1
|
Cai Y, Dong J, Huang J, He J, Hu Y, Sui Z, Tang P. The cyclic AMP (cAMP) phosphodiesterase CpdA required for growth, biofilm formation, motility and pathogenicity of Edwardsiella piscicida. Microb Pathog 2024; 188:106545. [PMID: 38244636 DOI: 10.1016/j.micpath.2024.106545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/09/2024] [Accepted: 01/14/2024] [Indexed: 01/22/2024]
Abstract
Edwardsiella piscicida is a severe fish pathogen with wide host range, causing the huge economic losses in the aquaculture industry. Cyclic adenosine monophosphate (cAMP) as an important second messenger regulates the physiological and behavioral responses to environmental cues in eukaryotic and prokaryotic. The intracellular level of cAMP for effective activity is tightly controlled by the synthesis of adenylate cyclase, excretion and degradation of phosphodiesterase. In this study, we identified and characterized a class III cAMP phosphodiesterase, named as CpdA, in the E. piscicida. To investigate the role of CpdA in the physiology and pathogenicity, we constructed the in-frame deletion mutant of cpdA of E. piscicida, TX01ΔcpdA. The results showed that TX01ΔcpdA accumulated the higher intracellular cAMP concentration than TX01, indicating that CpdA exerted the hydrolysis of cAMP. In addition, compared to the TX01, the TX01ΔcpdA slowed growth rate, diminished biofilm formation and lost motility. More importantly, pathogenicity analysis confirmed that TX01ΔcpdA significantly impaired the ability of invading the epithelial cells, reproduction in macrophages, tissues dissemination and lethality for healthy tilapias. The most of lost properties of TX01ΔcpdA were restored partially or fully by the introduction of cpdA gene. These results suggest that cpdA is required for regulation of the physiology and virulence of E. piscicida.
Collapse
Affiliation(s)
- Yidong Cai
- School of Life and Health, Hainan University, Haikou, 570228, China; Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; Key Laboratory of Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Haikou, 571101, China
| | - Jinggang Dong
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; Key Laboratory of Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Haikou, 571101, China
| | - Jianqiang Huang
- Zhanjiang Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, 524013, China
| | - Jiaojiao He
- School of Life and Health, Hainan University, Haikou, 570228, China; Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; Key Laboratory of Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Haikou, 571101, China
| | - Yonghua Hu
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; Key Laboratory of Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Haikou, 571101, China; Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-resources, Haikou, 571101, China; Zhanjiang Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, 524013, China
| | - Zhihai Sui
- School of Life Science, Linyi University, Linyi, 276000, China.
| | - Ping Tang
- State Key Laboratory of Conservation and Utilization of Biologícal Resources of Yunnan, College of Plant Protection, Yunnan Agricultural University, Kunming, 650201, China.
| |
Collapse
|
2
|
Complete genome of Pelagovum pacificum SM1903 T isolated from the marine surface oligotrophic environment. Mar Genomics 2021; 59:100874. [PMID: 34493388 DOI: 10.1016/j.margen.2021.100874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 04/06/2021] [Accepted: 04/12/2021] [Indexed: 11/21/2022]
Abstract
Pelagovum pacificum SM1903T, belonging to a novel genus of the family Rhodobacteraceae, was isolated from the surface seawater of the Mariana Trench. Here, we report the first complete genome sequence of the novel genus Pelagovum. The genome of strain SM1903T consists of a circular chromosome of 4,040,866 bp and two plasmids of 41,363 bp and 9705 bp, respectively. Gene annotation and metabolic pathway analyses showed that strain SM1903T possesses a series of genes related to adaptation to marine oligotrophic environments, which are involved in utilization of aromatic compounds, allantoin, and alkylphosphonate, and second messenger signaling in response to the oligotrophic stress. This strain also contains a variety of genes involved in coping with other stresses including osmotic stress, oxidative stress, cold shock, and heat shock. These features would assist this strain to survive under the natural nutrient limitation and other stresses from the environment. The genome of strain SM1903T of the novel genus Pelagovum would deepen our knowledge on marine bacterioplankton and their adaption strategies to marine oligotrophic environments.
Collapse
|
3
|
A Riemerella anatipestifer Metallophosphoesterase That Displays Phosphatase Activity and Is Associated with Virulence. Appl Environ Microbiol 2021; 87:AEM.00086-21. [PMID: 33741629 DOI: 10.1128/aem.00086-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 02/27/2021] [Indexed: 11/20/2022] Open
Abstract
Riemerella anatipestifer is an important pathogen of waterfowl, causing septicemic and exudative diseases. In our previous study, we demonstrated that bacterial virulence and secretion proteins of the type IX secretion system (T9SS) mutant strains Yb2ΔgldK and Yb2ΔgldM were significantly reduced, in comparison to those of wild-type strain Yb2. In this study, the T9SS secretion protein AS87_RS00980, which is absent from the secretion proteins of Yb2ΔgldK and Yb2ΔgldM, was investigated by construction of gene mutation and complementation strains. The virulence assessment showed >1,000-fold attenuated virulence and significantly reduced bacterial loads in the blood of ducks infected with Yb2Δ00980, the AS87_RS00980 gene deletion mutant strain. Bacterial virulence was recovered in complementation strain cYb2Δ00980 Further study indicated that the T9SS secretion protein AS87_RS00980 is a metallophosphoesterase (MPPE), which displayed phosphatase activity and was cytomembrane localized. Moreover, the optimal reactive pH and temperature were determined to be 7.0 and 60°C, respectively, and the Km and V max were determined to be 3.53 mM and 198.1 U/mg. The rMPPE activity was activated by Zn2+ and Cu2+ but inhibited by Fe3+, Fe2+, and EDTA. There are five conserved sites, namely, N267, H268 H351, H389, and H391, in the metallophosphatase domain. Mutant proteins Y267-rMPPE and Y268-rMPPE retained 29.30% and 19.81% relative activity, respectively, and mutant proteins Y351-rMPPE, Y389-rMPPE, and Y391-rMPPE lost almost all MPPE activity. Taken together, these results indicate that the R. anatipestifer AS87_RS00980 gene encodes an MPPE that is a secretion protein of T9SS that plays an important role in bacterial virulence.IMPORTANCE Riemerella anatipestifer T9SS was recently discovered to be associated with bacterial gliding motility and secretion of virulence factors. Several T9SS genes have been identified, but no effector has been reported in R. anatipestifer to date. In this study, we identified the T9SS secretion protein AS87_RS00980 as an MPPE that displays phosphatase activity and is associated with bacterial virulence. The enzymatic activity of the rMPPE was determined, and the Km and V max were 3.53 mM and 198.1 U/mg, respectively. Five conserved sites were also identified. The AS87_RS00980 gene deletion mutant strain was attenuated >1,000-fold, indicating that MPPE is an important virulence factor. In summary, we identified that the R. anatipestifer AS87_RS00980 gene encodes an important T9SS effector, MPPE, which plays an important role in bacterial virulence.
Collapse
|
4
|
Microevolution in response to transient heme-iron restriction enhances intracellular bacterial community development and persistence. PLoS Pathog 2018; 14:e1007355. [PMID: 30332468 PMCID: PMC6205647 DOI: 10.1371/journal.ppat.1007355] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 10/29/2018] [Accepted: 09/24/2018] [Indexed: 11/19/2022] Open
Abstract
Bacterial pathogens must sense, respond and adapt to a myriad of dynamic microenvironmental stressors to survive. Adaptation is key for colonization and long-term ability to endure fluctuations in nutrient availability and inflammatory processes. We hypothesize that strains adapted to survive nutrient deprivation are more adept for colonization and establishment of chronic infection. In this study, we detected microevolution in response to transient nutrient limitation through mutation of icc. The mutation results in decreased 3',5'-cyclic adenosine monophosphate phosphodiesterase activity in nontypeable Haemophilus influenzae (NTHI). In a preclinical model of NTHI-induced otitis media (OM), we observed a significant decrease in the recovery of effusion from ears infected with the icc mutant strain. Clinically, resolution of OM coincides with the clearance of middle ear fluid. In contrast to this clinical paradigm, we observed that the icc mutant strain formed significantly more intracellular bacterial communities (IBCs) than the parental strain early during experimental OM. Although the number of IBCs formed by the parental strain was low at early stages of OM, we observed a significant increase at later stages that coincided with absence of recoverable effusion, suggesting the presence of a mucosal reservoir following resolution of clinical disease. These data provide the first insight into NTHI microevolution during nutritional limitation and provide the first demonstration of IBCs in a preclinical model of chronic OM. Nontypeable Haemophilus influenzae (NTHI) inhabits diverse niches in the host. The ability to adapt to new microenvironments is consistent with the predominance of NTHI as a causative agent of otitis media (OM) in children. We evaluated the microevolution of NTHI associated with adaptation and persistence in response to nutrient limitation. We identified a naturally occurring mutation that enhances NTHI persistence and formation of intracellular bacterial communities (IBCs) in a pre-clinical model of OM. The presence of IBCs during OM provides the first opportunity to evaluate the role of intracellular populations in chronicity and quiescence as a new paradigm for recurrent OM. This model provides a new platform to identify novel therapeutics for this highly prevalent and costly infectious disease.
Collapse
|
5
|
Dai K, He L, Chang YF, Cao S, Zhao Q, Huang X, Wu R, Huang Y, Yan Q, Han X, Ma X, Wen X, Wen Y. Basic Characterization of Natural Transformation in a Highly Transformable Haemophilus parasuis Strain SC1401. Front Cell Infect Microbiol 2018; 8:32. [PMID: 29473023 PMCID: PMC5809987 DOI: 10.3389/fcimb.2018.00032] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 01/25/2018] [Indexed: 11/13/2022] Open
Abstract
Haemophilus parasuis causes Glässer's disease and pneumonia, incurring serious economic losses in the porcine industry. In this study, natural competence was investigated in H. parasuis. We found competence genes in H. parasuis homologous to ones in Haemophilus influenzae and a high consensus battery of Sxy-dependent cyclic AMP (cAMP) receptor protein (CRP-S) regulons using bioinformatics. High rates of natural competence were found from the onset of stationary-phase growth condition to mid-stationary phase (OD600 from 0.29 to 1.735); this rapidly dropped off as cells reached mid-stationary phase (OD600 from 1.735 to 1.625). As a whole, bacteria cultured in liquid media were observed to have lower competence levels than those grown on solid media plates. We also revealed that natural transformation in this species is stable after 200 passages and is largely dependent on DNA concentration. Transformation competition experiments showed that heterogeneous DNA cannot outcompete intraspecific natural transformation, suggesting an endogenous uptake sequence or other molecular markers may be important in differentiating heterogeneous DNA. We performed qRT-PCR targeting multiple putative competence genes in an effort to compare bacteria pre-cultured in TSB++ vs. TSA++ and SC1401 vs. SH0165 to determine expression profiles of the homologs of competence-genes in H. influenzae. Taken together, this study is the first to investigate natural transformation in H. parasuis based on a highly naturally transformable strain SC1401.
Collapse
Affiliation(s)
- Ke Dai
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Lvqin He
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yung-Fu Chang
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Sanjie Cao
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Sichuan Science-Observation Experimental Station of Veterinary Drugs and Veterinary Diagnostic Technology, Ministry of Agriculture, Chengdu, China
| | - Qin Zhao
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xiaobo Huang
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Rui Wu
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yong Huang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qigui Yan
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xinfeng Han
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xiaoping Ma
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xintian Wen
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yiping Wen
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
6
|
Jurcisek JA, Brockman KL, Novotny LA, Goodman SD, Bakaletz LO. Nontypeable Haemophilus influenzae releases DNA and DNABII proteins via a T4SS-like complex and ComE of the type IV pilus machinery. Proc Natl Acad Sci U S A 2017; 114:E6632-E6641. [PMID: 28696280 PMCID: PMC5559034 DOI: 10.1073/pnas.1705508114] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Biofilms formed by nontypeable Haemophilus influenzae (NTHI) are central to the chronicity, recurrence, and resistance to treatment of multiple human respiratory tract diseases including otitis media, chronic rhinosinusitis, and exacerbations of both cystic fibrosis and chronic obstructive pulmonary disease. Extracellular DNA (eDNA) and associated DNABII proteins are essential to the overall architecture and structural integrity of biofilms formed by NTHI and all other bacterial pathogens tested to date. Although cell lysis and outer-membrane vesicle extrusion are possible means by which these canonically intracellular components might be released into the extracellular environment for incorporation into the biofilm matrix, we hypothesized that NTHI additionally used a mechanism of active DNA release. Herein, we describe a mechanism whereby DNA and associated DNABII proteins transit from the bacterial cytoplasm to the periplasm via an inner-membrane pore complex (TraC and TraG) with homology to type IV secretion-like systems. These components exit the bacterial cell through the ComE pore through which the NTHI type IV pilus is expressed. The described mechanism is independent of explosive cell lysis or cell death, and the release of DNA is confined to a discrete subpolar location, which suggests a novel form of DNA release from viable NTHI. Identification of the mechanisms and determination of the kinetics by which critical biofilm matrix-stabilizing components are released will aid in the design of novel biofilm-targeted therapeutic and preventative strategies for diseases caused by NTHI and many other human pathogens known to integrate eDNA and DNABII proteins into their biofilm matrix.
Collapse
Affiliation(s)
- Joseph A Jurcisek
- Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital, Columbus, OH 43205
| | - Kenneth L Brockman
- Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital, Columbus, OH 43205
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH 43210
| | - Laura A Novotny
- Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital, Columbus, OH 43205
| | - Steven D Goodman
- Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital, Columbus, OH 43205
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH 43210
| | - Lauren O Bakaletz
- Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital, Columbus, OH 43205;
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH 43210
| |
Collapse
|
7
|
Li J, Yuan X, Xu L, Kang L, Jiang J, Wang Y. Efficient construction of Haemophilus parasuis mutants based on natural transformation. CANADIAN JOURNAL OF VETERINARY RESEARCH = REVUE CANADIENNE DE RECHERCHE VETERINAIRE 2016; 80:281-286. [PMID: 27733782 PMCID: PMC5052879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 01/06/2016] [Indexed: 06/06/2023]
Abstract
Studies on virulence factors and pathogenecity of Haemophilus parasuis have long been hindered by a lack of a consistent system for genetic manipulation. In this study, competence was induced by transferring H. parasuis from rich medium to starvation medium media-IV (M-IV) and iscR gene deficient mutants of H. parasuis were generated efficiently. Transformation frequency varied from 4.1 × 10-5 to 1.1 × 10-8 when using circular plasmid, and increased to about 2- to 31-fold when transformed using linearized plasmid. Allele replacement occurred efficiently in 6 strains, which are transformable using both circular and linearized pTRU, but not in another 2 strains which could only be transformed using linearized plasmid. The iscR mutants were stable for at least 20 passages in vitro. Haemophilus parasuis strains vary extensively in natural transformation efficiency and the method established here allows for transformation of a larger spectrum of strains with an easily accessed plasmid. This provides important tools for genetic manipulation of H. parasuis.
Collapse
Affiliation(s)
| | | | | | | | | | - Yicheng Wang
- Address all correspondence to Professor Yicheng Wang; telephone: 86 571 8640 4121; fax: 86 571 8640 0836; e-mail:
| |
Collapse
|
8
|
Matange N. Revisiting bacterial cyclic nucleotide phosphodiesterases: cyclic AMP hydrolysis and beyond. FEMS Microbiol Lett 2015; 362:fnv183. [PMID: 26424768 DOI: 10.1093/femsle/fnv183] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/25/2015] [Indexed: 12/15/2022] Open
Abstract
Cyclic-3',5'-adenosine monophosphate (cAMP) is a universal second messenger that regulates vital activities in bacteria and eukaryotes. Enzymes that hydrolyze cAMP, called phosphodiesterases (PDEs), negatively regulate the levels of this messenger molecule and are therefore crucial for signal 'termination'. In this minireview, I shall summarize the available literature on bacterial cAMP-PDEs, with particular emphasis on enzymes belonging to the ubiquitously encoded Class III PDE family exemplified by CpdA from Escherichia coli and Rv0805 from Mycobacterium tuberculosis. Using available biochemical, structural and biological information, I shall make a case for re-examining the functions of these enzymes as merely regulators of intrabacterial cAMP levels and suggest that some members of this class may have evolved cAMP-independent functions as well. Finally, I shall highlight the major lacunae in our understanding of these enzymes and present unanswered questions in the area.
Collapse
Affiliation(s)
- Nishad Matange
- Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune 411008, India
| |
Collapse
|
9
|
Abstract
Calcineurin-like metallophosphoesterases (MPEs) form a large superfamily of binuclear metal-ion-centre-containing enzymes that hydrolyse phosphomono-, phosphodi- or phosphotri-esters in a metal-dependent manner. The MPE domain is found in Mre11/SbcD DNA-repair enzymes, mammalian phosphoprotein phosphatases, acid sphingomyelinases, purple acid phosphatases, nucleotidases and bacterial cyclic nucleotide phosphodiesterases. Despite this functional diversity, MPEs show a remarkably similar structural fold and active-site architecture. In the present review, we summarize the available structural, biochemical and functional information on these proteins. We also describe how diversification and specialization of the core MPE fold in various MPEs is achieved by amino acid substitution in their active sites, metal ions and regulatory effects of accessory domains. Finally, we discuss emerging roles of these proteins as non-catalytic protein-interaction scaffolds. Thus we view the MPE superfamily as a set of proteins with a highly conserved structural core that allows embellishment to result in dramatic and niche-specific diversification of function.
Collapse
|
10
|
Angelov A, Bergen P, Nadler F, Hornburg P, Lichev A, Übelacker M, Pachl F, Kuster B, Liebl W. Novel Flp pilus biogenesis-dependent natural transformation. Front Microbiol 2015; 6:84. [PMID: 25713572 PMCID: PMC4322843 DOI: 10.3389/fmicb.2015.00084] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 01/22/2015] [Indexed: 01/11/2023] Open
Abstract
Natural transformation has been described in bacterial species spread through nearly all major taxonomic groups. However, the current understanding of the structural components and the regulation of competence development is derived from only a few model organisms. Although natural transformation was discovered in members of the Actinobacteria (high GC Gram-positive bacteria) more than four decades ago, the structural components or the regulation of the competence system have not been studied in any representative of the entire phylum. In this report we identify a new role for a distinct type of pilus biogenesis genes (tad genes, for tight adherence), which so far have been connected only with biofilm formation, adherence and virulence traits. The tad-like genes found in the genome of Micrococcus luteus were shown to be required for genetic transformation in this actinobacterial species. We generated and analyzed individual knockout mutants for every open reading frame of the two predicted tad gene clusters as well as for a potential prepilin processing peptidase and identified the major component of the putative pili. By expressing a tagged variant of the major prepilin subunit and immunofluorescence microscopy we visualized filamentous structures extending from the cell surface. Our data indicate that the two tad gene islands complementarily contribute to the formation of a functional competence pilus in this organism. It seems likely that the involvement of tad genes in natural transformation is not unique only for M. luteus but may also prove to be the case in other representatives of the Actinobacteria, which contains important medically and biotechnologically relevant species.
Collapse
Affiliation(s)
- Angel Angelov
- Lehrstuhl für Mikrobiologie, Technische Universität München Freising-Weihenstephan, Germany
| | - Paul Bergen
- Lehrstuhl für Mikrobiologie, Technische Universität München Freising-Weihenstephan, Germany
| | - Florian Nadler
- Lehrstuhl für Mikrobiologie, Technische Universität München Freising-Weihenstephan, Germany
| | - Philipp Hornburg
- Lehrstuhl für Mikrobiologie, Technische Universität München Freising-Weihenstephan, Germany
| | - Antoni Lichev
- Lehrstuhl für Mikrobiologie, Technische Universität München Freising-Weihenstephan, Germany
| | - Maria Übelacker
- Lehrstuhl für Mikrobiologie, Technische Universität München Freising-Weihenstephan, Germany
| | - Fiona Pachl
- Lehrstuhl für Proteomik und Bioanalytik, Technische Universität München Freising-Weihenstephan, Germany
| | - Bernhard Kuster
- Lehrstuhl für Proteomik und Bioanalytik, Technische Universität München Freising-Weihenstephan, Germany
| | - Wolfgang Liebl
- Lehrstuhl für Mikrobiologie, Technische Universität München Freising-Weihenstephan, Germany
| |
Collapse
|
11
|
Biochemical and functional characterization of SpdA, a 2', 3'cyclic nucleotide phosphodiesterase from Sinorhizobium meliloti. BMC Microbiol 2013; 13:268. [PMID: 24279347 PMCID: PMC4222275 DOI: 10.1186/1471-2180-13-268] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Accepted: 11/11/2013] [Indexed: 01/10/2023] Open
Abstract
Background 3′, 5′cAMP signaling in Sinorhizobium meliloti was recently shown to contribute to the autoregulation of legume infection. In planta, three adenylate cyclases CyaD1, CyaD2 and CyaK, synthesizing 3′, 5′cAMP, together with the Crp-like transcriptional regulator Clr and smc02178, a gene of unknown function, are involved in controlling plant infection. Results Here we report on the characterization of a gene (smc02179, spdA) at the cyaD1 locus that we predicted to encode a class III cytoplasmic phosphodiesterase. First, we have shown that spdA had a similar pattern of expression as smc02178 in planta but did not require clr nor 3′, 5′cAMP for expression. Second, biochemical characterization of the purified SpdA protein showed that, contrary to expectation, it had no detectable activity against 3′, 5′cAMP and, instead, high activity against the positional isomers 2′, 3′cAMP and 2′, 3′cGMP. Third, we provide direct experimental evidence that the purified Clr protein was able to bind both 2′, 3′cAMP and 3′, 5′cAMP in vitro at high concentration. We further showed that Clr is a 3′, 5′cAMP-dependent DNA-binding protein and identified a DNA-binding motif to which Clr binds. In contrast, 2′, 3′cAMP was unable to promote Clr specific-binding to DNA and activate smc02178 target gene expression ex planta. Fourth, we have shown a negative impact of exogenous 2′, 3′cAMP on 3′, 5′cAMP-mediated signaling in vivo. A spdA null mutant was also partially affected in 3′, 5′cAMP signaling. Conclusions SpdA is a nodule-expressed 2′, 3′ specific phosphodiesterase whose biological function remains elusive. Circumstantial evidence suggests that SpdA may contribute insulating 3′, 5′cAMP-based signaling from 2′, 3′ cyclic nucleotides of metabolic origin.
Collapse
|
12
|
Overexpression of the Rv0805 phosphodiesterase elicits a cAMP-independent transcriptional response. Tuberculosis (Edinb) 2013; 93:492-500. [PMID: 23835087 PMCID: PMC3776917 DOI: 10.1016/j.tube.2013.05.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2013] [Revised: 05/11/2013] [Accepted: 05/13/2013] [Indexed: 12/30/2022]
Abstract
The Rv0805 gene in Mycobacterium tuberculosis encodes a metallophosphoesterase which shows cAMP-hydrolytic activity. Overexpression of Rv0805 has been used as a tool to lower intracellular cAMP levels and thereby elucidate the roles of cAMP in mycobacteria. Here we show that levels of cAMP in M. tuberculosis were lowered by only ∼30% following overexpression of Rv0805, and transcript levels of a number of genes, which include those associated with virulence and the methyl citrate cycle, were altered. The genes that showed altered expression were distinct from those differentially regulated in a strain deleted for the cAMP-receptor protein (CRP(Mt)), consistent with the relatively low dependence on cAMP of CRP(Mt) binding to DNA. Using mutants of Rv0805 we show that the transcriptional signature of Rv0805 overexpression is a combination of catalysis-dependent and independent effects, and that the structurally flexible C-terminus of Rv0805 is crucial for the catalysis-independent effects of the protein. Our study demonstrates the dissociation of Rv0805 and cAMP-regulated gene expression, and reveals alternate functions for this phosphodiesterase from M. tuberculosis.
Collapse
|
13
|
Kalivoda EJ, Brothers KM, Stella NA, Schmitt MJ, Shanks RMQ. Bacterial cyclic AMP-phosphodiesterase activity coordinates biofilm formation. PLoS One 2013; 8:e71267. [PMID: 23923059 PMCID: PMC3726613 DOI: 10.1371/journal.pone.0071267] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Accepted: 06/27/2013] [Indexed: 12/26/2022] Open
Abstract
Biofilm-related infections are a major contributor to human disease, and the capacity for surface attachment and biofilm formation are key attributes for the pathogenesis of microbes. Serratia marcescens type I fimbriae-dependent biofilms are coordinated by the adenylate cyclase, CyaA, and the cyclic 3′,5′-adenosine monophosphate (cAMP)-cAMP receptor protein (CRP) complex. This study uses S. marcescens as a model system to test the role of cAMP-phosphodiesterase activity in controlling biofilm formation. Herein we describe the characterization of a putative S. marcescens cAMP-phosphodiesterase gene (SMA3506), designated as cpdS, and demonstrated to be a functional cAMP-phosphodiesterase both in vitro and in vivo. Deletion of cpdS resulted in defective biofilm formation and reduced type I fimbriae production, whereas multicopy expression of cpdS conferred a type I fimbriae-dependent hyper-biofilm. Together, these results support a model in which bacterial cAMP-phosphodiesterase activity modulates biofilm formation.
Collapse
Affiliation(s)
- Eric J. Kalivoda
- Charles T. Campbell Laboratory of Ophthalmic Microbiology, Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania, Unites States of America
| | - Kimberly M. Brothers
- Charles T. Campbell Laboratory of Ophthalmic Microbiology, Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania, Unites States of America
| | - Nicholas A. Stella
- Charles T. Campbell Laboratory of Ophthalmic Microbiology, Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania, Unites States of America
| | - Matthew J. Schmitt
- Charles T. Campbell Laboratory of Ophthalmic Microbiology, Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania, Unites States of America
| | - Robert M. Q. Shanks
- Charles T. Campbell Laboratory of Ophthalmic Microbiology, Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania, Unites States of America
- * E-mail:
| |
Collapse
|
14
|
Gancedo JM. Biological roles of cAMP: variations on a theme in the different kingdoms of life. Biol Rev Camb Philos Soc 2013; 88:645-68. [PMID: 23356492 DOI: 10.1111/brv.12020] [Citation(s) in RCA: 127] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Revised: 12/19/2012] [Accepted: 12/20/2012] [Indexed: 12/18/2022]
Abstract
Cyclic AMP (cAMP) plays a key regulatory role in most types of cells; however, the pathways controlled by cAMP may present important differences between organisms and between tissues within a specific organism. Changes in cAMP levels are caused by multiple triggers, most affecting adenylyl cyclases, the enzymes that synthesize cAMP. Adenylyl cyclases form a large and diverse family including soluble forms and others with one or more transmembrane domains. Regulatory mechanisms for the soluble adenylyl cyclases involve either interaction with diverse proteins, as happens in Escherichia coli or yeasts, or with calcium or bicarbonate ions, as occurs in mammalian cells. The transmembrane cyclases can be regulated by a variety of proteins, among which the α subunit and the βγ complex from G proteins coupled to membrane receptors are prominent. cAMP levels also are controlled by the activity of phosphodiesterases, enzymes that hydrolyze cAMP. Phosphodiesterases can be regulated by cAMP, cGMP or calcium-calmodulin or by phosphorylation by different protein kinases. Regulation through cAMP depends on its binding to diverse proteins, its proximal targets, this in turn causing changes in a variety of distal targets. Specifically, binding of cAMP to regulatory subunits of cAMP-dependent protein kinases (PKAs) affects the activity of substrates of PKA, binding to exchange proteins directly activated by cAMP (Epac) regulates small GTPases, binding to transcription factors such as the cAMP receptor protein (CRP) or the virulence factor regulator (Vfr) modifies the rate of transcription of certain genes, while cAMP binding to ion channels modulates their activity directly. Further studies on cAMP signalling will have important implications, not only for advancing fundamental knowledge but also for identifying targets for the development of new therapeutic agents.
Collapse
Affiliation(s)
- Juana M Gancedo
- Department of Metabolism and Cell Signalling, Instituto de Investigaciones Biomédicas Alberto Sols CSIC-UAM, Madrid 28029, Spain.
| |
Collapse
|
15
|
Johnston JW. An improved counterselection cassette for use in Haemophilus influenzae. Gene 2011; 492:325-8. [PMID: 22037605 DOI: 10.1016/j.gene.2011.10.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2011] [Revised: 09/06/2011] [Accepted: 10/04/2011] [Indexed: 11/19/2022]
Abstract
Counterselectable cassettes are extremely useful in molecular biology and allow for the creation of unmarked deletion mutants or the introduction of point mutations. I have constructed an inducible sacB cassette, using the tetracycline repressor. When used in tandem with a kanamycin-resistance marker, the cassette was successful in creating unmarked mutants in Haemophilus influenzae. The inducible nature of the cassette avoids some of the common problems associated with the utilization of sacB in counterselection.
Collapse
Affiliation(s)
- Jason W Johnston
- Department of Microbiology, Immunology, & Molecular Genetics, University of Kentucky, MS-423 Chandler Medical Center, Lexington, KY 40536-0298, USA.
| |
Collapse
|
16
|
Abstract
Pseudomonas aeruginosa, a ubiquitous bacteria found in diverse ecological niches, is an important cause of acute infections in immunocompromised individuals and chronic infections in patients with Cystic Fibrosis. One signaling molecule required for the coordinate regulation of virulence factors associated with acute infections is 3′, 5′-cyclic adenosine monophosphate, (cAMP), which binds to and activates a catabolite repressor homolog, Vfr. Vfr controls the transcription of many virulence factors, including those associated with Type IV pili (TFP), the Type III secretion system (T3SS), the Type II secretion system, flagellar-mediated motility, and quorum sensing systems. We previously identified FimL, a protein with histidine phosphotransfer-like domains, as a regulator of Vfr-dependent processes, including TFP-dependent motility and T3SS function. In this study, we carried out genetic and physiologic studies to further define the mechanism of action of FimL. Through a genetic screen designed to identify suppressors of FimL, we found a putative cAMP-specific phosphodiesterase (CpdA), suggesting that FimL regulates cAMP levels. Inactivation of CpdA increases cAMP levels and restores TFP-dependent motility and T3SS function to fimL mutants, consistent with in vivo phosphodiesterase activity. By constructing combinations of double and triple mutants in the two adenylate cyclase genes (cyaA and cyaB), fimL, and cpdA, we show that ΔfimL mutants resemble ΔcyaB mutants in TM defects, decreased T3SS transcription, and decreased cAMP levels. Similar to some of the virulence factors that they regulate, we demonstrate that CyaB and FimL are polarly localized. These results reveal new complexities in the regulation of diverse virulence pathways associated with acute P. aeruginosa infections.
Collapse
|
17
|
Fuchs EL, Brutinel ED, Klem ER, Fehr AR, Yahr TL, Wolfgang MC. In vitro and in vivo characterization of the Pseudomonas aeruginosa cyclic AMP (cAMP) phosphodiesterase CpdA, required for cAMP homeostasis and virulence factor regulation. J Bacteriol 2010; 192:2779-90. [PMID: 20348254 PMCID: PMC2876501 DOI: 10.1128/jb.00168-10] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2010] [Accepted: 03/16/2010] [Indexed: 12/19/2022] Open
Abstract
Cyclic AMP (cAMP) is an important second messenger signaling molecule that controls a wide variety of eukaryotic and prokaryotic responses to extracellular cues. For cAMP-dependent signaling pathways to be effective, the intracellular cAMP concentration is tightly controlled at the level of synthesis and degradation. In the opportunistic human pathogen Pseudomonas aeruginosa, cAMP is a key regulator of virulence gene expression. To better understand the role of cAMP homeostasis in this organism, we identified and characterized the enzyme CpdA, a putative cAMP phosphodiesterase. We demonstrate that CpdA possesses 3',5'-cAMP phosphodiesterase activity in vitro and that it utilizes an iron-dependent catalytic mechanism. Deletion of cpdA results in the accumulation of intracellular cAMP and altered regulation of P. aeruginosa virulence traits. Further, we demonstrate that the cAMP-dependent transcription factor Vfr directly regulates cpdA expression in response to intracellular cAMP accumulation, thus providing a feedback mechanism for controlling cAMP levels and fine-tuning virulence factor expression.
Collapse
Affiliation(s)
- Erin L. Fuchs
- Cystic Fibrosis/Pulmonary Research and Treatment Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, Department of Microbiology, University of Iowa, Iowa City, Iowa 52242, Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Evan D. Brutinel
- Cystic Fibrosis/Pulmonary Research and Treatment Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, Department of Microbiology, University of Iowa, Iowa City, Iowa 52242, Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Erich R. Klem
- Cystic Fibrosis/Pulmonary Research and Treatment Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, Department of Microbiology, University of Iowa, Iowa City, Iowa 52242, Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Anthony R. Fehr
- Cystic Fibrosis/Pulmonary Research and Treatment Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, Department of Microbiology, University of Iowa, Iowa City, Iowa 52242, Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Timothy L. Yahr
- Cystic Fibrosis/Pulmonary Research and Treatment Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, Department of Microbiology, University of Iowa, Iowa City, Iowa 52242, Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Matthew C. Wolfgang
- Cystic Fibrosis/Pulmonary Research and Treatment Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, Department of Microbiology, University of Iowa, Iowa City, Iowa 52242, Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| |
Collapse
|
18
|
Enzymatic characteristics of two novelMyxococcus xanthusenzymes, PdeA and PdeB, displaying 3′,5′- and 2′,3′-cAMP phosphodiesterase, and phosphatase activities. FEBS Lett 2008; 583:443-8. [DOI: 10.1016/j.febslet.2008.12.044] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2008] [Revised: 12/16/2008] [Accepted: 12/18/2008] [Indexed: 11/18/2022]
|
19
|
Expression of the cpdA gene, encoding a 3',5'-cyclic AMP (cAMP) phosphodiesterase, is positively regulated by the cAMP-cAMP receptor protein complex. J Bacteriol 2008; 191:922-30. [PMID: 19028903 DOI: 10.1128/jb.01350-08] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The intracellular level of cyclic 3',5'-AMP (cAMP), a signaling molecule that mediates a variety of cellular processes, is finely modulated by the regulation of its synthesis, excretion, and degradation. In this study, cAMP phosphodiesterase (CpdA), an enzyme that catalyzes the conversion of cAMP to AMP, was characterized in a pathogenic bacterium, Vibrio vulnificus. The cpdA gene exists in an operon composed of mutT, yqiB, cpdA, and yqiA, the transcription of which was initiated at position -22 upstream of mutT. A cpdA-null mutant of V. vulnificus contained significantly higher levels of cAMP than the wild type but showed no detectable cAMP when a multicopy plasmid of the cpdA gene was provided in trans, suggesting that CpdA is responsible for cAMP degradation. Cellular contents of the CpdA protein decreased dramatically in both cya and crp mutants. In addition, levels of expression of the cpdA::luxAB transcription fusion decreased in cya and crp mutants. The level of expression of cpdA::luxAB in the cya mutant increased in a concentration-dependent manner upon the exogenous addition of cAMP. The cAMP-cAMP receptor protein (CRP) complex bound directly to the upstream region of mutT, which includes a putative CRP-binding sequence centered at position -95.5 relative to the transcription start site. Site-directed mutagenesis or the deletion of this sequence in the cpdA::luxAB transcription fusion resulted in the loss of regulation by cAMP and CRP. Thus, this study demonstrates that CpdA plays a crucial role in determining the intracellular cAMP level and shows for the first time that the expression of cpdA is activated by the cAMP-CRP complex via direct binding to the regulatory region.
Collapse
|
20
|
Cameron AD, Volar M, Bannister LA, Redfield RJ. RNA secondary structure regulates the translation of sxy and competence development in Haemophilus influenzae. Nucleic Acids Res 2008; 36:10-20. [PMID: 17981840 PMCID: PMC2248739 DOI: 10.1093/nar/gkm915] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2007] [Revised: 10/04/2007] [Accepted: 10/07/2007] [Indexed: 12/19/2022] Open
Abstract
The sxy (tfoX) gene product is the central regulator of DNA uptake by naturally competent gamma-proteobacteria such as Haemophilus influenzae, Vibrio cholerae and probably Escherichia coli. However, the mechanisms regulating sxy gene expression are not understood despite being key to understanding the physiological role of DNA uptake. We have isolated mutations in H. influenzae sxy that greatly elevate translation and thus cause competence to develop in otherwise non-inducing conditions (hypercompetence). In vitro nuclease analysis confirmed the existence of an extensive secondary structure at the 5' end of sxy mRNA that sequesters the ribosome-binding site and start codon in a stem-loop. All of the hypercompetence mutations reduced mRNA base pairing, and one was shown to cause a global destabilization that increased translational efficiency. Conversely, mutations engineered to add mRNA base pairs strengthened the secondary structure, resulting in reduced translational efficiency and greatly reduced competence for genetic transformation. Transfer of wild-type cells to starvation medium improved translational efficiency of sxy while independently triggering the sugar starvation regulator (CRP) to stimulate transcription at the sxy promoter. Thus, mRNA secondary structure is responsive to conditions where DNA uptake will be favorable, and transcription of sxy is simultaneously enhanced if CRP activation signals that energy supplies are limited.
Collapse
Affiliation(s)
- Andrew D.S. Cameron
- Department of Microbiology and Immunology and Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Milica Volar
- Department of Microbiology and Immunology and Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Laura A. Bannister
- Department of Microbiology and Immunology and Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Rosemary J. Redfield
- Department of Microbiology and Immunology and Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
21
|
Raju KK, Gautam S, Sharma A. Molecules involved in the modulation of rapid cell death in Xanthomonas. J Bacteriol 2006; 188:5408-16. [PMID: 16855230 PMCID: PMC1540037 DOI: 10.1128/jb.00056-06] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In earlier studies from this laboratory, Xanthomonas campestris pv. glycines was found to exhibit a nutrition stress-related postexponential rapid cell death (RCD). The RCD was exhibited in protein-rich media but not in starch or other minimal media. This RCD in X. campestris pv. glycines was found to display features similar to those of the programmed cell death (PCD) of eukaryotes. Results of the present study showed that the observed RCD in this organism is both positively and negatively regulated by small molecules. The amino acids glycine and l-alanine as well as the D isomers of valine, methionine, and threonine were found to induce the synthesis of an active caspase-3-like protein that was associated with the onset of RCD. Addition of pyruvate and citrate to the culture medium induced both the synthesis of active caspase-3-like protein and RCD. Higher levels of intracellular accumulation of pyruvate and citrate were also observed under conditions favoring RCD. On the other hand, dextrin and maltose, the hydrolytic products of starch, inhibited the synthesis of the caspase-3-like protein. Addition of glucose and cyclic AMP (cAMP) to the RCD-favoring medium prevented RCD. Glucose, cAMP, caffeine (a known inhibitor of a phosphodiesterase that breaks down cAMP), and forskolin (from the herb Coleus forskholii, known to activate the enzyme adenylate cyclase that forms cAMP) inhibited the caspase enzyme activity in vivo and consequently the RCD process. The addition of glucose and other inhibitors of RCD enhanced intracellular cAMP accumulation. This is the first report demonstrating the involvement of small molecules in the regulation of nutrition stress-related stationary-phase rapid cell death in X. campestris pv. glycines, which is programmed.
Collapse
Affiliation(s)
- K K Raju
- Food Technology Division, BARC, Mumbai 400085, India
| | | | | |
Collapse
|
22
|
Abstract
Under natural growth conditions, bacteria can utilize intricate communication capabilities (e.g. quorum-sensing, chemotactic signalling and plasmid exchange) to cooperatively form (self-organize) complex colonies with elevated adaptability-the colonial pattern is collectively engineered according to the encountered environmental conditions. Bacteria do not genetically store all the information required for creating all possible patterns. Instead, additional information is cooperatively generated as required for the colonial self-organization to proceed. We describe how complex colonial forms (patterns) emerge through the communication-based singular interplay between individual bacteria and the colony. Each bacterium is, by itself, a biotic autonomous system with its own internal cellular informatics capabilities (storage, processing and assessment of information). These afford the cell plasticity to select its response to biochemical messages it receives, including self-alteration and the broadcasting of messages to initiate alterations in other bacteria. Hence, new features can collectively emerge during self-organization from the intracellular level to the whole colony. The cells thus assume newly co-generated traits and abilities that are not explicitly stored in the genetic information of the individuals.
Collapse
Affiliation(s)
- Eshel Ben-Jacob
- School of Physics and Astronomy, Raymond and Beverly Sackler, Faculty of Exact Sciences, Tel-Aviv University, Israel.
| | | |
Collapse
|
23
|
Abstract
Synthetic organophosphorus compounds are used as pesticides, plasticizers, air fuel ingredients and chemical warfare agents. Organophosphorus compounds are the most widely used insecticides, accounting for an estimated 34% of world-wide insecticide sales. Contamination of soil from pesticides as a result of their bulk handling at the farmyard or following application in the field or accidental release may lead occasionally to contamination of surface and ground water. Several reports suggest that a wide range of water and terrestrial ecosystems may be contaminated with organophosphorus compounds. These compounds possess high mammalian toxicity and it is therefore essential to remove them from the environments. In addition, about 200,000 metric tons of nerve (chemical warfare) agents have to be destroyed world-wide under Chemical Weapons Convention (1993). Bioremediation can offer an efficient and cheap option for decontamination of polluted ecosystems and destruction of nerve agents. The first micro-organism that could degrade organophosphorus compounds was isolated in 1973 and identified as Flavobacterium sp. Since then several bacterial and a few fungal species have been isolated which can degrade a wide range of organophosphorus compounds in liquid cultures and soil systems. The biochemistry of organophosphorus compound degradation by most of the bacteria seems to be identical, in which a structurally similar enzyme called organophosphate hydrolase or phosphotriesterase catalyzes the first step of the degradation. organophosphate hydrolase encoding gene opd (organophosphate degrading) gene has been isolated from geographically different regions and taxonomically different species. This gene has been sequenced, cloned in different organisms, and altered for better activity and stability. Recently, genes with similar function but different sequences have also been isolated and characterized. Engineered microorganisms have been tested for their ability to degrade different organophosphorus pollutants, including nerve agents. In this article, we review and propose pathways for degradation of some organophosphorus compounds by microorganisms. Isolation, characterization, utilization and manipulation of the major detoxifying enzymes and the molecular basis of degradation are discussed. The major achievements and technological advancements towards bioremediation of organophosphorus compounds, limitations of available technologies and future challenge are also discussed.
Collapse
Affiliation(s)
- Brajesh K Singh
- Environmental Sciences, Macaulay Institute, Craigiebuckler, Aberdeen, UK.
| | | |
Collapse
|
24
|
Kimura Y, Nakatuma H, Sato N, Ohtani M. Contribution of the cyclic nucleotide phosphodiesterases PdeA and PdeB to adaptation of Myxococcus xanthus cells to osmotic or high-temperature stress. J Bacteriol 2006; 188:823-8. [PMID: 16385075 PMCID: PMC1347295 DOI: 10.1128/jb.188.2.823-828.2006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A tBLASTn search of the Myxococcus xanthus genome database at The Institute for Genomic Research (TIGR) identified three genes (pdeA, pdeB, and pdeC) that encode proteins homologous to 3',5'-cyclic nucleotide phosphodiesterase. pdeA, pdeB, and pdeC mutants, constructed by replacing a part of the gene with the kanamycin or tetracycline resistance gene, showed normal growth, development, and germination under nonstress conditions. However, the spores of mutants, especially the pdeA and pdeB mutants, placed under osmotic stress germinated earlier than the wild-type spores. The phenotype was the opposite of that of the receptor-type adenylyl cyclase (cyaA or cyaB) mutant. Also, pdeA and pdeB mutants were found to have impaired growth under the condition of high-temperature stress. Intracellular cyclic AMP (cAMP) levels of pdeA or pdeB mutant cells under these stressful conditions were about 1.3-fold to 2.0-fold higher than those of wild-type cells. These results suggest that PdeA and PdeB may be involved in osmotic adaptation during spore germination and temperature adaptation during vegetative growth through the regulation of cAMP levels.
Collapse
Affiliation(s)
- Yoshio Kimura
- Department of Life Sciences, Faculty of Agriculture, Kagawa University, Miki-cho, Kagawa, Japan 761-0795.
| | | | | | | |
Collapse
|
25
|
Shenoy AR, Sreenath N, Podobnik M, Kovacevic M, Visweswariah SS. The Rv0805 gene from Mycobacterium tuberculosis encodes a 3',5'-cyclic nucleotide phosphodiesterase: biochemical and mutational analysis. Biochemistry 2006; 44:15695-704. [PMID: 16313172 DOI: 10.1021/bi0512391] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Mycobacterium tuberculosis is an important human pathogen and has developed sophisticated mechanisms to evade the host immune system. These could involve the use of cyclic nucleotide-dependent signaling systems, since the M. tuberculosis genome encodes a large number of functional adenylyl cyclases. Using bioinformatic approaches, we identify, clone, and biochemically characterize the Rv0805 gene product, the first cyclic nucleotide phosphodiesterase identified in M. tuberculosis and a homologue of the cAMP phosphodiesterase present in Escherichia coli (cpdA). The Rv0805 gene product, a class III phosphodiesterase, is a member of the metallophosphoesterase family, and computational modeling and mutational analyses indicate that the protein possesses interesting properties not reported earlier in this class of enzymes. Mutational analysis of critical histidine and aspartate residues predicted to be essential for metal coordination reduced catalytic activity by 90-50%, and several mutant proteins showed sigmoidal kinetics with respect to Mn in contrast to the wild-type enzyme. Mutation of an asparagine residue in the GNHD motif that is conserved throughout the metallophosphoesterase enzymes almost completely abolished catalytic activity, and these studies therefore represent the first mutational analysis of this class of phosphodiesterases. The Rv0805 protein hydrolyzes cAMP and cGMP in vitro, and overexpression in Mycobacterium smegmatis and E. coli reduces intracellular cAMP levels. The presence of an orthologue of Rv0805 in Mycobacterium leprae suggests that the Rv0805 protein could have an important role to play in regulating cAMP levels in these bacteria and adds an additional level of complexity to cyclic nucleotide signaling in this organism.
Collapse
Affiliation(s)
- Avinash R Shenoy
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore 560012, India
| | | | | | | | | |
Collapse
|
26
|
Bakaletz LO, Baker BD, Jurcisek JA, Harrison A, Novotny LA, Bookwalter JE, Mungur R, Munson RS. Demonstration of Type IV pilus expression and a twitching phenotype by Haemophilus influenzae. Infect Immun 2005; 73:1635-43. [PMID: 15731063 PMCID: PMC1064948 DOI: 10.1128/iai.73.3.1635-1643.2005] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Haemophilus influenzae is considered a nonmotile organism that expresses neither flagella nor type IV pili, although H. influenzae strain Rd possesses a cryptic pilus locus. We demonstrate here that the homologous gene cluster pilABCD in an otitis media isolate of nontypeable H. influenzae strain 86-028NP encodes a surface appendage that is highly similar, structurally and functionally, to the well-characterized subgroup of bacterial pili known as type IV pili. This gene cluster includes a gene (pilA) that likely encodes the major subunit of the heretofore uncharacterized H. influenzae-expressed type IV pilus, a gene with homology to a type IV prepilin peptidase (pilD) as well as two additional uncharacterized genes (pilB and pilC). A second gene cluster (comABCDEF) was also identified by homology to other pil or type II secretion system genes. When grown in chemically defined medium at an alkaline pH, strain 86-028NP produces approximately 7-nm-diameter structures that are near polar in location. Importantly, these organisms exhibit twitching motility. A mutation in the pilA gene abolishes both expression of the pilus structure and the twitching phenotype, whereas a mutant lacking ComE, a Pseudomonas PilQ homologue, produced large appendages that appeared to be membrane bound and terminated in a slightly bulbous tip. These latter structures often showed a regular pattern of areas of constriction and expansion. The recognition that H. influenzae possesses a mechanism for twitching motility will likely profoundly influence our understanding of H. influenzae-induced diseases of the respiratory tract and their sequelae.
Collapse
Affiliation(s)
- Lauren O Bakaletz
- Department of Pediatrics, Columbus Children's Research Institute, Center for Microbial Pathogenesis, The Ohio State University College of Medicine and Public Health, 700 Children's Dr., Columbus, OH 43205-2696, USA.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Mason KM, Munson RS, Bakaletz LO. A mutation in the sap operon attenuates survival of nontypeable Haemophilus influenzae in a chinchilla model of otitis media. Infect Immun 2005; 73:599-608. [PMID: 15618200 PMCID: PMC538956 DOI: 10.1128/iai.73.1.599-608.2005] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacteria have evolved strategies to resist killing by antimicrobial peptides (APs), important effectors of innate immunity. The sap (sensitivity to antimicrobial peptides) operon confers resistance to AP-mediated killing of Salmonella. We have recently shown that sapA gene expression is upregulated in the middle ear in a chinchilla model of nontypeable Haemophilus influenzae (NTHI)-induced otitis media. Based on these findings, we constructed an NTHI strain containing a Lux reporter plasmid driven by the sapA promoter and demonstrated early yet transient expression of the sap operon within sites of the chinchilla upper airway upon infection. We hypothesized that the sap operon products mediate NTHI resistance to APs. In order to test this hypothesis, we constructed a nonpolar mutation in the sapA gene of NTHI strain 86-028NP, a low-passage-number clinical isolate. The sapA mutant was approximately eightfold more sensitive than the parent strain to killing by recombinant chinchilla beta-defensin 1. We then assessed the ability of this mutant to both colonize and cause otitis media in chinchillas. The sapA mutant was significantly attenuated compared to the parent strain in its ability to survive in both the nasopharynx and the middle ear of the chinchilla. In addition, the mutant was impaired in its ability to compete with the parent strain in a dual-strain challenge model of infection. Our results indicate that the products of the sap operon are important for resisting the activity of APs and may regulate, in part, the balance between normal carriage and disease caused by NTHI.
Collapse
Affiliation(s)
- Kevin M Mason
- Department of Pediatrics, Center for Microbial Pathogenesis, Columbus Children's Research Institute, The Ohio State University College of Medicine and Public Health, Columbus, OH 43205-2696, USA
| | | | | |
Collapse
|
28
|
Fujisawa T, Ohmori M. Biochemical Properties of a cAMP Phosphodiesterase in the Cyanobacterium Anabaena sp. strain PCC 7120. Microbes Environ 2005. [DOI: 10.1264/jsme2.20.92] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Takatomo Fujisawa
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo
| | - Masayuki Ohmori
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo
- Center of Systems Biology and Ecology, Faculty of Science, Toho University
| |
Collapse
|
29
|
Bossé JT, Nash JH, Simon Kroll J, Langford PR. Harnessing natural transformation inActinobacillus pleuropneumoniae: a simple method for allelic replacements. FEMS Microbiol Lett 2004. [DOI: 10.1111/j.1574-6968.2004.tb09492.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
30
|
Tehara SK, Keasling JD. Gene Cloning, purification, and characterization of a phosphodiesterase from Delftia acidovorans. Appl Environ Microbiol 2003; 69:504-8. [PMID: 12514034 PMCID: PMC152426 DOI: 10.1128/aem.69.1.504-508.2003] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A novel phosphodiesterase (PdeA) was purified from Delftia acidovorans, the gene encoding the enzyme was cloned and expressed in Escherichia coli, and the recombinant enzyme was purified to apparent homogeneity and characterized. PdeA is an 85-kDa trimer that exhibits maximal activity at 65 degrees C and pH 10 even though it was isolated from a mesophilic bacterium. Although PdeA exhibited both mono- and diesterase activity, it was most active on the phosphodiester bis(p-nitrophenyl)phosphate with a K(m) of 2.9 +/- 0.1 mM and a k(cat) of 879 +/- 73 min(-1). The enzyme showed sequence similarity to cyclic AMP (cAMP) phosphodiesterase and cyclic nucleotide phosphodiesterases and exhibited activity on cAMP in vivo when the gene was expressed in E. coli. The IS1071 transposon insertion sequence was found downstream of pdeA.
Collapse
Affiliation(s)
- Sundiep K Tehara
- Department of Chemical Engineering, University of California at Berkeley, Berkeley, California 94720-1462, USA
| | | |
Collapse
|
31
|
Richter W. 3',5' Cyclic nucleotide phosphodiesterases class III: members, structure, and catalytic mechanism. Proteins 2002; 46:278-86. [PMID: 11835503 DOI: 10.1002/prot.10049] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
3',5' Cyclic nucleotide phosphodiesterases (PDEs) comprise a superfamily of enzymes that were previously divided by their primary structure into two major classes: PDE class I and II. The 3',5' cyclic AMP phosphodiesterase from Escherichia coli encoded by the cpdA gene does not show any homology to either PDE class I or class II enzymes and, therefore, represents a new, third class of PDEs. Previously, information about essential structural elements, substrate and cofactor binding sites, and the mechanism of catalysis was unknown for this enzyme. The present study shows by computational analysis that the enzyme encoded by the E. coli cpdA gene belongs to a family of phosphodiesterases that closely resembles the catalytic machinery known from purple acid phosphatases and several other dimetallophosphoesterases. They share both the conserved sequence motif, D-(X)(n) GD-(X)(n)-GNH[E/D]-(X)(n)-H-(X)(n)-GHXH, which contains the invariant residues forming the active site of purple acid phosphatases, a binuclear Fe(3+)-Me(2+)-containing center, as well as a beta(alpha)beta(alpha)beta motif as a typical secondary structure signature. Furthermore, the known biochemical properties of the bacterial phosphodiesterase encoded by the cpdA gene, such as the requirement of iron ions and a reductant for maintaining its catalytic activity, support this hypothesis developed by computational analysis. In addition, the availability of atomic coordinates for several purple acid phosphatases and related proteins allowed the generation of a three-dimensional model for class III cyclic nucleotide phosphodiesterases.
Collapse
Affiliation(s)
- Wito Richter
- Division of Reproductive Biology, Department of Gynecology and Obstetrics, Stanford University School of Medicine, Stanford, California 94305-5317, USA.
| |
Collapse
|
32
|
MacFadyen LP, Chen D, Vo HC, Liao D, Sinotte R, Redfield RJ. Competence development by Haemophilus influenzae is regulated by the availability of nucleic acid precursors. Mol Microbiol 2001; 40:700-7. [PMID: 11359575 DOI: 10.1046/j.1365-2958.2001.02419.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
DNA uptake by naturally competent bacteria provides cells with both genetic information and nucleotides. In Haemophilus influenzae, competence development requires both cAMP and an unidentified signal arising under starvation conditions. To investigate this signal, competence induction was examined in media supplemented with nucleic acid precursors. The addition of physiological levels of AMP and GMP reduced competence 200-fold and prevented the normal competence-induced transcription of the essential competence genes comA and rec-2. The rich medium normally used for growth allows only limited competence. Capillary electrophoresis revealed only a subinhibitory amount of AMP and no detectable GMP, and the addition of AMP or GMP to this medium also reduced competence 20- to 100-fold. Neither a functional stringent response system nor a functional phosphoenolpyruvate:glycose phosphotransferase system (PTS) was found to be required for purine-mediated repression. Added cAMP partially restored both transcription of competence genes and competence development, suggesting that purines may reduce the response to cAMP. Potential binding sites for the PurR repressor were identified in several competence genes, suggesting that competence is part of the PUR regulon. These observations are consistent with models of competence regulation, in which depleted purine pools signal the need for nucleotides, and support the hypothesis that competence evolved primarily for nucleotide acquisition.
Collapse
Affiliation(s)
- L P MacFadyen
- Departments of Zoology and Chemistry, University of British Columbia, Vancouver, BC, Canada
| | | | | | | | | | | |
Collapse
|
33
|
Abstract
Development of competence for DNA uptake by the bacterium Haemophilus influenzae is tightly regulated, and expression of the cell's complement of competence genes is absolutely dependent on the cAMP-CRP complex. A second regulator of competence may maximize competence under starvation conditions. Several investigators have recently identified a consensus sequence (competence regulatory element, CRE) in the promoter regions of some competence genes and have proposed that this may be a binding site for Sxy (TfoX), a putative positive regulator of competence. However, a scoring method that reliably ranks candidate binding sites according to affinity for the cognate binding protein predicts that the cAMP-CRP complex will bind CRE sequences with high affinity. Moreover, the predicted Sxy protein lacks recognizable DNA-binding motifs and has not been shown to bind DNA. No other consensus sequences (putative binding sites) were identified in the promoter regions of competence genes. These observations suggest that the proposed competence-specific regulatory elements are in fact CRP-binding sites, and highlight the central role of cAMP-an established bacterial mediator of the response to nutritional stress-in competence regulation. Minor sequence elements uniquely conserved in the set of CRE sequences are predicted to reduce CRP affinity, and a model is suggested in which a secondary regulator of competence genes may interact with CRP under certain conditions to stabilize the initiation complex.
Collapse
Affiliation(s)
- L P Macfadyen
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada.
| |
Collapse
|
34
|
Ochoa de Alda JAG, Houmard J. Genomic survey of cAMP and cGMP signalling components in the cyanobacterium Synechocystis PCC 6803. MICROBIOLOGY (READING, ENGLAND) 2000; 146 Pt 12:3183-3194. [PMID: 11101676 DOI: 10.1099/00221287-146-12-3183] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Cyanobacteria modulate intracellular levels of cAMP and cGMP in response to environmental conditions (light, nutrients and pH). In an attempt to identify components of the cAMP and cGMP signalling pathways in Synechocystis PCC 6803, the authors screened its complete genome sequence by using bioinformatic tools and data from sequence-function studies performed on both eukaryotic and prokaryotic cAMP/cGMP-dependent proteins. Sll1624 and Slr2100 were tentatively assigned as being two putative cyclic nucleotide phosphodiesterases. Five proteins were identified as having all the determinants required to be cyclic nucleotide receptors, two of them being probably more specific for cGMP (an element of two-component regulatory systems - Slr2104 - and a putative cyclic-nucleotide-gated cation channel - Slr1575), the three others being probably more specific for cAMP: (i) a protein of unidentified function (Slr0842); (ii) a putative cyclic-nucleotide-modulated permease (Slr0593), previously annotated as a kinase A regulatory subunit; and (iii) a putative transcription factor (CRP-SYN: =Sll1371), which possesses cAMP- and DNA-binding determinants homologous to those of the cAMP receptor protein of Escherichia coli (CRP-EC:). This homology, together with the presence in Synechocystis of CRP-EC:-like binding sites upstream of crp, cya1, slr1575, and several genes encoding enzymes involved in transport and metabolism, strongly suggests that CRP-SYN: is a global regulator.
Collapse
Affiliation(s)
- Jesús A G Ochoa de Alda
- Dynamique des Membranes Végétales, Complexes Protéines-Pigments, CNRS UMR 8543, Ecole Normale Supérieure, 46 rue d'Ulm 75230 Paris Cedex 05, France1
| | - Jean Houmard
- Dynamique des Membranes Végétales, Complexes Protéines-Pigments, CNRS UMR 8543, Ecole Normale Supérieure, 46 rue d'Ulm 75230 Paris Cedex 05, France1
| |
Collapse
|
35
|
Ma C, Redfield RJ. Point mutations in a peptidoglycan biosynthesis gene cause competence induction in Haemophilus influenzae. J Bacteriol 2000; 182:3323-30. [PMID: 10852860 PMCID: PMC101876 DOI: 10.1128/jb.182.12.3323-3330.2000] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have identified three new Haemophilus influenzae mutations causing cells to exhibit extreme hypercompetence at all stages of growth. The mutations are in murE, which encodes the meso-diaminopimelate-adding enzyme of peptidoglycan synthesis. All are point mutations causing nonconservative amino acid substitutions, two at a poorly conserved residue (G(435)-->R and G(435)-->W) and the third at a highly conserved leucine (L(361)-->S). The mutant strains have very similar phenotypes and do not exhibit any defects in cell growth, permeability, or sensitivity to peptidoglycan antibiotics. Cells retain the normal specificity of DNA uptake for the H. influenzae uptake signal sequence. The mutations do not bypass genes known to be needed for competence induction but do dramatically increase expression of genes required for the normal pathway of DNA uptake. We conclude that the mutations do not act by increasing cell permeability but by causing induction of the normal competence pathway via a previously unsuspected signal.
Collapse
Affiliation(s)
- C Ma
- Department of Zoology, University of British Columbia, Vancouver, Canada
| | | |
Collapse
|
36
|
Subramanian G, Koonin EV, Aravind L. Comparative genome analysis of the pathogenic spirochetes Borrelia burgdorferi and Treponema pallidum. Infect Immun 2000; 68:1633-48. [PMID: 10678983 PMCID: PMC97324 DOI: 10.1128/iai.68.3.1633-1648.2000] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A comparative analysis of the predicted protein sequences encoded in the complete genomes of Borrelia burgdorferi and Treponema pallidum provides a number of insights into evolutionary trends and adaptive strategies of the two spirochetes. A measure of orthologous relationships between gene sets, termed the orthology coefficient (OC), was developed. The overall OC value for the gene sets of the two spirochetes is about 0.43, which means that less than one-half of the genes show readily detectable orthologous relationships. This emphasizes significant divergence between the two spirochetes, apparently driven by different biological niches. Different functional categories of proteins as well as different protein families show a broad distribution of OC values, from near 1 (a perfect, one-to-one correspondence) to near 0. The proteins involved in core biological functions, such as genome replication and expression, typically show high OC values. In contrast, marked variability is seen among proteins that are involved in specific processes, such as nutrient transport, metabolism, gene-specific transcription regulation, signal transduction, and host response. Differences in the gene complements encoded in the two spirochete genomes suggest active adaptive evolution for their distinct niches. Comparative analysis of the spirochete genomes produced evidence of gene exchanges with other bacteria, archaea, and eukaryotic hosts that seem to have occurred at different points in the evolution of the spirochetes. Examples are presented of the use of sequence profile analysis to predict proteins that are likely to play a role in pathogenesis, including secreted proteins that contain specific protein-protein interaction domains, such as von Willebrand A, YWTD, TPR, and PR1, some of which hitherto have been reported only in eukaryotes. We tentatively reconstruct the likely evolutionary process that has led to the divergence of the two spirochete lineages; this reconstruction seems to point to an ancestral state resembling the symbiotic spirochetes found in insect guts.
Collapse
Affiliation(s)
- G Subramanian
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20894, USA
| | | | | |
Collapse
|