1
|
Chougule S, Basrani S, Gavandi T, Patil S, Yankanchi S, Jadhav A, Karuppayil SM. Zingerone effect against Candida albicans growth and biofilm production. J Mycol Med 2025; 35:101527. [PMID: 39742531 DOI: 10.1016/j.mycmed.2024.101527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 12/12/2024] [Accepted: 12/12/2024] [Indexed: 01/03/2025]
Abstract
BACKGROUND The increasing resistance of Candida albicans biofilms underscores the urgent need for effective antifungals. This study evaluated the efficacy of zingerone and elucidated its mode of action against C. albicans ATCC 90028 and clinical isolate C1. EXPERIMENTAL PROCEDURE Minimum inhibitory concentrations (MICs) of zingerone were determined using CLSI methods against planktonic cells, biofilm formation, and yeast-to-hyphal transition. The mode of action was investigated through fluorescent microscopy, ergosterol assays, cell cycle analysis, and RT-PCR for gene expression. KEY RESULTS Zingerone inhibited planktonic growth and biofilm formation at in C. albicans ATCC 90028 and clinical isolate C1 at 2 mg/mL 4 mg/mL and 1 mg/mL and 2 mg/mL respectively. Treatment with the MIC concentration caused significant cell cycle arrest at the G0/G1 phase, halting proliferation in both the strains. Propidium iodide Staining revealed compromised membrane integrity in both the strains. Also, acridine orange and ethidium bromide dual staining showed increased dead cell proportions in C. albicans ATCC 90028. RT-PCR studies showed downregulation of BCY1, PDE2, EFG1, and upregulation of negative regulators NRG1, TUP1 disrupting growth and virulence pathways. Zingerone induced elevated reactive oxygen species (ROS) levels, triggering apoptosis, evidenced by DNA fragmentation and upregulation of apoptotic markers. It also inhibited ergosterol synthesis in a concentration-dependent manner, crucial for membrane integrity. Importantly, zingerone exhibited minimal hemolytic activity. In an in vivo silkworm model, zingerone demonstrated significant antifungal efficacy, protecting silkworms from infection. It also modulated stress response genes, highlighting its multifaceted action. CONCLUSIONS In vitro and in vivo findings confirm the potent antifungal efficacy of zingerone against C. albicans ATCC 90028 and clinical isolate C1, suggesting its promising potential as a therapeutic agent that warrants further exploration.
Collapse
Affiliation(s)
- Sayali Chougule
- Department of Stem Cell and Regenerative Medicine and Medical Biotechnology, Centre for Interdisciplinary Research, DY Patil Education Society (Deemed to be University), Kolhapur, Maharashtra, 416003, India
| | - Sargun Basrani
- Department of Stem Cell and Regenerative Medicine and Medical Biotechnology, Centre for Interdisciplinary Research, DY Patil Education Society (Deemed to be University), Kolhapur, Maharashtra, 416003, India
| | - Tanjila Gavandi
- Department of Stem Cell and Regenerative Medicine and Medical Biotechnology, Centre for Interdisciplinary Research, DY Patil Education Society (Deemed to be University), Kolhapur, Maharashtra, 416003, India
| | - Shivani Patil
- Department of Stem Cell and Regenerative Medicine and Medical Biotechnology, Centre for Interdisciplinary Research, DY Patil Education Society (Deemed to be University), Kolhapur, Maharashtra, 416003, India
| | - Shivanand Yankanchi
- Department of Zoology, Shivaji University, Vidyanagar Kolhapur- 416004, Maharashtra, India
| | - Ashwini Jadhav
- Department of Stem Cell and Regenerative Medicine and Medical Biotechnology, Centre for Interdisciplinary Research, DY Patil Education Society (Deemed to be University), Kolhapur, Maharashtra, 416003, India.
| | - Sankunny Mohan Karuppayil
- Department of Stem Cell and Regenerative Medicine and Medical Biotechnology, Centre for Interdisciplinary Research, DY Patil Education Society (Deemed to be University), Kolhapur, Maharashtra, 416003, India.
| |
Collapse
|
2
|
Li R, Zhang Q, Chen Y, Gao Y, Yang Y, Liu Q, Kong W, Chai H, Sun B, Li Y, Qiu L. The Mechanism of Ammonia-Assimilating Bacteria Promoting the Growth of Oyster Mushrooms ( Pleurotus ostreatus). J Fungi (Basel) 2025; 11:130. [PMID: 39997424 PMCID: PMC11856247 DOI: 10.3390/jof11020130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 02/06/2025] [Accepted: 02/08/2025] [Indexed: 02/26/2025] Open
Abstract
Oyster mushrooms (Pleurotus ostreatus) are one of the most commonly grown edible mushrooms using compost, which contains high concentrations of ammonia. In this study, inoculation of the oyster mushroom culture substrate with ammonia-assimilating bacterium Enterobacter sp. B12, either before or after composting, reduced the ammonia nitrogen content, increased the total nitrogen content of the compost, and enhanced the mushroom yield. Co-cultivation with P. ostreatus mycelia on potato dextrose agar (PDA) plates containing 200 mM NH4+, B12 reduced reactive oxygen species (ROS) accumulation in the mycelia and downregulated the expression of the ROS-generating enzymes NADPH oxidase A (NOXA) and the stress hormone ethylene synthase 1-aminocyclopropane-1-carboxylate oxidase (ACO). It also downregulated the expression of the ammonia-assimilating related genes in the mycelia, such as glutamate dehydrogenase (GDH), glutamate synthase (GOGAT), glutamine synthetase (GS), ammonia transporter protein (AMT), and amino acid transporter protein (AAT), while upregulating its own ammonia-assimilation genes. These findings suggest that the mechanism by which B12 promoted oyster mushroom growth was that B12 assimilated ammonia, alleviated ammonia stress, mitigated ROS accumulation in the mycelia, and supplied ammonia and amino acids to the mycelia. To our knowledge, ammonia-assimilating bacteria are a novel type of mushroom growth promoter (MGP).
Collapse
Affiliation(s)
- Rui Li
- Key Laboratory of Enzyme Engineering of Agricultural Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Henan Agricultural University, Zhengzhou 450046, China
| | - Qi Zhang
- Key Laboratory of Enzyme Engineering of Agricultural Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Henan Agricultural University, Zhengzhou 450046, China
| | - Yuannan Chen
- Key Laboratory of Enzyme Engineering of Agricultural Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Henan Agricultural University, Zhengzhou 450046, China
| | - Yuqian Gao
- Key Laboratory of Enzyme Engineering of Agricultural Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Henan Agricultural University, Zhengzhou 450046, China
| | - Yanqing Yang
- Key Laboratory of Enzyme Engineering of Agricultural Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Henan Agricultural University, Zhengzhou 450046, China
| | - Qin Liu
- Key Laboratory of Evaluation and Utilization of Germplasm Resources of Edible Fungi in Huang-Huai-Hai Region, Institute of Edible Fungi, Henan Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Zhengzhou 450002, China
| | - Weili Kong
- Key Laboratory of Evaluation and Utilization of Germplasm Resources of Edible Fungi in Huang-Huai-Hai Region, Institute of Edible Fungi, Henan Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Zhengzhou 450002, China
| | - Haopeng Chai
- Key Laboratory of Enzyme Engineering of Agricultural Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Henan Agricultural University, Zhengzhou 450046, China
| | - Bingke Sun
- Key Laboratory of Enzyme Engineering of Agricultural Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Henan Agricultural University, Zhengzhou 450046, China
| | - Yanan Li
- Key Laboratory of Enzyme Engineering of Agricultural Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Henan Agricultural University, Zhengzhou 450046, China
| | - Liyou Qiu
- Key Laboratory of Enzyme Engineering of Agricultural Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Henan Agricultural University, Zhengzhou 450046, China
| |
Collapse
|
3
|
Alves R, Gourlay CW. Editorial: Mitochondrial function and dysfunction in pathogenic fungi. Front Physiol 2024; 15:1506684. [PMID: 39534857 PMCID: PMC11554653 DOI: 10.3389/fphys.2024.1506684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Affiliation(s)
- Rosana Alves
- Centre of Molecular and Environmental Biology (CBMA), University of Minho, Braga, Portugal
| | - Campbell W. Gourlay
- Kent Fungal Group, School of Natural Sciences, University of Kent, Canterbury, United Kingdom
| |
Collapse
|
4
|
Batliner M, Schumacher F, Wigger D, Vivas W, Prell A, Fohmann I, Köhler T, Schempp R, Riedel A, Vaeth M, Fekete A, Kleuser B, Kurzai O, Nieuwenhuizen NE. The Candida albicans quorum-sensing molecule farnesol alters sphingolipid metabolism in human monocyte-derived dendritic cells. mBio 2024; 15:e0073224. [PMID: 38953353 PMCID: PMC11323541 DOI: 10.1128/mbio.00732-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 06/09/2024] [Indexed: 07/04/2024] Open
Abstract
Candida albicans, an opportunistic fungal pathogen, produces the quorum-sensing molecule farnesol, which we have shown alters the transcriptional response and phenotype of human monocyte-derived dendritic cells (DCs), including their cytokine secretion and ability to prime T cells. This is partially dependent on the nuclear receptor peroxisome proliferator-activated receptor gamma (PPAR-γ), which has numerous ligands, including the sphingolipid metabolite sphingosine 1-phosphate. Sphingolipids are a vital component of membranes that affect membrane protein arrangement and phagocytosis of C. albicans by DCs. Thus, we quantified sphingolipid metabolites in monocytes differentiating into DCs by High-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). Farnesol increased the activity of serine palmitoyltransferase, leading to increased levels of 3-keto-dihydrosphingosine, dihydrosphingosine, and dihydrosphingosine 1-phosphate and inhibited dihydroceramide desaturase by inducing oxidative stress, leading to increased levels of dihydroceramide and dihydrosphingomyelin species and reduced ceramide levels. Accumulation of dihydroceramides can inhibit mitochondrial function; accordingly, farnesol reduced mitochondrial respiration. Dihydroceramide desaturase inhibition increases lipid droplet formation, which we observed in farnesol-treated cells, coupled with an increase in intracellular triacylglycerol species. Furthermore, inhibition of dihydroceramide desaturase with either farnesol or specific inhibitors impaired the ability of DCs to prime interferon-γ-producing T cells. The effect of farnesol on sphingolipid metabolism, triacylglycerol synthesis, and mitochondrial respiration was not dependent on PPAR-γ. In summary, our data reveal novel effects of farnesol on sphingolipid metabolism, neutral lipid synthesis, and mitochondrial function in DCs that affect their instruction of T cell cytokine secretion, indicating that C. albicans can manipulate host cell metabolism via farnesol secretion.IMPORTANCECandida albicans is a common commensal yeast, but it is also an opportunistic pathogen which is one of the leading causes of potentially lethal hospital-acquired infections. There is growing evidence that its overgrowth in the gut can influence diseases as diverse as alcohol-associated liver disease and COVID-19. Previously, we found that its quorum-sensing molecule, farnesol, alters the phenotype of dendritic cells differentiating from monocytes, impairing their ability to drive protective T cell responses. Here, we demonstrate that farnesol alters the metabolism of sphingolipids, important structural components of the membrane that also act as signaling molecules. In monocytes differentiating to dendritic cells, farnesol inhibited dihydroceramide desaturase, resulting in the accumulation of dihydroceramides and a reduction in ceramide levels. Farnesol impaired mitochondrial respiration, known to occur with an accumulation of dihydroceramides, and induced the accumulation of triacylglycerol and oil bodies. Inhibition of dihydroceramide desaturase resulted in the impaired ability of DCs to induce interferon-γ production by T cells. Thus, farnesol production by C. albicans could manipulate the function of dendritic cells by altering the sphingolipidome.
Collapse
Affiliation(s)
- Maria Batliner
- Institute for Hygiene and Microbiology, Julius-Maximilians University of Würzburg, Würzburg, Germany
| | | | - Dominik Wigger
- Institute of Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Wolfgang Vivas
- Institute for Infectious Diseases and Infection Control, Jena University Hospital–Friedrich Schiller University, Jena, Germany
- Associated Research Group Translational Infection Medicine, Leibniz Institute for Natural Product Research and Infection Biology–Hans Knoell Institute (HKI), Jena, Germany
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital–Friedrich Schiller University, Jena, Germany
| | - Agata Prell
- Institute of Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Ingo Fohmann
- Institute for Hygiene and Microbiology, Julius-Maximilians University of Würzburg, Würzburg, Germany
| | - Tobias Köhler
- Institute for Hygiene and Microbiology, Julius-Maximilians University of Würzburg, Würzburg, Germany
| | - Rebekka Schempp
- Institute for Virology and Immunobiology, Julius-Maximilians University of Würzburg, Würzburg, Germany
| | - Angela Riedel
- Mildred Scheel Early Career Center (MSNZ), University Hospital of Würzburg, Würzburg, Germany
| | - Martin Vaeth
- Max Planck Research Group, Würzburg Institute of Systems Immunology, Julius-Maximilians University of Würzburg, Würzburg, Germany
| | - Agnes Fekete
- Pharmaceutical Biology, Julius-von-Sachs-Institute, Biocenter, University of Würzburg, Würzburg, Germany
| | - Burkhard Kleuser
- Institute of Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Oliver Kurzai
- Institute for Hygiene and Microbiology, Julius-Maximilians University of Würzburg, Würzburg, Germany
- Research Group Fungal Septomics, Leibniz Institute for Natural Product Research and Infection Biology–Hans Knoell Institute, Jena, Germany
- National Reference Center for Invasive Fungal Infections, Leibniz Institute for Natural Product Research and Infection Biology–Hans Knoell Institute, Jena, Germany
| | - Natalie E. Nieuwenhuizen
- Institute for Hygiene and Microbiology, Julius-Maximilians University of Würzburg, Würzburg, Germany
| |
Collapse
|
5
|
Voshall A, Gutzmann DJ, Verdaguer IB, Crispim M, Boone CH, Atkin AL, Nickerson KW. Absence of farnesol salvage in Candida albicans and probably in other fungi. Appl Environ Microbiol 2024; 90:e0087424. [PMID: 38940563 PMCID: PMC11267938 DOI: 10.1128/aem.00874-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 06/08/2024] [Indexed: 06/29/2024] Open
Abstract
Farnesol salvage, a two-step pathway converting farnesol to farnesyl pyrophosphate (FPP), occurs in bacteria, plants, and animals. This paper investigates the presence of this pathway in fungi. Through bioinformatics, biochemistry, and physiological analyses, we demonstrate its absence in the yeasts Saccharomyces cerevisiae and Candida albicans, suggesting a likely absence across fungi. We screened 1,053 fungal genomes, including 34 from C. albicans, for potential homologs to four genes (Arabidopsis thaliana AtFOLK, AtVTE5, AtVTE6, and Plasmodium falciparum PfPOLK) known to accomplish farnesol/prenol salvage in other organisms. Additionally, we showed that 3H-farnesol was not converted to FPP or any other phosphorylated prenol, and exogenous farnesol was not metabolized within 90 minutes at any phase of growth and did not rescue cells from the toxic effects of atorvastatin, but it did elevate the levels of intracellular farnesol (Fi). All these experiments were conducted with C. albicans. In sum, we found no evidence for farnesol salvage in fungi. IMPORTANCE The absence of farnesol salvage constitutes a major difference in the metabolic capabilities of fungi. In terms of fungal physiology, the lack of farnesol salvage pathways relates to how farnesol acts as a quorum-sensing molecule in Candida albicans and why farnesol should be investigated for use in combination with other known antifungal antibiotics. Its absence is essential for a model (K. W. Nickerson et al., Microbiol Mol Biol Rev 88:e00081-22, 2024), wherein protein farnesylation, protein chaperones, and the unfolded protein response are combined under the unifying umbrella of a cell's intracellular farnesol (Fi). In terms of human health, farnesol should have at least two different modes of action depending on whether those cells have farnesol salvage. Because animals have farnesol salvage, we can now see the importance of dietary prenols as well as the potential importance of farnesol in treating neurodegenerative diseases such as Parkinson's disease, Alzheimer's disease, and multiple sclerosis.
Collapse
Affiliation(s)
- Adam Voshall
- Division of Genetics and Genomics, Boston Children’s Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Daniel J. Gutzmann
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Ignasi Bofill Verdaguer
- Department of Parasitology, Institute of Biomedical Sciences of the University of São Paulo, São Paulo, Brazil
| | - Marcell Crispim
- Department of Parasitology, Institute of Biomedical Sciences of the University of São Paulo, São Paulo, Brazil
| | - Cory H.T. Boone
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Audrey L. Atkin
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Kenneth W. Nickerson
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| |
Collapse
|
6
|
Shen T, Tian B, Liu W, Yang X, Sheng Q, Li M, Wang H, Wang X, Zhou H, Han Y, Ding C, Sai S. Transdermal administration of farnesol-ethosomes enhances the treatment of cutaneous candidiasis induced by Candida albicans in mice. Microbiol Spectr 2024; 12:e0424723. [PMID: 38415658 PMCID: PMC10986551 DOI: 10.1128/spectrum.04247-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 02/13/2024] [Indexed: 02/29/2024] Open
Abstract
Cutaneous candidiasis, caused by Candida albicans, is a severe and frustrating condition, and finding effective treatments can be challenging. Therefore, the development of farnesol-loaded nanoparticles is an exciting breakthrough. Ethosomes are a novel transdermal drug delivery carrier that incorporates a certain concentration (10-45%) of alcohols into lipid vesicles, resulting in improved permeability and encapsulation rates compared to conventional liposomes. Farnesol is a quorum-sensing molecule involved in morphogenesis regulation in C. albicans, and these ethosomes offer a promising new approach to treating this common fungal infection. This study develops the formulation of farnesol-loaded ethosomes (farnesol-ethosomes) and assesses applications in treating cutaneous candidiasis induced by C. albicans in vitro and in vivo. Farnesol-ethosomes were successfully developed by ethanol injection method. Therapeutic properties of farnesol-ethosomes, such as particle size, zeta potential, and morphology, were well characterized. According to the results, farnesol-ethosomes demonstrated an increased inhibition effect on cells' growth and biofilm formation in C. albicans. In Animal infection models, treating farnesol-ethosomes by transdermal administration effectively relieved symptoms caused by cutaneous candidiasis and reduced fungal burdens in quantity. We also observed that ethosomes significantly enhanced drug delivery efficacy in vitro and in vivo. These results indicate that farnesol-ethosomes can provide future promising roles in curing cutaneous candidiasis. IMPORTANCE Cutaneous candidiasis attributed to Candida infection is a prevalent condition that impacts individuals of all age groups. As a type of microbial community, biofilms confer benefits to host infections and mitigate the clinical effects of antifungal treatments. In C. albicans, the yeast-to-hypha transition and biofilm formation are effectively suppressed by farnesol through its modulation of multiple signaling pathway. However, the characteristics of farnesol such as hydrophobicity, volatility, degradability, and instability in various conditions can impose limitations on its effectiveness. Nanotechnology holds the potential to enhance the efficiency and utilization of this molecule. Treatment of farnesol-ethosomes by transdermal administration demonstrated a very remarkable therapeutic effect against C. albicans in infection model of cutaneous candidiasis in mice. Many patients suffering fungal skin infection will benefit from this study.
Collapse
Affiliation(s)
- Ting Shen
- School of Pharmacy, Binzhou Medical University, Yantai, Shandong, China
| | - Baocheng Tian
- School of Pharmacy, Binzhou Medical University, Yantai, Shandong, China
| | - Wei Liu
- College of Life and Health Science, Northeastern University, Shenyang, China
| | - Xuesong Yang
- School of Pharmacy, Binzhou Medical University, Yantai, Shandong, China
| | - Qi Sheng
- School of Pharmacy, Binzhou Medical University, Yantai, Shandong, China
| | - Mengxin Li
- School of Pharmacy, Binzhou Medical University, Yantai, Shandong, China
| | - Haiyan Wang
- School of Pharmacy, Binzhou Medical University, Yantai, Shandong, China
| | - Xiuwen Wang
- School of Pharmacy, Binzhou Medical University, Yantai, Shandong, China
| | - Huihui Zhou
- Department of pathology, Affiliated Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - Yanchun Han
- Department of Pathology, Binzhou Medical University, Yantai, Shandong, China
| | - Chen Ding
- College of Life and Health Science, Northeastern University, Shenyang, China
| | - Sixiang Sai
- School of Pharmacy, Binzhou Medical University, Yantai, Shandong, China
| |
Collapse
|
7
|
Nickerson KW, Gutzmann DJ, Boone CHT, Pathirana RU, Atkin AL. Physiological adventures in Candida albicans: farnesol and ubiquinones. Microbiol Mol Biol Rev 2024; 88:e0008122. [PMID: 38436263 PMCID: PMC10966945 DOI: 10.1128/mmbr.00081-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024] Open
Abstract
SUMMARYFarnesol was first identified as a quorum-sensing molecule, which blocked the yeast to hyphal transition in Candida albicans, 22 years ago. However, its interactions with Candida biology are surprisingly complex. Exogenous (secreted or supplied) farnesol can also act as a virulence factor during pathogenesis and as a fungicidal agent triggering apoptosis in other competing fungi. Farnesol synthesis is turned off both during anaerobic growth and in opaque cells. Distinctly different cellular responses are observed as exogenous farnesol levels are increased from 0.1 to 100 µM. Reported changes include altered morphology, stress response, pathogenicity, antibiotic sensitivity/resistance, and even cell lysis. Throughout, there has been a dearth of mechanisms associated with these observations, in part due to the absence of accurate measurement of intracellular farnesol levels (Fi). This obstacle has recently been overcome, and the above phenomena can now be viewed in terms of changing Fi levels and the percentage of farnesol secreted. Critically, two aspects of isoprenoid metabolism present in higher organisms are absent in C. albicans and likely in other yeasts. These are pathways for farnesol salvage (converting farnesol to farnesyl pyrophosphate) and farnesylcysteine cleavage, a necessary step in the turnover of farnesylated proteins. Together, these developments suggest a unifying model, whereby high, threshold levels of Fi regulate which target proteins are farnesylated or the extent to which they are farnesylated. Thus, we suggest that the diversity of cellular responses to farnesol reflects the diversity of the proteins that are or are not farnesylated.
Collapse
Affiliation(s)
| | - Daniel J. Gutzmann
- School of Biological Sciences, University of Nebraska, Lincoln, Nebraska, USA
| | - Cory H. T. Boone
- School of Biological Sciences, University of Nebraska, Lincoln, Nebraska, USA
| | - Ruvini U. Pathirana
- Department of Biology and Chemistry, Texas A&M International University, Laredo, Texas, USA
| | - Audrey L. Atkin
- School of Biological Sciences, University of Nebraska, Lincoln, Nebraska, USA
| |
Collapse
|
8
|
Santos-Pascual R, Campoy I, Sanz Mata D, Martínez MJ, Prieto A, Barriuso J. Deciphering the molecular components of the quorum sensing system in the fungus Ophiostoma piceae. Microbiol Spectr 2023; 11:e0029023. [PMID: 37796004 PMCID: PMC10715110 DOI: 10.1128/spectrum.00290-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 07/19/2023] [Indexed: 10/06/2023] Open
Abstract
IMPORTANCE This manuscript presents a comprehensive study on the molecular mechanisms triggered by the quorum sensing (QS) molecule farnesol in the biotechnologically relevant fungus Ophiostoma piceae. We present for the first time, using a multiomics approach, an in-depth analysis of the QS response in a saprotroph fungus, detailing the molecular components involved in the response and their possible mechanisms of action. We think that these results are particularly relevant in the knowledge of the functioning of the QS in eukaryotes, as well as for the exploitation of these mechanisms.
Collapse
Affiliation(s)
- Rodrigo Santos-Pascual
- Department of Microbial and Plant Biotechnology, Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CIB-CSIC), Madrid, Spain
| | - Iván Campoy
- Department of Microbial and Plant Biotechnology, Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CIB-CSIC), Madrid, Spain
| | - David Sanz Mata
- Department of Microbial and Plant Biotechnology, Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CIB-CSIC), Madrid, Spain
| | - María Jesús Martínez
- Department of Microbial and Plant Biotechnology, Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CIB-CSIC), Madrid, Spain
| | - Alicia Prieto
- Department of Microbial and Plant Biotechnology, Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CIB-CSIC), Madrid, Spain
| | - Jorge Barriuso
- Department of Microbial and Plant Biotechnology, Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CIB-CSIC), Madrid, Spain
| |
Collapse
|
9
|
Boone CHT, Parker KA, Gutzmann DJ, Atkin AL, Nickerson KW. Farnesol as an antifungal agent: comparisons among MTLa and MTLα haploid and diploid Candida albicans and Saccharomyces cerevisiae. Front Physiol 2023; 14:1207567. [PMID: 38054042 PMCID: PMC10694251 DOI: 10.3389/fphys.2023.1207567] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 11/09/2023] [Indexed: 12/07/2023] Open
Abstract
Aims: Farnesol was identified 20 years ago in a search for Candida albicans quorum sensing molecules (QSM), but there is still uncertainty regarding many aspects of its mode of action including whether it employs farnesol transport mechanisms other than diffusion. Based on the structural similarity between farnesol and the farnesylated portion of the MTL a pheromone, we explored the effects of ploidy and mating type locus (MTL) on the antifungal activity of exogenous farnesol. Methods and results: We approached this question by examining five MTL a and five MTLα haploid strains with regard to their farnesol sensitivity in comparison to six heterozygous MTL a/ α diploids. We examined the haploid and diploid strains for percent cell death after exposure of exponentially growing cells to 0-200 µM farnesol. The heterozygous (MTL a/α) diploids were tolerant of exogenous farnesol whereas the MTL a and MTLα haploids were on average 2- and 4-times more sensitive, respectively. In the critical range from 10-40 µM farnesol their cell death values were in the ratio of 1:2:4. Very similar results were obtained with two matched sets of MAT a, MATα, and MAT a/α Saccharomyces cerevisiae strains. Conclusion: We propose that the observed MTL dependence of farnesol is based on differentially regulated mechanisms of entry and efflux which determine the actual cellular concentration of farnesol. The mechanisms by which pathogens such as C. albicans tolerate the otherwise lethal effects of farnesol embrace a wide range of physiological functions, including MTL type, ubiquinone type (UQ6-UQ9), energy availability, and aerobic/anaerobic status.
Collapse
Affiliation(s)
| | | | | | | | - Kenneth W. Nickerson
- School of Biological Sciences, University of Nebraska, Lincoln, NE, United States
| |
Collapse
|
10
|
Alam F, Blackburn SA, Davis J, Massar K, Correia J, Tsai HJ, Blair JMA, Hall RA. Pseudomonas aeruginosa increases the susceptibility of Candida albicans to amphotericin B in dual-species biofilms. J Antimicrob Chemother 2023; 78:2228-2241. [PMID: 37522316 PMCID: PMC10477122 DOI: 10.1093/jac/dkad228] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 07/10/2023] [Indexed: 08/01/2023] Open
Abstract
BACKGROUND Biofilms are the leading cause of nosocomial infections and are hard to eradicate due to their inherent antimicrobial resistance. Candida albicans is the leading cause of nosocomial fungal infections and is frequently co-isolated with the bacterium Pseudomonas aeruginosa from biofilms in the cystic fibrosis lung and severe burn wounds. The presence of C. albicans in multispecies biofilms is associated with enhanced antibacterial resistance, which is largely mediated through fungal extracellular carbohydrates sequestering the antibiotics. However, significantly less is known regarding the impact of polymicrobial biofilms on antifungal resistance. RESULTS Here we show that, in dual-species biofilms, P. aeruginosa enhances the susceptibility of C. albicans to amphotericin B, an effect that was biofilm specific. Transcriptional analysis combined with gene ontology enrichment analysis identified several C. albicans processes associated with oxidative stress to be differentially regulated in dual-species biofilms, suggesting that P. aeruginosa exerts oxidative stress on C. albicans, likely through the secretion of phenazines. However, the mitochondrial superoxide dismutase SOD2 was significantly down-regulated in the presence of P. aeruginosa. Monospecies biofilms of the sod2Δ mutant were more susceptible to amphotericin B, and the susceptibility of these biofilms was further enhanced by exogenous phenazines. CONCLUSIONS We propose that in dual-species biofilms, P. aeruginosa simultaneously induces mitochondrial oxidative stress, while down-regulating key detoxification enzymes, which prevents C. albicans mounting an appropriate oxidative stress response to amphotericin B, leading to fungal cell death. This work highlights the importance of understanding the impact of polymicrobial interactions on antimicrobial susceptibility.
Collapse
Affiliation(s)
- Farhana Alam
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Sarah A Blackburn
- Kent Fungal Group, Division of Natural Sciences, School of Biosciences, University of Kent, Canterbury, CT2 7NJ, UK
| | - Jack Davis
- Kent Fungal Group, Division of Natural Sciences, School of Biosciences, University of Kent, Canterbury, CT2 7NJ, UK
| | - Keely Massar
- Kent Fungal Group, Division of Natural Sciences, School of Biosciences, University of Kent, Canterbury, CT2 7NJ, UK
| | - Joao Correia
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Hung-Ji Tsai
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Jessica M A Blair
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Rebecca A Hall
- Kent Fungal Group, Division of Natural Sciences, School of Biosciences, University of Kent, Canterbury, CT2 7NJ, UK
| |
Collapse
|
11
|
Ma T, Zong H, Lu X, Zhuge B. Candida glycerinogenes-Promoted α-Pinene and Squalene Co-production Strategy Based on α-Pinene Stress. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:5250-5260. [PMID: 36971258 DOI: 10.1021/acs.jafc.3c00199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
α-Pinene is a naturally occurring monoterpene, which is widely used in fragrances, cosmetics, and foods. Due to the high cellular toxicity of α-pinene, this work considered the application of Candida glycerinogenes, an effective industrial strain with high resistance, in α-pinene synthesis. It was found that α-pinene-induced stress resulted in an intracellular accumulation of reactive oxygen species with an increased formation of squalene as a cytoprotective compound. As squalene is a downstream product in the mevalonate (MVA) pathway for α-pinene synthesis, a strategy based on the promotion of α-pinene and squalene co-production under α-pinene stress is proposed. By introducing the α-pinene synthesis pathway and enhancing the MVA pathway, the production of both α-pinene and squalene is increased. We have demonstrated that intracellular synthesis of α-pinene is effective in promoting squalene synthesis. The generation of intercellular reactive oxygen that accompanies α-pinene synthesis promotes squalene synthesis with a resultant cellular protection and upregulation of MVA pathway genes that facilitate α-pinene production. In addition, we have overexpressed phosphatase and introduced NPP as a substrate to synthesize α-pinene, where co-dependent fermentation yielded 208 mg/L squalene and 12.8 mg/L α-pinene. This work establishes a viable strategy to promote terpene-co-dependent fermentation based on stress.
Collapse
Affiliation(s)
- Tengfei Ma
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Lab of Industrial Microorganism & Research and Design Center for Polyols, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Hong Zong
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Lab of Industrial Microorganism & Research and Design Center for Polyols, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xinyao Lu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Lab of Industrial Microorganism & Research and Design Center for Polyols, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Bin Zhuge
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Lab of Industrial Microorganism & Research and Design Center for Polyols, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
12
|
Boone CHT, Gutzmann DJ, Kramer JJ, Atkin AL, Nickerson KW. Quantitative assay for farnesol and the aromatic fusel alcohols from the fungus Candida albicans. Appl Microbiol Biotechnol 2022; 106:6759-6773. [PMID: 36107213 PMCID: PMC9529689 DOI: 10.1007/s00253-022-12165-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 11/02/2022]
Abstract
Abstract
The dimorphic fungus Candida albicans is a commensal and opportunistic fungal pathogen of humans. It secretes at least four small lipophilic molecules, farnesol and three aromatic fusel alcohols. Farnesol has been identified as both a quorum sensing molecule (QSM) and a virulence factor. Our gas chromatography (GC)-based assay for these molecules exhibits high throughput, prevention of analyte loss by avoiding filtration and rotary evaporation, simultaneous cell lysis and analyte extraction by ethyl acetate, and the ability to compare whole cultures with their cell pellets and supernatants. Farnesol synthesis and secretion were separable phenomena and pellet:supernatant ratios for farnesol were high, up to 12:1. The assay was validated in terms of precision, specificity, ruggedness, accuracy, solution stability, detection limits (DL), quantitation limits (QL), and dynamic range. The DL for farnesol was 0.02 ng/µl (0.09 µM). Measurement quality was assessed by the relative error of the whole culture versus the sum of pellet and supernatant fractions (WPS). C. albicans strain SC5314 grown at 30 °C in complex and defined media (YPD and mRPMI) was assayed in biological triplicate 17 times over 3 days. Farnesol and the three aromatic fusel alcohols can be measured in the same assay. The levels of all four are greatly altered by the growth medium chosen. Significantly, the three fusel alcohols are synthesized during stationary phase, not during growth. They are secreted quickly without being retained in the cell pellet and may accumulate up to mM concentrations.
Key points
• Quantitative analysis of both intra- and extracellular farnesol, and aromatic fusel oils.
• High throughput, whole culture assay with simultaneous lysis and extraction.
• Farnesol secretion and synthesis are distinct and separate events.
Collapse
|
13
|
Biermann AR, Hogan DA. Transcriptional Response of Candida auris to the Mrr1 Inducers Methylglyoxal and Benomyl. mSphere 2022; 7:e0012422. [PMID: 35473297 PMCID: PMC9241502 DOI: 10.1128/msphere.00124-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 03/18/2022] [Indexed: 11/20/2022] Open
Abstract
Candida auris is an urgent threat to human health due to its rapid spread in health care settings and its repeated development of multidrug resistance. Diseases that increase risk for C. auris infection, such as diabetes, kidney failure, or immunocompromising conditions, are associated with elevated levels of methylglyoxal (MG), a reactive dicarbonyl compound derived from several metabolic processes. In other Candida species, expression of MG reductase enzymes that catabolize and detoxify MG are controlled by Mrr1, a multidrug resistance-associated transcription factor, and MG induces Mrr1 activity. Here, we used transcriptomics and genetic assays to determine that C. auris MRR1a contributes to MG resistance, and that the main Mrr1a targets are an MG reductase and MDR1, which encodes a drug efflux protein. The C. auris Mrr1a regulon is smaller than Mrr1 regulons described in other species. In addition to MG, benomyl (BEN), a known Mrr1 stimulus, induces C. auris Mrr1 activity, and characterization of the MRR1a-dependent and -independent transcriptional responses revealed substantial overlap in genes that were differentially expressed in response to each compound. Additionally, we found that an MRR1 allele specific to one C. auris phylogenetic clade, clade III, encodes a hyperactive Mrr1 variant, and this activity correlated with higher MG resistance. C. auris MRR1a alleles were functional in Candida lusitaniae and were inducible by BEN, but not by MG, suggesting that the two Mrr1 inducers act via different mechanisms. Together, the data presented in this work contribute to the understanding of Mrr1 activity and MG resistance in C. auris. IMPORTANCE Candida auris is a fungal pathogen that has spread since its identification in 2009 and is of concern due to its high incidence of resistance against multiple classes of antifungal drugs. In other Candida species, the transcription factor Mrr1 plays a major role in resistance against azole antifungals and other toxins. More recently, Mrr1 has been recognized to contribute to resistance to methylglyoxal (MG), a toxic metabolic product that is often elevated in different disease states. MG can activate Mrr1 and its induction of Mdr1 which can protect against diverse challenges. The significance of this work lies in showing that MG is also an inducer of Mrr1 in C. auris, and that one of the major pathogenic C. auris lineages has an activating Mrr1 mutation that confers protection against MG.
Collapse
Affiliation(s)
- Amy R. Biermann
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Deborah A. Hogan
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| |
Collapse
|
14
|
Expression of the human antiapoptotic protein Bcl-2 increases nerolidol production in engineered yeast. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
15
|
Chen S, Xu Z, Liu S, Duan W, Huang Y, Wei X. A possible mechanism of farnesol tolerance in C. albicans biofilms implemented by activating the PKC signalling pathway and stabilizing ROS levels. J Med Microbiol 2022; 71. [PMID: 35020583 DOI: 10.1099/jmm.0.001476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Introduction. Biofilms are the natural growth state for most microorganisms. C. albicans biofilms are composed of multiple cell types (round budding yeast-form cells, oval pseudohyphal cells, and elongated hyphal cells) encased in an extracellular matrix. C. albicans biofilms are notorious for resistance to antimicrobial treatments, a property that might be determined by complex mechanisms. Exogenous farnesol exerts a certain antifungal activity against C. albicans with medical implications. Different from other microbes, C. albicans biofilms can tolerate exogenous farnesol at high concentration with some cells still surviving and even maintaining proliferation, but the mechanism is unclear.Hypothesis. The study hypothesizes that C. albicans resists farnesol by activating the PKC signalling pathway.Aim. The study aims to discuss the molecular mechanism of C. albicans resistance to farnesol.Methodology. The ROS levels, the genes and proteins of the PKC pathway were compared between the farnesol-tolerant and non-tolerant groups using ROS levels assay, q-RT PCR and Western blot, respectively. Further, the mutant strains (pkc1Δ/Δ and mkc1Δ/Δ) were constructed, then the survival rates and ROS levels of biofilms exposed to farnesol were compared between mutant and wild strains. The morphological changes were observed using TEM.Results. The survival rates of C. albicans biofilms decreased rapidly under the lower concentration of farnesol (P<0.05), and kept stable (P>0.05) as the concentration rose up to 200 µM. The gene expression of the PKC pathway increased, while ROS levels remained stable and even decreased in the farnesol-tolerant biofilms, compared with those in the farnesol-nontolerant biofilms after farnesol treatment (P<0.05); pkc1 and mkc1 were significantly upregulated by C. albicans during the development of biofilm tolerance to farnesol. The cell wall and cytoplasm of pkc1Δ/Δ and mkc1Δ/Δ were damaged, and the ROS level increased (P<0.05); meanwhile, the survival rate of biofilms decreased compared with that of wild-type strain under the same farnesol concentrations (P<0.05). ROS inhibitors reversed these changes in pkc1Δ/Δ and mkc1Δ/Δ when the mutant strains exposed to farnesol.Conclusion. C. albicans biofilms can tolerate high concentrations of farnesol by activating pkc1 and mkc1 of the PKC pathway and stabilizing ROS levels. The pkc1 and mkc1 are two key genes regulated by C. albicans in the process of biofilm tolerance to farnesol.
Collapse
Affiliation(s)
- Shengyan Chen
- Department of Operative Dentistry and Endodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, PR China.,Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, PR China.,Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, PR China.,Department of Oral Health Care, Jiangsu Women and Children Health Hospital, Nanjing Medical University, Nanjing, PR China
| | - Zheng Xu
- Department of Operative Dentistry and Endodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, PR China.,Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, PR China.,Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, PR China
| | - Siqi Liu
- Department of Operative Dentistry and Endodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, PR China.,Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, PR China.,Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, PR China
| | - Wei Duan
- Department of Operative Dentistry and Endodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, PR China.,Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, PR China.,Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, PR China
| | - Yun Huang
- Department of Operative Dentistry and Endodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, PR China.,Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, PR China.,Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, PR China
| | - Xin Wei
- Department of Operative Dentistry and Endodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, PR China.,Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, PR China.,Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, PR China.,Present address: Jiangsu Key Laboratory of Oral Diseases, Department of Operative Dentistry and Endodontics, Nanjing Medical University, Nanjing 210029, PR China
| |
Collapse
|
16
|
Delago A, Gregor R, Dubinsky L, Dandela R, Hendler A, Krief P, Rayo J, Aharoni A, Meijler MM. A Bacterial Quorum Sensing Molecule Elicits a General Stress Response in Saccharomyces cerevisiae. Front Microbiol 2021; 12:632658. [PMID: 34603220 PMCID: PMC8481950 DOI: 10.3389/fmicb.2021.632658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 06/30/2021] [Indexed: 11/13/2022] Open
Abstract
Bacteria assess their population density through a chemical communication mechanism termed quorum sensing, in order to coordinate group behavior. Most research on quorum sensing has focused primarily on its role as an intraspecies chemical signaling mechanism that enables the regulation of certain phenotypes through targeted gene expression. However, in recent years several seminal studies have revealed important phenomena in which quorum sensing molecules appear to serve additional roles as interspecies signals that may regulate microbial ecology. In this study, we asked whether the budding yeast Saccharomyces cerevisiae can sense chemical signals from prokaryotes. When exposed to a variety of quorum sensing molecules from different bacterial species and from Candida albicans we found that N-(3-oxododecanoyl)-L-homoserine lactone (C12) from the opportunistic human pathogen Pseudomonas aeruginosa induces a remarkable stress response in yeast. Microarray experiments confirmed and aided in interpreting these findings, showing a unique and specific expression pattern that differed significantly from the response to previously described stress factors. We further characterized this response and report preliminary findings on the molecular basis for the recognition of C12 by the yeast.
Collapse
Affiliation(s)
- Antonia Delago
- Department of Chemistry, Ben-Gurion University of the Negev, Be'er Sheva, Israel.,The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Rachel Gregor
- Department of Chemistry, Ben-Gurion University of the Negev, Be'er Sheva, Israel.,The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Luba Dubinsky
- Department of Chemistry, Ben-Gurion University of the Negev, Be'er Sheva, Israel.,The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Rambabu Dandela
- Department of Chemistry, Ben-Gurion University of the Negev, Be'er Sheva, Israel.,The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Adi Hendler
- The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Be'er Sheva, Israel.,Department of Life Sciences, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Pnina Krief
- Department of Chemistry, Ben-Gurion University of the Negev, Be'er Sheva, Israel.,The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Josep Rayo
- Department of Chemistry, Ben-Gurion University of the Negev, Be'er Sheva, Israel.,The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Amir Aharoni
- The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Be'er Sheva, Israel.,Department of Life Sciences, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Michael M Meijler
- Department of Chemistry, Ben-Gurion University of the Negev, Be'er Sheva, Israel.,The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| |
Collapse
|
17
|
Abstract
Quorum sensing (QS) is one of the most studied cell-cell communication mechanisms in fungi. Research in the last 20 years has explored various fungal QS systems that are involved in a wide range of biological processes, especially eukaryote- or fungus-specific behaviors, mirroring the significant contribution of QS regulation to fungal biology and evolution. Based on recent progress, we summarize in this review fungal QS regulation, with an emphasis on its functional role in behaviors unique to fungi or eukaryotes. We suggest that using fungi as genetically amenable eukaryotic model systems to address why and how QS regulation is integrated into eukaryotic reproductive strategies and molecular or cellular processes could be an important direction for QS research. Expected final online publication date for the Annual Review of Microbiology, Volume 75 is October 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Xiuyun Tian
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; .,University of Chinese Academy of Sciences, Beijing 100039, China
| | - Hao Ding
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; .,University of Chinese Academy of Sciences, Beijing 100039, China
| | - Weixin Ke
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; .,University of Chinese Academy of Sciences, Beijing 100039, China
| | - Linqi Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; .,University of Chinese Academy of Sciences, Beijing 100039, China
| |
Collapse
|
18
|
You N, Zhuo L, Zhou J, Song Y, Shi J. The Role of Intestinal Fungi and Its Metabolites in Chronic Liver Diseases. Gut Liver 2021; 14:291-296. [PMID: 31554391 PMCID: PMC7234879 DOI: 10.5009/gnl18579] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 03/27/2019] [Accepted: 04/15/2019] [Indexed: 12/12/2022] Open
Abstract
Current studies have confirmed that liver diseases are closely related to intestinal microorganisms; however, those studies have mainly concentrated on bacteria. Although the proportion of intestinal microorganisms accounted for by colonizing fungi is very small, these fungi do have a significant effect on the homeostasis of the intestinal microecosystem. In this paper, the characteristics of intestinal fungi in patients with chronic liver diseases such as alcoholic liver disease, nonalcoholic fatty liver disease and cirrhosis are summarized, and the effects of intestinal fungi and their metabolites are analyzed and discussed. It is important to realize that not only bacteria but also intestinal fungi play important roles in liver diseases.
Collapse
Affiliation(s)
- Ningning You
- Department of Liver Diseases, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Lili Zhuo
- Department of Liver Diseases, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Jingxin Zhou
- Department of Liver Diseases, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Yu Song
- Department of Liver Diseases, Zhejiang Chinese Medical University, Hangzhou, China
| | - Junping Shi
- Department of Liver Diseases, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
19
|
Li Y, Shan M, Zhu Y, Yao H, Li H, Gu B, Zhu Z. Kalopanaxsaponin A induces reactive oxygen species mediated mitochondrial dysfunction and cell membrane destruction in Candida albicans. PLoS One 2020; 15:e0243066. [PMID: 33253287 PMCID: PMC7703927 DOI: 10.1371/journal.pone.0243066] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 11/14/2020] [Indexed: 01/24/2023] Open
Abstract
Candidiasis causes high morbidity and mortality among immunocompromised patients. Antifungal drug resistance and cytotoxicity highlight the need of effective antifungal therapeutics. In this study, we found that kalopanaxsaponin A (KPA), a triterpenoid saponin natural product, could inhibit the proliferation of various Candida species, and exerted a fungicidal effect against C. albicans. To further explore its antifungal action mode, spectrofluorophotometer, fluorescence microscopy and transmission electron microscopy were performed, showing that KPA treatment induced the accumulation of intracellular reactive oxygen species (ROS), resulting in mitochondrial dysfunction. Meanwhile, KPA treatment also broke down the membrane barrier of C. albicans causing the leakage of intracellular trehalose, the entrance of extracellular impermeable substance and the decrease of ergosterol content. Both ROS accumulation and membrane destruction contributed to the death of C. albicans cells. Our work preliminarily elucidated the potential mechanisms of KPA against C. albicans on a cellular level, and might provide a potential option for the treatment of clinical candidiasis.
Collapse
Affiliation(s)
- Ying Li
- Xuzhou Key Laboratory of Laboratory Diagnostics, School of Medical Technology, Xuzhou Medical University, Xuzhou, China
| | - Mingzhu Shan
- Xuzhou Key Laboratory of Laboratory Diagnostics, School of Medical Technology, Xuzhou Medical University, Xuzhou, China
| | - Yao Zhu
- Department of Genetics, Xuzhou Medical University, Xuzhou, China
| | - Huankai Yao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Hongchun Li
- Xuzhou Key Laboratory of Laboratory Diagnostics, School of Medical Technology, Xuzhou Medical University, Xuzhou, China
- Department of Laboratory Medicine, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Bing Gu
- Xuzhou Key Laboratory of Laboratory Diagnostics, School of Medical Technology, Xuzhou Medical University, Xuzhou, China
- Department of Laboratory Medicine, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Zuobin Zhu
- Department of Genetics, Xuzhou Medical University, Xuzhou, China
- * E-mail:
| |
Collapse
|
20
|
Longer Ubiquinone Side Chains Contribute to Enhanced Farnesol Resistance in Yeasts. Microorganisms 2020; 8:microorganisms8111641. [PMID: 33114039 PMCID: PMC7690737 DOI: 10.3390/microorganisms8111641] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/19/2020] [Accepted: 10/21/2020] [Indexed: 01/08/2023] Open
Abstract
Ubiquinones (UQ) are intrinsic lipid components of many membranes. Besides their role in electron-transfer reactions there is evidence for them acting as free radical scavengers, yet their other roles in biological systems have received little study. The dimorphic fungal pathogen Candida albicans secretes farnesol as both a virulence factor and a quorum-sensing molecule. Thus, we were intrigued by the presence of UQ9 isoprenologue in farnesol-producing Candida species while other members of this genera harbor UQ7 as their major electron carrier. We examined the effect of UQ side chain length in Saccharomyces cerevisiae and C. albicans with a view towards identifying the mechanisms by which C. albicans protects itself from the high levels of farnesol it secretes, levels that are toxic to many other fungi including S. cerevisiae. In this study, we identify UQ9 as the major UQ isoprenoid in C. albicans, regardless of growth conditions or cell morphology. A S. cerevisiae model yeast engineered to make UQ9 instead of UQ6 was 4-5 times more resistant to exogenous farnesol than the parent yeast and this resistance was accompanied by greatly reduced reactive oxygen species (ROS) production. The resistance provided by UQ9 is specific for farnesol in that it does not increase resistance to high salt (1M NaCl) or other oxidants (5 mM H2O2 or 1 mM menadione). Additionally, the protection provided by UQ9 appears to be structural rather than transcriptional; UQ9 does not alter key transcriptional responses to farnesol stress. Here, we propose a model in which the longer UQ side chains are more firmly embedded in the mitochondrial membrane making them harder to pry out, so that in the presence of farnesol they remain functional without producing excess ROS. C. albicans and Candida dubliniensis evolved to use UQ9 rather than UQ7 as in other Candida species or UQ6 as in S. cerevisiae. This adaptive mechanism highlights the significance of UQ side chains in farnesol production and resistance quite apart from being an electron carrier in the respiratory chain.
Collapse
|
21
|
Oyama M, Tamaki H, Yamaguchi Y, Ogita A, Tanaka T, Fujita KI. Deletion of the Golgi Ca2+-ATPase PMR1 gene potentiates antifungal effects of dodecanol that depend on intracellular Ca2+ accumulation in budding yeast. FEMS Yeast Res 2020; 20:5706841. [PMID: 31942998 DOI: 10.1093/femsyr/foaa003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 01/14/2020] [Indexed: 12/13/2022] Open
Abstract
One strategy for overcoming infectious diseases caused by drug-resistant fungi involves combining drugs rendered inactive by resistance with agents targeting the drug resistance mechanism. The antifungal activity of n-dodecanol disappears as incubation time passes. In Saccharomyces cerevisiae, anethole, a principal component of anise oil, prolongs the transient antifungal effect of dodecanol by downregulating genes of multidrug efflux pumps, mainly PDR5. However, the detailed mechanisms of dodecanol's antifungal action and the anethole-induced prolonged antifungal action of dodecanol are unknown. Screening of S. cerevisiae strains lacking genes related to Ca2+ homeostasis and signaling identified a pmr1Δ strain lacking Golgi Ca2+-ATPase as more sensitive to dodecanol than the parental strain. Dodecanol and the dodecanol + anethole combination significantly increased intracellular Ca2+ levels in both strains, but the mutant failed to clear intracellular Ca2+ accumulation. Further, dodecanol and the drug combination reduced PMR1 expression and did not lead to specific localization of Pmr1p in the parental strain after 4-h treatment. By contrast with the parental strain, dodecanol did not stimulate PDR5 expression in pmr1Δ. Based on these observations, we propose that the antifungal activity of dodecanol is related to intracellular Ca2+ accumulation, possibly dependent on PMR1 function, with anethole enabling Ca2+ accumulation by restricting dodecanol efflux.
Collapse
Affiliation(s)
- Masahiro Oyama
- Graduate School of Science, Osaka City University, Osaka, Japan
| | - Hiroyuki Tamaki
- Graduate School of Science, Osaka City University, Osaka, Japan
| | | | - Akira Ogita
- Graduate School of Science, Osaka City University, Osaka, Japan.,Research Center for Urban Health and Sports, Osaka City University, Osaka, Japan
| | - Toshio Tanaka
- Graduate School of Science, Osaka City University, Osaka, Japan
| | - Ken-Ichi Fujita
- Graduate School of Science, Osaka City University, Osaka, Japan
| |
Collapse
|
22
|
Mogilnicka I, Ufnal M. Gut Mycobiota and Fungal Metabolites in Human Homeostasis. Curr Drug Targets 2020; 20:232-240. [PMID: 30047327 DOI: 10.2174/1389450119666180724125020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 05/13/2018] [Accepted: 07/19/2018] [Indexed: 12/17/2022]
Abstract
BACKGROUND Accumulating evidence suggests that microbiota play an important role in host's homeostasis. Thus far, researchers have mostly focused on the role of bacterial microbiota. However, human gut is a habitat for several fungal species, which produce numerous metabolites. Furthermore, various types of food and beverages are rich in a wide spectrum of fungi and their metabolites. METHODS We searched PUBMED and Google Scholar databases to identify clinical and pre-clinical studies on fungal metabolites, composition of human mycobiota and fungal dysbiosis. RESULTS Fungal metabolites may serve as signaling molecules and exert significant biological effects including trophic, anti-inflammatory or antibacterial actions. Finally, research suggests an association between shifts in gut fungi composition and human health. Changes in mycobiota composition have been found in obesity, hepatitis and inflammatory bowel diseases. CONCLUSION The influence of mycobiota and dietary fungi on homeostasis in mammals suggests a pharmacotherapeutic potential of modulating the mycobiota which may include treatment with probiotics and fecal transplantation. Furthermore, antibacterial action of fungi-derived molecules may be considered as a substitution for currently used antibacterial agents and preservatives in food industry.
Collapse
Affiliation(s)
- Izabella Mogilnicka
- Department of Experimental Physiology and Pathophysiology, Laboratory of the Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| | - Marcin Ufnal
- Department of Experimental Physiology and Pathophysiology, Laboratory of the Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
23
|
Overexpression of the transcription factor HAC1 improves nerolidol production in engineered yeast. Enzyme Microb Technol 2019; 134:109485. [PMID: 32044032 DOI: 10.1016/j.enzmictec.2019.109485] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 11/28/2019] [Accepted: 11/30/2019] [Indexed: 11/24/2022]
Abstract
Increasing the metabolic flux of the mevalonate pathway, reducing the metabolic flux of competing pathway and utilizing the diauxie-inducible system constructed by GAL promoters are strategies commonly used in yeast metabolic engineering for the production of terpenoids. Using these strategies, we constructed a series of yeast strains with a strengthened mevalonate pathway and finally produced 336.5 mg/L nerolidol in a shake flask. The spliced HAC1 mRNA assay indicated that the unfolded protein response (UPR) occurred in the strains that we constructed. UPR strains exhibited the low transcriptional activities of GAL1 promoter. HAC1-overexpressing strain exhibited dramatically enhanced transcriptional activity of GAL1 promoter at 72 h of fermentation in flasks. HAC1 overexpression also increased the nerolidol titer by 47.7 %, reaching 497.0 mg/L and increased cell vitality. RNA-seq showed that the genes whose transcription responded to HAC1-overexpression were involved in the regulation of monocarboxylic acid metabolic processes and cellular amino acid biosynthetic process, indicating that the metabolic regulation may be part of the reason of the improved nerolidol synthesis. Our findings enrich the knowledge of the relationship between the construction of sesquiterpene-producing cell factories and UPR regulation. This study provides an effective strategy for sesquiterpene production in yeast.
Collapse
|
24
|
Chen L, Wang Z, Liu L, Qu S, Mao Y, Peng X, Li YX, Tian J. Cinnamaldehyde inhibits Candida albicans growth by causing apoptosis and its treatment on vulvovaginal candidiasis and oropharyngeal candidiasis. Appl Microbiol Biotechnol 2019; 103:9037-9055. [DOI: 10.1007/s00253-019-10119-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 08/21/2019] [Accepted: 09/03/2019] [Indexed: 12/20/2022]
|
25
|
Wang L, Ren X, Guo W, Wang D, Han L, Feng J. Oxidative Stress and Apoptosis of Gaeumannomyces graminis ( Get) Induced by Carabrone. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:10448-10457. [PMID: 31453693 DOI: 10.1021/acs.jafc.9b02951] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Carabrone is isolated from Carpesium macrocephalum Franch. et Sav, which has good fungicidal activity, especially for Gaeumannomyces graminis (Get). According to previous studies, we speculated that carabrone targets the mitochondrial enzyme complex III of Get. To elucidate the mode of action, we used carabrone to induce oxidative stress and apoptosis in Get. Incubation with carabrone reduced the burst of reactive oxygen species (ROS) and mitochondrial membrane potential, as well as phosphatidylserine release. Carabrone caused ROS accumulation in mycelia by inhibiting the activity of antioxidase enzymes, among which inhibition of glutathione reductase (GR) activity was most obvious. The catalytic center of GR consists of l-cysteine residues that react with the α-methylene-γ-butyrolactone active site of carabrone. Additionally, a positive TUNEL reaction led to diffusion of the DNA electrophoresis band and upregulation of Ggmet1 and Ggmet2. We propose that carabrone inhibits antioxidant enzymes and promotes ROS overproduction, which causes membrane hyperpermeability, release of apoptotic factors, activation of the mitochondria-mediated apoptosis pathway, and fungal cell apoptosis.
Collapse
Affiliation(s)
- Lanying Wang
- Research and Development Center of Biorational Pesticide , Northwest A&F University , Yangling 712100 , Shaanxi , China
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests , Hainan University , Ministry of Education, Haikou 570228 , Hainan , China
| | - Xingyu Ren
- Research and Development Center of Biorational Pesticide , Northwest A&F University , Yangling 712100 , Shaanxi , China
| | - Wenhui Guo
- Research and Development Center of Biorational Pesticide , Northwest A&F University , Yangling 712100 , Shaanxi , China
| | - Delong Wang
- Research and Development Center of Biorational Pesticide , Northwest A&F University , Yangling 712100 , Shaanxi , China
| | - Lirong Han
- Research and Development Center of Biorational Pesticide , Northwest A&F University , Yangling 712100 , Shaanxi , China
| | - Juntao Feng
- Research and Development Center of Biorational Pesticide , Northwest A&F University , Yangling 712100 , Shaanxi , China
| |
Collapse
|
26
|
de Araújo Delmondes G, Bezerra DS, de Queiroz Dias D, de Souza Borges A, Araújo IM, Lins da Cunha G, Bandeira PFR, Barbosa R, Melo Coutinho HD, Felipe CFB, Barbosa-Filho JM, Alencar de Menezes IR, Kerntopf MR. Toxicological and pharmacologic effects of farnesol (C15H26O): A descriptive systematic review. Food Chem Toxicol 2019; 129:169-200. [DOI: 10.1016/j.fct.2019.04.037] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 04/02/2019] [Accepted: 04/22/2019] [Indexed: 12/22/2022]
|
27
|
Luo Z, Zeng W, Du G, Chen J, Zhou J. Enhanced Pyruvate Production in Candida glabrata by Engineering ATP Futile Cycle System. ACS Synth Biol 2019; 8:787-795. [PMID: 30856339 DOI: 10.1021/acssynbio.8b00479] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Energy metabolism plays an important role in the growth and central metabolic pathways of cells. Manipulating energy metabolism is an efficient strategy to improve the formation of target products and to understand the effects of altering intracellular energy levels on global metabolic networks. Candida glabrata, as a dominant yeast strain for producing pyruvate, principally converts glucose to pyruvate through the glycolytic pathway. However, this process can be severely inhibited by a high intracellular ATP content. Here, in combination with the physiological characteristics of C. glabrata, efforts have been made to construct an ATP futile cycle system (ATP-FCS) in C. glabrata to decrease the intracellular ATP level without destroying F0F1-ATPase function. ATP-FCS was capable of decreasing the intracellular ATP level by 51.0% in C. glabrata. The decrease in the ATP level directly led to an increased pyruvate production and glycolysis efficiency. Moreover, we further optimized different aspects of the ATP-FCS to maximize pyruvate accumulation. Combining ATP-FCS with further genetic optimization strategies, we achieved a final pyruvate titer of 40.2 g/L, with 4.35 g pyruvate/g dry cell weight and a 0.44 g/g substrate conversion rate in 500 mL flasks, which represented increases of 98.5%, 322.3%, and 160%, respectively, compared with the original strain. Thus, these strategies hold great potential for increasing the synthesis of other organic acids in microbes.
Collapse
|
28
|
Nunes T, Cardoso P, Freitas R, Figueira E. Protective effects of farnesol on a Rhizobium strain exposed to cadmium. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 165:622-629. [PMID: 30241090 DOI: 10.1016/j.ecoenv.2018.07.125] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 07/24/2018] [Accepted: 07/25/2018] [Indexed: 06/08/2023]
Abstract
Soil acts as a repository for many metals that human activity releases into the environment. Cadmium enters agricultural soils primarily from application of phosphate fertilizers and sewage sludge. Among soil bacteria, rhizobia have a great agronomic and environmental significance and are major contributors to a sustainable maintenance of soil fertility. However, the services that this group of microorganisms provides are affected by environmental constraints, such as Cd contamination. Bioactive compounds also influence soil microorganisms. Farnesol is a phytocompound with recognized bioactivity, inducing both beneficial and harmful effects. In this study, Rhizobium sp. strain E20-8 was exposed to sole or combined exposure to Cd and farnesol. Results showed that farnesol (25 and 200 µM) did not affect rhizobia; exposure to Cd (µM) inhibited rhizobia growth and induced several biomarkers of oxidative stress; exposure to the combination of farnesol and Cd reduced oxidative damage, and the highest concentration of farnesol tested reduced Cd accumulation and allowed a significant growth recovery. Farnesol protective effects on rhizobia exposed to Cd is novel information which can be used in the development of microbe-based environmental engineering strategies for restoration of metal contaminated areas.
Collapse
Affiliation(s)
- Tiago Nunes
- Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Paulo Cardoso
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Rosa Freitas
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Etelvina Figueira
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
29
|
Efficiency of Target Larvicides Is Conditioned by ABC-Mediated Transport in the Zoonotic Nematode Anisakis pegreffii. Antimicrob Agents Chemother 2018; 62:AAC.00916-18. [PMID: 29987147 DOI: 10.1128/aac.00916-18] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 07/05/2018] [Indexed: 12/21/2022] Open
Abstract
Anisakiasis is among the most significant emerging foodborne parasitoses contracted through consumption of thermally unprocessed seafood harboring infective Anisakis species larvae. The efficacy of the currently applied anthelminthic therapy in humans and in model organisms has not proven sufficient, so alternative solutions employing natural compounds combined with chemical inhibitors should be explored. By testing toxicity of the natural monoterpenes nerolidol and farnesol and the conventional anthelminthics abamectin and levamisole in the presence/absence of MK-571 and Valspodar, which inhibit the ABC transporter proteins multidrug resistance protein (MRP-like) and P-glycoprotein (P-gp), we determined the preliminary traits of Anisakis detoxifying mechanisms. We found that Anisakis P-gp and MRP-like transporters have a role in the efflux of the tested compounds, which could be useful in the design of novel anthelminthic strategies. As expected, transporter activation and efflux fluctuated over time; they were synchronously active very early postexposure, whereas the activity of one transporter dominated over the other in a time-dependent manner. MRP-like transporters dominated in the efflux of farnesol, and P-gp dominated in efflux of nerolidol, while both were active in effluxing levamisole. The highest toxicity was exerted by abamectin, a P-gp inhibitor per se, which also elicited the highest oxidative stress in treated Anisakis larvae. We suggest that β-tubulin, observed for the first time as a core element in Anisakis cuticle, might represent an important target for the tested compounds.
Collapse
|
30
|
Hennig S, Wenzel M, Haas C, Hoffmann A, Weber J, Rödel G, Ostermann K. New approaches in bioprocess-control: Consortium guidance by synthetic cell-cell communication based on fungal pheromones. Eng Life Sci 2018; 18:387-400. [PMID: 32624919 DOI: 10.1002/elsc.201700181] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 02/08/2018] [Accepted: 03/13/2018] [Indexed: 01/02/2023] Open
Abstract
Bioconversions in industrial processes are currently dominated by single-strain approaches. With the growing complexity of tasks to be carried out, microbial consortia become increasingly advantageous and eventually may outperform single-strain fermentations. Consortium approaches benefit from the combined metabolic capabilities of highly specialized strains and species, and the inherent division of labor reduces the metabolic burden for each strain while increasing product yields and reaction specificities. However, consortium-based designs still suffer from a lack of available tools to control the behavior and performance of the individual subpopulations and of the entire consortium. Here, we propose to implement novel control elements for microbial consortia based on artificial cell-cell communication via fungal mating pheromones. Coupling to the desired output is mediated by pheromone-responsive gene expression, thereby creating pheromone-dependent communication channels between different subpopulations of the consortia. We highlight the benefits of artificial communication to specifically target individual subpopulations of microbial consortia and to control e.g. their metabolic profile or proliferation rate in a predefined and customized manner. Due to the steadily increasing knowledge of sexual cycles of industrially relevant fungi, a growing number of strains and species can be integrated into pheromone-controlled sensor-actor systems, exploiting their unique metabolic properties for microbial consortia approaches.
Collapse
Affiliation(s)
- Stefan Hennig
- Institute of Genetics Technische Universität Dresden Dresden Germany
| | - Mandy Wenzel
- Institute of Genetics Technische Universität Dresden Dresden Germany
| | - Christiane Haas
- Institute of Natural Materials Technology Technische Universität Dresden Dresden Germany
| | - Andreas Hoffmann
- Institute of Natural Materials Technology Technische Universität Dresden Dresden Germany
| | - Jost Weber
- Institute of Natural Materials Technology Technische Universität Dresden Dresden Germany.,Evolva Biotec A/S Lersø Parkallé 42 Copenhagen Denmark
| | - Gerhard Rödel
- Institute of Genetics Technische Universität Dresden Dresden Germany
| | - Kai Ostermann
- Institute of Genetics Technische Universität Dresden Dresden Germany
| |
Collapse
|
31
|
Wu GX, Huang HH, Chang HR, Kuo SM. Evaluation of the UVB-screening capacity and restorative effects exerted by farnesol gel on UVB-caused sunburn. ENVIRONMENTAL TOXICOLOGY 2018; 33:488-507. [PMID: 29380558 DOI: 10.1002/tox.22535] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 01/02/2018] [Accepted: 01/06/2018] [Indexed: 06/07/2023]
Abstract
Farnesol, a natural 15-carbon organic compound, has various microbiological and cellular activities. It has been found to exert apoptosis-inducing effects against carcinoma cells as well as antiallergic and anti-inflammatory effects in vivo. In the current study, a series of formulations composed of various concentrations of hydroxypropyl methylcellulose (HPMC) with the addition of hyaluronan (HA) and xanthan gum (XG) was designed to evaluate the UVB-screening and H2 O2 -eliminating effects of farnesol in normal fibroblasts. Farnesol at 0.005, 0.0075, and 0.01% exhibited significant capacity for H2 O2 scavenging; at 0.0025%, it showed insignificant effects. Under 120-min UVB exposure, screening with plural gel composed of 0.0025% farnesol, 0.5% HA, and 0.5% XG containing 1.5% or 2% HPMC retained normal fibroblast viability. After 60-min exposure to UVB, screening with plural gel composed of farnesol, HA, XG, and 0.5%, 1.0%, 1.5%, or 2% HPMC decreased the ratio of the G1 phase and increased ratio of the S phase in comparison with the accumulated cell cycle of the normal fibroblasts without screening. The gel with 2% HPMC displayed the strongest cell cycle-reversal ability. In vivo histopathological results showed that the prepared plural gels with 0.5% or 2% HPMC and farnesol, HA, and XG had greater antiphotoaging and reparative effects against UVB-induced changes and damage in the skin. In conclusion, the current in vitro and in vivo results demonstrated that the prepared plural composed of 0.0025% farnesol, 0.5% HA, 0.5% XG, and 2% HPMC possessed the greatest UVB-screening capacity and the strongest restorative effects on UVB-induced sunburned skin.
Collapse
Affiliation(s)
- Guan Xuan Wu
- Department of Biomedical Engineering, I-Shou University, Kaohsiung City, Taiwan
| | - Han Hsiang Huang
- Department of Veterinary Medicine, National Chiayi University, Chiayi City, Taiwan
| | - Huoy Rou Chang
- Department of Biomedical Engineering, I-Shou University, Kaohsiung City, Taiwan
| | - Shyh Ming Kuo
- Department of Biomedical Engineering, I-Shou University, Kaohsiung City, Taiwan
| |
Collapse
|
32
|
Fungal G-protein-coupled receptors: mediators of pathogenesis and targets for disease control. Nat Microbiol 2018; 3:402-414. [DOI: 10.1038/s41564-018-0127-5] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 02/09/2018] [Indexed: 12/31/2022]
|
33
|
Hasim S, Vaughn EN, Donohoe D, Gordon DM, Pfiffner S, Reynolds TB. Influence of phosphatidylserine and phosphatidylethanolamine on farnesol tolerance in Candida albicans. Yeast 2018; 35:343-351. [PMID: 29143357 DOI: 10.1002/yea.3297] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 10/26/2017] [Accepted: 11/02/2017] [Indexed: 12/11/2022] Open
Abstract
Candida albicans is among the most common human fungal pathogens. The ability to undergo the morphological transition from yeast to hyphal growth is critical for its pathogenesis. Farnesol, a precursor in the isoprenoid/sterol pathway, is a quorum-sensing molecule produced by C. albicans that inhibits hyphal growth in this polymorphic fungus. Interestingly, C. albicans can tolerate farnesol concentrations that are toxic to other fungi. We hypothesized that changes in phospholipid composition are one of the factors contributing to farnesol tolerance in C. albicans. In this study, we found that loss of enzymes that synthesize the phospholipids phosphatidylserine (PS) and/or phosphatidylethanolamine (PE) compromise the tolerance of C. albicans to farnesol. Compared with wild type, the phospholipid mutant cho1∆/∆ (loss of PS and decreased PE synthesis) shows greater inhibition of growth, loss of ATP production, increased consumption of oxygen, and increased formation of reactive oxygen species in the presence of farnesol. The cho1∆/∆ mutant also exhibits decreased sensitivity to mitochondrial ATPase inhibition, suggesting that cells lacking PS and/or downstream PE rely less on mitochondrial function for ATP synthesis. These data reveal that PS and PE play roles in farnesol tolerance and maintaining mitochondrial respiratory function.
Collapse
Affiliation(s)
- Sahar Hasim
- Department of Microbiology, University of Tennessee, Knoxville, TN, 37996, USA
| | - Elyse N Vaughn
- Department of Microbiology, University of Tennessee, Knoxville, TN, 37996, USA
| | - Dallas Donohoe
- Department of Nutrition, University of Tennessee, Knoxville, TN, 37996, USA
| | - Donna M Gordon
- Department of Biological Sciences, Mississippi State University, Starksville, MS, 39759, USA
| | - Susan Pfiffner
- Center for Environmental Biotechnology, University of Tennessee, Knoxville, TN, 37996, USA
| | - Todd B Reynolds
- Department of Microbiology, University of Tennessee, Knoxville, TN, 37996, USA
| |
Collapse
|
34
|
Santos MMS, Elsztein C, De Souza RB, Paiva SDSL, Silva JA, Crovella S, De Morais MA. Respiratory deficiency in yeast mevalonate kinase deficient may explain MKD-associate metabolic disorder in humans. Curr Genet 2018; 64:871-881. [PMID: 29374778 DOI: 10.1007/s00294-018-0803-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 12/22/2017] [Accepted: 01/02/2018] [Indexed: 01/28/2023]
Abstract
Mevalonate kinase deficiency (MKD) an orphan drug rare disease affecting humans with different clinical presentations, is still lacking information about its pathogenesis; no animal or cell model mimicking the genetic defect, mutations at MVK gene, and its consequences on the mevalonate pathway is available. Trying to clarify the effects of MVK gene impairment on the mevalonate pathway we used a yeast model, the erg12-d mutant strain Saccharomyces cerevisiae (orthologous of MKV) retaining only 10% of mevalonate kinase (MK) activity, to describe the effects of reduced MK activity on the mevalonate pathway. Since shortage of isoprenoids has been described in MKD, we checked this observation using a physiologic approach: while normally growing on glucose, erg12-d showed growth deficiency in glycerol, a respirable carbon source, that was not rescued by supplementation with non-sterol isoprenoids, such as farnesol, geraniol nor geranylgeraniol, produced by the mevalonate pathway. Erg12-d whole genome expression analysis revealed specific downregulation of RSF2 gene encoding general transcription factor for respiratory genes, explaining the absence of growth on glycerol. Moreover, we observed the upregulation of genes involved in sulphur amino acids biosynthesis that coincided with the increasing in the amount of proteins containing sulfhydryl groups; upregulation of ubiquinone biosynthesis genes was also detected. Our findings demonstrated that the shortage of isoprenoids is not the main mechanism involved in the respiratory deficit and mitochondrial malfunctioning of MK-defective cells, while the scarcity of ubiquinone plays an important role, as already observed in MKD patients.
Collapse
Affiliation(s)
- Manuella Maria Silva Santos
- Interdepartmental Research Group in Metabolic Engineering, Federal University of Pernambuco, Avenida Moraes Rego, No. 1235, Recife, PE, 50760-901, Brazil
- Department of Genetics, Federal University of Pernambuco, Avenida Moraes Rego, No. 1235, Cidade Universitária, Recife, PE, 50760-901, Brazil
| | - Carolina Elsztein
- Interdepartmental Research Group in Metabolic Engineering, Federal University of Pernambuco, Avenida Moraes Rego, No. 1235, Recife, PE, 50760-901, Brazil
- Department of virology/CPqAM, Oswaldo Cruz Fundation, Avenida Moraes Rego, N/S, Recife, PE, 50760-901, Brazil
| | - Rafael Barros De Souza
- Interdepartmental Research Group in Metabolic Engineering, Federal University of Pernambuco, Avenida Moraes Rego, No. 1235, Recife, PE, 50760-901, Brazil
- Institute for Biologial Sciences, University of Pernambuco, Avenida Agamenon Magalhães, s/n, Recife, PE, 50100-010, Brazil
| | - Sérgio de Sá Leitão Paiva
- Laboratory of Bioinformatics and Evolutionary Biology, Federal Rural University Pernambuco, Rua Dom Manoel de Medeiros, s/n, Recife, PE, 52171-900, Brazil
| | - Jaqueline Azevêdo Silva
- Department of Genetics, Federal University of Pernambuco, Avenida Moraes Rego, No. 1235, Cidade Universitária, Recife, PE, 50760-901, Brazil
- Laboratory of Immunopathology Keizo Asami, Federal University of Pernambuco, Avenida Moraes Rego, No. 1235, Recife, PE, 50760-901, Brazil
| | - Sergio Crovella
- Department of Genetics, Federal University of Pernambuco, Avenida Moraes Rego, No. 1235, Cidade Universitária, Recife, PE, 50760-901, Brazil
- Laboratory of Immunopathology Keizo Asami, Federal University of Pernambuco, Avenida Moraes Rego, No. 1235, Recife, PE, 50760-901, Brazil
| | - Marcos Antonio De Morais
- Interdepartmental Research Group in Metabolic Engineering, Federal University of Pernambuco, Avenida Moraes Rego, No. 1235, Recife, PE, 50760-901, Brazil.
- Department of Genetics, Federal University of Pernambuco, Avenida Moraes Rego, No. 1235, Cidade Universitária, Recife, PE, 50760-901, Brazil.
| |
Collapse
|
35
|
Witherden EA, Shoaie S, Hall RA, Moyes DL. The Human Mucosal Mycobiome and Fungal Community Interactions. J Fungi (Basel) 2017; 3:jof3040056. [PMID: 29371572 PMCID: PMC5753158 DOI: 10.3390/jof3040056] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 09/23/2017] [Accepted: 10/05/2017] [Indexed: 01/21/2023] Open
Abstract
With the advent of high-throughput sequencing techniques, the astonishing extent and complexity of the microbial communities that reside within and upon us has begun to become clear. Moreover, with advances in computing and modelling methods, we are now beginning to grasp just how dynamic our interactions with these communities are. The diversity of both these communities and their interactions—both within the community and with us—are dependent on a multitude of factors, both microbial- and host-mediated. Importantly, it is becoming clear that shifts in the makeup of these communities, or their responses, are linked to different disease states. Although much of the work to define these interactions and links has been investigating bacterial communities, recently there has been significant growth in the body of knowledge, indicating that shifts in the host fungal communities (mycobiome) are also intimately linked to disease status. In this review, we will explore these associations, along with the interactions between fungal communities and their human and microbial habitat, and discuss the future applications of systems biology in determining their role in disease status.
Collapse
Affiliation(s)
- Elizabeth A Witherden
- Centre for Host-Microbiome Interactions, Dental Institute, King's College London, London SE1 9RT, UK.
| | - Saeed Shoaie
- Centre for Host-Microbiome Interactions, Dental Institute, King's College London, London SE1 9RT, UK.
- Centre for Translational Microbiome Research, Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, SE-171 77 Stockholm, Sweden.
| | - Rebecca A Hall
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK.
| | - David L Moyes
- Centre for Host-Microbiome Interactions, Dental Institute, King's College London, London SE1 9RT, UK.
| |
Collapse
|
36
|
Polke M, Leonhardt I, Kurzai O, Jacobsen ID. Farnesol signalling in Candida albicans – more than just communication. Crit Rev Microbiol 2017; 44:230-243. [DOI: 10.1080/1040841x.2017.1337711] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Melanie Polke
- Research Group Microbial Immunology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute (HKI), Jena, Germany
| | - Ines Leonhardt
- Septomics Research Center, Friedrich Schiller University and Leibniz Institute for Natural Product Research and Infection Biology – Hans Knoell Institute (HKI), Jena, Germany
- Center for Sepsis Control and Care (CSCC), University Hospital, Jena, Germany
| | - Oliver Kurzai
- Septomics Research Center, Friedrich Schiller University and Leibniz Institute for Natural Product Research and Infection Biology – Hans Knoell Institute (HKI), Jena, Germany
- Center for Sepsis Control and Care (CSCC), University Hospital, Jena, Germany
- Friedrich Schiller University, Jena, Germany
| | - Ilse D. Jacobsen
- Research Group Microbial Immunology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute (HKI), Jena, Germany
- Center for Sepsis Control and Care (CSCC), University Hospital, Jena, Germany
- Friedrich Schiller University, Jena, Germany
| |
Collapse
|
37
|
Brexó RP, Sant'Ana ADS. Microbial interactions during sugar cane must fermentation for bioethanol production: does quorum sensing play a role? Crit Rev Biotechnol 2017; 38:231-244. [PMID: 28574287 DOI: 10.1080/07388551.2017.1332570] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Microbial interactions represent important modulatory role in the dynamics of biological processes. During bioethanol production from sugar cane must, the presence of lactic acid bacteria (LAB) and wild yeasts is inevitable as they originate from the raw material and industrial environment. Increasing the concentration of ethanol, organic acids, and other extracellular metabolites in the fermentation must are revealed as wise strategies for survival by certain microorganisms. Despite this, the co-existence of LAB and yeasts in the fermentation vat and production of compounds such as organic acids and other extracellular metabolites result in reduction in the final yield of the bioethanol production process. In addition to the competition for nutrients, reduction of cellular viability of yeast strain responsible for fermentation, flocculation, biofilm formation, and changes in cell morphology are listed as important factors for reductions in productivity. Although these consequences are scientifically well established, there is still a gap about the physiological and molecular mechanisms governing these interactions. This review aims to discuss the potential occurrence of quorum sensing mechanisms between bacteria (mainly LAB) and yeasts and to highlight how the understanding of such mechanisms can result in very relevant and useful tools to benefit the biofuels industry and other sectors of biotechnology in which bacteria and yeast may co-exist in fermentation processes.
Collapse
Affiliation(s)
- Ramon Peres Brexó
- a Department of Food Science, Faculty of Food Engineering , University of Campinas , Campinas , SP , Brazil
| | - Anderson de Souza Sant'Ana
- a Department of Food Science, Faculty of Food Engineering , University of Campinas , Campinas , SP , Brazil
| |
Collapse
|
38
|
Calcium and oxidative stress mediate perillaldehyde-induced apoptosis in Candida albicans. Appl Microbiol Biotechnol 2017; 101:3335-3345. [DOI: 10.1007/s00253-017-8146-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 01/15/2017] [Accepted: 01/20/2017] [Indexed: 10/20/2022]
|
39
|
Tyurina YY, Lou W, Qu F, Tyurin VA, Mohammadyani D, Liu J, Hüttemann M, Frasso MA, Wipf P, Bayir H, Greenberg ML, Kagan VE. Lipidomics Characterization of Biosynthetic and Remodeling Pathways of Cardiolipins in Genetically and Nutritionally Manipulated Yeast Cells. ACS Chem Biol 2017; 12:265-281. [PMID: 27982579 PMCID: PMC5578713 DOI: 10.1021/acschembio.6b00995] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cardioipins (CLs) are unique tetra-acylated phospholipids of mitochondria and define the bioenergetics and regulatory functions of these organelles. An unresolved paradox is the high uniformity of CL molecular species (tetra-linoleoyl-CL) in the heart, liver, and skeletal muscles-in contrast to their high diversification in the brain. Here, we combined liquid chromatography-mass-spectrometry-based phospholipidomics with genetic and nutritional manipulations to explore CLs' biosynthetic vs postsynthetic remodeling processes in S. cerevisiae yeast cells. By applying the differential phospholipidomics analysis, we evaluated the contribution of Cld1 (CL-specific phospholipase A) and Taz1 (acyl-transferase) as the major regulatory mechanisms of the remodeling process. We further established that nutritional "pressure" by high levels of free fatty acids triggered a massive synthesis of homoacylated molecular species in all classes of phospholipids, resulting in the preponderance of the respective homoacylated CLs. We found that changes in molecular speciation of CLs induced by exogenous C18-fatty acids (C18:1 and C18:2) in wild-type (wt) cells did not occur in any of the remodeling mutant cells, including cld1Δ, taz1Δ, and cld1Δtaz1Δ. Interestingly, molecular speciation of CLs in wt and double mutant cells cld1Δtaz1Δ was markedly different. Given that the bioenergetics functions are preserved in the double mutant, this suggests that the accumulated MLCL-rather than the changed CL speciation-are the likely major contributors to the mitochondrial dysfunction in taz1Δ mutant cells (also characteristic of Barth syndrome). Biochemical studies of Cld1 specificity and computer modeling confirmed the hydrolytic selectivity of the enzyme toward C16-CL substrates and the preservation of C18:1-containing CL species.
Collapse
Affiliation(s)
- Yulia Y. Tyurina
- Department of Environmental Health and Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Wenjia Lou
- Department of Biological Sciences, Wayne State University, Detroit, Michigan, United States
| | - Feng Qu
- Department of Environmental Health and Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Vladimir A Tyurin
- Department of Environmental Health and Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Dariush Mohammadyani
- Department of Environmental Health and Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
- Thomas C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, Maryland, United States
| | - Jenney Liu
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan, United States
| | - Maik Hüttemann
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan, United States
| | - Michael A. Frasso
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Peter Wipf
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Hülya Bayir
- Department of Environmental Health and Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
- Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Miriam. L. Greenberg
- Department of Biological Sciences, Wayne State University, Detroit, Michigan, United States
| | - Valerian E. Kagan
- Department of Environmental Health and Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| |
Collapse
|
40
|
Wang X, Wang Y, Zhou Y, Wei X. Farnesol induces apoptosis-like cell death in the pathogenic fungusAspergillus flavus. Mycologia 2017; 106:881-8. [PMID: 24895430 DOI: 10.3852/13-292] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
| | | | - Yuguang Zhou
- China General Microbiological Culture Collection Center, Institute of Microbiology, Chinese Academy of Sciences, No 3 1st West Beichen Road, Chaoyang District, Beijing, 100101, China
| | - Xinli Wei
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, No 3 1st West Beichen Road, Chaoyang District, Beijing, 100101, China
| |
Collapse
|
41
|
Cotoras M, Castro P, Vivanco H, Melo R, Mendoza L. Farnesol induces apoptosis-like phenotype in the phytopathogenic fungusBotrytis cinerea. Mycologia 2017; 105:28-33. [DOI: 10.3852/12-012] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Milena Cotoras
- Facultad de Química y Biología, Universídad de Santiago de Chile (USACH), Santiago, Chile
| | - Paulo Castro
- Facultad de Química y Biología, Universídad de Santiago de Chile (USACH), Santiago, Chile
| | - Herman Vivanco
- Facultad de Química y Biología, Universídad de Santiago de Chile (USACH), Santiago, Chile
| | - Ricardo Melo
- Facultad de Química y Biología, Universídad de Santiago de Chile (USACH), Santiago, Chile
| | - Leonora Mendoza
- Facultad de Química y Biología, Universídad de Santiago de Chile (USACH), Santiago, Chile
| |
Collapse
|
42
|
Nickerson KW, Atkin AL. Deciphering fungal dimorphism: Farnesol's unanswered questions. Mol Microbiol 2017; 103:567-575. [DOI: 10.1111/mmi.13601] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/05/2016] [Indexed: 12/30/2022]
Affiliation(s)
- Kenneth W. Nickerson
- School of Biological Sciences; University of Nebraska; Lincoln NE 68588 0666 USA
| | - Audrey L. Atkin
- School of Biological Sciences; University of Nebraska; Lincoln NE 68588 0666 USA
| |
Collapse
|
43
|
Apoptosis-inducing factor (Aif1) mediates anacardic acid-induced apoptosis in Saccharomyces cerevisiae. Apoptosis 2016; 22:463-474. [DOI: 10.1007/s10495-016-1330-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
44
|
Jouhten P, Ponomarova O, Gonzalez R, Patil KR. Saccharomyces cerevisiae metabolism in ecological context. FEMS Yeast Res 2016; 16:fow080. [PMID: 27634775 PMCID: PMC5050001 DOI: 10.1093/femsyr/fow080] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 08/16/2016] [Accepted: 09/12/2016] [Indexed: 12/11/2022] Open
Abstract
The architecture and regulation of Saccharomyces cerevisiae metabolic network are among the best studied owing to its widespread use in both basic research and industry. Yet, several recent studies have revealed notable limitations in explaining genotype-metabolic phenotype relations in this yeast, especially when concerning multiple genetic/environmental perturbations. Apparently unexpected genotype-phenotype relations may originate in the evolutionarily shaped cellular operating principles being hidden in common laboratory conditions. Predecessors of laboratory S. cerevisiae strains, the wild and the domesticated yeasts, have been evolutionarily shaped by highly variable environments, very distinct from laboratory conditions, and most interestingly by social life within microbial communities. Here we present a brief review of the genotypic and phenotypic peculiarities of S. cerevisiae in the context of its social lifestyle beyond laboratory environments. Accounting for this ecological context and the origin of the laboratory strains in experimental design and data analysis would be essential in improving the understanding of genotype-environment-phenotype relationships.
Collapse
Affiliation(s)
- Paula Jouhten
- Structural and Computational Biology, European Molecular Biology Laboratory, Meyerhofstrasse 1, Heidelberg, DE 69117, Germany
| | - Olga Ponomarova
- Structural and Computational Biology, European Molecular Biology Laboratory, Meyerhofstrasse 1, Heidelberg, DE 69117, Germany
| | - Ramon Gonzalez
- Department of Microbiologia, Instituto de Fermentaciones Industriales (CSIC), C. Juan de la Cierva 3, Madrid, ES 28006, Spain
| | - Kiran R Patil
- Structural and Computational Biology, European Molecular Biology Laboratory, Meyerhofstrasse 1, Heidelberg, DE 69117, Germany
| |
Collapse
|
45
|
Tian J, Wang Y, Lu Z, Sun C, Zhang M, Zhu A, Peng X. Perillaldehyde, a Promising Antifungal Agent Used in Food Preservation, Triggers Apoptosis through a Metacaspase-Dependent Pathway in Aspergillus flavus. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:7404-7413. [PMID: 27622540 DOI: 10.1021/acs.jafc.6b03546] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
In the present study, we provide detailed insights into perillaldehyde (PAE)'s mechanisms of action on Aspergillus flavus and offer evidence in favor of the induction of an apoptosis-like phenotype. Specifically, PAE's antifungal mode of action was investigated through the detection of mitochondrial membrane potential (MtΔψ) and phosphatidylserine (PS) exposure, as well as intracellular Ca2+ level, reactive oxygen species accumulation, and metacaspase activation. This was done by way of fluorometry, measuring DNA fragmentation, and condensation by fluorescent microscopy. Furthermore, we searched for phenotypic changes characteristic of apoptosis by transmission electron microscopy and flow cytometry, determining the amount of cytochrome c released using Western blotting. Results indicated that cultivation of A. flavus in the presence of PAE caused depolarization of MtΔψ, rapid DNA condensation, large-scale DNA fragmentation, and an elevation of intracellular Ca2+ level. The percentage of early apoptotic cells with exposure of PS were 27.4% and 48.7%, respectively, after 9 h incubations with 0.25 and 0.5 μL/mL of PAE. The percentage of stained cells with activated intracellular metacaspases exposed to PAE at concentrations of 0.25 and 0.5 μL/mL compared with control subjects were increased by 28.4 ± 3.25% and 37.9 ± 4.24%, respectively. The above results has revealed that PAE induces fungal apoptosis through a caspase-dependent mitochondrial pathway. In all, our findings provide a novel mechanism for exploring a possible antifungal agent used in food preservation.
Collapse
Affiliation(s)
- Jun Tian
- College of Life Science, Jiangsu Normal University , Xuzhou 221116, Jiangsu Province, People's Republic of China
- Key Lab for New Drug Research of TCM and Shenzhen Branch, State R&D Centre for Viro-Biotech, Research Institute of Tsinghua University in Shenzhen , Shenzhen 518057, Guangdong, People's Republic of China
| | - Yanzhen Wang
- College of Life Science, Jiangsu Normal University , Xuzhou 221116, Jiangsu Province, People's Republic of China
| | - Zhaoqun Lu
- College of Life Science, Jiangsu Normal University , Xuzhou 221116, Jiangsu Province, People's Republic of China
| | - Chunhui Sun
- College of Life Science, Jiangsu Normal University , Xuzhou 221116, Jiangsu Province, People's Republic of China
| | - Man Zhang
- College of Life Science, Jiangsu Normal University , Xuzhou 221116, Jiangsu Province, People's Republic of China
| | - Aihua Zhu
- College of Life Science, Jiangsu Normal University , Xuzhou 221116, Jiangsu Province, People's Republic of China
| | - Xue Peng
- College of Life Science, Jiangsu Normal University , Xuzhou 221116, Jiangsu Province, People's Republic of China
| |
Collapse
|
46
|
Hu J, Wang F, Ma A, Zhuang G, Liu Y, Lu J, Guo C, Liu C. Farnesol stimulates laccase production in
Trametes versicolor. Eng Life Sci 2016. [DOI: 10.1002/elsc.201500082] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Jianhua Hu
- National Key Laboratory of Biochemical Engineering Institute of Process Engineering, Chinese Academy of Sciences Beijing P. R. China
- University of Chinese Academy of Sciences Beijing P. R. China
| | - Feng Wang
- National Key Laboratory of Biochemical Engineering Institute of Process Engineering, Chinese Academy of Sciences Beijing P. R. China
| | - Anzhou Ma
- Research Center for Eco‐Environmental Sciences Chinese Academy of Sciences Beijing P. R. China
| | - Guoqiang Zhuang
- Research Center for Eco‐Environmental Sciences Chinese Academy of Sciences Beijing P. R. China
| | - Ying Liu
- National Key Laboratory of Biochemical Engineering Institute of Process Engineering, Chinese Academy of Sciences Beijing P. R. China
- Jiangsu Jiangu Chemical Co. Ltd Suqian Jiangsu Province P. R. China
| | - Jingsong Lu
- Jiangsu Jiangu Chemical Co. Ltd Suqian Jiangsu Province P. R. China
| | - Chen Guo
- National Key Laboratory of Biochemical Engineering Institute of Process Engineering, Chinese Academy of Sciences Beijing P. R. China
| | - Chunzhao Liu
- National Key Laboratory of Biochemical Engineering Institute of Process Engineering, Chinese Academy of Sciences Beijing P. R. China
- Jiangsu Jiangu Chemical Co. Ltd Suqian Jiangsu Province P. R. China
| |
Collapse
|
47
|
Repeated cultivation: non-cell disruption extraction of astaxanthin for Haematococcus pluvialis. Sci Rep 2016; 6:20578. [PMID: 26838183 PMCID: PMC4738327 DOI: 10.1038/srep20578] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 01/06/2016] [Indexed: 11/19/2022] Open
Abstract
The operation of cell disruption is indispensable but cost much in microalgae industry. To be simplified, two different reaction mechanisms await in the cell to respond to moderated or stressed environment. The physical and chemical changes of enzyme and turgor pressure of cell in this conversion play an important role in the enhancement of biomass and metabolites. Repeated turgor pressure (based on the structure and mechanics of cell wall) and converted enzyme system (based on photosynthesis) were used to loosen cell wall and then repeated cultivation of Haematococcus pluvialis for astaxanthin extraction was proposed. There was no significant difference of extraction yield between the broken cell (94.75 ± 3.13%) and non-broken cell (92.32 ± 3.24%) treated by the repeated cultivation. Meanwhile, fed-batch culture according to the relationship among pH and nutrient concentration was used to enhance the biomass of Haematococcus pluvialis with the dry cell weight of 1.63 ± 0.07 g/L.
Collapse
|
48
|
Anacardic acid induces apoptosis-like cell death in the rice blast fungus Magnaporthe oryzae. Appl Microbiol Biotechnol 2015; 100:323-35. [DOI: 10.1007/s00253-015-6915-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 07/28/2015] [Accepted: 08/03/2015] [Indexed: 11/26/2022]
|
49
|
Wu J, Chen X, Cai L, Tang L, Liu L. Transcription factors Asg1p and Hal9p regulate pH homeostasis in Candida glabrata. Front Microbiol 2015; 6:843. [PMID: 26347728 PMCID: PMC4539521 DOI: 10.3389/fmicb.2015.00843] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 08/03/2015] [Indexed: 12/27/2022] Open
Abstract
Candida glabrata is an important microorganism used in commercial fermentation to produce pyruvate, but very little is known about its mechanisms for surviving acid stress in culture. In this study, it was shown that transcription factors Asg1p and Hal9p play essential roles in C. glabrata in the tolerance of acid stress, as the deletion of CgASG1 or CgHAL9 resulted in the inability to survive in an acidic environment. Cgasg1Δ and Cghal9Δ mutant strains are unable to maintain pH homeostasis, as evidenced by a decrease in intracellular pH and an increase in reactive oxygen species production, which results in metabolic disorders. The results showed that intracellular acidification was partly due to the diminished activity of the plasma membrane proton pump, CgPma1p. In addition, transcriptome sequencing revealed that Cgasg1Δ and Cghal9Δ mutant strains displayed a variety of changes in gene expression under acidic conditions, including genes in the MAPK signaling pathway, plasma membrane, or cell wall organization, trehalose accumulation, and the RIM101 signaling pathway. Lastly, quantitative reverse-transcribed PCR and cellular localization showed that CgAsg1p and CgHal9p played independent roles in response to acid stress.
Collapse
Affiliation(s)
- Jing Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University Wuxi, China ; The Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University Wuxi, China
| | - Xiulai Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University Wuxi, China ; The Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University Wuxi, China
| | - Lijun Cai
- State Key Laboratory of Food Science and Technology, Jiangnan University Wuxi, China ; The Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University Wuxi, China
| | - Lei Tang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University Wuxi, China
| | - Liming Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University Wuxi, China ; The Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University Wuxi, China
| |
Collapse
|
50
|
Joo JH, Ueda E, Bortner CD, Yang XP, Liao G, Jetten AM. Farnesol activates the intrinsic pathway of apoptosis and the ATF4-ATF3-CHOP cascade of ER stress in human T lymphoblastic leukemia Molt4 cells. Biochem Pharmacol 2015; 97:256-68. [PMID: 26275811 DOI: 10.1016/j.bcp.2015.08.086] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 08/07/2015] [Indexed: 01/01/2023]
Abstract
In this study, we demonstrate that treatment of T lymphoblastic leukemic Molt4 cells with farnesol activates the apoptosome via the intrinsic pathway of apoptosis. This induction was associated with changes in the level of intracellular potassium and calcium, the dissipation of the mitochondrial and plasma membrane potential, release of cytochrome c, activation of several caspases, and PARP cleavage. The induction of apoptosis by farnesol was inhibited by the addition of the pan-caspase inhibitor Z-VAD-fmk and by the exogenous expression of the anti-apoptotic protein Bcl2. Analysis of the gene expression profiles by microarray analysis revealed that farnesol increased the expression of several genes related to the unfolded protein response (UPR), including CHOP and CHAC1. This induction was associated with the activation of the PERK-eIF2α-ATF3/4 cascade, but not the XBP-1 branch of the UPR. Although farnesol induced activation of the ERK1/2, p38, and JNK pathways, inhibition of these MAPKs had little effect on farnesol-induced apoptosis or the induction of UPR-related genes. Our data indicate that the induction of apoptosis in leukemic cells by farnesol is mediated through a pathway that involves activation of the apoptosome via the intrinsic pathway and induction of the PERK-eIF2α-ATF3/4 cascade in a manner that is independent of the farnesol-induced activation of MAPKs.
Collapse
Affiliation(s)
- Joung Hyuck Joo
- Cell Biology Section, Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, 111 T.W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Eiichiro Ueda
- Cell Biology Section, Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, 111 T.W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Carl D Bortner
- Molecular Endocrinology Section, Laboratory of Signal Transduction Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, 111 T.W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Xiao-Ping Yang
- Cell Biology Section, Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, 111 T.W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Grace Liao
- Cell Biology Section, Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, 111 T.W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Anton M Jetten
- Cell Biology Section, Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, 111 T.W. Alexander Drive, Research Triangle Park, NC 27709, USA.
| |
Collapse
|