
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, Hunan, China
| | - Ping-Kun Zhou
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, AMMS, Beijing, China.
| |
Collapse
|
8
|
Kouzminova EA, Kuzminov A. Ultraviolet-induced RNA:DNA hybrids interfere with chromosomal DNA synthesis. Nucleic Acids Res 2021; 49:3888-3906. [PMID: 33693789 PMCID: PMC8053090 DOI: 10.1093/nar/gkab147] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 02/14/2021] [Accepted: 02/23/2021] [Indexed: 12/28/2022] Open
Abstract
Ultraviolet (UV) induces pyrimidine dimers (PDs) in DNA and replication-dependent fragmentation in chromosomes. The rnhAB mutants in Escherichia coli, accumulating R-loops and single DNA-rNs, are generally resistant to DNA damage, but are surprisingly UV-sensitive, even though they remove PDs normally, suggesting irreparable chromosome lesions. We show here that the RNase H defect does not cause additional chromosome fragmentation after UV, but inhibits DNA synthesis after replication restart. Genetic analysis implies formation of R-loop-anchored transcription elongation complexes (R-loop-aTECs) in UV-irradiated rnhAB mutants, predicting that their chromosomal DNA will accumulate: (i) RNA:DNA hybrids; (ii) a few slow-to-remove PDs. We confirm both features and also find that both, surprisingly, depend on replication restart. Finally, enriching for the UV-induced RNA:DNA hybrids in the rnhAB uvrA mutants also co-enriches for PDs, showing their co-residence in the same structures. We propose that PD-triggered R-loop-aTECs block head-on replication in RNase H-deficient mutants.
Collapse
Affiliation(s)
- Elena A Kouzminova
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Andrei Kuzminov
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
9
|
Joseph AM, Daw S, Sadhir I, Badrinarayanan A. Coordination between nucleotide excision repair and specialized polymerase DnaE2 action enables DNA damage survival in non-replicating bacteria. eLife 2021; 10:e67552. [PMID: 33856342 PMCID: PMC8102061 DOI: 10.7554/elife.67552] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 04/14/2021] [Indexed: 12/15/2022] Open
Abstract
Translesion synthesis (TLS) is a highly conserved mutagenic DNA lesion tolerance pathway, which employs specialized, low-fidelity DNA polymerases to synthesize across lesions. Current models suggest that activity of these polymerases is predominantly associated with ongoing replication, functioning either at or behind the replication fork. Here we provide evidence for DNA damage-dependent function of a specialized polymerase, DnaE2, in replication-independent conditions. We develop an assay to follow lesion repair in non-replicating Caulobacter and observe that components of the replication machinery localize on DNA in response to damage. These localizations persist in the absence of DnaE2 or if catalytic activity of this polymerase is mutated. Single-stranded DNA gaps for SSB binding and low-fidelity polymerase-mediated synthesis are generated by nucleotide excision repair (NER), as replisome components fail to localize in the absence of NER. This mechanism of gap-filling facilitates cell cycle restoration when cells are released into replication-permissive conditions. Thus, such cross-talk (between activity of NER and specialized polymerases in subsequent gap-filling) helps preserve genome integrity and enhances survival in a replication-independent manner.
Collapse
Affiliation(s)
- Asha Mary Joseph
- National Centre for Biological Sciences - Tata Institute of Fundamental ResearchBangaloreIndia
| | - Saheli Daw
- National Centre for Biological Sciences - Tata Institute of Fundamental ResearchBangaloreIndia
| | - Ismath Sadhir
- National Centre for Biological Sciences - Tata Institute of Fundamental ResearchBangaloreIndia
- Max Planck Institute for Terrestrial Microbiology, LOEWE Centre for Synthetic Microbiology (SYNMIKRO)MarburgGermany
| | - Anjana Badrinarayanan
- National Centre for Biological Sciences - Tata Institute of Fundamental ResearchBangaloreIndia
| |
Collapse
|
10
|
Quantitative proteomic reveals gallium maltolate induces an iron-limited stress response and reduced quorum-sensing in Pseudomonas aeruginosa. J Biol Inorg Chem 2020; 25:1153-1165. [DOI: 10.1007/s00775-020-01831-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 10/21/2020] [Indexed: 01/12/2023]
|
11
|
Ghodke H, Ho HN, van Oijen AM. Single-molecule live-cell imaging visualizes parallel pathways of prokaryotic nucleotide excision repair. Nat Commun 2020; 11:1477. [PMID: 32198385 PMCID: PMC7083872 DOI: 10.1038/s41467-020-15179-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 02/23/2020] [Indexed: 01/01/2023] Open
Abstract
In the model organism Escherichia coli, helix distorting lesions are recognized by the UvrAB damage surveillance complex in the global genomic nucleotide excision repair pathway (GGR). Alternately, during transcription-coupled repair (TCR), UvrA is recruited to Mfd at sites of RNA polymerases stalled by lesions. Ultimately, damage recognition is mediated by UvrA, followed by verification by UvrB. Here we characterize the differences in the kinetics of interactions of UvrA with Mfd and UvrB by following functional, fluorescently tagged UvrA molecules in live TCR-deficient or wild-type cells. The lifetimes of UvrA in Mfd-dependent or Mfd-independent interactions in the absence of exogenous DNA damage are comparable in live cells, and are governed by UvrB. Upon UV irradiation, the lifetimes of UvrA strongly depended on, and matched those of Mfd. Overall, we illustrate a non-perturbative, imaging-based approach to quantify the kinetic signatures of damage recognition enzymes participating in multiple pathways in cells. In Escherichia coli, the UvrAB damage sensor recognizes helix-distorting lesions by itself or via Mfd bound to stalled RNA polymerase. Here authors use single-molecule fluorescence imaging to quantify the kinetic signatures of interactions of UvrA with Mfd and UvrB in live cells.
Collapse
Affiliation(s)
- Harshad Ghodke
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, 2522, Australia. .,Illawarra Health and Medical Research Institute, Wollongong, NSW, 2522, Australia.
| | - Han Ngoc Ho
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, 2522, Australia.,Illawarra Health and Medical Research Institute, Wollongong, NSW, 2522, Australia
| | - Antoine M van Oijen
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, 2522, Australia.,Illawarra Health and Medical Research Institute, Wollongong, NSW, 2522, Australia
| |
Collapse
|
12
|
Ho HN, van Oijen AM, Ghodke H. Single-molecule imaging reveals molecular coupling between transcription and DNA repair machinery in live cells. Nat Commun 2020; 11:1478. [PMID: 32198374 PMCID: PMC7083905 DOI: 10.1038/s41467-020-15182-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 02/23/2020] [Indexed: 01/20/2023] Open
Abstract
The Escherichia coli transcription-repair coupling factor Mfd displaces stalled RNA polymerase and delivers the stall site to the nucleotide excision repair factors UvrAB for damage detection. Whether this handoff from RNA polymerase to UvrA occurs via the Mfd-UvrA2-UvrB complex or alternate reaction intermediates in cells remains unclear. Here, we visualise Mfd in actively growing cells and determine the catalytic requirements for faithful recruitment of nucleotide excision repair proteins. We find that ATP hydrolysis by UvrA governs formation and disassembly of the Mfd-UvrA2 complex. Further, Mfd-UvrA2-UvrB complexes formed by UvrB mutants deficient in DNA loading and damage recognition are impaired in successful handoff. Our single-molecule dissection of interactions of Mfd with its partner proteins inside live cells shows that the dissociation of Mfd is tightly coupled to successful loading of UvrB, providing a mechanism via which loading of UvrB occurs in a strand-specific manner.
Collapse
Affiliation(s)
- Han Ngoc Ho
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, 2522, Australia
- Illawarra Health and Medical Research Institute, Wollongong, NSW, 2522, Australia
| | - Antoine M van Oijen
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, 2522, Australia
- Illawarra Health and Medical Research Institute, Wollongong, NSW, 2522, Australia
| | - Harshad Ghodke
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, 2522, Australia.
- Illawarra Health and Medical Research Institute, Wollongong, NSW, 2522, Australia.
| |
Collapse
|
13
|
Springall L, Hughes CD, Simons M, Azinas S, Van Houten B, Kad NM. Recruitment of UvrBC complexes to UV-induced damage in the absence of UvrA increases cell survival. Nucleic Acids Res 2019; 46:1256-1265. [PMID: 29240933 PMCID: PMC5814901 DOI: 10.1093/nar/gkx1244] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 12/01/2017] [Indexed: 02/05/2023] Open
Abstract
Nucleotide excision repair (NER) is the primary mechanism for removal of ultraviolet light (UV)-induced DNA photoproducts and is mechanistically conserved across all kingdoms of life. Bacterial NER involves damage recognition by UvrA2 and UvrB, followed by UvrC-mediated incision either side of the lesion. Here, using a combination of in vitro and in vivo single-molecule studies we show that a UvrBC complex is capable of lesion identification in the absence of UvrA. Single-molecule analysis of eGFP-labelled UvrB and UvrC in living cells showed that UV damage caused these proteins to switch from cytoplasmic diffusion to stable complexes on DNA. Surprisingly, ectopic expression of UvrC in a uvrA deleted strain increased UV survival. These data provide evidence for a previously unrealized mechanism of survival that can occur through direct lesion recognition by a UvrBC complex.
Collapse
Affiliation(s)
- Luke Springall
- School of Biological Sciences, University of Kent, Canterbury CT2 7NH, UK
| | - Craig D Hughes
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, UK
| | - Michelle Simons
- School of Biological Sciences, University of Essex, Colchester CO4 3SQ, UK
| | - Stavros Azinas
- School of Biological Sciences, University of Essex, Colchester CO4 3SQ, UK
| | | | - Neil M Kad
- School of Biological Sciences, University of Kent, Canterbury CT2 7NH, UK
| |
Collapse
|
14
|
Guthrie OW. Functional consequences of inducible genetic elements from the p53 SOS response in a mammalian organ system. Exp Cell Res 2017; 359:50-61. [DOI: 10.1016/j.yexcr.2017.08.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 08/02/2017] [Accepted: 08/05/2017] [Indexed: 10/19/2022]
|
15
|
Wambaugh MA, Shakya VPS, Lewis AJ, Mulvey MA, Brown JCS. High-throughput identification and rational design of synergistic small-molecule pairs for combating and bypassing antibiotic resistance. PLoS Biol 2017; 15:e2001644. [PMID: 28632788 PMCID: PMC5478098 DOI: 10.1371/journal.pbio.2001644] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 05/17/2017] [Indexed: 02/06/2023] Open
Abstract
Antibiotic-resistant infections kill approximately 23,000 people and cost $20,000,000,000 each year in the United States alone despite the widespread use of small-molecule antimicrobial combination therapy. Antibiotic combinations typically have an additive effect: the efficacy of the combination matches the sum of the efficacies of each antibiotic when used alone. Small molecules can also act synergistically when the efficacy of the combination is greater than the additive efficacy. However, synergistic combinations are rare and have been historically difficult to identify. High-throughput identification of synergistic pairs is limited by the scale of potential combinations: a modest collection of 1,000 small molecules involves 1 million pairwise combinations. Here, we describe a high-throughput method for rapid identification of synergistic small-molecule pairs, the overlap2 method (O2M). O2M extracts patterns from chemical-genetic datasets, which are created when a collection of mutants is grown in the presence of hundreds of different small molecules, producing a precise set of phenotypes induced by each small molecule across the mutant set. The identification of mutants that show the same phenotype when treated with known synergistic molecules allows us to pinpoint additional molecule combinations that also act synergistically. As a proof of concept, we focus on combinations with the antibiotics trimethoprim and sulfamethizole, which had been standard treatment against urinary tract infections until widespread resistance decreased efficacy. Using O2M, we screened a library of 2,000 small molecules and identified several that synergize with the antibiotic trimethoprim and/or sulfamethizole. The most potent of these synergistic interactions is with the antiviral drug azidothymidine (AZT). We then demonstrate that understanding the molecular mechanism underlying small-molecule synergistic interactions allows the rational design of additional combinations that bypass drug resistance. Trimethoprim and sulfamethizole are both folate biosynthesis inhibitors. We find that this activity disrupts nucleotide homeostasis, which blocks DNA replication in the presence of AZT. Building on these data, we show that other small molecules that disrupt nucleotide homeostasis through other mechanisms (hydroxyurea and floxuridine) also act synergistically with AZT. These novel combinations inhibit the growth and virulence of trimethoprim-resistant clinical Escherichia coli and Klebsiella pneumoniae isolates, suggesting that they may be able to be rapidly advanced into clinical use. In sum, we present a generalizable method to screen for novel synergistic combinations, to identify particular mechanisms resulting in synergy, and to use the mechanistic knowledge to rationally design new combinations that bypass drug resistance.
Collapse
MESH Headings
- Animals
- Anti-Bacterial Agents/chemistry
- Anti-Bacterial Agents/pharmacology
- Anti-Bacterial Agents/therapeutic use
- Anti-Infective Agents, Urinary/chemistry
- Anti-Infective Agents, Urinary/pharmacology
- Anti-Infective Agents, Urinary/therapeutic use
- Bacterial Proteins/antagonists & inhibitors
- Bacterial Proteins/genetics
- Bacterial Proteins/metabolism
- Biological Assay
- Computational Biology
- Drug Design
- Drug Resistance, Multiple, Bacterial
- Drug Synergism
- Drug Therapy, Combination
- Embryo, Nonmammalian/drug effects
- Embryo, Nonmammalian/metabolism
- Embryo, Nonmammalian/microbiology
- Escherichia coli/drug effects
- Escherichia coli/growth & development
- Escherichia coli/metabolism
- Escherichia coli Infections/drug therapy
- Escherichia coli Infections/metabolism
- Escherichia coli Infections/microbiology
- Folic Acid Antagonists/chemistry
- Folic Acid Antagonists/pharmacology
- Folic Acid Antagonists/therapeutic use
- High-Throughput Screening Assays
- Klebsiella Infections/drug therapy
- Klebsiella Infections/metabolism
- Klebsiella Infections/microbiology
- Klebsiella pneumoniae/drug effects
- Klebsiella pneumoniae/growth & development
- Klebsiella pneumoniae/metabolism
- Microbial Sensitivity Tests
- Mutation
- Mutation Rate
- Pattern Recognition, Automated
- Reverse Transcriptase Inhibitors/chemistry
- Reverse Transcriptase Inhibitors/pharmacology
- Reverse Transcriptase Inhibitors/therapeutic use
- Small Molecule Libraries
- Sulfamethizole/agonists
- Sulfamethizole/chemistry
- Sulfamethizole/pharmacology
- Sulfamethizole/therapeutic use
- Trimethoprim/agonists
- Trimethoprim/chemistry
- Trimethoprim/pharmacology
- Trimethoprim/therapeutic use
- Zebrafish/embryology
Collapse
Affiliation(s)
- Morgan A. Wambaugh
- Division of Microbiology and Immunology, Pathology Department, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Viplendra P. S. Shakya
- Division of Microbiology and Immunology, Pathology Department, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Adam J. Lewis
- Division of Microbiology and Immunology, Pathology Department, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Matthew A. Mulvey
- Division of Microbiology and Immunology, Pathology Department, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Jessica C. S. Brown
- Division of Microbiology and Immunology, Pathology Department, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| |
Collapse
|
16
|
Ganesan A, Hanawalt P. Photobiological Origins of the Field of Genomic Maintenance. Photochem Photobiol 2015; 92:52-60. [PMID: 26481112 DOI: 10.1111/php.12542] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Accepted: 09/14/2015] [Indexed: 01/01/2023]
Abstract
Although sunlight is essential for life on earth, the ultraviolet (UV) wavelengths in its spectrum constitute a major threat to life. Various cellular responses have evolved to deal with the damage inflicted in DNA by UV, and the study of these responses in model systems has spawned the burgeoning field of DNA repair. Although we now know of many types of deleterious alterations in DNA, the approaches for studying them and the early mechanistic insights have come in large part from pioneering research on the processing of UV-induced bipyrimidine photoproducts in bacteria. It is also notable that UV was one of the first DNA damaging agents for which exposure was directly linked to cancer; the sun-sensitive syndrome, xeroderma pigmentosum, was the first example of a cancer-prone hereditary disease involving a defect in DNA repair. We provide a short history of advances in the broad field of genomic maintenance as they have emerged from research in photochemistry and photobiology.
Collapse
Affiliation(s)
- Ann Ganesan
- Department of Biology, Stanford University, Stanford, CA
| | | |
Collapse
|
17
|
Abstract
The DNA damage response (DDR) has been broadly defined as a complex network of cellular pathways that cooperate to sense and repair lesions in DNA. Multiple types of DNA damage, some natural DNA sequences, nucleotide pool deficiencies and collisions with transcription complexes can cause replication arrest to elicit the DDR. However, in practice, the term DDR as applied to eukaryotic/mammalian cells often refers more specifically to pathways involving the activation of the ATM (ataxia-telangiectasia mutated) and ATR (ATM-Rad3-related) kinases in response to double-strand breaks or arrested replication forks, respectively. Nevertheless, there are distinct responses to particular types of DNA damage that do not involve ATM or ATR. In addition, some of the aberrations that cause replication arrest and elicit the DDR cannot be categorized as direct DNA damage. These include nucleotide pool deficiencies, nucleotide sequences that can adopt non-canonical DNA structures, and collisions between replication forks and transcription complexes. The response to these aberrations can be called the genomic stress response (GSR), a term that is meant to encompass the sensing of all types of DNA aberrations together with the mechanisms involved in coping with them. In addition to fully functional cells, the consequences of processing genomic aberrations may include mutagenesis, genomic rearrangements and lethality.
Collapse
Affiliation(s)
- Philip C Hanawalt
- Department of Biology, Stanford University, Stanford, CA 94305-5020, USA.
| |
Collapse
|
18
|
Das S, Ganeriwal S, Mangwani N, Patel B. Survival and expression of DNA repair genes in marine bacteria Pseudomonas pseudoalcaligenes NP103 and P. aeruginosa N6P6 in response to environmental stressors. Microbiology (Reading) 2015. [DOI: 10.1134/s0026261715050057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
19
|
Ahmad M, Tuteja R. Emerging importance of mismatch repair components including UvrD helicase and their cross-talk with the development of drug resistance in malaria parasite. Mutat Res 2014; 770:54-60. [PMID: 25771870 DOI: 10.1016/j.mrfmmm.2014.09.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 08/14/2014] [Accepted: 09/17/2014] [Indexed: 06/04/2023]
Abstract
Human malaria is an important parasitic infection responsible for a significant number of deaths worldwide, particularly in tropical and subtropical regions. The recent scenario has worsened mainly because of the emergence of drug-resistant malaria parasites having the potential to spread across the world. Drug-resistant parasites possess a defective mismatch repair (MMR); therefore, it is essential to explore its mechanism in detail to determine the underlying cause. Recently, artemisinin-resistant parasites have been reported to exhibit nonsynonymous single nucleotide polymorphisms in genes involved in MMR pathways such as MutL homolog (MLH) and UvrD. Plasmodium falciparum MLH is an endonuclease required to restore the defective MMR in drug-resistant W2 strain of P. falciparum. Although the role of helicases in eukaryotic MMR has been questioned, the identification and characterization of the UvrD helicase and their cross-talk with MLH in P. falciparum suggests the possible involvement of UvrD in MMR. A comparative genome-wide analysis revealed the presence of the UvrD helicase in Plasmodium species, while it is absent in human host. Therefore, PfUvrD may emerge as a suitable drug target to control malaria. This review study is focused on recent developments in MMR biochemistry, emerging importance of the UvrD helicase, possibility of its involvement in MMR and the emerging cross-talk between MMR components and drug resistance in malaria parasite.
Collapse
Affiliation(s)
- Moaz Ahmad
- Malaria Group, International Centre for Genetic Engineering and Biotechnology, P. O. Box 10504, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Renu Tuteja
- Malaria Group, International Centre for Genetic Engineering and Biotechnology, P. O. Box 10504, Aruna Asaf Ali Marg, New Delhi 110067, India.
| |
Collapse
|
20
|
Savery N. A reverse gear for transcription-coupled DNA repair? (Comment on DOI 10.1002/bies.201400106). Bioessays 2014; 37:4. [PMID: 25380178 DOI: 10.1002/bies.201400184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Nigel Savery
- DNA-Protein Interactions Unit, School of Biochemistry, University of Bristol, Bristol, UK
| |
Collapse
|
21
|
Epshtein V. UvrD helicase: an old dog with a new trick: how one step backward leads to many steps forward. Bioessays 2014; 37:12-9. [PMID: 25345862 DOI: 10.1002/bies.201400106] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Transcription-coupled repair (TCR) is a phenomenon that exists in a wide variety of organisms from bacteria to humans. This mechanism allows cells to repair the actively transcribed DNA strand much faster than the non-transcribed one. At the sites of bulky DNA damage RNA polymerase stalls, initiating recruitment of the repair machinery. It is a commonly accepted paradigm that bacterial cells utilize a sole coupling factor, called Mfd to initiate TCR. According to that model, Mfd removes transcription complexes stalled at the lesion site and simultaneously recruits repair machinery. However, this model was recently put in doubt by various discrepancies between the proposed universal role of Mfd in the TCR and its biochemical and phenotypical properties. Here, I present a second pathway of bacterial TCR recently discovered in my laboratory, which does not involve Mfd but implicates a common repair factor, UvrD, in a central position in the process.
Collapse
Affiliation(s)
- Vitaliy Epshtein
- Department of Biochemistry, New York University, Langhorn Medical Center, New York, NY, USA
| |
Collapse
|
22
|
Savery N. Prioritizing the repair of DNA damage that is encountered by RNA polymerase. Transcription 2014; 2:168-172. [PMID: 21922058 DOI: 10.4161/trns.2.4.16146] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2011] [Revised: 05/12/2011] [Accepted: 05/13/2011] [Indexed: 11/19/2022] Open
Abstract
Transcription-coupled DNA repair pathways enable lesions that block transcription to be repaired more quickly than similar lesions in other parts of the genome. Here I consider the recent progress that has been made in understanding how bacteria prioritize certain lesions for nucleotide excision repair.
Collapse
Affiliation(s)
- Nigel Savery
- DNA-Protein Interactions Unit; School of Biochemistry; University of Bristol; Bristol, UK
| |
Collapse
|
23
|
Nakahashi M, Mawatari K, Hirata A, Maetani M, Shimohata T, Uebanso T, Hamada Y, Akutagawa M, Kinouchi Y, Takahashi A. Simultaneous irradiation with different wavelengths of ultraviolet light has synergistic bactericidal effect on Vibrio parahaemolyticus. Photochem Photobiol 2014; 90:1397-403. [PMID: 25041035 DOI: 10.1111/php.12309] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2014] [Accepted: 06/22/2014] [Indexed: 01/18/2023]
Abstract
Ultraviolet (UV) irradiation is an increasingly used method of water disinfection. UV rays can be classified by wavelength into UVA (320-400 nm), UVB (280-320 nm), and UVC (<280 nm). We previously developed UVA sterilization equipment with a UVA light-emitting diode (LED). The aim of this study was to establish a new water disinfection procedure using the combined irradiation of the UVA-LED and another UV wavelength. An oxidative DNA product, 8-hydroxy-2'-deoxyguanosine (8-OHdG), increased after irradiation by UVA-LED alone, and the level of cyclobutane pyrimidine dimers (CPDs) was increased by UVC alone in Vibrio parahaemolyticus. Although sequential irradiation of UVA-LED and UVC-induced additional bactericidal effects, simultaneous irradiation with UVA-LED and UVC-induced bactericidal synergistic effects. The 8-OHdG and CPDs production showed no differences between sequential and simultaneous irradiation. Interestingly, the recovery of CPDs was delayed by simultaneous irradiation. The synergistic effect was absent in SOS response-deficient mutants, such as the recA and lexA strains. Because recA- and lexA-mediated SOS responses have crucial roles in a DNA repair pathway, the synergistic bactericidal effect produced by the simultaneous irradiation could depend on the suppression of the CPDs repair. The simultaneous irradiation of UVA-LED and UVC is a candidate new procedure for effective water disinfection.
Collapse
Affiliation(s)
- Mutsumi Nakahashi
- Department of Preventive Environment and Nutrition, Institute of Health Biosciences, University of Tokushima Graduate School, Tokushima City, Tokushima, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Deaconescu AM. RNA polymerase between lesion bypass and DNA repair. Cell Mol Life Sci 2013; 70:4495-509. [PMID: 23807206 PMCID: PMC11113250 DOI: 10.1007/s00018-013-1384-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2013] [Revised: 05/13/2013] [Accepted: 05/23/2013] [Indexed: 11/29/2022]
Abstract
DNA damage leads to heritable changes in the genome via DNA replication. However, as the DNA helix is the site of numerous other transactions, notably transcription, DNA damage can have diverse repercussions on cellular physiology. In particular, DNA lesions have distinct effects on the passage of transcribing RNA polymerases, from easy bypass to almost complete block of transcription elongation. The fate of the RNA polymerase positioned at a lesion is largely determined by whether the lesion is structurally subtle and can be accommodated and eventually bypassed, or bulky, structurally distorting and requiring remodeling/complete dissociation of the transcription elongation complex, excision, and repair. Here we review cellular responses to DNA damage that involve RNA polymerases with a focus on bacterial transcription-coupled nucleotide excision repair and lesion bypass via transcriptional mutagenesis. Emphasis is placed on the explosion of new structural information on RNA polymerases and relevant DNA repair factors and the mechanistic models derived from it.
Collapse
Affiliation(s)
- Alexandra M Deaconescu
- Rosenstiel Basic Medical Sciences Research Center, Brandeis University, 415 South St., MS029, Waltham, MA, 02454, USA,
| |
Collapse
|
25
|
Chaabane F, Pinon A, Simon A, Ghedira K, Chekir‐Ghedira L. Phytochemical potential of
Daphne gnidium
in inhibiting growth of melanoma cells and enhancing melanogenesis of B16‐F0 melanoma. Cell Biochem Funct 2012; 31:460-7. [DOI: 10.1002/cbf.2919] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Revised: 09/22/2012] [Accepted: 09/24/2012] [Indexed: 01/11/2023]
Affiliation(s)
- Fadwa Chaabane
- Unité de Pharmacognosie/Biologie Moléculaire 99⁄UR⁄07–03 Faculté de Pharmacie Monastir Tunisia
| | - Aline Pinon
- Laboratoire de Chimie des Substances Naturelles, EA 1069 Faculté de Pharmacie Limoges France
| | - Alain Simon
- Laboratoire de Chimie des Substances Naturelles, EA 1069 Faculté de Pharmacie Limoges France
| | | | - Leila Chekir‐Ghedira
- Laboratoire de Biologie Moléculaire et Cellulaire Faculté de Médecine Dentaire Monastir Tunisia
- Unité de Pharmacognosie/Biologie Moléculaire 99⁄UR⁄07–03 Faculté de Pharmacie Monastir Tunisia
| |
Collapse
|
26
|
Van Oudenhove L, De Vriendt K, Van Beeumen J, Mercuri PS, Devreese B. Differential proteomic analysis of the response of Stenotrophomonas maltophilia to imipenem. Appl Microbiol Biotechnol 2012; 95:717-33. [DOI: 10.1007/s00253-012-4167-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Revised: 05/09/2012] [Accepted: 05/10/2012] [Indexed: 11/28/2022]
|
27
|
Jeiranian HA, Courcelle CT, Courcelle J. Inefficient replication reduces RecA-mediated repair of UV-damaged plasmids introduced into competent Escherichia coli. Plasmid 2012; 68:113-24. [PMID: 22542622 DOI: 10.1016/j.plasmid.2012.04.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Revised: 04/02/2012] [Accepted: 04/10/2012] [Indexed: 10/28/2022]
Abstract
Transformation of Escherichia coli with purified plasmids containing DNA damage is frequently used as a tool to characterize repair pathways that operate on chromosomes. In this study, we used an assay that allowed us to quantify plasmid survival and to compare how efficiently various repair pathways operate on plasmid DNA introduced into cells relative to their efficiency on chromosomal DNA. We observed distinct differences between the mechanisms operating on the transforming plasmid DNA and the chromosome. An average of one UV-induced lesion was sufficient to inactivate ColE1-based plasmids introduced into nucleotide excision repair mutants, suggesting an essential role for repair on newly introduced plasmid DNA. By contrast, the absence of RecA, RecF, RecBC, RecG, or RuvAB had a minimal effect on the survival of the transforming plasmid DNA containing UV-induced damage. Neither the presence of an endogenous homologous plasmid nor the induction of the SOS response enhanced the survival of transforming plasmids. Using two-dimensional agarose-gel analysis, both replication- and RecA-dependent structures that were observed on established, endogenous plasmids following UV-irradiation, failed to form on UV-irradiated plasmids introduced into E. coli. We interpret these observations to suggest that the lack of RecA-mediated survival is likely to be due to inefficient replication that occurs when plasmids are initially introduced into cells, rather than to the plasmid's size, the absence of homologous sequences, or levels of recA expression.
Collapse
Affiliation(s)
- H A Jeiranian
- Department of Biology, Portland State University, P.O. Box 751, Portland, OR 97201, USA.
| | | | | |
Collapse
|
28
|
Mfd is required for rapid recovery of transcription following UV-induced DNA damage but not oxidative DNA damage in Escherichia coli. J Bacteriol 2012; 194:2637-45. [PMID: 22427630 DOI: 10.1128/jb.06725-11] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Transcription-coupled repair (TCR) is a cellular process by which some forms of DNA damage are repaired more rapidly from transcribed strands of active genes than from nontranscribed strands or the overall genome. In humans, the TCR coupling factor, CSB, plays a critical role in restoring transcription following both UV-induced and oxidative DNA damage. It also contributes indirectly to the global repair of some forms of oxidative DNA damage. The Escherichia coli homolog, Mfd, is similarly required for TCR of UV-induced lesions. However, its contribution to the restoration of transcription and to global repair of oxidative damage has not been examined. Here, we report the first direct study of transcriptional recovery following UV-induced and oxidative DNA damage in E. coli. We observed that mutations in mfd or uvrA reduced the rate that transcription recovered following UV-induced damage. In contrast, no difference was detected in the rate of transcription recovery in mfd, uvrA, fpg, nth, or polB dinB umuDC mutants relative to wild-type cells following oxidative damage. mfd mutants were also fully resistant to hydrogen peroxide (H(2)O(2)) and removed oxidative lesions from the genome at rates comparable to wild-type cells. The results demonstrate that Mfd promotes the rapid recovery of gene expression following UV-induced damage in E. coli. In addition, these findings imply that Mfd may be functionally distinct from its human CSB homolog in that it does not detectably contribute to the recovery of gene expression or global repair following oxidative damage.
Collapse
|
29
|
Ganesan A, Spivak G, Hanawalt PC. Transcription-coupled DNA repair in prokaryotes. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2012; 110:25-40. [PMID: 22749141 DOI: 10.1016/b978-0-12-387665-2.00002-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Transcription-coupled repair (TCR) is a subpathway of nucleotide excision repair (NER) that acts specifically on lesions in the transcribed strand of expressed genes. First reported in mammalian cells, TCR was then documented in Escherichia coli. In this organism, an RNA polymerase arrested at a lesion is displaced by the transcription repair coupling factor, Mfd. This protein recruits the NER lesion-recognition factor UvrA, and then dissociates from the DNA. UvrA binds UvrB, and the assembled UvrAB* complex initiates repair. In mutants lacking active Mfd, TCR is absent. A gene transcribed by the bacteriophage T7 RNA polymerase in E. coli also requires Mfd for TCR. The CSB protein (missing or defective in cells of patients with Cockayne syndrome, complementation group B) is essential for TCR in humans. CSB and its homologs in higher eukaryotes are likely functional equivalents of Mfd.
Collapse
Affiliation(s)
- Ann Ganesan
- Department of Biology, Stanford University, Stanford, California, USA
| | | | | |
Collapse
|
30
|
Cramers P, Filon AR, Pines A, Kleinjans JC, Mullenders LHF, van Zeeland AA. Enhanced nucleotide excision repair in human fibroblasts pre-exposed to ionizing radiation. Photochem Photobiol 2011; 88:147-53. [PMID: 22017241 DOI: 10.1111/j.1751-1097.2011.01019.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Cellular protection against deleterious effects of DNA damaging agents requires an intricate network of defense mechanisms known as the DNA damage response (DDR). Ionizing radiation (IR) mediated activation of the DDR induces a transcriptional upregulation of genes that are also involved in nucleotide excision repair (NER). This suggests that pre-exposure to X-rays might stimulate NER in human cells. Here, we demonstrate in normal human fibroblasts that UV-induced NER is augmented by pre-exposure to IR and that this increased repair is accompanied by elevated mRNA and protein levels of the NER factors XPC and DDB2. Furthermore, when IR exposure precedes local UV irradiation, the presence of XPC and DDB2 at the sites of local UV damages is increased. This increase might be p53 dependent, but the mechanism of X-ray specific stabilization of p53 is unclear as both X-rays and UV stabilize p53.
Collapse
Affiliation(s)
- Patricia Cramers
- Department of Toxicogenetics, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | | | | | | |
Collapse
|
31
|
Mattenberger Y, Mattson S, Métrailler J, Silva F, Belin D. 55.1, a gene of unknown function of phage T4, impacts on Escherichia coli folate metabolism and blocks DNA repair by the NER. Mol Microbiol 2011; 82:1406-21. [PMID: 22029793 DOI: 10.1111/j.1365-2958.2011.07897.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Phage T4, the archetype of lytic bacterial viruses, needs only 62 genes to propagate under standard laboratory conditions. Interestingly, the T4 genome contains more than 100 putative genes of unknown function, with few detectable homologues in cellular genomes. To characterize this uncharted territory of genetic information, we have identified several T4 genes that prevent bacterial growth when expressed from plasmids under inducible conditions. Here, we report on the various phenotypes and molecular characterization of 55.1, one of the genes of unknown function. High-level expression from the arabinose-inducible P(BAD) promoter is toxic to the bacteria and delays the intracellular accumulation of phage without affecting the final burst size. Low-level expression from T4 promoter(s) renders bacteria highly sensitive to UV irradiation and hypersensitive to trimethoprim, an inhibitor of dihydrofolate reductase. The delay in intracellular phage accumulation requires UvsW, a T4 helicase that is also a suppressor of 55.1-induced toxicity and UV sensitivity. Genetic and biochemical experiments demonstrate that gp55.1 binds to FolD, a key enzyme of the folate metabolism and suppressor of 55.1. Finally, we show that gp55.1 prevents the repair of UV-induced DNA photoproducts by the nucleotide excision repair (NER) pathway through interaction with the UvrA and UvrB proteins.
Collapse
Affiliation(s)
- Yves Mattenberger
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | | | | | | | | |
Collapse
|
32
|
Modulation of genotoxicity and DNA repair by plant monoterpenes camphor, eucalyptol and thujone in Escherichia coli and mammalian cells. Food Chem Toxicol 2011; 49:2035-45. [DOI: 10.1016/j.fct.2011.05.015] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2011] [Revised: 05/13/2011] [Accepted: 05/16/2011] [Indexed: 01/11/2023]
|
33
|
Identification of Vibrio natriegens uvrA and uvrB genes and analysis of gene regulation using transcriptional reporter plasmids. J Microbiol 2010; 48:644-56. [DOI: 10.1007/s12275-010-9370-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Accepted: 05/16/2010] [Indexed: 01/14/2023]
|
34
|
Jiang Y, Wang X, Bao S, Guo R, Johnson DG, Shen X, Li L. INO80 chromatin remodeling complex promotes the removal of UV lesions by the nucleotide excision repair pathway. Proc Natl Acad Sci U S A 2010; 107:17274-9. [PMID: 20855601 PMCID: PMC2951448 DOI: 10.1073/pnas.1008388107] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The creation of accessible DNA in the context of chromatin is a key step in many DNA functions. To reveal how ATP-dependent chromatin remodeling activities impact DNA repair, we constructed mammalian genetic models for the INO80 chromatin remodeling complex and investigated the impact of loss of INO80 function on the repair of UV-induced photo lesions. We showed that deletion of two core components of the INO80 complex, INO80 and ARP5, significantly hampered cellular removal of UV-induced photo lesions but had no significant impact on the transcription of nucleotide excision repair (NER) factors. Loss of INO80 abolished the assembly of NER factors, suggesting that prior chromatin relaxation is important for the NER incision process. Ino80 and Arp5 are enriched to UV-damaged DNA in an NER-incision-independent fashion, suggesting that recruitment of the remodeling activity likely takes place during the initial stage of damage recognition. These results demonstrate a critical role of INO80 in creating DNA accessibility for the NER pathway and provide direct evidence that repair of UV lesions and perhaps most bulky adduct lesions requires chromatin reconfiguration.
Collapse
Affiliation(s)
| | - Xin Wang
- Department of Experimental Radiation Oncology and
| | - Shilai Bao
- Department of Experimental Radiation Oncology and
| | - Ruifeng Guo
- Department of Carcinogenesis, Science Park Research Division, M. D. Anderson Cancer Center, Smithville, TX 78957
| | - David G. Johnson
- Department of Carcinogenesis, Science Park Research Division, M. D. Anderson Cancer Center, Smithville, TX 78957
| | - Xuetong Shen
- Department of Carcinogenesis, Science Park Research Division, M. D. Anderson Cancer Center, Smithville, TX 78957
| | - Lei Li
- Department of Experimental Radiation Oncology and
- Department of Genetics, University of Texas M. D. Anderson Cancer Center, Houston, TX 77030; and
| |
Collapse
|
35
|
Boyd WA, Crocker TL, Rodriguez AM, Leung MCK, Lehmann DW, Freedman JH, Van Houten B, Meyer JN. Nucleotide excision repair genes are expressed at low levels and are not detectably inducible in Caenorhabditis elegans somatic tissues, but their function is required for normal adult life after UVC exposure. Mutat Res 2010; 683:57-67. [PMID: 19879883 PMCID: PMC2799044 DOI: 10.1016/j.mrfmmm.2009.10.008] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2009] [Revised: 10/06/2009] [Accepted: 10/16/2009] [Indexed: 04/09/2023]
Abstract
We performed experiments to characterize the inducibility of nucleotide excision repair (NER) in Caenorhabditis elegans, and to examine global gene expression in NER-deficient and -proficient strains as well as germline vs. somatic tissues, with and without genotoxic stress. We also carried out experiments to elucidate the importance of NER in the adult life of C. elegans under genotoxin-stressed and control conditions. Adult lifespan was not detectably different between wild-type and NER-deficient xpa-1 nematodes under control conditions. However, exposure to 6J/m(2)/day of ultraviolet C radiation (UVC) decreased lifespan in xpa-1 nematodes more than a dose of 100 J/m(2)/day in wild-type. Similar differential sensitivities were observed for adult size and feeding. Remarkably, global gene expression was nearly identical in young adult wild-type and xpa-1 nematodes, both in control conditions and 3h after exposure to 50 J/m(2) UVC. Neither NER genes nor repair activity were detectably inducible in young adults that lacked germ cells and developing embryos (glp-1 strain). However, expression levels of dozens of NER and other DNA damage response genes were much (5-30-fold) lower in adults lacking germ cells and developing embryos, suggesting that somatic and post-mitotic cells have a much lower DNA repair ability. Finally, we describe a refinement of our DNA damage assay that allows damage measurement in single nematodes.
Collapse
Affiliation(s)
- Windy A. Boyd
- Biomolecular Screening Branch, National Toxicology Program, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, USA
| | - Tracey L. Crocker
- Nicholas School of the Environment, Duke University, Durham, NC 27708
| | - Ana M. Rodriguez
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, USA
| | | | - D. Wade Lehmann
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, USA
| | - Jonathan H. Freedman
- Laboratory of Molecular Toxicology, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, USA
| | - Ben Van Houten
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, USA
| | - Joel N. Meyer
- Nicholas School of the Environment, Duke University, Durham, NC 27708
- Address correspondence to: Joel N. Meyer
| |
Collapse
|
36
|
Matallana-Surget S, Douki T, Cavicchioli R, Joux F. Remarkable resistance to UVB of the marine bacterium Photobacterium angustum explained by an unexpected role of photolyase. Photochem Photobiol Sci 2009; 8:1313-20. [DOI: 10.1039/b902715g] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
37
|
Transcription-coupled DNA repair: two decades of progress and surprises. Nat Rev Mol Cell Biol 2008; 9:958-70. [PMID: 19023283 DOI: 10.1038/nrm2549] [Citation(s) in RCA: 805] [Impact Index Per Article: 47.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Expressed genes are scanned by translocating RNA polymerases, which sensitively detect DNA damage and initiate transcription-coupled repair (TCR), a subpathway of nucleotide excision repair that removes lesions from the template DNA strands of actively transcribed genes. Human hereditary diseases that present a deficiency only in TCR are characterized by sunlight sensitivity without enhanced skin cancer. Although multiple gene products are implicated in TCR, we still lack an understanding of the precise signals that can trigger this pathway. Futile cycles of TCR at naturally occurring non-canonical DNA structures might contribute to genomic instability and genetic disease.
Collapse
|
38
|
Guthrie OW. Preincision complex-I from the excision nuclease reaction among cochlear spiral limbus and outer hair cells. J Mol Histol 2008; 39:617-25. [DOI: 10.1007/s10735-008-9202-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2008] [Accepted: 10/14/2008] [Indexed: 12/01/2022]
|
39
|
Ni M, Yang L, Liu XL, Qi O. Fluence-response dynamics of the UV-induced SOS response in Escherichia coli. Curr Microbiol 2008; 57:521-6. [PMID: 18781362 DOI: 10.1007/s00284-008-9235-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2008] [Revised: 07/02/2008] [Accepted: 07/03/2008] [Indexed: 11/26/2022]
Abstract
Bacteria in nature often suffer sudden stresses, such as ultraviolet (UV) irradiation, nutrient deprivation, and chemotoxins that would cause DNA damage and DNA replication failure, which in turn trigger SOS response. According to the strength and duration of the stress, the SOS system not only repairs DNA damage but also induces mutagenesis, so as to adapt to the changing environment. The key proteins in charge of mutagenesis are UmuD and UmuD'. In this paper, we quantitatively measure the growth rate and cellular levels of proteins UmuD and UmuD' in Escherichia coli after various fluences of UV irradiation. To compare with the experimental observations, an ordinary differential equation model is built to describe the SOS response. Considering the fact that the DNA lesions affect cellular protein production and replication origination, the simulation results fit well with the experimental data. Our results show how the fluence of UV irradiation determines the dynamics of the inducing signal and the mutation frequency of the cell.
Collapse
Affiliation(s)
- Ming Ni
- Center for Theoretical Biology, School of Physics, Peking University, Beijing 100871, People's Republic of China.
| | | | | | | |
Collapse
|
40
|
Hasegawa K, Yoshiyama K, Maki H. Spontaneous mutagenesis associated with nucleotide excision repair in Escherichia coli. Genes Cells 2008; 13:459-69. [PMID: 18429818 DOI: 10.1111/j.1365-2443.2008.01185.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The vast majority of spontaneous mutations occurring in Escherichia coli are thought to be derived from spontaneous DNA lesions, which include oxidative base damage. Systems for removing intrinsic mutagens and repairing DNA lesions contribute to the suppression of spontaneous mutations. Nucleotide excision repair (NER) is a general DNA repair system that eliminates various kinds of lesions from DNA. We therefore predicted that NER might be involved in suppression of spontaneous mutations, and analyzed base substitutions occurring spontaneously within the rpoB gene in NER-proficient (wild-type), -deficient and -overproducing E. coli strains. Surprisingly, the mutation frequency was lower in NER-deficient strains, and higher in NER-overproducing strains, than in the NER-proficient strain. These results suggest, paradoxically, that NER contributes to the generation of spontaneous mutation rather than to its suppression under normal growth conditions, and that transcription-coupled repair also participates in this process. Using E. coli strains that carried an editing exonuclease-deficient polA mutation, we further obtained data suggesting that unnecessary NER might account for these findings, so that errors introduced during repair DNA synthesis by DNA polymerase I would result in unwanted base substitutions. The repair system itself may thus be an important generator of spontaneous mutation.
Collapse
Affiliation(s)
- Kimiko Hasegawa
- Department of Molecular Biology, Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | | | | |
Collapse
|
41
|
Ganesan AK, Smith AJ, Savery NJ, Zamos P, Hanawalt PC. Transcription coupled nucleotide excision repair in Escherichia coli can be affected by changing the arginine at position 529 of the beta subunit of RNA polymerase. DNA Repair (Amst) 2007; 6:1434-40. [PMID: 17532270 PMCID: PMC2578841 DOI: 10.1016/j.dnarep.2007.04.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2006] [Revised: 04/04/2007] [Accepted: 04/05/2007] [Indexed: 11/25/2022]
Abstract
The proposed mechanism for transcription coupled nucleotide excision repair (TCR) invokes RNA polymerase (RNAP) blocked at a DNA lesion as a signal to initiate repair. In Escherichia coli, TCR requires the interaction of RNAP with a transcription-repair coupling factor encoded by the mfd gene. The interaction between RNAP and Mfd depends upon amino acids 117, 118, and 119 of the beta subunit of RNAP; changing any one of these to alanine diminishes the interaction [1]. Using direct assays for TCR, and the lac operon of E. coli containing UV induced cyclobutane pyrimidine dimers (CPDs) as substrate, we have found that a change from arginine to cysteine at amino acid 529 of the beta subunit of the RNAP inactivates TCR, but does not prevent the interaction of RNAP with Mfd. Our results suggest that this interaction may be necessary but not sufficient to facilitate TCR.
Collapse
Affiliation(s)
- Ann K Ganesan
- Department of Biological Sciences, Stanford University, Stanford, CA 94303-5020, USA.
| | | | | | | | | |
Collapse
|
42
|
Ni M, Wang SY, Li JK, Ouyang Q. Simulating the temporal modulation of inducible DNA damage response in Escherichia coli. Biophys J 2007; 93:62-73. [PMID: 17434938 PMCID: PMC1914449 DOI: 10.1529/biophysj.106.090712] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Living organisms make great efforts to maintain their genetic information integrity. However, DNA is vulnerable to many chemical or physical agents. To rescue the cell timely and effectively, the DNA damage response system must be well controlled. Recently, single cell experiments showing that after DNA damage, expression of the key DNA damage response regulatory protein oscillates with time. This phenomenon is observed both in eukaryotic and bacterial cells. We establish a model to simulate the DNA damage response (SOS response) in bacterial cell Escherichia coli. The simulation results are compared to the experimental data. Our simulation results suggest that the modulation observed in the experiment is due to the fluctuation of inducing signal, which is coupled with DNA replication. The inducing signal increases when replication is blocked by DNA damage and decreases when replication resumes.
Collapse
Affiliation(s)
- Ming Ni
- Center for Theoretical Biology and Department of Physics, Peking University, Beijing, China
| | | | | | | |
Collapse
|
43
|
Krishna S, Maslov S, Sneppen K. UV-induced mutagenesis in Escherichia coli SOS response: a quantitative model. PLoS Comput Biol 2007; 3:e41. [PMID: 17367202 PMCID: PMC1828700 DOI: 10.1371/journal.pcbi.0030041] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2006] [Accepted: 01/11/2007] [Indexed: 11/19/2022] Open
Abstract
Escherichia coli bacteria respond to DNA damage by a highly orchestrated series of events known as the SOS response, regulated by transcription factors, protein–protein binding, and active protein degradation. We present a dynamical model of the UV-induced SOS response, incorporating mutagenesis by the error-prone polymerase, Pol V. In our model, mutagenesis depends on a combination of two key processes: damage counting by the replication forks and a long-term memory associated with the accumulation of UmuD′. Together, these provide a tight regulation of mutagenesis, resulting, we show, in a “digital” turn-on and turn-off of Pol V. Our model provides a compact view of the topology and design of the SOS network, pinpointing the specific functional role of each of the regulatory processes. In particular, we suggest that the recently observed second peak in the activity of promoters in the SOS regulon (Friedman et al., 2005, PLoS Biology 3(7): e238) is the result of positive feedback from Pol V to RecA filaments. Ultraviolet light damages the DNA of cells, which prevents duplication and thereby cell division. Bacteria respond to such damage by producing a number of proteins that help to detect, bypass, and repair the damage. This SOS response system displays intricate dynamical behavior—in particular the tightly regulated turn-on and turn-off of error-prone polymerases that result in mutagenesis—and the puzzling resurgence of SOS gene activity 30–40 min after irradiation. In this paper, we construct a mathematical model that systematizes the known structure of the SOS subnetwork based on experimental facts, but which remains simple enough to illuminate the specific functional role of each regulatory process. We can thereby identify the interactions and feedback mechanisms that generate the on–off nature of mutagenesis.
Collapse
Affiliation(s)
- Sandeep Krishna
- Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
| | - Sergei Maslov
- Department of Condensed Matter Physics and Material Sciences, Brookhaven National Laboratory, Upton, New York, United States of America
| | - Kim Sneppen
- Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
44
|
Dorazi R, Götz D, Munro S, Bernander R, White MF. Equal rates of repair of DNA photoproducts in transcribed and non-transcribed strands in Sulfolobus solfataricus. Mol Microbiol 2006; 63:521-9. [PMID: 17163966 DOI: 10.1111/j.1365-2958.2006.05516.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The nucleotide excision repair (NER) pathway removes bulky lesions such as photoproducts from DNA. In both bacteria and eukarya, lesions located in transcribed strands are repaired significantly faster than those located in non-transcribed strands due to damage signalling by stalled RNA polymerase molecules: a phenomenon known as transcription-coupled repair (TCR). TCR requires a mechanism for coupling the detection of stalled RNA polymerase molecules to the NER pathway, provided in bacteria by the Mfd protein. In the third domain of life, archaea, the pathway of NER is not well defined, there are no Mfd homologues and the existence of TCR has not been investigated. In this report we looked at rates of removal of photoproducts in three different operons of the crenarchaeon Sulfolobus solfataricus following UV irradiation. We found no evidence for significantly faster repair in the transcribed strands of these three operons. The rate of global genome repair in S. solfataricus is relatively rapid, and this may obviate the requirement for a specialized TCR pathway. Significantly faster repair kinetics were observed in the presence of visible light, consistent with the presence of a gene for photolyase in the genome of S. solfataricus.
Collapse
Affiliation(s)
- Robert Dorazi
- Centre for Biomolecular Sciences, University of St Andrews, St Andrews, Fife KY16 9ST, UK
| | | | | | | | | |
Collapse
|
45
|
Romano V, Napoli A, Salerno V, Valenti A, Rossi M, Ciaramella M. Lack of strand-specific repair of UV-induced DNA lesions in three genes of the archaeon Sulfolobus solfataricus. J Mol Biol 2006; 365:921-9. [PMID: 17113105 DOI: 10.1016/j.jmb.2006.10.045] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2006] [Revised: 10/11/2006] [Accepted: 10/16/2006] [Indexed: 01/12/2023]
Abstract
In all organisms, specialized systems are devoted to repair of DNA lesions induced by exposure to UV light. In both Eucarya and Bacteria, UV-induced pyrimidine dimers in the transcribed strand of active genes are repaired at a faster rate compared to the non-transcribed strand and the rest of the genome. Preferential repair of transcribed strands requires the Transcription-Repair Coupling Factor in Escherichia coli and the CSA and CSB proteins in humans. These factors are needed for coupling of transcription to nucleotide excision repair (NER), a major pathway for repair of UV-induced lesions. Whereas transcription-coupled NER (TC-NER) is an evolutionary conserved process, not all active genes show preferential repair of transcribed strands. The existence of a NER pathway in the Archaea has not been demonstrated directly, yet it is suggested by the presence and properties of homologues of NER nucleases and helicases. However, none of the proteins responsible for the lesion recognition steps or for TC-NER has been found in archaeal genomes. Moreover, the kinetics of gene or strand-specific repair has never been investigated in any organism of this domain. We have analysed the kinetics of repair of UV-induced DNA damage in the transcribed and non-transcribed strands of three genes of the hyperthermophilic archaeon Sulfolobus solfataricus. We found that in all three genes the two strands are repaired with the same efficiency with each other and with the genome in general, thus providing no evidence of strand bias or transcription coupling of the repair process in the genes analysed. Further studies will be required to test the existence of a transcription-coupled repair pathway in other archaeal genes and to elucidate the mechanism of UV lesion recognition and repair in Archaea.
Collapse
Affiliation(s)
- Vincenza Romano
- Institute of Protein Biochemistry, Consiglio Nazionale delle Ricerche, Via P. Castellino 111, 80131 Naples, Italy
| | | | | | | | | | | |
Collapse
|
46
|
Crowley DJ, Boubriak I, Berquist BR, Clark M, Richard E, Sullivan L, DasSarma S, McCready S. The uvrA, uvrB and uvrC genes are required for repair of ultraviolet light induced DNA photoproducts in Halobacterium sp. NRC-1. SALINE SYSTEMS 2006; 2:11. [PMID: 16970815 PMCID: PMC1590041 DOI: 10.1186/1746-1448-2-11] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2006] [Accepted: 09/13/2006] [Indexed: 11/09/2022]
Abstract
Background Sequenced archaeal genomes contain a variety of bacterial and eukaryotic DNA repair gene homologs, but relatively little is known about how these microorganisms actually perform DNA repair. At least some archaea, including the extreme halophile Halobacterium sp. NRC-1, are able to repair ultraviolet light (UV) induced DNA damage in the absence of light-dependent photoreactivation but this 'dark' repair capacity remains largely uncharacterized. Halobacterium sp. NRC-1 possesses homologs of the bacterial uvrA, uvrB, and uvrC nucleotide excision repair genes as well as several eukaryotic repair genes and it has been thought that multiple DNA repair pathways may account for the high UV resistance and dark repair capacity of this model halophilic archaeon. We have carried out a functional analysis, measuring repair capability in uvrA, uvrB and uvrC deletion mutants. Results Deletion mutants lacking functional uvrA, uvrB or uvrC genes, including a uvrA uvrC double mutant, are hypersensitive to UV and are unable to remove cyclobutane pyrimidine dimers or 6–4 photoproducts from their DNA after irradiation with 150 J/m2 of 254 nm UV-C. The UV sensitivity of the uvr mutants is greatly attenuated following incubation under visible light, emphasizing that photoreactivation is highly efficient in this organism. Phylogenetic analysis of the Halobacterium uvr genes indicates a complex ancestry. Conclusion Our results demonstrate that homologs of the bacterial nucleotide excision repair genes uvrA, uvrB, and uvrC are required for the removal of UV damage in the absence of photoreactivating light in Halobacterium sp. NRC-1. Deletion of these genes renders cells hypersensitive to UV and abolishes their ability to remove cyclobutane pyrimidine dimers and 6–4 photoproducts in the absence of photoreactivating light. In spite of this inability to repair UV damaged DNA, uvrA, uvrB and uvrC deletion mutants are substantially less UV sensitive than excision repair mutants of E. coli or yeast. This may be due to efficient damage tolerance mechanisms such as recombinational lesion bypass, bypass DNA polymerase(s) and the existence of multiple genomes in Halobacterium. Phylogenetic analysis provides no clear evidence for lateral transfer of these genes from bacteria to archaea.
Collapse
Affiliation(s)
- David J Crowley
- Natural Sciences Department, Assumption College, 500 Salisbury Street, Worcester, Massachusetts 01609 USA
| | - Ivan Boubriak
- School of Life Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK
| | - Brian R Berquist
- University of Maryland Biotechnology Institute Center of Marine Biotechnology Baltimore, Maryland 21042 USA
| | - Monika Clark
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee 37235 USA
| | - Emily Richard
- Natural Sciences Department, Assumption College, 500 Salisbury Street, Worcester, Massachusetts 01609 USA
| | - Lynn Sullivan
- Natural Sciences Department, Assumption College, 500 Salisbury Street, Worcester, Massachusetts 01609 USA
| | - Shiladitya DasSarma
- University of Maryland Biotechnology Institute Center of Marine Biotechnology Baltimore, Maryland 21042 USA
- Greenebaum Cancer Center, University of Maryland, Baltimore, Maryland 21201 USA
| | - Shirley McCready
- School of Life Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK
| |
Collapse
|
47
|
Majchrzak M, Bowater RP, Staczek P, Parniewski P. SOS repair and DNA supercoiling influence the genetic stability of DNA triplet repeats in Escherichia coli. J Mol Biol 2006; 364:612-24. [PMID: 17028021 DOI: 10.1016/j.jmb.2006.08.093] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2006] [Revised: 08/25/2006] [Accepted: 08/31/2006] [Indexed: 01/27/2023]
Abstract
Molecular mechanisms responsible for the genetic instability of DNA trinucleotide sequences (TRS) account for at least 20 human hereditary disorders. Many aspects of DNA metabolism influence the frequency of length changes in such repeats. Herein, we demonstrate that expression of Escherichia coli SOS repair proteins dramatically decreases the genetic stability of long (CTG/CAG)n tracts contained in plasmids. Furthermore, the growth characteristics of the bacteria are affected by the (CTG/CAG)n tract, with the effect dependent on the length of the TRS. In an E. coli host strain with constitutive expression of the SOS regulon, the frequency of deletions to the repeat is substantially higher than that in a strain with no SOS response. Analyses of the topology of reporter plasmids isolated from the SOS+ and SOS- strains revealed higher levels of negative supercoiling in strains with the constitutively expressed SOS network. Hence, we used strains with mutations in topoisomerases to examine the effect of DNA topology upon the TRS instability. Higher levels of negative DNA supercoiling correlated with increased deletions in long (CTG/CAG)n, (CGG/CCG)n and (GAA/TTC)n. These observations suggest a link between the induction of bacterial SOS repair, changes in DNA topology and the mechanisms leading to genetic instability of repetitive DNA sequences.
Collapse
Affiliation(s)
- Marta Majchrzak
- Centre for Medical Biology, Polish Academy of Sciences, 106 Lodowa Street, 93-232 Lodz, Poland
| | | | | | | |
Collapse
|
48
|
Bedard LL, Massey TE. Aflatoxin B1-induced DNA damage and its repair. Cancer Lett 2006; 241:174-83. [PMID: 16458422 DOI: 10.1016/j.canlet.2005.11.018] [Citation(s) in RCA: 178] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2005] [Revised: 11/16/2005] [Accepted: 11/18/2005] [Indexed: 01/09/2023]
Abstract
Aflatoxin B(1) (AFB(1))-N(7)-guanine is the predominant adduct formed upon the reaction of AFB(1)-8,9-exo-epoxide with guanine residues in DNA. AFB(1)-N(7)-guanine can convert to the ring-opened formamidopyrimidine, or the adducted strand can undergo depurination. AFB(1)-N(7)-guanine and AFB(1)-formamidopyrimidine are thought to be predominantly repaired by nucleotide excision repair in bacteria, yeast and mammals. Although AFB(1)-formamidopyrimidine is removed less efficiently than AFB(1)-N(7)-guanine in mammals, both lesions are repaired with equal efficiencies in bacteria, reflecting differences in damage recognition between bacterial and mammalian repair systems. Furthermore, DNA repair activity and modulation of repair by AFB(1) seem to be major determinants of susceptibility to AFB(1)-induced carcinogenesis.
Collapse
Affiliation(s)
- Leanne L Bedard
- Department of Pharmacology and Toxicology, Queen's University, Botterell Hall, Kingston, Ont., Canada K7L 3N6
| | | |
Collapse
|
49
|
Walker GC. Lighting torches in the DNA repair field: development of key concepts. Mutat Res 2005; 577:14-23. [PMID: 16140050 DOI: 10.1016/j.mrfmmm.2005.03.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2005] [Revised: 03/16/2005] [Accepted: 03/16/2005] [Indexed: 11/24/2022]
Abstract
In 1974, Philip Hanawalt organized what proved to be the first in a continuing series of meetings that bring together the DNA Repair and Mutagenesis community. In conjunction with this meeting, he also edited a book that defined the state of the field at that point in time and included his personal assessment of numerous critical issues. This review traces some of the critical concepts concerning DNA repair and biological responses to DNA damage that have developed since that time, highlighting ways in which Phil Hanawalt has provided leadership in the field at many different levels.
Collapse
Affiliation(s)
- Graham C Walker
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
50
|
Nakano T, Katafuchi A, Shimizu R, Terato H, Suzuki T, Tauchi H, Makino K, Skorvaga M, Van Houten B, Ide H. Repair activity of base and nucleotide excision repair enzymes for guanine lesions induced by nitrosative stress. Nucleic Acids Res 2005; 33:2181-91. [PMID: 15831791 PMCID: PMC1079971 DOI: 10.1093/nar/gki513] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Nitric oxide (NO) induces deamination of guanine, yielding xanthine and oxanine (Oxa). Furthermore, Oxa reacts with polyamines and DNA binding proteins to form cross-link adducts. Thus, it is of interest how these lesions are processed by DNA repair enzymes in view of the genotoxic mechanism of NO. In the present study, we have examined the repair capacity for Oxa and Oxa–spermine cross-link adducts (Oxa–Sp) of enzymes involved in base excision repair (BER) and nucleotide excision repair (NER) to delineate the repair mechanism of nitrosative damage to guanine. Oligonucleotide substrates containing Oxa and Oxa–Sp were incubated with purified BER and NER enzymes or cell-free extracts (CFEs), and the damage-excising or DNA-incising activity was compared with that for control (physiological) substrates. The Oxa-excising activities of Escherichia coli and human DNA glycosylases and HeLa CFEs were 0.2–9% relative to control substrates, implying poor processing of Oxa by BER. In contrast, DNA containing Oxa–Sp was incised efficiently by UvrABC nuclease and SOS-induced E.coli CFEs, suggesting a role of NER in ameliorating genotoxic effects associated with nitrosative stress. Analyses of the activity of CFEs from NER-proficient and NER-deficient human cells on Oxa–Sp DNA confirmed further the involvement of NER in the repair of nitrosative DNA damage.
Collapse
Affiliation(s)
| | | | | | | | - Toshinori Suzuki
- Department of Biological Pharmacy, School of Pharmacy, Shujitsu University1-6-1 Nishigawara, Okayama 703-8516, Japan
| | - Hiroshi Tauchi
- Department of Environmental Sciences, Faculty of Science, Ibaraki UniversityMito, Ibaraki 310-8512, Japan
| | - Keisuke Makino
- Institute of Advanced Energy, Kyoto UniversityGokasho, Uji 611-0011, Japan
| | - Milan Skorvaga
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, National Institute of HealthResearch Triangle Park, NC 27709, USA
| | - Bennett Van Houten
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, National Institute of HealthResearch Triangle Park, NC 27709, USA
| | - Hiroshi Ide
- To whom correspondence should be addressed. Tel: +81 82 424 7457; Fax: +81 82 424 7457;
| |
Collapse
|