1
|
Hu G, Wang Y, Liu X, Strube ML, Wang B, Kovács ÁT. Species and condition shape the mutational spectrum in experimentally evolved biofilms. mSystems 2023; 8:e0054823. [PMID: 37768063 PMCID: PMC10654089 DOI: 10.1128/msystems.00548-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 08/11/2023] [Indexed: 09/29/2023] Open
Abstract
IMPORTANCE Biofilm formation is a vital factor for the survival and adaptation of bacteria in diverse environmental niches. Experimental evolution combined with the advancement of whole-population genome sequencing provides us a powerful tool to understand the genomic dynamic of evolutionary adaptation to different environments, such as during biofilm development. Previous studies described the genetic and phenotypic changes of selected clones from experimentally evolved Bacillus thuringiensis and Bacillus subtilis that were adapted under abiotic and biotic biofilm conditions. However, the full understanding of the dynamic evolutionary landscapes was lacking. Furthermore, the differences and similarities of adaptive mechanisms in B. thuringiensis and B. subtilis were not identified. To overcome these limitations, we performed longitudinal whole-population genome sequencing to study the underlying genetic dynamics at high resolution. Our study provides the first comprehensive mutational landscape of two bacterial species' biofilms that is adapted to an abiotic and biotic surface.
Collapse
Affiliation(s)
- Guohai Hu
- China National GeneBank, BGI, Shenzhen, China
- BGI Research, Shenzhen, China
- Bacterial Interactions and Evolution Group, DTU Bioengineering, Technical University of Denmark, Lyngby, Denmark
| | - Yue Wang
- China National GeneBank, BGI, Shenzhen, China
- BGI Research, Shenzhen, China
- BGI Research, Beijing, China
| | - Xin Liu
- China National GeneBank, BGI, Shenzhen, China
- BGI Research, Shenzhen, China
- BGI Research, Beijing, China
| | - Mikael Lenz Strube
- Bacterial Ecophysiology and Biotechnology Group, DTU Bioengineering, Technical University of Denmark, Lyngby, Denmark
| | - Bo Wang
- China National GeneBank, BGI, Shenzhen, China
- BGI Research, Shenzhen, China
- Shenzhen Key Laboratory of Environmental Microbial Genomics and Application, BGI Research, Shenzhen, China
| | - Ákos T. Kovács
- Bacterial Interactions and Evolution Group, DTU Bioengineering, Technical University of Denmark, Lyngby, Denmark
- Institute of Biology, Leiden University, Leiden, The Netherlands
| |
Collapse
|
2
|
He L, Liu L, Ban R. Construction of a mutant Bacillus subtilis strain for high purity poly-γ-glutamic acid production. Biotechnol Lett 2022; 44:991-1000. [PMID: 35767162 DOI: 10.1007/s10529-022-03272-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 06/12/2022] [Indexed: 11/28/2022]
Abstract
OBJECTIVE To construct a Bacillus subtilis strain for improved purity of poly-γ-glutamic acid. RESULTS The construction of strain GH16 was achieved by knocking out five genes encoding extracellular proteins and an operon from Bacillus subtilis G423. We then analyzed the amount of protein impurities in the γ-PGA produced by the resulting strain GH16/pHPG, which decreased from 1.48 to 1.39%. Subsequently the fla-che operon, PBSX, as well as the yrpD, ywoF and yclQ genes were knocked out successively, resulting in the mutant strains GH17, GH18 and GH19. Ultimately, the amount of protein impurities was reduced from 1.48 to 0.83%. In addition, the amount of polysaccharide impurities in the γ-PGA was also decreased from 2.21 to 1.93% after knocking out the epsA-O operon. CONCLUSIONS The high purity γ-PGA producer was constructed, and the resulting strain was a promising platform for the manufacture of other highly pure extracellular products and secretory proteins.
Collapse
Affiliation(s)
- Linlin He
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China
| | - Lu Liu
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China
| | - Rui Ban
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China. .,Key Laboratory of Systems Bioengineering, Tianjin University, Ministry of Education, Tianjin, 300072, People's Republic of China.
| |
Collapse
|
3
|
Mandell ZF, Oshiro RT, Yakhnin AV, Vishwakarma R, Kashlev M, Kearns DB, Babitzke P. NusG is an intrinsic transcription termination factor that stimulates motility and coordinates gene expression with NusA. eLife 2021; 10:e61880. [PMID: 33835023 PMCID: PMC8060035 DOI: 10.7554/elife.61880] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 04/08/2021] [Indexed: 12/21/2022] Open
Abstract
NusA and NusG are transcription factors that stimulate RNA polymerase pausing in Bacillus subtilis. While NusA was known to function as an intrinsic termination factor in B. subtilis, the role of NusG in this process was unknown. To examine the individual and combinatorial roles that NusA and NusG play in intrinsic termination, Term-seq was conducted in wild type, NusA depletion, ΔnusG, and NusA depletion ΔnusG strains. We determined that NusG functions as an intrinsic termination factor that works alone and cooperatively with NusA to facilitate termination at 88% of the 1400 identified intrinsic terminators. Our results indicate that NusG stimulates a sequence-specific pause that assists in the completion of suboptimal terminator hairpins with weak terminal A-U and G-U base pairs at the bottom of the stem. Loss of NusA and NusG leads to global misregulation of gene expression and loss of NusG results in flagella and swimming motility defects.
Collapse
Affiliation(s)
- Zachary F Mandell
- Department of Biochemistry and Molecular Biology, Center for RNA Molecular Biology, Pennsylvania State UniversityUniversity ParkUnited States
| | - Reid T Oshiro
- Department of Biology, Indiana UniversityBloomingtonUnited States
| | - Alexander V Yakhnin
- NCI RNA Biology Laboratory, Center for Cancer Research, NCIFrederickUnited States
| | - Rishi Vishwakarma
- Department of Biochemistry and Molecular Biology, Center for RNA Molecular Biology, Pennsylvania State UniversityUniversity ParkUnited States
| | - Mikhail Kashlev
- NCI RNA Biology Laboratory, Center for Cancer Research, NCIFrederickUnited States
| | - Daniel B Kearns
- Department of Biology, Indiana UniversityBloomingtonUnited States
| | - Paul Babitzke
- Department of Biochemistry and Molecular Biology, Center for RNA Molecular Biology, Pennsylvania State UniversityUniversity ParkUnited States
| |
Collapse
|
4
|
Cambré A, Aertsen A. Bacterial Vivisection: How Fluorescence-Based Imaging Techniques Shed a Light on the Inner Workings of Bacteria. Microbiol Mol Biol Rev 2020; 84:e00008-20. [PMID: 33115939 PMCID: PMC7599038 DOI: 10.1128/mmbr.00008-20] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The rise in fluorescence-based imaging techniques over the past 3 decades has improved the ability of researchers to scrutinize live cell biology at increased spatial and temporal resolution. In microbiology, these real-time vivisections structurally changed the view on the bacterial cell away from the "watery bag of enzymes" paradigm toward the perspective that these organisms are as complex as their eukaryotic counterparts. Capitalizing on the enormous potential of (time-lapse) fluorescence microscopy and the ever-extending pallet of corresponding probes, initial breakthroughs were made in unraveling the localization of proteins and monitoring real-time gene expression. However, later it became clear that the potential of this technique extends much further, paving the way for a focus-shift from observing single events within bacterial cells or populations to obtaining a more global picture at the intra- and intercellular level. In this review, we outline the current state of the art in fluorescence-based vivisection of bacteria and provide an overview of important case studies to exemplify how to use or combine different strategies to gain detailed information on the cell's physiology. The manuscript therefore consists of two separate (but interconnected) parts that can be read and consulted individually. The first part focuses on the fluorescent probe pallet and provides a perspective on modern methodologies for microscopy using these tools. The second section of the review takes the reader on a tour through the bacterial cell from cytoplasm to outer shell, describing strategies and methods to highlight architectural features and overall dynamics within cells.
Collapse
Affiliation(s)
- Alexander Cambré
- KU Leuven, Department of Microbial and Molecular Systems, Faculty of Bioscience Engineering, Leuven, Belgium
| | - Abram Aertsen
- KU Leuven, Department of Microbial and Molecular Systems, Faculty of Bioscience Engineering, Leuven, Belgium
| |
Collapse
|
5
|
Rath H, Sappa PK, Hoffmann T, Gesell Salazar M, Reder A, Steil L, Hecker M, Bremer E, Mäder U, Völker U. Impact of high salinity and the compatible solute glycine betaine on gene expression of Bacillus subtilis. Environ Microbiol 2020; 22:3266-3286. [PMID: 32419322 DOI: 10.1111/1462-2920.15087] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/30/2020] [Accepted: 05/13/2020] [Indexed: 12/15/2022]
Abstract
The Gram-positive bacterium Bacillus subtilis is frequently exposed to hyperosmotic conditions. In addition to the induction of genes involved in the accumulation of compatible solutes, high salinity exerts widespread effects on B. subtilis physiology, including changes in cell wall metabolism, induction of an iron limitation response, reduced motility and suppression of sporulation. We performed a combined whole-transcriptome and proteome analysis of B. subtilis 168 cells continuously cultivated at low or high (1.2 M NaCl) salinity. Our study revealed significant changes in the expression of more than one-fourth of the protein-coding genes and of numerous non-coding RNAs. New aspects in understanding the impact of high salinity on B. subtilis include a sustained low-level induction of the SigB-dependent general stress response and strong repression of biofilm formation under high-salinity conditions. The accumulation of compatible solutes such as glycine betaine aids the cells to cope with water stress by maintaining physiologically adequate levels of turgor and also affects multiple cellular processes through interactions with cellular components. Therefore, we additionally analysed the global effects of glycine betaine on the transcriptome and proteome of B. subtilis and revealed that it influences gene expression not only under high-salinity, but also under standard growth conditions.
Collapse
Affiliation(s)
- Hermann Rath
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Praveen K Sappa
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Tamara Hoffmann
- Laboratory for Microbiology, Department of Biology, Philipps-University Marburg, Marburg, Germany
| | - Manuela Gesell Salazar
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Alexander Reder
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Leif Steil
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Michael Hecker
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany.,Institute of Marine Biotechnology e.V. (IMaB), Greifswald, Germany
| | - Erhard Bremer
- Laboratory for Microbiology, Department of Biology, Philipps-University Marburg, Marburg, Germany
| | - Ulrike Mäder
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Uwe Völker
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany.,Institute of Marine Biotechnology e.V. (IMaB), Greifswald, Germany
| |
Collapse
|
6
|
Hummels KR, Kearns DB. Suppressor mutations in ribosomal proteins and FliY restore Bacillus subtilis swarming motility in the absence of EF-P. PLoS Genet 2019; 15:e1008179. [PMID: 31237868 PMCID: PMC6613710 DOI: 10.1371/journal.pgen.1008179] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 07/08/2019] [Accepted: 05/07/2019] [Indexed: 11/19/2022] Open
Abstract
Translation elongation factor P (EF-P) alleviates ribosome pausing at a subset of motifs encoding consecutive proline residues, and is required for growth in many organisms. Here we show that Bacillus subtilis EF-P also alleviates ribosome pausing at sequences encoding tandem prolines and ribosomes paused within several essential genes without a corresponding growth defect in an efp mutant. The B. subtilis efp mutant is instead impaired for flagellar biosynthesis which results in the abrogation of a form of motility called swarming. We isolate swarming suppressors of efp and identify mutations in 8 genes that suppressed the efp mutant swarming defect, many of which encode conserved ribosomal proteins or ribosome-associated factors. One mutation abolished a translational pause site within the flagellar C-ring component FliY to increase flagellar number and restore swarming motility in the absence of EF-P. Our data support a model wherein EF-P-alleviation of ribosome pausing may be particularly important for macromolecular assemblies like the flagellum that require precise protein stoichiometries.
Collapse
Affiliation(s)
- Katherine R. Hummels
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| | - Daniel B. Kearns
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
- * E-mail:
| |
Collapse
|
7
|
Yan S, Wu G. Proteases HtrA and HtrB for α-amylase secreted from Bacillus subtilis in secretion stress. Cell Stress Chaperones 2019; 24:493-502. [PMID: 31001739 PMCID: PMC6527527 DOI: 10.1007/s12192-019-00985-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 02/22/2019] [Accepted: 02/25/2019] [Indexed: 01/16/2023] Open
Abstract
HtrA and HtrB are two important proteases across species. In biotechnological industries, they are related to degradation of secreted heterologous proteins from bacteria, especially in the case of overproduction of α-amylases in Bacillus subtilis. Induction of HtrA and HtrB synthesis follows the overproduction of α-amylases in B. subtilis. This is different from the order usually observed in B. subtilis, i.e., the production of proteases is prior to the secretion of proteins. This discrepancy suggests three possibilities: (i) HtrA and HtrB are constantly synthesized from the end of the exponential phase, and then are synthesized more abundantly due to secretion stress; (ii) There is a hysteresis mechanism that holds HtrA and HtrB back from their large amount of secretion before the overproduction of α-amylases; (iii) Heterologous amylases could be a stress to B. subtilis leading to a general response to stress. In this review, we analyze the literature to explore these three possibilities. The first possibility is attributed to the regulatory pathway of CssR-CssS. The second possibility is because sigma factor σD plays a role in the overproduction of α-amylases and is subpopulation dependent with the switch between "ON" and "OFF" states that is fundamental for a bistable system and a hysteresis mechanism. Thus, sigma factor σD helps to hold HtrA and HtrB back from massive secretion before the overproduction of α-amylases. The third possibility is that several sigma factors promote the secretion of proteases at the end of the exponential phase of growth under the condition that heterologous amylases are considered as a stress.
Collapse
Affiliation(s)
- Shaomin Yan
- State Key Laboratory of Non-Food Biomass and Enzyme Technology, National Engineering Research Center for Non-Food Biorefinery, Guangxi Key Laboratory of Bio-refinery, Guangxi Academy of Sciences, 98 Daling Road, Nanning, 530007, Guangxi, China
| | - Guang Wu
- State Key Laboratory of Non-Food Biomass and Enzyme Technology, National Engineering Research Center for Non-Food Biorefinery, Guangxi Key Laboratory of Bio-refinery, Guangxi Academy of Sciences, 98 Daling Road, Nanning, 530007, Guangxi, China.
| |
Collapse
|
8
|
Exploitation of Bacillus subtilis as a robust workhorse for production of heterologous proteins and beyond. World J Microbiol Biotechnol 2018; 34:145. [DOI: 10.1007/s11274-018-2531-7] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 09/05/2018] [Indexed: 10/28/2022]
|
9
|
Park J, Dies M, Lin Y, Hormoz S, Smith-Unna SE, Quinodoz S, Hernández-Jiménez MJ, Garcia-Ojalvo J, Locke JCW, Elowitz MB. Molecular Time Sharing through Dynamic Pulsing in Single Cells. Cell Syst 2018; 6:216-229.e15. [PMID: 29454936 PMCID: PMC6070344 DOI: 10.1016/j.cels.2018.01.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 09/04/2017] [Accepted: 01/10/2018] [Indexed: 11/19/2022]
Abstract
In cells, specific regulators often compete for limited amounts of a core enzymatic resource. It is typically assumed that competition leads to partitioning of core enzyme molecules among regulators at constant levels. Alternatively, however, different regulatory species could time share, or take turns utilizing, the core resource. Using quantitative time-lapse microscopy, we analyzed sigma factor activity dynamics, and their competition for RNA polymerase, in individual Bacillus subtilis cells under energy stress. Multiple alternative sigma factors were activated in ~1-hr pulses in stochastic and repetitive fashion. Pairwise analysis revealed that two sigma factors rarely pulse simultaneously and that some pairs are anti-correlated, indicating that RNAP utilization alternates among different sigma factors. Mathematical modeling revealed how stochastic time-sharing dynamics can emerge from pulse-generating sigma factor regulatory circuits actively competing for RNAP. Time sharing provides a mechanism for cells to dynamically control the distribution of cell states within a population. Since core molecular components are limiting in many other systems, time sharing may represent a general mode of regulation.
Collapse
Affiliation(s)
- Jin Park
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Marta Dies
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona Biomedical Research Park, 08003 Barcelona, Spain; Department of Physics and Nuclear Engineering, Universitat Politecnica de Catalunya, 08222 Terrassa, Spain; Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, PA 18015, USA
| | - Yihan Lin
- Center for Quantitative Biology, and Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Sahand Hormoz
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | | | - Sofia Quinodoz
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | | | - Jordi Garcia-Ojalvo
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona Biomedical Research Park, 08003 Barcelona, Spain.
| | - James C W Locke
- Sainsbury Laboratory, Cambridge University, Bateman Street, Cambridge CB2 1LR, UK; Microsoft Research, Cambridge, UK.
| | - Michael B Elowitz
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
10
|
Öztürk S, Ergün BG, Çalık P. Double promoter expression systems for recombinant protein production by industrial microorganisms. Appl Microbiol Biotechnol 2017; 101:7459-7475. [DOI: 10.1007/s00253-017-8487-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 08/15/2017] [Accepted: 08/16/2017] [Indexed: 01/19/2023]
|
11
|
Ramaniuk O, Černý M, Krásný L, Vohradský J. Kinetic modelling and meta-analysis of the B. subtilis SigA regulatory network during spore germination and outgrowth. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2017. [PMID: 28648455 DOI: 10.1016/j.bbagrm.2017.06.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
This study describes the meta-analysis and kinetic modelling of gene expression control by sigma factor SigA of Bacillus subtilis during germination and outgrowth based on microarray data from 14 time points. The analysis computationally models the direct interaction among SigA, SigA-controlled sigma factor genes (sigM, sigH, sigD, sigX), and their target genes. Of the >800 known genes in the SigA regulon, as extracted from databases, 311 genes were analysed, and 190 were confirmed by the kinetic model as being controlled by SigA. For the remaining genes, alternative regulators satisfying kinetic constraints were suggested. The kinetic analysis suggested another 214 genes as potential SigA targets. The modelling was able to (i) create a particular SigA-controlled gene expression network that is active under the conditions for which the expression time series was obtained, and where SigA is the dominant regulator, (ii) suggest new potential SigA target genes, and (iii) find other possible regulators of a given gene or suggest a new mechanism of its control by identifying a matching profile of unknown regulator(s). Selected predicted regulatory interactions were experimentally tested, thus validating the model.
Collapse
Affiliation(s)
- O Ramaniuk
- Laboratory of Microbial Genetics and Gene Expression, Institute of Microbiology CAS, v.v.i., Videnska 1083, 14220 Prague, Czech Republic; Department of Genetics and Microbiology, Faculty of Science, Charles University, Víničná 5, CZ-12843 Prague 2, Czech Republic.
| | - M Černý
- Laboratory of Bioinformatics, Institute of Microbiology CAS, v.v.i., Videnska 1083, 14220 Prague, Czech Republic.
| | - L Krásný
- Laboratory of Microbial Genetics and Gene Expression, Institute of Microbiology CAS, v.v.i., Videnska 1083, 14220 Prague, Czech Republic.
| | - J Vohradský
- Laboratory of Bioinformatics, Institute of Microbiology CAS, v.v.i., Videnska 1083, 14220 Prague, Czech Republic.
| |
Collapse
|
12
|
The Clostridium difficile Dlt Pathway Is Controlled by the Extracytoplasmic Function Sigma Factor σV in Response to Lysozyme. Infect Immun 2016; 84:1902-1916. [PMID: 27068095 DOI: 10.1128/iai.00207-16] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 04/06/2016] [Indexed: 12/18/2022] Open
Abstract
Clostridium difficile (also known as Peptoclostridium difficile) is a major nosocomial pathogen and a leading cause of antibiotic-associated diarrhea throughout the world. Colonization of the intestinal tract is necessary for C. difficile to cause disease. Host-produced antimicrobial proteins (AMPs), such as lysozyme, are present in the intestinal tract and can deter colonization by many bacterial pathogens, and yet C. difficile is able to survive in the colon in the presence of these AMPs. Our prior studies established that the Dlt pathway, which increases the surface charge of the bacterium by addition of d-alanine to teichoic acids, is important for C. difficile resistance to a variety of AMPs. We sought to determine what genetic mechanisms regulate expression of the Dlt pathway. In this study, we show that a dlt null mutant is severely attenuated for growth in lysozyme and that expression of the dltDABC operon is induced in response to lysozyme. Moreover, we found that a mutant lacking the extracytoplasmic function (ECF) sigma factor σ(V) does not induce dlt expression in response to lysozyme, indicating that σ(V) is required for regulation of lysozyme-dependent d-alanylation of the cell wall. Using reporter gene fusions and 5' RACE (rapid amplification of cDNA ends) analysis, we identified promoter elements necessary for lysozyme-dependent and lysozyme-independent dlt expression. In addition, we observed that both a sigV mutant and a dlt mutant are more virulent in a hamster model of infection. These findings demonstrate that cell wall d-alanylation in C. difficile is induced by lysozyme in a σ(V)-dependent manner and that this pathway impacts virulence in vivo.
Collapse
|
13
|
Abstract
The bacterial flagellum is assembled from over 20 structural components, and flagellar gene regulation is morphogenetically coupled to the assembly state by control of the anti-sigma factor FlgM. In the Gram-negative bacterium Salmonella enterica, FlgM inhibits late-class flagellar gene expression until the hook-basal body structural intermediate is completed and FlgM is inhibited by secretion from the cytoplasm. Here we demonstrate that FlgM is also secreted in the Gram-positive bacterium Bacillus subtilis and is degraded extracellularly by the proteases Epr and WprA. We further demonstrate that, like in S. enterica, the structural genes required for the flagellar hook-basal body are required for robust activation of σ(D)-dependent gene expression and efficient secretion of FlgM. Finally, we determine that FlgM secretion is strongly enhanced by, but does not strictly require, hook-basal body completion and instead demands a minimal subset of flagellar proteins that includes the FliF/FliG basal body proteins, the flagellar type III export apparatus components FliO, FliP, FliQ, FliR, FlhA, and FlhB, and the substrate specificity switch regulator FliK.
Collapse
|
14
|
Abstract
Bacterial flagellar motility is among the most extensively studied physiological systems in biology, but most research has been restricted to using the highly similar Gram-negative species Escherichia coli and Salmonella enterica. Here, we review the recent advances in the study of flagellar structure and regulation of the distantly related and genetically tractable Gram-positive bacterium Bacillus subtilis. B. subtilis has a thicker layer of peptidoglycan and lacks the outer membrane of the Gram-negative bacteria; thus, not only phylogenetic separation but also differences in fundamental cell architecture contribute to deviations in flagellar structure and regulation. We speculate that a large number of flagella and the absence of a periplasm make B. subtilis a premier organism for the study of the earliest events in flagellar morphogenesis and the type III secretion system. Furthermore, B. subtilis has been instrumental in the study of heterogeneous gene transcription in subpopulations and of flagellar regulation at the translational and functional level.
Collapse
|
15
|
Mordini S, Osera C, Marini S, Scavone F, Bellazzi R, Galizzi A, Calvio C. The role of SwrA, DegU and P(D3) in fla/che expression in B. subtilis. PLoS One 2013; 8:e85065. [PMID: 24386445 PMCID: PMC3874003 DOI: 10.1371/journal.pone.0085065] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2013] [Accepted: 11/22/2013] [Indexed: 11/25/2022] Open
Abstract
In B. subtilis swarming and robust swimming motility require the positive trigger of SwrA on fla/che operon expression. Despite having an essential and specific activity, how SwrA executes this task has remained elusive thus far. We demonstrate here that SwrA acts at the main σA-dependent fla/che promoter PA(fla/che) through DegU. Electrophoretic mobility shift assays (EMSA) reveal that SwrA forms a complex with the phosphorylated form of DegU (DegU~P) at PA(fla/che) while it is unable to do so with either unphosphorylated DegU or the DegU32(Hy) mutant protein. Motility assays show that a highly phosphorylated DegU is not detrimental for flagellar motility provided that SwrA is present; however, DegU~P represses PA(fla/che) in the absence of SwrA. Overall, our data support a model in which DegU~P is a dual regulator, acting either as a repressor when alone or as a positive regulator of PA(fla/che) when combined with SwrA. Finally, we demonstrate that the σD-dependent PD3(fla/che) promoter plays an important role in motility, representing a contingent feedback loop necessary to maintain basal motility when swrA is switched to the non-functional swrA- status.
Collapse
Affiliation(s)
- Serena Mordini
- Department of Biology and Biotechnology, Università degli Studi di, Pavia, Pavia, Italy
| | - Cecilia Osera
- Department of Biology and Biotechnology, Università degli Studi di, Pavia, Pavia, Italy
| | - Simone Marini
- Department of Electrical, Computer and Biomedical Engineering, Università degli Studi di, Pavia, Pavia, Italy
| | - Francesco Scavone
- Department of Biology and Biotechnology, Università degli Studi di, Pavia, Pavia, Italy
| | - Riccardo Bellazzi
- Department of Electrical, Computer and Biomedical Engineering, Università degli Studi di, Pavia, Pavia, Italy
| | - Alessandro Galizzi
- Department of Biology and Biotechnology, Università degli Studi di, Pavia, Pavia, Italy
| | - Cinzia Calvio
- Department of Biology and Biotechnology, Università degli Studi di, Pavia, Pavia, Italy
- *
| |
Collapse
|
16
|
El Meouche I, Peltier J, Monot M, Soutourina O, Pestel-Caron M, Dupuy B, Pons JL. Characterization of the SigD regulon of C. difficile and its positive control of toxin production through the regulation of tcdR. PLoS One 2013; 8:e83748. [PMID: 24358307 PMCID: PMC3865298 DOI: 10.1371/journal.pone.0083748] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 11/07/2013] [Indexed: 02/04/2023] Open
Abstract
Clostridium difficile intestinal disease is mediated largely by the actions of toxins A (TcdA) and B (TcdB), whose production occurs after the initial steps of colonization involving different surface or flagellar proteins. In B. subtilis, the sigma factor SigD controls flagellar synthesis, motility, and vegetative autolysins. A homolog of SigD encoding gene is present in the C.difficile 630 genome. We constructed a sigD mutant in C. difficile 630 ∆erm to analyze the regulon of SigD using a global transcriptomic approach. A total of 103 genes were differentially expressed between the wild-type and the sigD mutant, including genes involved in motility, metabolism and regulation. In addition, the sigD mutant displayed decreased expression of genes involved in flagellar biosynthesis, and also of genes encoding TcdA and TcdB as well as TcdR, the positive regulator of the toxins. Genomic analysis and RACE-PCR experiments allowed us to characterize promoter sequences of direct target genes of SigD including tcdR and to identify the SigD consensus. We then established that SigD positively regulates toxin expression via direct control of tcdR transcription. Interestingly, the overexpression of FlgM, a putative anti-SigD factor, inhibited the positive regulation of motility and toxin synthesis by SigD. Thus, SigD appears to be the first positive regulator of the toxin synthesis in C. difficile.
Collapse
Affiliation(s)
- Imane El Meouche
- Laboratoire G.R.A.M. (EA 2656 IFR 23 IHURBM), Université de Rouen, Rouen, France
| | - Johann Peltier
- Laboratoire G.R.A.M. (EA 2656 IFR 23 IHURBM), Université de Rouen, Rouen, France
- * E-mail:
| | - Marc Monot
- Laboratoire Pathogenèse des Bactéries Anaérobies, Institut Pasteur, Paris, France
| | - Olga Soutourina
- Laboratoire Pathogenèse des Bactéries Anaérobies, Institut Pasteur, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Cellule Pasteur, Paris, France
| | - Martine Pestel-Caron
- Laboratoire G.R.A.M. (EA 2656 IFR 23 IHURBM), Université de Rouen, Rouen, France
| | - Bruno Dupuy
- Laboratoire Pathogenèse des Bactéries Anaérobies, Institut Pasteur, Paris, France
| | - Jean-Louis Pons
- Laboratoire G.R.A.M. (EA 2656 IFR 23 IHURBM), Université de Rouen, Rouen, France
- Laboratoire Ecosystème intestinal, Probiotiques, Antibiotiques (EA 4065, IFR IMTCE), Université Paris Descartes, Paris, France
| |
Collapse
|
17
|
Abstract
The structure of the Gram-positive flagellum is poorly understood, and Bacillus subtilis encodes three proteins homologous to the flagellar hook protein from Salmonella enterica. Here we generated a modified B. subtilis hook protein that could be fluorescently stained using a cysteine-reactive dye. We used the fluorescently labeled hook to demonstrate that FlgE is the hook structural protein and that FliK regulated hook length. We further demonstrate that two proteins of unknown function, FlhO and FlhP, and the putative hook cap, FlgD, were required for hook assembly, such that when flhO, flhP, or flgD was mutated, hook protein was secreted into the supernatant. All mutants defective in hook completion resulted in homogeneously reduced σ(D)-dependent gene expression due to the action of the anti-sigma factor FlgM.
Collapse
|
18
|
Mendez R, Gutierrez A, Reyes J, Márquez-Magaña L. The extracytoplasmic function sigma factor SigY is important for efficient maintenance of the Spβ prophage that encodes sublancin in Bacillus subtilis. DNA Cell Biol 2012; 31:946-55. [PMID: 22400495 DOI: 10.1089/dna.2011.1513] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
Many strains of the soil bacterium Bacillus subtilis are capable of producing and being resistant to the antibiotic sublancin because they harbor the Spβ prophage. This 135 kb viral genome is integrated into the circular DNA chromosome of B. subtilis, and contains genes for the production of and resistance to sublancin. We investigated the role of SigY in sublancin production and resistance, finding that it is important for efficient maintenance of the Spβ prophage. We were unable to detect the prophage in mutants lacking SigY. Additionally, these mutants were no longer able to produce sublancin, were sensitive to killing by this factor, and displayed a delay in sporulation. Wild-type cells with normal SigY activity were found to partially lose the Spβ prophage during growth and early sporulation, suggesting a mechanism for the bistable outcome of sibling cells capable of killing and of being killed. The appropriate regulation of SigY appears to be essential for growth as evidenced by the inability to disrupt the gene for its putative antisigma. Our results confirm a role for SigY in antibiotic production and resistance, as has been found for other members of the extracytoplasmic function sigma factor family in B. subtilis, and shows that this role is achieved by affecting maintenance of the Spβ prophage.
Collapse
Affiliation(s)
- Rebecca Mendez
- Department of Biology, San Francisco State University, San Francisco, California 94132, USA
| | | | | | | |
Collapse
|
19
|
Cozy LM, Phillips AM, Calvo RA, Bate AR, Hsueh YH, Bonneau R, Eichenberger P, Kearns DB. SlrA/SinR/SlrR inhibits motility gene expression upstream of a hypersensitive and hysteretic switch at the level of σ(D) in Bacillus subtilis. Mol Microbiol 2012; 83:1210-28. [PMID: 22329926 DOI: 10.1111/j.1365-2958.2012.08003.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Exponentially growing Bacillus subtilis cultures are epigenetically differentiated into two subpopulations in which cells are either ON or OFF for σ(d) -dependent gene expression: a pattern suggestive of bistability. The gene encoding σ(D) , sigD, is part of the 31-gene fla/che operon where its location at the 3' end, 25 kb away from the strong P(fla/che) promoter, determines its expression level relative to a threshold. Here we show that addition of a single extra copy of the slrA gene in the chromosome inhibited σ(d) -dependent gene expression. SlrA together with SinR and SlrR reduced sigD transcript by potentiating a distance-dependent decrease in fla/che operon transcript abundance that was not mediated by changes in expression from the P(fla/che) promoter. Consistent with acting upstream of σ(D) , SlrA/SinR/SlrR was bypassed by artificial ectopic expression of sigD and hysteretically maintained for 20 generations by engaging the sigD gene at the native locus. SlrA/SinR/SlrR was also bypassed by increasing fla/che transcription and resulted in a hypersensitive output in flagellin expression. Thus, flagellin gene expression demonstrated hypersensitivity and hysteresis and we conclude that σ(d) -dependent gene expression is bistable.
Collapse
Affiliation(s)
- Loralyn M Cozy
- Indiana University, Department of Biology, Bloomington, IN 47405, USA
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Hsueh YH, Cozy LM, Sham LT, Calvo RA, Gutu AD, Winkler ME, Kearns DB. DegU-phosphate activates expression of the anti-sigma factor FlgM in Bacillus subtilis. Mol Microbiol 2011; 81:1092-108. [PMID: 21736639 DOI: 10.1111/j.1365-2958.2011.07755.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The bacterial flagellum is a complex molecular machine that is assembled by more than 30 proteins and is rotated to propel cells either through liquids or over solid surfaces. Flagellar gene expression is extensively regulated to co-ordinate flagellar assembly in both space and time. In Bacillus subtilis, the proteins of unknown function, SwrA and SwrB, and the alternative sigma factor σ(D) are required to activate expression of the flagellar filament protein, flagellin. Here we determine that in the absence of SwrA and SwrB, the phosphorylated form of the response regulator DegU inhibits σ(D) -dependent gene expression indirectly by binding to the P(flgM) promoter region and activating expression of the anti-sigma factor FlgM. We further demonstrate that DegU-P-dependent activation of FlgM is essential to inhibit flagellin expression when flagellar basal body assembly is disrupted. Regulation of FlgM is poorly understood outside of Salmonella, and differential control of FlgM expression may be a common means of coupling flagellin expression to flagellar assembly.
Collapse
Affiliation(s)
- Yi-Huang Hsueh
- Department of Biology, Indiana University, 1001 East Third Street, Bloomington, IN 47405, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
McBride SM, Sonenshein AL. The dlt operon confers resistance to cationic antimicrobial peptides in Clostridium difficile. MICROBIOLOGY-SGM 2011; 157:1457-1465. [PMID: 21330441 DOI: 10.1099/mic.0.045997-0] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The dlt operon in Gram-positive bacteria encodes proteins that are necessary for the addition of d-alanine to teichoic acids of the cell wall. The addition of d-alanine to the cell wall results in a net positive charge on the bacterial cell surface and, as a consequence, can decrease the effectiveness of antimicrobials, such as cationic antimicrobial peptides (CAMPs). Although the roles of the dlt genes have been studied for some Gram-positive organisms, the arrangement of these genes in Clostridium difficile and the life cycle of the bacterium in the host are markedly different from those of other pathogens. In the current work, we determined the contribution of the putative C. difficile dlt operon to CAMP resistance. Our data indicate that the dlt operon is necessary for full resistance of C. difficile to nisin, gallidermin, polymyxin B and vancomycin. We propose that the d-alanylation of teichoic acids provides protection against antimicrobial peptides that may be essential for growth of C. difficile in the host.
Collapse
Affiliation(s)
- Shonna M McBride
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Abraham L Sonenshein
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA 02111, USA
| |
Collapse
|
22
|
Kurulgan Demirci E, Demirci T, Trzewik J, Linder P, Karakulah G, Artmann GM, Sakızlı M, Temiz Artmann A. Genome-Wide Gene Expression Analysis of NIH 3T3 Cell Line Under Mechanical Stimulation. Cell Mol Bioeng 2010. [DOI: 10.1007/s12195-010-0149-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
|
23
|
Alexander RP, Lowenthal AC, Harshey RM, Ottemann KM. CheV: CheW-like coupling proteins at the core of the chemotaxis signaling network. Trends Microbiol 2010; 18:494-503. [PMID: 20832320 DOI: 10.1016/j.tim.2010.07.004] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2009] [Revised: 07/13/2010] [Accepted: 07/26/2010] [Indexed: 11/26/2022]
Abstract
Microbes have chemotactic signaling systems that enable them to detect and follow chemical gradients in their environments. The core of these sensory systems consists of chemoreceptor proteins coupled to the CheA kinase via the scaffold or coupler protein CheW. Some bacterial chemotaxis systems replace or augment CheW with a related protein, CheV, which is less well understood. CheV consists of a CheW domain fused to a receiver domain that is capable of being phosphorylated. Our review of the literature, as well as comparisons of the CheV and CheW sequence and structure, suggest that CheV proteins conserve CheW residues that are crucial for coupling. Phosphorylation of the CheV receiver domain might adjust the efficiency of its coupling and thus allow the system to modulate the response to chemical stimuli in an adaptation process.
Collapse
Affiliation(s)
- Roger P Alexander
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | | | | | | |
Collapse
|
24
|
Abstract
The Lia system, a cell envelope stress response module of Bacillus subtilis, is comprised of the LiaRS two-component system and a membrane-anchored inhibitor protein, LiaF. It is highly conserved in the Firmicutes bacteria, and all orthologs investigated so far are activated by cell wall antibiotics. In response to envelope stress, the systems in Firmicutes cocci induce the expression of a number of genes that are involved in conferring resistance against its inducers. In contrast, a complete picture of the LiaR regulon of B. subtilis is still missing and no phenotypes could be associated with mutants lacking LiaRS. Here, we performed genome-wide transcriptomic, proteomic, and in-depth phenotypic profiling of constitutive "Lia ON" and "Lia OFF" mutants to obtain a comprehensive picture of the Lia response of Bacillus subtilis. In addition to the known targets liaIH and yhcYZ-yhdA, we identified ydhE as a novel gene affected by LiaR-dependent regulation. The results of detailed follow-up gene expression studies, together with proteomic analysis, demonstrate that the liaIH operon represents the only relevant LiaR target locus in vivo. It encodes a small membrane protein (LiaI) and a phage shock protein homolog (LiaH). LiaH forms large oligomeric rings reminiscent of those described for Escherichia coli PspA or Arabidopsis thaliana Vipp1. The results of comprehensive phenotype studies demonstrated that the gene products of the liaIH operon are involved in protecting the cell against oxidative stress and some cell wall antibiotics. Our data suggest that the LiaFSR system of B. subtilis and, presumably, other Firmicutes bacilli coordinates a phage shock protein-like response.
Collapse
|
25
|
Cozy LM, Kearns DB. Gene position in a long operon governs motility development in Bacillus subtilis. Mol Microbiol 2010; 76:273-85. [PMID: 20233303 DOI: 10.1111/j.1365-2958.2010.07112.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Growing cultures of Bacillus subtilis bifurcate into subpopulations of motile individuals and non-motile chains of cells that are differentiated at the level of gene expression. The motile cells are ON and the chaining cells are OFF for transcription that depends on RNA polymerase and the alternative sigma factor sigma(D). Here we show that chaining cells were OFF for sigma(D)-dependent gene expression because sigma(D) levels fell below a threshold and sigma(D) activity was inhibited by the anti-sigma factor FlgM. The probability that sigma(D) exceeded the threshold was governed by the position of the sigD gene. The proportion of ON cells increased when sigD was artificially moved forward in the 27 kb fla/che operon. In addition, we identified a new sigma(D)-dependent promoter that increases sigD expression and may provide positive feedback to stabilize the ON state. Finally, we demonstrate that ON/OFF motility states in B. subtilis are a form of development because mosaics of stable and differentiated epigenotypes were evident when the normally dispersed bacteria were forced to grow in one dimension.
Collapse
Affiliation(s)
- Loralyn M Cozy
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | | |
Collapse
|
26
|
Smith TG, Hoover TR. Deciphering bacterial flagellar gene regulatory networks in the genomic era. ADVANCES IN APPLIED MICROBIOLOGY 2009; 67:257-95. [PMID: 19245942 DOI: 10.1016/s0065-2164(08)01008-3] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Synthesis of the bacterial flagellum is a complex process involving dozens of structural and regulatory genes. Assembly of the flagellum is a highly-ordered process, and in most flagellated bacteria the structural genes are expressed in a transcriptional hierarchy that results in the products of these genes being made as they are needed for assembly. Temporal regulation of the flagellar genes is achieved through sophisticated regulatory networks that utilize checkpoints in the flagellar assembly pathway to coordinate expression of flagellar genes. Traditionally, flagellar transcriptional hierarchies are divided into various classes. Class I genes, which are the first genes expressed, encode a master regulator that initiates the transcriptional hierarchy. The master regulator activates transcription a set of structural and regulatory genes referred to as class II genes, which in turn affect expression of subsequent classes of flagellar genes. We review here the literature on the expression and activity of several known master regulators, including FlhDC, CtrA, VisNR, FleQ, FlrA, FlaK, LafK, SwrA, and MogR. We also examine the Department of Energy Joint Genomes Institute database to make predictions about the distribution of these regulators. Many bacteria employ the alternative sigma factors sigma(54) and/or sigma(28) to regulate transcription of later classes of flagellar genes. Transcription by sigma(54)-RNA polymerase holoenzyme requires an activator, and we review the literature on the sigma(54)-dependent activators that control flagellar gene expression in several bacterial systems, as well as make predictions about other systems that may utilize sigma(54) for flagellar gene regulation. Finally, we review the prominent systems that utilize sigma(28) and its antagonist, the anti-sigma(28) factor FlgM, along with some systems that utilize alternative mechanisms for regulating flagellar gene expression.
Collapse
Affiliation(s)
- Todd G Smith
- Department of Microbiology, University of Georgia, Athens, Georgia 30602, USA
| | | |
Collapse
|
27
|
Abstract
We demonstrate that transcription of the gene swrAA, required for swarming migration in Bacillus subtilis, is driven by two promoters: a sigD-dependent promoter and a putative sigA-dependent promoter, which is inactive during growth in liquid Luria-Bertani medium and becomes active in the presence of the phosphorylated form of the response regulator DegU or on semisolid surfaces. Since sigD transcription is enhanced by SwrAA, this finding reveals that swrA expression is controlled by a positive feedback loop. We also demonstrate that the positive action of SwrAA in swimming and swarming motility is prevented in strains carrying a deletion of the two-component system degS-degU and that this effect is independent of swrAA transcription. Therefore, both DegU and SwrAA must be present to achieve full motility in B. subtilis.
Collapse
|
28
|
Tsukahara K, Ogura M. Promoter selectivity of the Bacillus subtilis response regulator DegU, a positive regulator of the fla/che operon and sacB. BMC Microbiol 2008; 8:8. [PMID: 18197985 PMCID: PMC2245950 DOI: 10.1186/1471-2180-8-8] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2007] [Accepted: 01/15/2008] [Indexed: 11/11/2022] Open
Abstract
Background The response regulator DegU and its cognate histidine kinase DegS constitute a two-component system in the Gram-positive soil bacterium Bacillus subtilis. Unphosphorylated and phosphorylated forms of DegU are known to activate target gene transcription in B. subtilis. Although phosphorylated DegU (DegU-P) regulates more than one hundred and twenty genes, the targets of unphosphorylated DegU are unknown, except for comK. Results We found that the fla/che (flagella and chemotaxis) operon is positively regulated by unphosphorylated DegU. The effect was most prominent in a strain bearing the functional swrAA gene, a positive regulator of fla/che. Unphosphorylated DegU bound to two regions in the fla/che regulatory region containing an inverted repeat-like sequence that resembles the inverted repeat (IR) in the comK promoter. Mutational analysis revealed that positive regulation of fla/che by SwrAA requires DegU-binding. An analysis of the DegU-P-regulated gene sacB (levansucrase gene) by footprint and mutational analyses revealed that DegU-P bound to a direct repeat (DR) of the DegU-recognition motifs, which has been shown to be functional in vivo, while unphosphorylated DegU did not. These results strongly suggest that the arrangement of the DegU-binding motifs determines whether unphosphorylated DegU or DegU-P binds to the sacB promoter. The hypothesis was confirmed by observing degS-independent expression when the DR in the sacB-lacZ fusion was changed to an IR, suggesting that unphosphorylated DegU regulates the sacB promoter through the newly created IR. This was confirmed by binding of unphosphorylated DegU to the IR in the sacB promoter. Conclusion This study demonstrated that DegU positively regulates flgB and sacB through its binding to the promoter regions. We demonstrated that DegU-P prefers binding to DR but not to IR in the sacB promoter.
Collapse
Affiliation(s)
- Kensuke Tsukahara
- Institute of Oceanic Research and Development, Tokai University, 3-20-1 Orido-Shimizu, Shizuoka 424-8610, Japan.
| | | |
Collapse
|
29
|
Kobayashi K. Gradual activation of the response regulator DegU controls serial expression of genes for flagellum formation and biofilm formation inBacillus subtilis. Mol Microbiol 2007; 66:395-409. [PMID: 17850253 DOI: 10.1111/j.1365-2958.2007.05923.x] [Citation(s) in RCA: 175] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In natural environments, bacteria fluctuate between growth as motile cells and growth as sessile, biofilm-forming cells. However, what controls the transition between these two-growth modes in Bacillus subtilis is not well understood yet. The degU mutation prevents both flagellum formation and biofilm formation, suggesting that one of the transition mechanisms may underlie regulation of the DegU activity. The expression profiles of DegU-regulated genes differed; flagellar genes and several unknown genes were expressed during the exponential phase, whereas other genes were induced in the stationary phase. The degS mutation did not affect transcription of the flgB-sigD operon, but reduced transcription of sigma(D)-dependent flagellar genes, degU and other DegU-regulated genes. In addition, the degQ mutation did not affect transcription of flagellar genes but reduce transcription of other DegU-regulated genes. Purified DegQ protein stimulated phosphotransfer from phospho-DegS to DegU in vitro. Moreover, DegU binds the promoter region of flgB with a high affinity, whereas DegU binds to the promoter regions of other DegU-regulated genes with a low affinity and in a DegS-dependent manner. Taken together, we propose that a gradual increase in DegU and phospho-DegU levels induces a transition from growth as motile cells to growth as sessile, biofilm-forming cells.
Collapse
Affiliation(s)
- Kazuo Kobayashi
- Graduate School of Information Science, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan.
| |
Collapse
|
30
|
Abstract
We have discovered that cells of Bacillus subtilis at the mid-exponential phase of growth are a mixed population of two strikingly different cell types. One type is single swimming cells (or cell doublets) in which the transcription factor for motility, sigma(D), is active (sigma(D) ON). The other type is long chains of sessile cells in which sigma(D) is inactive (sigma(D) OFF). The population is strongly biased toward sigma(D)-ON cells by the action of a novel regulatory protein called SwrA. SwrA stimulates the transcription of a large operon (the flagellum/chemotaxis operon), which includes the genes for sigma(D) and an activator of sigma(D)-directed gene expression, SwrB. Cell population heterogeneity could enable B. subtilis to exploit its present location through the production of sessile cells as well as to explore new environmental niches through the generation of nomadic cells.
Collapse
Affiliation(s)
- Daniel B Kearns
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | | |
Collapse
|
31
|
Paredes CJ, Alsaker KV, Papoutsakis ET. A comparative genomic view of clostridial sporulation and physiology. Nat Rev Microbiol 2005; 3:969-78. [PMID: 16261177 DOI: 10.1038/nrmicro1288] [Citation(s) in RCA: 241] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Clostridia are anaerobic, endospore-forming prokaryotes that include strains of importance to human and animal health and physiology, cellulose degradation, solvent production and bioremediation. Their differentiation and related developmental programmes are not well understood at the molecular level. Recent genome sequencing and transcriptional-profiling studies have offered a glimpse of their inner workings and indicate that a better understanding of the orchestration of the molecular events that underlie their unique physiology, capabilities and diversity will pay major dividends.
Collapse
Affiliation(s)
- Carlos J Paredes
- Department of Chemical & Biological Engineering, Northwestern University, Evanston, Illinois 60208, USA
| | | | | |
Collapse
|
32
|
Amati G, Bisicchia P, Galizzi A. DegU-P represses expression of the motility fla-che operon in Bacillus subtilis. J Bacteriol 2004; 186:6003-14. [PMID: 15342569 PMCID: PMC515139 DOI: 10.1128/jb.186.18.6003-6014.2004] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacillus subtilis implements several adaptive strategies to cope with nutrient limitation experienced at the end of exponential growth. The DegS-DegU two-component system is part of the network involved in the regulation of postexponential responses, such as competence development, the production of exoenzymes, and motility. The degU32(Hy) mutation extends the half-life of the phosphorylated form of DegU (DegU-P); this in turn increases the production of alkaline protease, levan-sucrase, and other exoenzymes and inhibits motility and the production of flagella. The expression of the flagellum-specific sigma factor SigD, of the flagellin gene hag, and of the fla-che operon is strongly reduced in a degU32(Hy) genetic background. To investigate the mechanism of action of DegU-P on motility, we isolated mutants of degU32(Hy) that completely suppressed the motility deficiency. The mutations were genetically mapped and characterized by PCR and sequencing. Most of the mutations were found to delete a transcriptional termination signal upstream of the main flagellar operon, fla-che, thus allowing transcriptional readthrough from the cod operon. Two additional mutations improved the sigmaA-dependent promoter sequence of the fla-che operon. Using an electrophoretic mobility shift assay, we have demonstrated that purified DegU binds specifically to the PA promoter region of the fla-che operon. The data suggest that DegU represses transcription of the fla-che operon, and they indicate a central role of the operon in regulating the synthesis and assembly of flagella.
Collapse
Affiliation(s)
- Giuseppe Amati
- Dipartimento di Genetica e Microbiologia, Via Abbiategrasso 207, 27100 Pavia, Italy.
| | | | | |
Collapse
|
33
|
Werhane H, Lopez P, Mendel M, Zimmer M, Ordal GW, Márquez-Magaña LM. The last gene of the fla/che operon in Bacillus subtilis, ylxL, is required for maximal sigmaD function. J Bacteriol 2004; 186:4025-9. [PMID: 15175317 PMCID: PMC419943 DOI: 10.1128/jb.186.12.4025-4029.2004] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
ylxL was found to be the last gene of the fla/che operon in Bacillus subtilis and is cotranscribed with the gene for the flagellum-specific alternate sigma factor, sigma(D). The ylxL gene was disrupted by insertional mutagenesis, and the resultant mutant strain was found to be compromised for sigma(D)-dependent functions.
Collapse
Affiliation(s)
- H Werhane
- Department of Biology, San Francisco State University, 1600 Holloway Ave., San Francisco, CA 94132, USA
| | | | | | | | | | | |
Collapse
|
34
|
Bergara F, Ibarra C, Iwamasa J, Patarroyo JC, Aguilera R, Márquez-Magaña LM. CodY is a nutritional repressor of flagellar gene expression in Bacillus subtilis. J Bacteriol 2003; 185:3118-26. [PMID: 12730172 PMCID: PMC154071 DOI: 10.1128/jb.185.10.3118-3126.2003] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Expression of the sigma(D)-dependent flagellin gene, hag, is repressed by the CodY protein in nutrient-rich environments. Analysis of a codY mutant bearing a hag-lacZ reporter suggests that the availability of amino acids in the environment is the specific signal that triggers this repression. Further, hag-lacZ expression appears to be sensitive to intracellular GTP levels, as demonstrated by increased expression upon addition of decoyinine. This result is consistent with the postulate that the availability of amino acids in the environment effects intracellular GTP levels through the stringent response. However, the levels of hag-lacZ measured upon the addition of subsets of amino acids suggest an additional mechanism(s). CodY is a DNA binding protein that could repress flagellin expression directly by binding to the hag promoter region, or indirectly by binding to the fla/che promoter region that governs expression of the sigma(D) transcriptional activator required for hag gene expression. Using an electrophoretic mobility shift assay, we have demonstrated that purified CodY protein binds specifically to both the hag and fla/che promoter fragments. Additionally, CodY acts as a nutritional repressor of transcription from the fla/che promoter region that contains two functional promoters. CodY binds to both the sigma(D)- and sigma(A)-dependent promoters in this region, as demonstrated by DNase I footprint analyses. Footprint analyses of the hag gene demonstrated that CodY binds downstream of its sigma(D)-dependent promoter. Taken together, these results identify new members of the CodY regulon that encode motility functions in Bacillus subtilis and are controlled by the sigma(D) alternate sigma factor.
Collapse
Affiliation(s)
- F Bergara
- Department of Biology, San Francisco State University, San Francisco, California 94132, USA
| | | | | | | | | | | |
Collapse
|
35
|
West JT, Estacio W, Márquez-Magaña L. Relative roles of the fla/che P(A), P(D-3), and P(sigD) promoters in regulating motility and sigD expression in Bacillus subtilis. J Bacteriol 2000; 182:4841-8. [PMID: 10940026 PMCID: PMC111362 DOI: 10.1128/jb.182.17.4841-4848.2000] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Three promoters have been identified as having potentially important regulatory roles in governing expression of the fla/che operon and of sigD, a gene that lies near the 3' end of the operon. Two of these promoters, fla/che P(A) and P(D-3), lie upstream of the >26-kb fla/che operon. The third promoter, P(sigD), lies within the operon, immediately upstream of sigD. fla/che P(A), transcribed by E sigma(A), lies >/=24 kb upstream of sigD and appears to be largely responsible for sigD expression. P(D-3), transcribed by E sigma(D), has been proposed to participate in an autoregulatory positive feedback loop. P(sigD), a minor sigma(A)-dependent promoter, has been implicated as essential for normal expression of the fla/che operon. We tested the proposed functions of these promoters in experiments that utilized strains that bear chromosomal deletions of fla/che P(A), P(D-3), or P(sigD). Our analysis of these strains indicates that fla/che P(A) is absolutely essential for motility, that P(D-3) does not function in positive feedback regulation of sigD expression, and that P(sigD) is not essential for normal fla/che expression. Further, our results suggest that an additional promoter(s) contributes to sigD expression.
Collapse
Affiliation(s)
- J T West
- Department of Biology, San Francisco State University, San Francisco, California 94132, USA
| | | | | |
Collapse
|
36
|
Mirel DB, Estacio WF, Mathieu M, Olmsted E, Ramirez J, Márquez-Magaña LM. Environmental regulation of Bacillus subtilis sigma(D)-dependent gene expression. J Bacteriol 2000; 182:3055-62. [PMID: 10809682 PMCID: PMC94489 DOI: 10.1128/jb.182.11.3055-3062.2000] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The sigma(D) regulon of Bacillus subtilis is composed of genes encoding proteins for flagellar synthesis, motility, and chemotaxis. Concurrent analyses of sigma(D) protein levels and flagellin mRNA demonstrate that sigD expression and sigma(D) activity are tightly coupled during growth in both complex and minimal media, although they exhibit different patterns of expression. We therefore used the sigma(D)-dependent flagellin gene (hag) as a model gene to study the effects of different nutritional environments on sigma(D)-dependent gene expression. In complex medium, the level of expression of a hag-lacZ fusion increased exponentially during the exponential growth phase and peaked early in the transition state. In contrast, the level of expression of this reporter remained constant and high throughout growth in minimal medium. These results suggest the existence of a nutritional signal(s) that affects sigD expression and/or sigma(D) activity. This signal(s) allows for nutritional repression early in growth and, based on reconstitution studies, resides in the complex components of sporulation medium, as well as in a mixture of mono-amino acids. However, the addition of Casamino Acids to minimal medium results in a dose-dependent decrease in hag-lacZ expression throughout growth and the postexponential growth phase. In work by others, CodY has been implicated in the nutritional repression of several genes. Analysis of a codY mutant bearing a hag-lacZ reporter revealed that flagellin expression is released from nutritional repression in this strain, whereas mutations in the transition state preventor genes abrB, hpr, and sinR failed to elicit a similar effect during growth in complex medium. Therefore, the CodY protein appears to be the physiologically relevant regulator of hag nutritional repression in B. subtilis.
Collapse
Affiliation(s)
- D B Mirel
- Department of Biology, San Francisco State University, San Francisco, California 94132, USA
| | | | | | | | | | | |
Collapse
|
37
|
Schwartz E, Buhrke T, Gerischer U, Friedrich B. Positive transcriptional feedback controls hydrogenase expression in Alcaligenes eutrophus H16. J Bacteriol 1999; 181:5684-92. [PMID: 10482509 PMCID: PMC94088 DOI: 10.1128/jb.181.18.5684-5692.1999] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The protein HoxA is the central regulator of the Alcaligenes eutrophus H16 hox regulon, which encodes two hydrogenases, a nickel permease and several accessory proteins required for hydrogenase biosynthesis. Expression of the regulatory gene hoxA was analyzed. Screening of an 8-kb region upstream of hoxA with a promoter probe vector localized four promoter activities. One of these was found in the region immediately 5' of hoxA; the others were correlated with the nickel metabolism genes hypA1, hypB1, and hypX. All four activities were independent of HoxA and of the minor transcription factor sigma(54). Translational fusions revealed that hoxA is expressed constitutively at low levels. In contrast to these findings, immunoblotting studies revealed a clear fluctuation in the HoxA pool in response to conditions which induce the hox regulon. Quantitative transcript assays indicated elevated levels of hyp mRNA under hydrogenase-derepressing conditions. Using interposon mutagenesis, we showed that the activity of a remote promoter is required for hydrogenase expression and autotrophic growth. Site-directed mutagenesis revealed that P(MBH), which directs transcription of the structural genes of the membrane-bound hydrogenase, contributes to the expression of hoxA under hydrogenase-derepressing conditions. Thus, expression of the hox regulon is governed by a positive feedback loop mediating amplification of the regulator HoxA. These results imply the existence of an unusually large (ca. 17,000-nucleotide) transcript.
Collapse
Affiliation(s)
- E Schwartz
- Institut für Biologie der Humboldt-Universität zu Berlin, Berlin, Germany.
| | | | | | | |
Collapse
|
38
|
Greene SR, Stamm LV. Molecular characterization of a chemotaxis operon in the oral spirochete, Treponema denticola. Gene 1999; 232:59-68. [PMID: 10333522 DOI: 10.1016/s0378-1119(99)00115-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A chemotaxis gene cluster from Treponema denticola (Td), a pathogenic spirochete associated with human periodontal diseases, was cloned, sequenced, and analyzed. The gene cluster contained three chemotaxis (che) genes (cheA, cheW, and cheY) and an open reading frame (cheX) that is homologous with Treponema pallidum (Tp) and Borrelia burgdorferi (Bb) cheX. The Td che genes have the same transcriptional orientation with a sigma 70-like promoter located upstream of cheA and a stem-loop structure characteristic of a Rho-independent transcriptional terminator downstream of cheY. Primer extension analysis identified a transcriptional start point six nucleotides (nt) downstream of the -10 (TAAAAA) promoter sequence. Reverse-transcriptase-polymerase chain reaction (RT-PCR) data indicated that cheA through cheY are co-transcribed and suggested that transcription is terminated after cheY. The gene organization of the Td che operon is identical to that of the Tp che operon. Southern blot analysis indicated the presence of one copy of each che gene on the Td genome. The cheA, cheW, cheX, and cheY genes are 2403, 1332, 462, and 438nt long, respectively, and encode proteins with predicted molecular masses of 88.2, 49.7, 16.8, and 16. 0kDa, respectively. Functional domains of the T. denticola CheA and CheY proteins are highly conserved with those of the Escherichia coli (Ec) CheA and CheY proteins. Phylogenetic analysis of Td CheY indicated that it is closely related to Tp CheY and Bb CheY3.
Collapse
Affiliation(s)
- S R Greene
- Program in Infectious Diseases, Department of Epidemiology, School of Public Health, University of North Carolina, Chapel Hill, NC 27599-7400, USA
| | | |
Collapse
|
39
|
Yang DH, von Kalckreuth J, Allmansberger R. Synthesis of the sigmaD protein is not sufficient to trigger expression of motility functions in Bacillus subtilis. J Bacteriol 1999; 181:2942-6. [PMID: 10217790 PMCID: PMC93741 DOI: 10.1128/jb.181.9.2942-2946.1999] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/1998] [Accepted: 02/17/1999] [Indexed: 11/20/2022] Open
Abstract
The gene encoding sigmaD, sigD, is transcribed from two promoter regions, the fla/che promoter region in front of the fla/che operon and PsigD directly in front of sigD. If sigmaD is translated from transcripts originating from PsigD, the cell is unable to express motility functions but synthesizes autolysins. Therefore, one function of the additional promoter is to allow the cell to express autolysins without expressing motility functions as well.
Collapse
Affiliation(s)
- D H Yang
- Lehrstuhl für Mikrobiologie, Universität Erlangen-Nürnberg, D-91058 Erlangen, Germany
| | | | | |
Collapse
|