1
|
Little JI, Singh PK, Zhao J, Dunn S, Matz H, Donnenberg MS. Type IV pili of Enterobacteriaceae species. EcoSal Plus 2024; 12:eesp00032023. [PMID: 38294234 PMCID: PMC11636386 DOI: 10.1128/ecosalplus.esp-0003-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 12/01/2023] [Indexed: 02/01/2024]
Abstract
Type IV pili (T4Ps) are surface filaments widely distributed among bacteria and archaea. T4Ps are involved in many cellular functions and contribute to virulence in some species of bacteria. Due to the diversity of T4Ps, different properties have been observed for homologous proteins that make up T4Ps in various organisms. In this review, we highlight the essential components of T4Ps, their functions, and similarities to related systems. We emphasize the unique T4Ps of enteric pathogens within the Enterobacteriaceae family, which includes pathogenic strains of Escherichia coli and Salmonella. These include the bundle-forming pilus (BFP) of enteropathogenic E. coli (EPEC), longus (Lng) and colonization factor III (CFA/III) of enterotoxigenic E. coli (ETEC), T4P of Salmonella enterica serovar Typhi, Colonization Factor Citrobacter (CFC) of Citrobacter rodentium, T4P of Yersinia pseudotuberculosis, a ubiquitous T4P that was characterized in enterohemorrhagic E. coli (EHEC), and the R64 plasmid thin pilus. Finally, we highlight areas for further study.
Collapse
Affiliation(s)
- Janay I. Little
- School of Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Pradip K. Singh
- School of Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Jinlei Zhao
- School of Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Shakeera Dunn
- Internal Medicine Residency, Bayhealth Medical Center, Dover, Delaware, USA
| | - Hanover Matz
- Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | | |
Collapse
|
2
|
Wang F, Craig L, Liu X, Rensing C, Egelman EH. Models are useful until high-resolution structures are available. Trends Microbiol 2023; 31:550-551. [PMID: 37005159 DOI: 10.1016/j.tim.2023.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/01/2023] [Accepted: 03/13/2023] [Indexed: 04/03/2023]
Affiliation(s)
- Fengbin Wang
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
| | - Lisa Craig
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| | - Xing Liu
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Christopher Rensing
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Edward H Egelman
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22903, USA.
| |
Collapse
|
3
|
Singh PK, Donnenberg MS. High throughput and targeted screens for prepilin peptidase inhibitors do not identify common inhibitors of eukaryotic gamma-secretase. Expert Opin Drug Discov 2023; 18:563-573. [PMID: 37073444 PMCID: PMC11558661 DOI: 10.1080/17460441.2023.2203480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 04/12/2023] [Indexed: 04/20/2023]
Abstract
INTRODUCTION Prepilin peptidases (PPP) are essential enzymes for the biogenesis of important virulence factors, such as type IV pili (T4P), type II secretion systems, and other T4P-related systems of bacteria and archaea. PPP inhibitors could be valuable pharmaceuticals, but only a few have been reported. Interestingly, PPP share similarities with presenilin enzymes from the gamma-secretase protease complex, which are linked to Alzheimer's disease. Numerous gamma-secretase inhibitors have been reported, and some have entered clinical trials, but none has been tested against PPP. OBJECTIVE The objective of this study is to develop a high-throughput screening (HTS) method to search for inhibitors of PPP from various chemical libraries and reported gamma-secretase inhibitors. METHOD More than 15,000 diverse compounds, including 13 reported gamma-secretase inhibitors and other reported peptidase inhibitors, were screened to identify potential PPP inhibitors. RESULTS The authors developed a novel screening method and screened 15,869 compounds. However, the screening did not identify a PPP inhibitor. Nevertheless, the study suggests that gamma-secretase is sufficiently different from PPP that specific inhibitors may exist in a larger chemical space. CONCLUSION The authors believe that the HTS method that they describe has numerous advantages and encourage others to consider its application in the search for PPP inhibitors.
Collapse
Affiliation(s)
- Pradip Kumar Singh
- Department of Internal Medicine, Virginia Commonwealth University, Sanger Hall, Richmond, VA, USA
| | - Michael S Donnenberg
- Department of Internal Medicine, Virginia Commonwealth University, Sanger Hall, Richmond, VA, USA
| |
Collapse
|
4
|
Protein Dynamics in F-like Bacterial Conjugation. Biomedicines 2020; 8:biomedicines8090362. [PMID: 32961700 PMCID: PMC7555446 DOI: 10.3390/biomedicines8090362] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/15/2020] [Accepted: 09/17/2020] [Indexed: 01/21/2023] Open
Abstract
Efficient in silico development of novel antibiotics requires high-resolution, dynamic models of drug targets. As conjugation is considered the prominent contributor to the spread of antibiotic resistance genes, targeted drug design to disrupt vital components of conjugative systems has been proposed to lessen the proliferation of bacterial antibiotic resistance. Advancements in structural imaging techniques of large macromolecular complexes has accelerated the discovery of novel protein-protein interactions in bacterial type IV secretion systems (T4SS). The known structural information regarding the F-like T4SS components and complexes has been summarized in the following review, revealing a complex network of protein-protein interactions involving domains with varying degrees of disorder. Structural predictions were performed to provide insight on the dynamicity of proteins within the F plasmid conjugative system that lack structural information.
Collapse
|
5
|
Craig L, Forest KT, Maier B. Type IV pili: dynamics, biophysics and functional consequences. Nat Rev Microbiol 2020; 17:429-440. [PMID: 30988511 DOI: 10.1038/s41579-019-0195-4] [Citation(s) in RCA: 283] [Impact Index Per Article: 56.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The surfaces of many bacteria are decorated with long, exquisitely thin appendages called type IV pili (T4P), dynamic filaments that are rapidly polymerized and depolymerized from a pool of pilin subunits. Cycles of pilus extension, binding and retraction enable T4P to perform a phenomenally diverse array of functions, including twitching motility, DNA uptake and microcolony formation. On the basis of recent developments, a comprehensive understanding is emerging of the molecular architecture of the T4P machinery and the filament it builds, providing mechanistic insights into the assembly and retraction processes. Combined microbiological and biophysical approaches have revealed how T4P dynamics influence self-organization of bacteria, how bacteria respond to external stimuli to regulate T4P activity for directed movement, and the role of T4P retraction in surface sensing. In this Review, we discuss the T4P machine architecture and filament structure and present current molecular models for T4P dynamics, with a particular focus on recent insights into T4P retraction. We also discuss the functional consequences of T4P dynamics, which have important implications for bacterial lifestyle and pathogenesis.
Collapse
Affiliation(s)
- Lisa Craig
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada.
| | - Katrina T Forest
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA.
| | - Berenike Maier
- Institute for Biological Physics, University of Cologne, Köln, Germany.
| |
Collapse
|
6
|
Berry JL, Gurung I, Anonsen JH, Spielman I, Harper E, Hall AMJ, Goosens VJ, Raynaud C, Koomey M, Biais N, Matthews S, Pelicic V. Global biochemical and structural analysis of the type IV pilus from the Gram-positive bacterium Streptococcus sanguinis. J Biol Chem 2019; 294:6796-6808. [PMID: 30837269 PMCID: PMC6497953 DOI: 10.1074/jbc.ra118.006917] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 02/27/2019] [Indexed: 11/06/2022] Open
Abstract
Type IV pili (Tfp) are functionally versatile filaments, widespread in prokaryotes, that belong to a large class of filamentous nanomachines known as type IV filaments (Tff). Although Tfp have been extensively studied in several Gram-negative pathogens where they function as key virulence factors, many aspects of their biology remain poorly understood. Here, we performed a global biochemical and structural analysis of Tfp in a recently emerged Gram-positive model, Streptococcus sanguinis In particular, we focused on the five pilins and pilin-like proteins involved in Tfp biology in S. sanguinis We found that the two major pilins, PilE1 and PilE2, (i) follow widely conserved principles for processing by the prepilin peptidase PilD and for assembly into filaments; (ii) display only one of the post-translational modifications frequently found in pilins, i.e. a methylated N terminus; (iii) are found in the same heteropolymeric filaments; and (iv) are not functionally equivalent. The 3D structure of PilE1, solved by NMR, revealed a classical pilin-fold with a highly unusual flexible C terminus. Intriguingly, PilE1 more closely resembles pseudopilins forming shorter Tff than bona fide Tfp-forming major pilins, underlining the evolutionary relatedness among different Tff. Finally, we show that S. sanguinis Tfp contain a low abundance of three additional proteins processed by PilD, the minor pilins PilA, PilB, and PilC. These findings provide the first global biochemical and structural picture of a Gram-positive Tfp and have fundamental implications for our understanding of a widespread class of filamentous nanomachines.
Collapse
Affiliation(s)
- Jamie-Lee Berry
- From the Medical Research Council Centre for Molecular Bacteriology and Infection, Imperial College London, London SW7 2AZ, United Kingdom
| | - Ishwori Gurung
- From the Medical Research Council Centre for Molecular Bacteriology and Infection, Imperial College London, London SW7 2AZ, United Kingdom
| | - Jan Haug Anonsen
- the Department of Biological Sciences, Proteomics and Mass Spectrometry Unit, University of Oslo, 0371 Oslo, Norway.,the Department of Biological Sciences, Center for Integrative Microbial Evolution, University of Oslo, 0371 Oslo, Norway
| | - Ingrid Spielman
- the Department of Biology, Brooklyn College of the City University of New York, New York, New York 11210.,The Graduate Center of the City University of New York, New York, New York 10016, and
| | - Elliot Harper
- From the Medical Research Council Centre for Molecular Bacteriology and Infection, Imperial College London, London SW7 2AZ, United Kingdom
| | - Alexander M J Hall
- From the Medical Research Council Centre for Molecular Bacteriology and Infection, Imperial College London, London SW7 2AZ, United Kingdom
| | - Vivianne J Goosens
- From the Medical Research Council Centre for Molecular Bacteriology and Infection, Imperial College London, London SW7 2AZ, United Kingdom
| | - Claire Raynaud
- From the Medical Research Council Centre for Molecular Bacteriology and Infection, Imperial College London, London SW7 2AZ, United Kingdom
| | - Michael Koomey
- the Department of Biological Sciences, Center for Integrative Microbial Evolution, University of Oslo, 0371 Oslo, Norway
| | - Nicolas Biais
- the Department of Biology, Brooklyn College of the City University of New York, New York, New York 11210.,The Graduate Center of the City University of New York, New York, New York 10016, and
| | - Steve Matthews
- the Centre for Structural Biology, Imperial College London, London SW7 2AZ, United Kingdom
| | - Vladimir Pelicic
- From the Medical Research Council Centre for Molecular Bacteriology and Infection, Imperial College London, London SW7 2AZ, United Kingdom,
| |
Collapse
|
7
|
Wang F, Coureuil M, Osinski T, Orlova A, Altindal T, Gesbert G, Nassif X, Egelman EH, Craig L. Cryoelectron Microscopy Reconstructions of the Pseudomonas aeruginosa and Neisseria gonorrhoeae Type IV Pili at Sub-nanometer Resolution. Structure 2018; 25:1423-1435.e4. [PMID: 28877506 DOI: 10.1016/j.str.2017.07.016] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Revised: 06/03/2017] [Accepted: 07/25/2017] [Indexed: 01/17/2023]
Abstract
We report here cryoelectron microscopy reconstructions of type IV pili (T4P) from two important human pathogens, Pseudomonas aeruginosa and Neisseria gonorrhoeae, at ∼ 8 and 5 Å resolution, respectively. The two structures reveal distinct arrangements of the pilin globular domains on the pilus surfaces, which impart different helical parameters, but similar packing of the conserved N-terminal α helices, α1, in the filament core. In contrast to the continuous α helix seen in the X-ray crystal structures of the P. aeruginosa and N. gonorrhoeae pilin subunits, α1 in the pilus filaments has a melted segment located between conserved helix-breaking residues Gly14 and Pro22, as seen for the Neisseria meningitidis T4P. Using mutagenesis we show that Pro22 is critical for pilus assembly, as are Thr2 and Glu5, which are positioned to interact in the hydrophobic filament core. These structures provide a framework for understanding T4P assembly, function, and biophysical properties.
Collapse
Affiliation(s)
- Fengbin Wang
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Mathieu Coureuil
- Institut Necker-Enfants Malades, INSERM U1151, 14 Rue Maria Helena Vieira Da Silva, CS 61431, 75014 Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, 15 Rue de l'École de Médecine, 75006 Paris, France
| | - Tomasz Osinski
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Albina Orlova
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Tuba Altindal
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Gaël Gesbert
- Institut Necker-Enfants Malades, INSERM U1151, 14 Rue Maria Helena Vieira Da Silva, CS 61431, 75014 Paris, France
| | - Xavier Nassif
- Institut Necker-Enfants Malades, INSERM U1151, 14 Rue Maria Helena Vieira Da Silva, CS 61431, 75014 Paris, France
| | - Edward H Egelman
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA.
| | - Lisa Craig
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada.
| |
Collapse
|
8
|
Poidevin M, Sato M, Altinoglu I, Delaplace M, Sato C, Yamaichi Y. Mutation in ESBL Plasmid from Escherichia coli O104:H4 Leads Autoagglutination and Enhanced Plasmid Dissemination. Front Microbiol 2018; 9:130. [PMID: 29456528 PMCID: PMC5801416 DOI: 10.3389/fmicb.2018.00130] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 01/18/2018] [Indexed: 12/02/2022] Open
Abstract
Conjugative plasmids are one of the main driving force of wide-spreading of multidrug resistance (MDR) bacteria. They are self-transmittable via conjugation as carrying the required set of genes and cis-acting DNA locus for direct cell-to-cell transfer. IncI incompatibility plasmids are nowadays often associated with extended-spectrum beta-lactamases producing Enterobacteria in clinic and environment. pESBL-EA11 was isolated from Escherichia coli O104:H4 outbreak strain in Germany in 2011. During the previous study identifying transfer genes of pESBL-EA11, it was shown that transposon insertion at certain DNA region of the plasmid, referred to as Hft, resulted in great enhancement of transfer ability. This suggested that genetic modifications can enhance dissemination of MDR plasmids. Such ‘superspreader’ mutations have attracted little attention so far despite their high potential to worsen MDR spreading. Present study aimed to gain our understanding on regulatory elements that involved pESBL transfer. While previous studies of IncI plasmids indicated that immediate downstream gene of Hft, traA, is not essential for conjugative transfer, here we showed that overexpression of TraA in host cell elevated transfer rate of pESBL-EA11. Transposon insertion or certain nucleotide substitutions in Hft led strong TraA overexpression which resulted in activation of essential regulator TraB and likely overexpression of conjugative pili. Atmospheric Scanning Electron Microscopy observation suggested that IncI pili are distinct from other types of conjugative pili (such as long filamentous F-type pili) and rather expressed throughout the cell surface. High transfer efficiency in the mutant pESBL-EA11 was involved with hyperpiliation which facilitates cell-to-cell adhesion, including autoagglutination. The capability of plasmids to evolve to highly transmissible mutant is alarming, particularly it might also have adverse effect on host pathogenicity.
Collapse
Affiliation(s)
- Mickaël Poidevin
- Institute for Integrative Biology of the Cell, Université Paris-Saclay, CEA, CNRS, Université Paris-Sud, Gif-sur-Yvette, France
| | - Mari Sato
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
| | - Ipek Altinoglu
- Institute for Integrative Biology of the Cell, Université Paris-Saclay, CEA, CNRS, Université Paris-Sud, Gif-sur-Yvette, France.,Graduate School of Structure and Dynamics of Living Systems, Université Paris-Sud, Orsay, France
| | - Manon Delaplace
- Institute for Integrative Biology of the Cell, Université Paris-Saclay, CEA, CNRS, Université Paris-Sud, Gif-sur-Yvette, France.,Master of Science and Technology, University Pierre and Marie Curie, Paris, France
| | - Chikara Sato
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
| | - Yoshiharu Yamaichi
- Institute for Integrative Biology of the Cell, Université Paris-Saclay, CEA, CNRS, Université Paris-Sud, Gif-sur-Yvette, France
| |
Collapse
|
9
|
Structure of the Neisseria meningitidis Type IV pilus. Nat Commun 2016; 7:13015. [PMID: 27698424 PMCID: PMC5059446 DOI: 10.1038/ncomms13015] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 08/25/2016] [Indexed: 02/04/2023] Open
Abstract
Neisseria meningitidis use Type IV pili (T4P) to adhere to endothelial cells and breach the blood brain barrier, causing cause fatal meningitis. T4P are multifunctional polymers of the major pilin protein, which share a conserved hydrophobic N terminus that is a curved extended α-helix, α1, in X-ray crystal structures. Here we report a 1.44 Å crystal structure of the N. meningitidis major pilin PilE and a ∼6 Å cryo-electron microscopy reconstruction of the intact pilus, from which we built an atomic model for the filament. This structure reveals the molecular arrangement of the N-terminal α-helices in the filament core, including a melted central portion of α1 and a bridge of electron density consistent with a predicted salt bridge necessary for pilus assembly. This structure has important implications for understanding pilus biology. Type IV pili are present on a wide range of bacterial pathogens and mediate diverse functions. Here the authors report a high resolution crystal structure of the pilin subunit PilE, and a cryoEM reconstruction of the Type IV pilus filament from N. meningitidis that offer insight into pilus assembly and functions.
Collapse
|
10
|
Abstract
Proteinaceous, nonflagellar surface appendages constitute a variety of structures, including those known variably as fimbriae or pili. Constructed by distinct assembly pathways resulting in diverse morphologies, fimbriae have been described to mediate functions including adhesion, motility, and DNA transfer. As these structures can represent major diversifying elements among Escherichia and Salmonella isolates, multiple fimbrial classification schemes have been proposed and a number of mechanistic insights into fimbrial assembly and function have been made. Herein we describe the classifications and biochemistry of fimbriae assembled by the chaperone/usher, curli, and type IV pathways.
Collapse
|
11
|
Kolappan S, Ng D, Yang G, Harn T, Craig L. Crystal Structure of the Minor Pilin CofB, the Initiator of CFA/III Pilus Assembly in Enterotoxigenic Escherichia coli. J Biol Chem 2015; 290:25805-18. [PMID: 26324721 DOI: 10.1074/jbc.m115.676106] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Indexed: 01/04/2023] Open
Abstract
Type IV pili are extracellular polymers of the major pilin subunit. These subunits are held together in the pilus filament by hydrophobic interactions among their N-terminal α-helices, which also anchor the pilin subunits in the inner membrane prior to pilus assembly. Type IV pilus assembly involves a conserved group of proteins that span the envelope of Gram-negative bacteria. Among these is a set of minor pilins, so named because they share their hydrophobic N-terminal polymerization/membrane anchor segment with the major pilins but are much less abundant. Minor pilins influence pilus assembly and retraction, but their precise functions are not well defined. The Type IV pilus systems of enterotoxigenic Escherichia coli and Vibrio cholerae are among the simplest of Type IV pilus systems and possess only a single minor pilin. Here we show that the enterotoxigenic E. coli minor pilins CofB and LngB are required for assembly of their respective Type IV pili, CFA/III and Longus. Low levels of the minor pilins are optimal for pilus assembly, and CofB can be detected in the pilus fraction. We solved the 2.0 Å crystal structure of N-terminally truncated CofB, revealing a pilin-like protein with an extended C-terminal region composed of two discrete domains connected by flexible linkers. The C-terminal region is required for CofB to initiate pilus assembly. We propose a model for CofB-initiated pilus assembly with implications for understanding filament growth in more complex Type IV pilus systems as well as the related Type II secretion system.
Collapse
Affiliation(s)
- Subramania Kolappan
- From the Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Dixon Ng
- From the Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Guixiang Yang
- From the Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Tony Harn
- From the Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Lisa Craig
- From the Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| |
Collapse
|
12
|
Brouwer MSM, Tagg KA, Mevius DJ, Iredell JR, Bossers A, Smith HE, Partridge SR. IncI shufflons: Assembly issues in the next-generation sequencing era. Plasmid 2015; 80:111-7. [PMID: 25952328 DOI: 10.1016/j.plasmid.2015.04.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 04/15/2015] [Accepted: 04/20/2015] [Indexed: 11/18/2022]
Abstract
The shufflon is a site-specific recombination system first identified in the IncI1 plasmid R64. The R64 shufflon consists of four segments, separated by short repeats, which are rearranged and inverted by the recombinase protein Rci, generating diversity in the C-terminal end of the PilV protein. PilV is the tip adhesin of the thin pilus structure involved in bacterial conjugation and may play a role in determining recipient cell specificity during liquid mating. The variable arrangements of the shufflon region would be expected to make plasmid assembly difficult, particularly with short-read sequencing technology, but this is not usually mentioned in recent publications reporting IncI plasmid sequences. Here we discuss the issues we encountered with assembly of IncI1 sequence data obtained from the Roche-454 and Illumina platforms and make some suggestions for assembly of the shufflon region. Comparison of shufflon segments from a collection of IncI1 plasmids from The Netherlands and Australia, together with sequences available in GenBank, suggests that the number of shufflon segments present is conserved among plasmids grouped together by plasmid multi-locus sequencing typing but the different reported arrangements of shufflon segments may not be meaningful. This analysis also indicated that the sequences of the shufflon segments are highly conserved, with very few nucleotide changes.
Collapse
Affiliation(s)
- Michael S M Brouwer
- Central Veterinary Institute of Wageningen UR, PO Box 65, 8200 AB Lelystad, The Netherlands.
| | - Kaitlin A Tagg
- Centre for Infectious Diseases and Microbiology, Westmead Millennium Institute, The University of Sydney and Westmead Hospital, Westmead, NSW 2145, Australia
| | - Dik J Mevius
- Central Veterinary Institute of Wageningen UR, PO Box 65, 8200 AB Lelystad, The Netherlands
| | - Jonathan R Iredell
- Centre for Infectious Diseases and Microbiology, Westmead Millennium Institute, The University of Sydney and Westmead Hospital, Westmead, NSW 2145, Australia
| | - Alex Bossers
- Central Veterinary Institute of Wageningen UR, PO Box 65, 8200 AB Lelystad, The Netherlands
| | - Hilde E Smith
- Central Veterinary Institute of Wageningen UR, PO Box 65, 8200 AB Lelystad, The Netherlands
| | - Sally R Partridge
- Centre for Infectious Diseases and Microbiology, Westmead Millennium Institute, The University of Sydney and Westmead Hospital, Westmead, NSW 2145, Australia.
| |
Collapse
|
13
|
Affiliation(s)
- Alain Filloux
- Alain Filloux, MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College London, London SW7 2AZ, UK; E-mail:
| |
Collapse
|
14
|
Berry JL, Pelicic V. Exceptionally widespread nanomachines composed of type IV pilins: the prokaryotic Swiss Army knives. FEMS Microbiol Rev 2014; 39:134-54. [PMID: 25793961 PMCID: PMC4471445 DOI: 10.1093/femsre/fuu001] [Citation(s) in RCA: 190] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Prokaryotes have engineered sophisticated surface nanomachines that have allowed them to colonize Earth and thrive even in extreme environments. Filamentous machineries composed of type IV pilins, which are associated with an amazing array of properties ranging from motility to electric conductance, are arguably the most widespread since distinctive proteins dedicated to their biogenesis are found in most known species of prokaryotes. Several decades of investigations, starting with type IV pili and then a variety of related systems both in bacteria and archaea, have outlined common molecular and structural bases for these nanomachines. Using type IV pili as a paradigm, we will highlight in this review common aspects and key biological differences of this group of filamentous structures. Using type IV pili as a paradigm, we review common genetic, structural and mechanistic features (many) as well as differences (few) of the exceptionally widespread and functionally versatile prokaryotic nano-machines composed of type IV pilins.
Collapse
Affiliation(s)
- Jamie-Lee Berry
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London SW7 2AZ, UK
| | - Vladimir Pelicic
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
15
|
Vik Å, Haug Anonsen J, Aas FE, Hegge FT, Roos N, Koomey M, Aspholm M. Type IV pilus assembly proficiency and dynamics influence pilin subunit phospho-form macro- and microheterogeneity in Neisseria gonorrhoeae. PLoS One 2014; 9:e96419. [PMID: 24797914 PMCID: PMC4010543 DOI: 10.1371/journal.pone.0096419] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 04/07/2014] [Indexed: 12/03/2022] Open
Abstract
The PilE pilin subunit protein of the gonococcal Type IV pilus (Tfp) colonization factor undergoes multisite, covalent modification with the zwitterionic phospho-form modification phosphoethanolamine (PE). In a mutant lacking the pilin-like PilV protein however, PilE is modified with a mixture of PE and phosphocholine (PC). Moreover, intrastrain variation of PilE PC modification levels have been observed in backgrounds that constitutively express PptA (the protein phospho-form transferase A) required for both PE and PC modification. The molecular basis underlying phospho-form microheterogeneity in these instances remains poorly defined. Here, we examined the effects of mutations at numerous loci that disrupt or perturb Tfp assembly and observed that these mutants phenocopy the pilV mutant vis a vis phospho-form modification status. Thus, PC modification appears to be directly or indirectly responsive to the efficacy of pilin subunit interactions. Despite the complexity of contributing factors identified here, the data favor a model in which increased retention in the inner membrane may act as a key signal in altering phospho-form modification. These results also provide an alternative explanation for the variation in PilE PC levels observed previously and that has been assumed to be due to phase variation of pptA. Moreover, mass spectrometry revealed evidence for mono- and di-methylated forms of PE attached to PilE in mutants deficient in pilus assembly, directly implicating a methyltransferase-based pathway for PC synthesis in N. gonorrhoeae.
Collapse
Affiliation(s)
- Åshild Vik
- Centre for Molecular Biology and Neuroscience, University of Oslo, Oslo, Norway
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Jan Haug Anonsen
- Centre for Molecular Biology and Neuroscience, University of Oslo, Oslo, Norway
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Finn Erik Aas
- Centre for Molecular Biology and Neuroscience, University of Oslo, Oslo, Norway
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Finn Terje Hegge
- Centre for Molecular Biology and Neuroscience, University of Oslo, Oslo, Norway
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Norbert Roos
- Centre for Molecular Biology and Neuroscience, University of Oslo, Oslo, Norway
| | - Michael Koomey
- Centre for Molecular Biology and Neuroscience, University of Oslo, Oslo, Norway
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Marina Aspholm
- Centre for Molecular Biology and Neuroscience, University of Oslo, Oslo, Norway
- Department of Biosciences, University of Oslo, Oslo, Norway
- * E-mail:
| |
Collapse
|
16
|
F conjugation: Back to the beginning. Plasmid 2013; 70:18-32. [DOI: 10.1016/j.plasmid.2013.03.010] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2012] [Revised: 03/26/2013] [Accepted: 03/28/2013] [Indexed: 11/19/2022]
|
17
|
Li J, Egelman EH, Craig L. Structure of the Vibrio cholerae Type IVb Pilus and stability comparison with the Neisseria gonorrhoeae type IVa pilus. J Mol Biol 2012; 418:47-64. [PMID: 22361030 DOI: 10.1016/j.jmb.2012.02.017] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Revised: 02/10/2012] [Accepted: 02/14/2012] [Indexed: 01/08/2023]
Abstract
Type IV pili are multifunctional filaments displayed on many bacterial pathogens. Members of the Type IVa pilus subclass are found on a diverse group of human pathogens, whereas Type IVb pili are found almost exclusively on enteric bacteria. The Type IVa and IVb subclasses are distinguished by differences in the pilin subunits, including the fold of the globular domain. To understand the implications of the distinct pilin folds, we compared the stabilities of pilin subunits and pilus filaments for the Type IVa GC pilus from Neisseria gonorrhoeae and the Type IVb toxin-coregulated pilus (TCP) from Vibrio cholerae. We show that while recombinant TCP pilin is more stable than GC pilin, the GC pili are more resistant to proteolysis, heat and chemical denaturation than TCP, remaining intact in 8 M urea. To understand these differences, we determined the TCP structure by electron microscopy and three-dimensional image reconstruction. TCP have an architecture similar to that of GC pili, with subunits arranged in a right-handed 1-start helix and related by an 8.4-Å axial rise and a 96.8° azimuthal rotation. However, the TCP subunits are not as tightly packed as GC pilins, and the distinct Type IVb pilin fold exposes a segment of the α-helical core of TCP. Hydrophobic interactions dominate for both pilus subtypes, but base stacking by aromatic residues conserved among the Type IVa pilins may contribute to GC pilus stability. The extraordinary stability of GC pili may represent an adaptation of the Type IVa pili to harsh environments and the need to retract against external forces.
Collapse
Affiliation(s)
- Juliana Li
- Molecular Biology and Biochemistry Department, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
| | | | | |
Collapse
|
18
|
Imam S, Chen Z, Roos DS, Pohlschröder M. Identification of surprisingly diverse type IV pili, across a broad range of gram-positive bacteria. PLoS One 2011; 6:e28919. [PMID: 22216142 PMCID: PMC3244431 DOI: 10.1371/journal.pone.0028919] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Accepted: 11/17/2011] [Indexed: 01/19/2023] Open
Abstract
Background In Gram-negative bacteria, type IV pili (TFP) have long been known to play important roles in such diverse biological phenomena as surface adhesion, motility, and DNA transfer, with significant consequences for pathogenicity. More recently it became apparent that Gram-positive bacteria also express type IV pili; however, little is known about the diversity and abundance of these structures in Gram-positives. Computational tools for automated identification of type IV pilins are not currently available. Results To assess TFP diversity in Gram-positive bacteria and facilitate pilin identification, we compiled a comprehensive list of putative Gram-positive pilins encoded by operons containing highly conserved pilus biosynthetic genes (pilB, pilC). A surprisingly large number of species were found to contain multiple TFP operons (pil, com and/or tad). The N-terminal sequences of predicted pilins were exploited to develop PilFind, a rule-based algorithm for genome-wide identification of otherwise poorly conserved type IV pilins in any species, regardless of their association with TFP biosynthetic operons (http://signalfind.org). Using PilFind to scan 53 Gram-positive genomes (encoding >187,000 proteins), we identified 286 candidate pilins, including 214 in operons containing TFP biosynthetic genes (TBG+ operons). Although trained on Gram-positive pilins, PilFind identified 55 of 58 manually curated Gram-negative pilins in TBG+ operons, as well as 53 additional pilin candidates in operons lacking biosynthetic genes in ten species (>38,000 proteins), including 27 of 29 experimentally verified pilins. False positive rates appear to be low, as PilFind predicted only four pilin candidates in eleven bacterial species (>13,000 proteins) lacking TFP biosynthetic genes. Conclusions We have shown that Gram-positive bacteria contain a highly diverse set of type IV pili. PilFind can be an invaluable tool to study bacterial cellular processes known to involve type IV pilus-like structures. Its use in combination with other currently available computational tools should improve the accuracy of predicting the subcellular localization of bacterial proteins.
Collapse
Affiliation(s)
- Saheed Imam
- Department of Biology and the Graduate Program in Genomics and Computational Biology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Zhongqiang Chen
- Department of Biology and the Graduate Program in Genomics and Computational Biology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - David S. Roos
- Department of Biology and the Graduate Program in Genomics and Computational Biology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Mechthild Pohlschröder
- Department of Biology and the Graduate Program in Genomics and Computational Biology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
19
|
Archer CT, Kim JF, Jeong H, Park JH, Vickers CE, Lee SY, Nielsen LK. The genome sequence of E. coli W (ATCC 9637): comparative genome analysis and an improved genome-scale reconstruction of E. coli. BMC Genomics 2011; 12:9. [PMID: 21208457 PMCID: PMC3032704 DOI: 10.1186/1471-2164-12-9] [Citation(s) in RCA: 132] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2010] [Accepted: 01/06/2011] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Escherichia coli is a model prokaryote, an important pathogen, and a key organism for industrial biotechnology. E. coli W (ATCC 9637), one of four strains designated as safe for laboratory purposes, has not been sequenced. E. coli W is a fast-growing strain and is the only safe strain that can utilize sucrose as a carbon source. Lifecycle analysis has demonstrated that sucrose from sugarcane is a preferred carbon source for industrial bioprocesses. RESULTS We have sequenced and annotated the genome of E. coli W. The chromosome is 4,900,968 bp and encodes 4,764 ORFs. Two plasmids, pRK1 (102,536 bp) and pRK2 (5,360 bp), are also present. W has unique features relative to other sequenced laboratory strains (K-12, B and Crooks): it has a larger genome and belongs to phylogroup B1 rather than A. W also grows on a much broader range of carbon sources than does K-12. A genome-scale reconstruction was developed and validated in order to interrogate metabolic properties. CONCLUSIONS The genome of W is more similar to commensal and pathogenic B1 strains than phylogroup A strains, and therefore has greater utility for comparative analyses with these strains. W should therefore be the strain of choice, or 'type strain' for group B1 comparative analyses. The genome annotation and tools created here are expected to allow further utilization and development of E. coli W as an industrial organism for sucrose-based bioprocesses. Refinements in our E. coli metabolic reconstruction allow it to more accurately define E. coli metabolism relative to previous models.
Collapse
Affiliation(s)
- Colin T Archer
- Australian Institute for Bioengineering and Nanotechnology, Cnr Cooper and College Rds, The University of Queensland, St Lucia, Queensland 4072 Australia
| | - Jihyun F Kim
- Industrial Biotechnology and Bioenergy Research Center, Korea Research Institute of Bioscience and Biotechnology, 111 Gwahangno, Yuseong-gu, Daejeon, Korea
| | - Haeyoung Jeong
- Industrial Biotechnology and Bioenergy Research Center, Korea Research Institute of Bioscience and Biotechnology, 111 Gwahangno, Yuseong-gu, Daejeon, Korea
| | - Jin Hwan Park
- Department of Chemical and Biomolecular Engineering (BK21 program) and Center for Systems and Synthetic Biotechnology, Institute for the BioCentury, KAIST, 335 Gwahangno, Yuseong-gu, Daejeon 305-701, Republic of Korea
| | - Claudia E Vickers
- Australian Institute for Bioengineering and Nanotechnology, Cnr Cooper and College Rds, The University of Queensland, St Lucia, Queensland 4072 Australia
| | - Sang Yup Lee
- Department of Chemical and Biomolecular Engineering (BK21 program) and Center for Systems and Synthetic Biotechnology, Institute for the BioCentury, KAIST, 335 Gwahangno, Yuseong-gu, Daejeon 305-701, Republic of Korea
| | - Lars K Nielsen
- Australian Institute for Bioengineering and Nanotechnology, Cnr Cooper and College Rds, The University of Queensland, St Lucia, Queensland 4072 Australia
| |
Collapse
|
20
|
Abstract
The widespread role of pili as colonization factors in pathogens has long been recognized in Gram-negative bacteria and more recently in Gram-positive bacteria, making the study of these hair-like filaments a perennial hot topic for research. No other pili are found in as many or as diverse bacteria as type IV pili. This is likely a consequence of their ancient origin and unique ability to promote multiple and strikingly different phenotypes such as attachment to surfaces, aggregation, uptake of DNA during transformation, motility, etc. Two decades of investigations in several model species have shed some light on the structure of these filaments and the molecular basis of some of the properties they confer. Moreover, recent discoveries have led to a better knowledge of the genetic basis and molecular mechanisms of type IV pili biogenesis. This brings us a few steps closer to understanding how these filaments are produced, but leaves us wondering whether (as in the famous motto that inspired the title) out of the many models studied will emerge one unifying mechanism.
Collapse
Affiliation(s)
- Vladimir Pelicic
- Department of Microbiology, Imperial College London, London SW7 2AZ, UK.
| |
Collapse
|
21
|
Shimoda E, Muto T, Horiuchi T, Furuya N, Komano T. Novel class of mutations of pilS mutants, encoding plasmid R64 type IV prepilin: interface of PilS-PilV interactions. J Bacteriol 2008; 190:1202-8. [PMID: 18065540 PMCID: PMC2238207 DOI: 10.1128/jb.01204-07] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2007] [Accepted: 11/21/2007] [Indexed: 12/25/2022] Open
Abstract
The type IV pili of plasmid R64 belonging to the type IVB group are required only for liquid mating. They consist of the major and minor components PilS pilin and PilV adhesin, respectively. PilS pilin is first synthesized as a 22-kDa prepilin from the pilS gene and is then processed to a 19-kDa mature pilin by PilU prepilin peptidase. In a previous genetic analysis, we identified four classes of the pilS mutants (T. Horiuchi and T. Komano, J. Bacteriol. 180:4613-4620, 1998). The products of the class I pilS mutants were not processed by prepilin peptidase; the products of the class II mutants were not secreted; in the class III mutants type IV pili with reduced activities in liquid mating were produced; and in the class IV mutants type IV pili with normal activities were produced. Here, we describe a novel class, class V, of pilS mutants. Mutations in the pilS gene at Gly-56 or Tyr-57 produced type IV pili lacking PilV adhesin, which were inactive in liquid mating. Residues 56 and 57 of PilS pilin are suggested to function as an interface of PilS-PilV interactions.
Collapse
Affiliation(s)
- Eriko Shimoda
- Department of Biology, Tokyo Metropolitan University, Minamiohsawa, Hachioji, Tokyo 192-0397, Japan
| | | | | | | | | |
Collapse
|
22
|
Qiu X, Gurkar AU, Lory S. Interstrain transfer of the large pathogenicity island (PAPI-1) of Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 2006; 103:19830-5. [PMID: 17179047 PMCID: PMC1750864 DOI: 10.1073/pnas.0606810104] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The large Pseudomonas aeruginosa pathogenicity island PAPI-1 of strain PA14 is a cluster of 108 genes that encode a number of virulence features. We demonstrate that, in a subpopulation of cells, PAPI-1 can exist in an extrachromosomal circular form after precise excision from its integration site within the 3' terminus of the tRNA(Lys) gene. Circular PAPI-1 can reintegrate into either of the two tRNA(Lys) genes, including the one that was used for integration of small pathogenicity island PAPI-2 in strain PA14. The excision requires PAPI-1-encoded integrase, a member of the tyrosine recombinase family. PAPI-1 Soj contains the conserved domains of proteins that are related to chromosome and plasmid partition. soj plays a role in maintaining PAPI-1 and mutations in soj result in the loss of PAPI-1 from P. aeruginosa. We further demonstrate that, during coculture, the PAPI-1-containing strains are able to transfer it into P. aeruginosa recipient strains that do not harbor this island naturally. After transfer, PAPI-1 integrates into either of the two tRNA(Lys) genes. PAPI-1 encompasses many features of mobile elements, including mobilization and maintenance modules. Together with the virulence determinants, PAPI-1 plays an important role in the evolution of P. aeruginosa, by expanding its natural habitat from soil and water to animal and human infections.
Collapse
Affiliation(s)
- Xiaoyun Qiu
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, MA 02115
| | - Aditi U. Gurkar
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, MA 02115
| | - Stephen Lory
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, MA 02115
- *To whom correspondence should be addressed. E-mail:
| |
Collapse
|
23
|
Aas FE, Winther-Larsen HC, Wolfgang M, Frye S, Løvold C, Roos N, van Putten JPM, Koomey M. Substitutions in the N-terminal alpha helical spine of Neisseria gonorrhoeae pilin affect Type IV pilus assembly, dynamics and associated functions. Mol Microbiol 2006; 63:69-85. [PMID: 17140412 DOI: 10.1111/j.1365-2958.2006.05482.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Type IV pili (Tfp) are multifunctional surface appendages expressed by many Gram negative species of medical, environmental and industrial importance. The N-terminally localized, so called alpha-helical spine is the most conserved structural feature of pilin subunits in these organelles. Prevailing models of pilus assembly and structure invariably implicate its importance to membrane trafficking, organelle structure and related functions. Nonetheless, relatively few studies have examined the effects of missense substitutions within this domain. Using Neisseria gonorrhoeae as a model system, we constructed mutants with single and multiple amino acid substitutions localized to this region of the pilin subunit PilE and characterized them with regard to pilin stability, organelle expression and associated phenotypes. The consequences of simultaneous expression of the mutant and wild-type PilE forms were also examined. The findings document for the first time in a defined genetic background the phenomenon of pilin intermolecular complementation in which assembly defective pilin can be rescued into purifiable Tfp by coexpression of wild-type PilE. The results further demonstrate that pilin subunit composition can impact on organelle dynamics mediated by the PilT retraction protein via a process that appears to monitor the efficacy of subunit-subunit interactions. In addition to confirming and extending the evidence for PilE multimerization as an essential component for competence for natural genetic transformation, this work paves the way for detailed studies of Tfp subunit-subunit interactions including self-recognition within the membrane and packing within the pilus polymer.
Collapse
Affiliation(s)
- Finn Erik Aas
- Centre for Molecular Biology and Neuroscience, University of Oslo, 0316 Oslo, Norway
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Akahane K, Sakai D, Furuya N, Komano T. Analysis of the pilU gene for the prepilin peptidase involved in the biogenesis of type IV pili encoded by plasmid R64. Mol Genet Genomics 2005; 273:350-9. [PMID: 15838638 DOI: 10.1007/s00438-005-1143-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2004] [Accepted: 03/16/2005] [Indexed: 01/04/2023]
Abstract
In many type IV pili, the N-terminal amino acid of the pilin subunit is N-methylated phenylalanine. A prepilin peptidase removes the leader peptide from the precursor and methylates the amino group of the newly formed phenylalanine. PilS, the precursor of the pilin encoded by plasmid R64, is processed by the prepilin peptidase PilU, but the N-terminal amino acid of the mature pilin is a non-methylated tryptophan that is otherwise modified. To study the relationship between the structure and function of PilU, 42 missense pilU mutations were constructed by PCR and site-directed mutagenesis, and the ability of these pilU mutants to complement a pilU null mutant for mating in liquid culture was analyzed. Although practically no conjugation was noted for 21 of the mutants, the remaining 21 supported varying levels of residual plasmid transfer activity. Two mutants with aspartic acid replacements in conserved motifs exhibited no PilU activity, suggesting that the product of the pilU gene is an aspartic acid peptidase, like TcpJ, the prepilin peptidare of Vibrio cholerae. No PilS processing was detected in 21 of the mutants, but the remaining 21 exhibited varying levels of residual PilS processing. A close correlation was noted between residual PilS processing activity and conjugative transfer, suggesting that the pilU gene product possesses prepilin peptidase activity, but is unable to methylate the N-terminal tryptophan. Based on the activity of pilU-phoA and pilU-lacZ fusion genes encoding different segments of PilU, a model for the membrane topology of the protein is also proposed. Furthermore, some amino acid substitutions in the pilU portion of the pilU-phoA and pilU-lacZ fusion genes were found to alter the membrane topology of the product.
Collapse
Affiliation(s)
- K Akahane
- Department of Biology, Tokyo Metropolitan University, Minamiohsawa, Hachioji, Tokyo, 192-0397, Japan
| | | | | | | |
Collapse
|
25
|
Collyn F, Fukushima H, Carnoy C, Simonet M, Vincent P. Linkage of the horizontally acquired ypm and pil genes in Yersinia pseudotuberculosis. Infect Immun 2005; 73:2556-8. [PMID: 15784605 PMCID: PMC1087444 DOI: 10.1128/iai.73.4.2556-2558.2005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The superantigen-encoding ypm gene and the pil gene cluster governing type IV pilus biogenesis have been laterally acquired by Yersinia pseudotuberculosis. PCR assays on 270 unrelated strains from various environmental and animal sources revealed a significant association of ypm and pil in isolates.
Collapse
|
26
|
Thomas NA, Bardy SL, Jarrell KF. The archaeal flagellum: a different kind of prokaryotic motility structure. FEMS Microbiol Rev 2001; 25:147-74. [PMID: 11250034 DOI: 10.1111/j.1574-6976.2001.tb00575.x] [Citation(s) in RCA: 114] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
The archaeal flagellum is a unique motility apparatus distinct in composition and likely in assembly from the bacterial flagellum. Gene families comprised of multiple flagellin genes co-transcribed with a number of conserved, archaeal-specific accessory genes have been identified in several archaea. However, no homologues of any bacterial genes involved in flagella structure have yet been identified in any archaeon, including those archaea in which the complete genome sequence has been published. Archaeal flagellins possess a highly conserved hydrophobic N-terminal sequence that is similar to that of type IV pilins and clearly unlike that of bacterial flagellins. Also unlike bacterial flagellins but similar to type IV pilins, archaeal flagellins are initially synthesized with a short leader peptide that is cleaved by a membrane-located peptidase. With recent advances in genetic transfer systems in archaea, knockouts have been reported in several genes involved in flagellation in different archaea. In addition, techniques to isolate flagella with attached hook and anchoring structures have been developed. Analysis of these preparations is under way to identify minor structural components of archaeal flagella. This and the continued isolation and characterization of flagella mutants should lead to significant advances in our knowledge of the composition and assembly of archaeal flagella.
Collapse
Affiliation(s)
- N A Thomas
- Department of Microbiology and Immunology, Queen's University, Kingston, Ont. K7L 3N6, Canada
| | | | | |
Collapse
|
27
|
Abstract
Conservative site-specific recombination functions to create biological diversity in prokaryotes. Simple site-specific recombination systems consist of two recombination sites and a recombinase gene. The plasmid R64 shufflon contains seven recombination sites, which flank and separate four DNA segments. Site-specific recombinations mediated by the product of the rci gene between any two inverted recombination sites result in the inversion of four DNA segments independently or in groups. The shufflon functions as a biological switch to select one of seven C-terminal segments of the PilV proteins, which is a minor component of R64 thin pilus. The shufflon determines the recipient specificity in liquid matings of plasmid R64. Other multiple inversion systems as well as integrons, which are multiple insertion systems, are also described in this review.
Collapse
Affiliation(s)
- T Komano
- Department of Biology, Tokyo Metropolitan University, Japan.
| |
Collapse
|
28
|
Abstract
The IncI1 plasmid R64 produces two kinds of sex pili: a thin pilus and a thick pilus. The thin pilus, which belongs to the type IV family, is required only for liquid matings. Fourteen genes, pilI to -V, were found in the DNA region responsible for the biogenesis of the R64 thin pilus (S.-R. Kim and T. Komano, J. Bacteriol. 179:3594-3603, 1997). In this study, we introduced frameshift mutations into each of the 14 pil genes to test their requirement for R64 thin pilus biogenesis. From the analyses of extracellular secretion of thin pili and transfer frequency in liquid matings, we found that 12 genes, pilK to -V, are required for the formation of the thin pilus. Complementation experiments excluded the possible polar effects of each mutation on the expression of downstream genes. Two genes, traBC, were previously shown to be required for the expression of the pil genes. In addition, the rci gene is responsible for modulating the structure and function of the R64 thin pilus via the DNA rearrangement of the shufflon. Altogether, 15 genes, traBC, pilK through pilV, and rci, are essential for R64 thin pilus formation and function.
Collapse
Affiliation(s)
- T Yoshida
- Department of Biology, Tokyo Metropolitan University, Minamiohsawa, Hachioji, Tokyo 192-0397, Japan
| | | | | |
Collapse
|