1
|
Shkoporov AN, Khokhlova EV, Kulagina EV, Smeianov VV, Kuchmiy AA, Kafarskaya LI, Efimov BA. Analysis of a novel 8.9kb cryptic plasmid from Bacteroides uniformis, its long-term stability and spread within human microbiota. Plasmid 2012. [PMID: 23201047 DOI: 10.1016/j.plasmid.2012.11.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The analysis of plasmid content in dominant Bacteroidales order intestinal strains isolated from the same child at a 5 year interval identified a 8.9 kb plasmid in Bacteroides uniformis BUN24 strain isolated at age 6 and indistinguishably sized plasmids in the isolates of B. uniformis, B. vulgatus, B. intesinalis, and Parabacteroides distasonis at age 11. We sequenced a B. uniformis BUN24 plasmid, designated pBUN24, and using molecular surveys of diverse species we established that this 8944bp molecule (G+C content 43.5%) represents a novel family of small cryptic Bacteroidales plasmids. The replication region of pBUN24 was experimentally localized to a 1707-bp fragment that includes a putative repA gene, coding for a protein of Rep_3 superfamily of replication proteins of theta-type plasmids preceded by a putative iteron-containing origin of replication. The other open reading frames (ORFs) identified in pBUN24 sequence include a putative tad-ata-type toxin-antitoxin and mobA-mobB mobilization modules, as well as seven additional cryptic ORFs. The interaction of Tad and Ada components demonstrated by a pull-down assay and the toxicity of Tad in Escherichia coli host suggests the functionality of the plasmid addiction module. Re-sequencing of plasmids in two Bacteroides strains isolated at the age of 11 showed 100% nucleotide identity to pBUN24. This data supports the notion that this plasmid is transmissible to other Bacteroidales strains in the natural ecosystem. The possible roles of toxin-antitoxin system and other proteins encoded by pBUN24 in providing an apparent ecological advantage to the plasmid-harbouring strains of a bacterial symbiont in the human gut deserve further investigation.
Collapse
Affiliation(s)
- Andrei N Shkoporov
- Department of Microbiology and Virology, The Russian National Research Medical University, 1, Ostrovitjanova St., Moscow 117997, Russia.
| | | | | | | | | | | | | |
Collapse
|
2
|
Nishiguchi M, Hirsch AM, Devinney R, Vedantam G, Riley M, Mansky L. Deciphering Evolutionary Mechanisms Between Mutualistic and Pathogenic Symbioses. VIE ET MILIEU (PARIS, FRANCE : 1980) 2008; 58:87-106. [PMID: 19655044 PMCID: PMC2719982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The continuum between mutualistic and pathogenic symbioses has been an underlying theme for understanding the evolution of infection and disease in a number of eukaryotic-microbe associations. The ability to monitor and then predict the spread of infectious diseases may depend upon our knowledge and capabilities of anticipating the behavior of virulent pathogens by studying related, benign symbioses. For instance, the ability of a symbiotic species to infect, colonize, and proliferate efficiently in a susceptible host will depend on a number of factors that influence both partners during the infection. Levels of virulence are not only affected by the genetic and phenotypic composite of the symbiont, but also the life history, mode(s) of transmission, and environmental factors that influence colonization, such as antibiotic treatment. Population dynamics of both host and symbiont, including densities, migration, as well as competition between symbionts will also affect infection rates of the pathogen as well as change the evolutionary dynamics between host and symbiont. It is therefore important to be able to compare the evolution of virulence between a wide range of mutualistic and pathogenic systems in order to determine when and where new infections might occur, and what conditions will render the pathogen ineffective. This perspective focuses on several symbiotic models that compare mutualistic associations to pathogenic forms and the questions posed regarding their evolution and radiation. A common theme among these systems is the prevailing concept of how heritable mutations can eventually lead to novel phenotypes and eventually new species.
Collapse
Affiliation(s)
- M.K. Nishiguchi
- Department of Biology, New Mexico State University, Box 30001 MSC 3AF, Las Cruces, NM 88003-8001, USA
| | - A. M. Hirsch
- Department of Molecular, Cell and Developmental Biology, University of California, 405 Hilgard Ave., Los Angeles, CA 90095-1606, USA
| | - R. Devinney
- Department of Microbiology and Infectious Disease, University of Calgary, 3330 Hospital Dr. NW, Calgary, AB, T2N 4N1, Canada
| | - G. Vedantam
- Department of Medicine, Section of Infectious Diseases, Loyola University Medical Center, 2160 S. First Ave., Maywood, IL, 60153, USA
| | - M.A. Riley
- Department of Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - L.M. Mansky
- Institute for Molecular Virology, University of Minnesota, 18-242 Moos Tower, 515 Delaware St. SE Minneapolis, MN 55455, USA
| |
Collapse
|
3
|
Thomas J, Hecht DW. Interaction of Bacteroides fragilis pLV22a relaxase and transfer DNA with Escherichia coli RP4-TraG coupling protein. Mol Microbiol 2007; 66:948-60. [PMID: 17919288 PMCID: PMC3037183 DOI: 10.1111/j.1365-2958.2007.05967.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Many Bacteroides transfer factors are mobilizable in Escherichia coli when coresident with the IncP conjugative plasmid RP4, but not F. To begin characterization and potential interaction between Bacteroides mobilizable transfer factors and the RP4 mating channel, both mutants and deletions of the DNA processing (dtr), mating pair formation (mpf) and traG coupling genes of RP4 were tested for mobilization of Bacteroides plasmid pLV22a. All 10 mpf but none of the four dtr genes were required for mobilization of pLV22a. The RP4 TraG coupling protein (CP) was also required for mobilization of pLV22a, but could be substituted by a C-terminal deletion mutant of the F TraD CP. Potential interactions of the TraG CP with relaxase protein(s) and transfer DNA of both RP4 and pLV22a were assessed. Overlay assays identified productive interactions between TraG and the relaxase proteins of both MbpB and TraI from pLV22a and RP4 respectively. The Agrobacterium Transfer-ImmunoPrecipitation (TrIP) assay also identified an interaction between TraG and both RP4 and pLV22a transfer DNA. Thus, mobilization of the Bacteroides pLV22a in E. coli utilizes both RP4 Mpf and CP functions including an interaction between the relaxosome and the RP4 CP similar to that of cognate RP4 plasmid.
Collapse
Affiliation(s)
- Johnson Thomas
- Program in Molecular Biology, Loyola University Medical Center, Maywood, IL, USA
| | - David W. Hecht
- Program in Molecular Biology, Loyola University Medical Center, Maywood, IL, USA
- Department of Medicine, Division of Infectious Diseases, Loyola University Medical Center, Maywood, IL, USA
- Hines V. A. Hospital, Hines, IL, USA
| |
Collapse
|
4
|
Vedantam G, Knopf S, Hecht DW. Bacteroides fragilis mobilizable transposon Tn5520 requires a 71 base pair origin of transfer sequence and a single mobilization protein for relaxosome formation during conjugation. Mol Microbiol 2006; 59:288-300. [PMID: 16359335 DOI: 10.1111/j.1365-2958.2005.04934.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Tn5520 is the smallest known bacterial mobilizable transposon and was isolated from an antibiotic resistant Bacteroides fragilis clinical isolate. When a conjugation apparatus is provided in trans, Tn5520 is mobilized (transferred) efficiently within, and from, both Bacteroides spp. and Escherichia coli. Only two genes are present on Tn5520; one encodes an integrase, and the other a multifunctional mobilization (Mob) protein BmpH. BmpH is essential for Tn5520 mobility. The focus of this study was to identify the Tn5520 origin of conjugative transfer (oriT) and to study BmpH-oriT binding. We delimited the functional Tn5520 oriT to a 71 bp sequence upstream of the bmpH gene. A plasmid vector harbouring this minimal 71 bp oriT was mobilized at the same frequency as that of intact Tn5520. The minimal oriT contains one 17 bp inverted repeat (IR) sequence. We constructed and tested multiple IR mutants and showed that the IR was essential in its entirety for mobilization. A nick site sequence (5'-GCTAC-3') was also identified within the minimal oriT; this sequence resembled nick sites found in plasmids of Gram positive origin. We further showed that mutation of a highly conserved GC dinucleotide in the nick site sequence completely abolished mobilization. We also purified BmpH and showed that it specifically bound a Tn5520 oriT fragment in electrophoretic mobility shift assays. We also identified non-nick site sequences within the minimal oriT that were essential for mobilization. We hypothesize that transposon-based single Mob protein systems may contribute to efficient gene dissemination from Bacteroides spp., because fewer DNA processing proteins are required for relaxosome formation.
Collapse
Affiliation(s)
- Gayatri Vedantam
- Department of Medicine, Loyola University Medical Center, Maywood, IL, USA.
| | | | | |
Collapse
|
5
|
Bass KA, Hecht DW. Isolation and characterization of cLV25, a Bacteroides fragilis chromosomal transfer factor resembling multiple Bacteroides sp. mobilizable transposons. J Bacteriol 2002; 184:1895-904. [PMID: 11889096 PMCID: PMC134936 DOI: 10.1128/jb.184.7.1895-1904.2002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Horizontal DNA transfer contributes significantly to the dissemination of antibiotic resistance genes in Bacteroides fragilis. To further our understanding of DNA transfer in B. fragilis, we isolated and characterized a new transfer factor, cLV25. cLV25 was isolated from B. fragilis LV25 by its capture on the nonmobilizable Escherichia coli-Bacteroides shuttle vector pGAT400DeltaBglII. Similar to other Bacteroides sp. transfer factors, cLV25 was mobilized in E. coli by the conjugative plasmid R751. Using Tn1000 mutagenesis and deletion analysis of cLV25, two mobilization genes, bmgA and bmgB, were identified, whose predicted proteins have similarity to DNA relaxases and mobilization proteins, respectively. In particular, BmgA and BmgB were homologous to MocA and MocB, respectively, the two mobilization proteins of the B. fragilis mobilizable transposon Tn4399. A cis-acting origin of transfer (oriT) was localized to a 353-bp region that included nearly all of the intergenic region between bmgB and orf22 and overlapped with the 3' end of orf22. This oriT contained a putative nic site sequence but showed no significant similarity to the oriT regions of other transfer factors, including Tn4399. Despite the lack of sequence similarity between the oriTs of cLV25 and Tn4399, a mutation in the cLV25 putative DNA relaxase, bmgA, was partially complemented by Tn4399. In addition to the functional cross-reaction with Tn4399, a second distinguishing feature of cLV25 is that predicted proteins have similarity to proteins encoded not only by Tn4399 but by several Bacteroides sp. transfer factors, including NBU1, NBU2, CTnDOT, Tn4555, and Tn5520.
Collapse
Affiliation(s)
- Kathleen A Bass
- Department of Medicine, Hines VA Hospital, Hines, Illinois 60141, USA
| | | |
Collapse
|
6
|
Vedantam G, Hecht DW. Isolation and characterization of BTF-37: chromosomal DNA captured from Bacteroides fragilis that confers self-transferability and expresses a pilus-like structure in Bacteroides spp. and Escherichia coli. J Bacteriol 2002; 184:728-38. [PMID: 11790742 PMCID: PMC139536 DOI: 10.1128/jb.184.3.728-738.2002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
We report the isolation and preliminary characterization of BTF-37, a new 52-kb transfer factor isolated from Bacteroides fragilis clinical isolate LV23. BTF-37 was obtained by the capture of new DNA in the nonmobilizable Bacteroides-Escherichia coli shuttle vector pGAT400DeltaBglII using a functional assay. BTF-37 is self-transferable within and from Bacteroides and also self-transfers in E. coli. Partial DNA sequencing, colony hybridization, and PCR revealed the presence of Tet element-specific sequences in BTF-37. In addition, Tn5520, a small mobilizable transposon that we described previously (G. Vedantam, T. J. Novicki, and D. W. Hecht, J. Bacteriol. 181:2564-2571, 1999), was also coisolated within BTF-37. Scanning and transmission electron microscopy of Tet element-containing Bacteroides spp. and BTF-37-harboring Bacteroides and E. coli strains revealed the presence of pilus-like cell surface structures. These structures were visualized in Bacteroides spp. only when BTF-37 and Tet element strains were induced with subinhibitory concentrations of tetracycline and resembled those encoded by E. coli broad-host-range plasmids. We conclude that we have captured a new, self-transferable transfer factor from B. fragilis LV23 and that this new factor encodes a tetracycline-inducible Bacteroides sp. conjugation apparatus.
Collapse
Affiliation(s)
- Gayatri Vedantam
- Departments of Medicine and Microbiology/Immunology and Program in Molecular Biology, Loyola University Medical Center, 2160 S. First Ave., Maywood, IL 60153, USA
| | | |
Collapse
|
7
|
Tribble GD, Parker AC, Smith CJ. Genetic structure and transcriptional analysis of a mobilizable, antibiotic resistance transposon from Bacteroides. Plasmid 1999; 42:1-12. [PMID: 10413660 DOI: 10.1006/plas.1999.1401] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Tn4555 is a 12.1-kb Bacteroides antibiotic resistance transposon representative of a novel class of transmissible genetic elements that can be transferred by resident conjugative tetracycline resistance transposons (Tc(r)-elements) but are not capable of self-transfer. Previously it was shown that Tn4555 transposes by a site-specific recombination mechanism that utilizes a circular intermediate. This circular form is induced by tetracycline and it also is the substrate for conjugation. To better understand the mechanism of transposition, the entire nucleotide sequence of Tn4555 was determined and a set of genes potentially involved in transposition was identified. The transposon was 12,105 bp including a variable 6-bp coupling sequence associated with one of the transposon termini. The element had a 44.3% G + C composition and nine potential protein coding regions were observed, eight of which were encoded on the forward strand. Two putative transposition genes were found. The int gene product had significant C-terminal homology to the lambda family of integrases and the xis gene product was similar to several excisionase proteins encoded by both plasmids and conjugative transposons. The mobA mobilization gene and cfxA beta-lactamase gene of Tn4555 had been previously identified, and the remaining five open reading frames had no significant matches with sequences in the available databases. Northern hybridization analysis revealed that all Tn4555 genes except for orf-9 were expressed and two sets of genes, tnpA, int and xis, orf-5, orf-6 were organized in operons. None of the genes seemed to be induced significantly by the addition of tetracycline to cultures. Although a small 0.4-kb xis-specific transcript appeared in tetracycline-treated cultures it was not clear if this was due to an induction or if it was a specific degradation product.
Collapse
Affiliation(s)
- G D Tribble
- Department of Microbiology and Immunology, East Carolina University, Greenville, North Carolina 27858, USA
| | | | | |
Collapse
|