1
|
Wilson C, Giaquinto L, Santoro M, Di Tullio G, Morra V, Kukulski W, Venditti R, Navone F, Borgese N, De Matteis MA. A role for mitochondria-ER crosstalk in amyotrophic lateral sclerosis 8 pathogenesis. Life Sci Alliance 2025; 8:e202402907. [PMID: 39870504 PMCID: PMC11772500 DOI: 10.26508/lsa.202402907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 01/07/2025] [Accepted: 01/08/2025] [Indexed: 01/29/2025] Open
Abstract
Protein aggregates in motoneurons, a pathological hallmark of amyotrophic lateral sclerosis, have been suggested to play a key pathogenetic role. ALS8, characterized by ER-associated inclusions, is caused by a heterozygous mutation in VAPB, which acts at multiple membrane contact sites between the ER and almost all other organelles. The link between protein aggregation and cellular dysfunction is unclear. A yeast model, expressing human mutant and WT-VAPB under the control of the orthologous yeast promoter in haploid and diploid cells, was developed to mimic the disease situation. Inclusion formation was found to be a developmentally regulated process linked to mitochondrial damage that could be attenuated by reducing ER-mitochondrial contacts. The co-expression of the WT protein retarded P56S-VAPB inclusion formation. Importantly, we validated these results in mammalian motoneuron cells. Our findings indicate that (age-related) damage to mitochondria influences the propensity of the mutant VAPB to form aggregates via ER-mitochondrial contacts, initiating a series of events leading to disease progression.
Collapse
Affiliation(s)
- Cathal Wilson
- Telethon Institute of Genetics and Medicine, TIGEM, Pozzuoli, Italy
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Laura Giaquinto
- Telethon Institute of Genetics and Medicine, TIGEM, Pozzuoli, Italy
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Michele Santoro
- Telethon Institute of Genetics and Medicine, TIGEM, Pozzuoli, Italy
| | | | - Valentina Morra
- Telethon Institute of Genetics and Medicine, TIGEM, Pozzuoli, Italy
| | - Wanda Kukulski
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Rossella Venditti
- Telethon Institute of Genetics and Medicine, TIGEM, Pozzuoli, Italy
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | | | - Nica Borgese
- CNR Neuroscience Institute, Vedano al Lambro, Italy
| | - Maria Antonietta De Matteis
- Telethon Institute of Genetics and Medicine, TIGEM, Pozzuoli, Italy
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| |
Collapse
|
2
|
Kodama TS, Furuita K, Kojima C. Beyond Static Tethering at Membrane Contact Sites: Structural Dynamics and Functional Implications of VAP Proteins. Molecules 2025; 30:1220. [PMID: 40141996 PMCID: PMC11944328 DOI: 10.3390/molecules30061220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/22/2025] [Accepted: 02/28/2025] [Indexed: 03/28/2025] Open
Abstract
The membranes surrounding the eukaryotic cell and its organelles are continuously invaginating, budding, and undergoing membrane fusion-fission events, which enable them to perform functions not found in prokaryotic cells. In addition, organelles come into close contact with each other at membrane contact sites (MCSs), which involve many types of proteins, and which regulate the signaling and transport of various molecules. Vesicle-associated membrane protein (VAMP)-associated protein (VAP) is an important factor involved in the tethering and contact of various organelles at MCSs in almost all eukaryotes and has attracted attention for its association with various diseases, mainly neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS). However, the detailed mechanism of its functional expression remains unclear. In this review, we quantitatively discuss the structural dynamics of the entire molecule, including intrinsically disordered regions and intramolecular and intermolecular interactions, focusing on the vertebrate VAP paralogs VAPA and VAPB. Molecular phylogenetic and biophysical considerations are the basis of the work.
Collapse
Grants
- JP22H05536, JP22K19184, JP23H02416, and JP23K18030 Ministry of Education, Culture, Sports, Science and Technology
- NMR Platform Ministry of Education, Culture, Sports, Science and Technology
- CR-24-05 Institute for Protein Research, Osaka University
- JP24ama121001 Japan Agency for Medical Research and Development
Collapse
Affiliation(s)
- Takashi S. Kodama
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan;
| | - Kyoko Furuita
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan;
| | - Chojiro Kojima
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan;
- Graduate School of Engineering Science, Yokohama National University, Tokiwadai 79-5, Hodogaya-ku, Yokohama 240-8501, Japan
| |
Collapse
|
3
|
Oshima A, Joho A, Kuwahara M, Kagiwada S. The stability of the Opi1p repressor for phospholipid biosynthetic gene expression in Saccharomyces cerevisiae is dependent on its interactions with Scs2p and Ino2p. Biochem Biophys Res Commun 2024; 735:150849. [PMID: 39432922 DOI: 10.1016/j.bbrc.2024.150849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Accepted: 10/16/2024] [Indexed: 10/23/2024]
Abstract
The yeast Saccharomyces cerevisiae Opi1p negatively regulates phospholipid biosynthetic genes. Under derepressing conditions, Opi1p binds to the endoplasmic reticulum/nuclear membrane with the aid of the membrane protein Scs2p and phosphatidic acids under derepressing conditions. Under repressing conditions, it enters the nucleus to inhibit the positive transcription factors Ino2p and Ino4p. While the spatial regulation of Opi1p is understood, the regulation of its abundance remains unclear. We investigated the role of Scs2p and Ino2p in Opi1p stability by overexpressing these proteins in yeast cells. Opi1p was stable in the presence of Scs2p, but mutations in residues required for interaction with Scs2p caused Opi1p unstable. Even in the absence of Scs2p, Opi1p remained stable in the strain having a mutation to increase phosphatidic acid levels. Conversely, overproduction of Ino2p reduced Opi1p stability, whereas a mutant Ino2p that cannot interact with Opi1p did not. Additionally, Opi1p was stable in strains lacking Ino2p or with a mutated Ino2p-binding domain. These findings suggest that regulation, adding another layer to the regulation of phospholipid biosynthetic gene expression by Opi1p.
Collapse
Affiliation(s)
- Ayaka Oshima
- Department of Biological Sciences, Graduate School of Humanities and Sciences, Nara Women's University, Nara, 630-8506, Japan
| | - Ayu Joho
- Department of Biological Sciences, Graduate School of Humanities and Sciences, Nara Women's University, Nara, 630-8506, Japan
| | - Masako Kuwahara
- Department of Biological Sciences, Graduate School of Humanities and Sciences, Nara Women's University, Nara, 630-8506, Japan
| | - Satoshi Kagiwada
- Department of Biological Sciences, Graduate School of Humanities and Sciences, Nara Women's University, Nara, 630-8506, Japan; Faculty of Science, Nara Women's University, Nara, 630-8506, Japan.
| |
Collapse
|
4
|
Manik MIN, Tasnin MN, Takuma T, Ushimaru T. The yeast VAPs Scs2 and Scs22 are required for NVJ integrity and micronucleophagy. Biochem Biophys Res Commun 2024; 734:150628. [PMID: 39232457 DOI: 10.1016/j.bbrc.2024.150628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 08/23/2024] [Accepted: 08/29/2024] [Indexed: 09/06/2024]
Abstract
Microautophagy degrades cargos in the vacuole by direct engulfment of the vacuolar membrane. Micronucleophagy selectively degrades a portion of the nucleus in budding yeast. The vacuole contacts the nucleus via the nucleus-vacuole junction (NVJ), and in micronucleophagy a portion of the nucleus containing nucleolar proteins is made to protrude into the vacuole at the NVJ, followed by abscission and degradation. Microautophagy and micronucleophagy are induced by inactivation of target of rapamycin complex 1 (TORC1) protein kinase after nutrient starvation. Here, we show that the VAMP-associated proteins (VAPs) Scs2 and its paralog Scs22 are required for NVJ integrity and micronucleophagic degradation of nucleolar proteins. On the other hand, nucleolar dynamics prerequisite for micronucleophagy were not impaired in VAP mutant cells. Finally, yeast VAPs were critical for viability during prolonged nutrient starvation. This study sheds light on the emerging role of VAP in adaptation in responses to nutrient starvation.
Collapse
Affiliation(s)
- Md Imran Nur Manik
- Graduate School of Science and Technology, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka, 422-8021, Japan
| | - Most Naoshia Tasnin
- Graduate School of Science and Technology, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka, 422-8021, Japan
| | - Tsuneyuki Takuma
- Graduate School of Science and Technology, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka, 422-8021, Japan
| | - Takashi Ushimaru
- Graduate School of Science and Technology, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka, 422-8021, Japan; Department of Science, Graduate School of Integrated Science and Technology, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka, 422-8021, Japan; Research Institute of Green Science and Technology, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka, 422-8021, Japan.
| |
Collapse
|
5
|
Fernández-Murray JP, Tavasoli M, Williams J, McMaster CR. The leucine zipper domain of the transcriptional repressor Opi1 underlies a signal transduction mechanism regulating lipid synthesis. J Biol Chem 2023; 299:105417. [PMID: 37918807 PMCID: PMC10709064 DOI: 10.1016/j.jbc.2023.105417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/11/2023] [Accepted: 10/13/2023] [Indexed: 11/04/2023] Open
Abstract
In Saccharomyces cerevisiae, the transcriptional repressor Opi1 regulates the expression of genes involved in phospholipid synthesis responding to the abundance of the phospholipid precursor phosphatidic acid at the endoplasmic reticulum. We report here the identification of the conserved leucine zipper (LZ) domain of Opi1 as a hot spot for gain of function mutations and the characterization of the strongest variant identified, Opi1N150D. LZ modeling posits asparagine 150 embedded on the hydrophobic surface of the zipper and specifying dynamic parallel homodimerization by allowing electrostatic bonding across the hydrophobic dimerization interface. Opi1 variants carrying any of the other three ionic residues at amino acid 150 were also repressing. Genetic analyses showed that Opi1N150D variant is dominant, and its phenotype is attenuated when loss of function mutations identified in the other two conserved domains are present in cis. We build on the notion that membrane binding facilitates LZ dimerization to antagonize an intramolecular interaction of the zipper necessary for repression. Dissecting Opi1 protein in three polypeptides containing each conserved region, we performed in vitro analyses to explore interdomain interactions. An Opi11-190 probe interacted with Opi1291-404, the C terminus that bears the activator interacting domain (AID). LZ or AID loss of function mutations attenuated the interaction of the probes but was unaffected by the N150D mutation. We propose a model for Opi1 signal transduction whereby synergy between membrane-binding events and LZ dimerization antagonizes intramolecular LZ-AID interaction and transcriptional repression.
Collapse
Affiliation(s)
| | - Mahtab Tavasoli
- Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Jason Williams
- Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada
| | | |
Collapse
|
6
|
ER-phagy requires the assembly of actin at sites of contact between the cortical ER and endocytic pits. Proc Natl Acad Sci U S A 2022; 119:2117554119. [PMID: 35101986 PMCID: PMC8833162 DOI: 10.1073/pnas.2117554119] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/24/2021] [Indexed: 01/03/2023] Open
Abstract
Portions of the endoplasmic reticulum (ER) are degraded by autophagy (ER-phagy) in response to starvation or the accumulation of misfolded proteins. We show that ER-phagy requires assembly of actin at sites of contact between the edges of ER sheets and endocytic pits on the plasma membrane. Actin assembly may help to bring an element of the ER carrying the selective autophagy receptor Atg40 into the cell interior, where it associates with Atg11, a scaffold needed to recruit components for autophagosome assembly. Understanding the mechanism by which regions of the ER are selected for degradation and sequestered within autophagosomes may help in the development of novel approaches to treat diseases that result from the accumulation of misfolded proteins within the ER. Fragments of the endoplasmic reticulum (ER) are selectively delivered to the lysosome (mammals) or vacuole (yeast) in response to starvation or the accumulation of misfolded proteins through an autophagic process known as ER-phagy. A screen of the Saccharomyces cerevisiae deletion library identified end3Δ as a candidate knockout strain that is defective in ER-phagy during starvation conditions, but not bulk autophagy. We find that loss of End3 and its stable binding partner Pan1, or inhibition of the Arp2/3 complex that is coupled by the End3-Pan1 complex to endocytic pits, blocks the association of the cortical ER autophagy receptor, Atg40, with the autophagosomal assembly scaffold protein Atg11. The membrane contact site module linking the rim of cortical ER sheets and endocytic pits, consisting of Scs2 or Scs22, Osh2 or Osh3, and Myo3 or Myo5, is also needed for ER-phagy. Both Atg40 and Scs2 are concentrated at the edges of ER sheets and can be cross-linked to each other. Our results are consistent with a model in which actin assembly at sites of contact between the cortical ER and endocytic pits contributes to ER sequestration into autophagosomes.
Collapse
|
7
|
James C, Kehlenbach RH. The Interactome of the VAP Family of Proteins: An Overview. Cells 2021; 10:cells10071780. [PMID: 34359948 PMCID: PMC8306308 DOI: 10.3390/cells10071780] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 06/28/2021] [Accepted: 07/08/2021] [Indexed: 12/11/2022] Open
Abstract
Membrane contact sites (MCS) are sites of close apposition of two organelles that help in lipid transport and synthesis, calcium homeostasis and several other biological processes. The VAMP-associated proteins (VAPs) VAPA, VAPB, MOSPD2 and the recently described MOSPD1 and MOSPD3 are tether proteins of MCSs that are mainly found at the endoplasmic reticulum (ER). VAPs interact with various proteins with a motif called FFAT (two phenylalanines in an acidic tract), recruiting the associated organelle to the ER. In addition to the conventional FFAT motif, the recently described FFNT (two phenylalanines in a neutral tract) and phospho-FFAT motifs contribute to the interaction with VAPs. In this review, we summarize and compare the recent interactome studies described for VAPs, including in silico and proximity labeling methods. Collectively, the interaction repertoire of VAPs is very diverse and highlights the complexity of interactions mediated by the different FFAT motifs to the VAPs.
Collapse
|
8
|
Starke J, Harting R, Maurus I, Leonard M, Bremenkamp R, Heimel K, Kronstad JW, Braus GH. Unfolded Protein Response and Scaffold Independent Pheromone MAP Kinase Signaling Control Verticillium dahliae Growth, Development, and Plant Pathogenesis. J Fungi (Basel) 2021; 7:jof7040305. [PMID: 33921172 PMCID: PMC8071499 DOI: 10.3390/jof7040305] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/12/2021] [Accepted: 04/12/2021] [Indexed: 12/13/2022] Open
Abstract
Differentiation, growth, and virulence of the vascular plant pathogen Verticillium dahliae depend on a network of interconnected cellular signaling cascades. The transcription factor Hac1 of the endoplasmic reticulum-associated unfolded protein response (UPR) is required for initial root colonization, fungal growth, and vascular propagation by conidiation. Hac1 is essential for the formation of microsclerotia as long-time survival resting structures in the field. Single endoplasmic reticulum-associated enzymes for linoleic acid production as precursors for oxylipin signal molecules support fungal growth but not pathogenicity. Microsclerotia development, growth, and virulence further require the pheromone response mitogen-activated protein kinase (MAPK) pathway, but without the Ham5 scaffold function. The MAPK phosphatase Rok1 limits resting structure development of V.dahliae, but promotes growth, conidiation, and virulence. The interplay between UPR and MAPK signaling cascades includes several potential targets for fungal growth control for supporting disease management of the vascular pathogen V.dahliae.
Collapse
Affiliation(s)
- Jessica Starke
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics and Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, 37077 Göttingen, Germany; (J.S.); (R.H.); (I.M.); (M.L.); (R.B.); (K.H.)
| | - Rebekka Harting
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics and Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, 37077 Göttingen, Germany; (J.S.); (R.H.); (I.M.); (M.L.); (R.B.); (K.H.)
| | - Isabel Maurus
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics and Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, 37077 Göttingen, Germany; (J.S.); (R.H.); (I.M.); (M.L.); (R.B.); (K.H.)
| | - Miriam Leonard
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics and Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, 37077 Göttingen, Germany; (J.S.); (R.H.); (I.M.); (M.L.); (R.B.); (K.H.)
| | - Rica Bremenkamp
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics and Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, 37077 Göttingen, Germany; (J.S.); (R.H.); (I.M.); (M.L.); (R.B.); (K.H.)
| | - Kai Heimel
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics and Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, 37077 Göttingen, Germany; (J.S.); (R.H.); (I.M.); (M.L.); (R.B.); (K.H.)
| | - James W. Kronstad
- Michael Smith Laboratories, Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada;
| | - Gerhard H. Braus
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics and Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, 37077 Göttingen, Germany; (J.S.); (R.H.); (I.M.); (M.L.); (R.B.); (K.H.)
- Correspondence: ; Tel.: +49-(0)551-39-33771
| |
Collapse
|
9
|
Dudás EF, Huynen MA, Lesk AM, Pastore A. Invisible leashes: The tethering VAPs from infectious diseases to neurodegeneration. J Biol Chem 2021; 296:100421. [PMID: 33609524 PMCID: PMC8005810 DOI: 10.1016/j.jbc.2021.100421] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/11/2021] [Accepted: 02/12/2021] [Indexed: 12/12/2022] Open
Abstract
Intracellular organelles do not, as thought for a long time, act in isolation but are dynamically tethered together by entire machines responsible for interorganelle trafficking and positioning. Among the proteins responsible for tethering is the family of VAMP-associated proteins (VAPs) that appear in all eukaryotes and are localized primarily in the endoplasmic reticulum. The major functional role of VAPs is to tether the endoplasmic reticulum with different organelles and regulate lipid metabolism and transport. VAPs have gained increasing attention because of their role in human pathology where they contribute to infections by viruses and bacteria and participate in neurodegeneration. In this review, we discuss the structure, evolution, and functions of VAPs, focusing more specifically on VAP-B for its relationship with amyotrophic lateral sclerosis and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Erika F Dudás
- UK Dementia Research Institute at King's College London, The Maurice Wohl Institute, London, UK
| | - Martijn A Huynen
- Centre for Molecular and Biomolecular Informatics (CMBI), Radboud University Medical Centre, GA Nijmegen, Netherlands
| | - Arthur M Lesk
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Annalisa Pastore
- UK Dementia Research Institute at King's College London, The Maurice Wohl Institute, London, UK.
| |
Collapse
|
10
|
Delfosse V, Bourguet W, Drin G. Structural and Functional Specialization of OSBP-Related Proteins. ACTA ACUST UNITED AC 2020. [DOI: 10.1177/2515256420946627] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Lipids are precisely distributed in the eukaryotic cell where they help to define organelle identity and function, in addition to their structural role. Once synthesized, many lipids must be delivered to other compartments by non-vesicular routes, a process that is undertaken by proteins called Lipid Transfer Proteins (LTPs). OSBP and the closely-related ORP and Osh proteins constitute a major, evolutionarily conserved family of LTPs in eukaryotes. Most of these target one or more subcellular regions, and membrane contact sites in particular, where two organelle membranes are in close proximity. It was initially thought that such proteins were strictly dedicated to sterol sensing or transport. However, over the last decade, numerous studies have revealed that these proteins have many more functions, and we have expanded our understanding of their mechanisms. In particular, many of them are lipid exchangers that exploit PI(4)P or possibly other phosphoinositide gradients to directionally transfer sterol or PS between two compartments. Importantly, these transfer activities are tightly coupled to processes such as lipid metabolism, cellular signalling and vesicular trafficking. This review describes the molecular architecture of OSBP/ORP/Osh proteins, showing how their specific structural features and internal configurations impart unique cellular functions.
Collapse
Affiliation(s)
- Vanessa Delfosse
- Centre de Biochimie Structurale, Inserm, CNRS, Univ Montpellier, Montpellier, France
| | - William Bourguet
- Centre de Biochimie Structurale, Inserm, CNRS, Univ Montpellier, Montpellier, France
| | - Guillaume Drin
- CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d’Azur, Valbonne, France
| |
Collapse
|
11
|
Jiang W, Chen J, Guo ZP, Zhang L, Chen GP. Molecular characterization of a MOSPD2 homolog in the barbel steed (Hemibarbus labeo) and its involvement in monocyte/macrophage and neutrophil migration. Mol Immunol 2020; 119:8-17. [PMID: 31927202 DOI: 10.1016/j.molimm.2020.01.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 01/03/2020] [Accepted: 01/03/2020] [Indexed: 02/08/2023]
Abstract
Motile sperm domain containing 2 (MOSPD2) is a single-pass membrane protein to which until recently little function had been ascribed. Although its mammalian homologs have been identified, the status of the mospd2 gene in lower vertebrates is still unknown. In the present study, cDNA of the mospd2 gene of barbel steed (Hemibarbus labeo) was cloned and sequenced to characterize its potential involvement in the innate immune system of this fish. Sequence analysis revealed that the predicted barbel steed MOSPD2 protein contained an N-terminal extracellular portion composed of a CRAL-TRIO domain, a motile sperm domain, and a transmembrane domain, as well as a short C-terminal intracellular domain. Phylogenetic tree analysis indicated that barbel steed MOSPD2 is closely related to that of zebrafish. Barbel steed mospd2 transcripts were detected in a wide range of tissues, with the highest level being found in the gill. In response to lipopolysaccharide (LPS) treatment or Aeromonas hydrophila infection, mospd2 gene expression was significantly altered in the head kidney, spleen, and mid-intestine. The expression of mospd2 gene was detected in monocytes/macrophages (MO/MФ), neutrophils, and lymphocytes, and was found to be mainly expressed in MO/MФ. At the same time, using flow cytometry, we also confirmed that MOSPD2 protein is located on MO/MФ, neutrophil, and lymphocyte membranes. Following treatment with LPS or A. hydrophila, MOSPD2 protein expression was induced in these immune cells. The migration of MO/MФ and neutrophils decreased significantly upon MOSPD2 blockade with anti-MOSPD2 IgG in a dose-dependent manner, whereas this treatment had no significant effect on lymphocytes migration. To the best of our knowledge, our study, for the first time, provides evidence that MOSPD2 mediates the migration of MO/MФ and neutrophils in a fish species.
Collapse
Affiliation(s)
- Wei Jiang
- College of Ecology, Lishui University, Lishui, 323000, China
| | - Jie Chen
- College of Ecology, Lishui University, Lishui, 323000, China.
| | - Zhi-Ping Guo
- College of Ecology, Lishui University, Lishui, 323000, China
| | - Le Zhang
- College of Medicine and Health, Lishui University, Lishui, 323000, China
| | - Guang-Ping Chen
- College of Medicine and Health, Lishui University, Lishui, 323000, China
| |
Collapse
|
12
|
Weill U, Cohen N, Fadel A, Ben-Dor S, Schuldiner M. Protein Topology Prediction Algorithms Systematically Investigated in the Yeast Saccharomyces cerevisiae. Bioessays 2019; 41:e1800252. [PMID: 31297843 DOI: 10.1002/bies.201800252] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 05/05/2019] [Indexed: 11/09/2022]
Abstract
Membrane proteins perform a variety of functions, all crucially dependent on their orientation in the membrane. However, neither the exact number of transmembrane domains (TMDs) nor the topology of most proteins have been experimentally determined. Due to this, most scientists rely primarily on prediction algorithms to determine topology and TMD assignments. Since these can give contradictory results, single-algorithm-based predictions are unreliable. To map the extent of potential misanalysis, the predictions of nine algorithms on the yeast proteome are compared and it is found that they have little agreement when predicting TMD number and termini orientation. To view all predictions in parallel, a webpage called TopologYeast: http://www.weizmann.ac.il/molgen/TopologYeast was created. Each algorithm is compared with experimental data and a poor agreement is found. The analysis suggests that more systematic data on protein topology are required to increase the training sets for prediction algorithms and to have accurate knowledge of membrane protein topology.
Collapse
Affiliation(s)
- Uri Weill
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Nir Cohen
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Amir Fadel
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Shifra Ben-Dor
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Maya Schuldiner
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, 7610001, Israel
| |
Collapse
|
13
|
Kamemura K, Chihara T. Multiple functions of the ER-resident VAP and its extracellular role in neural development and disease. J Biochem 2019; 165:391-400. [PMID: 30726905 DOI: 10.1093/jb/mvz011] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 02/05/2019] [Indexed: 12/14/2022] Open
Abstract
VAP (VAMP-associated protein) is a type II integral membrane protein of the endoplasmic reticulum (ER), and its N-terminal major sperm protein (MSP) domain faces the cytoplasmic side. VAP functions as a tethering molecule at the membrane contact sites between the ER and intracellular organelles and regulates a wide variety of cellular functions, including lipid transport, membrane trafficking, microtubule reorganization and unfolded protein response. VAP-point mutations in human vapb are strongly associated with amyotrophic lateral sclerosis. Importantly, the MSP domain of VAP is cleaved, secreted and interacts with the axon growth cone guidance receptors (Eph, Robo, Lar), suggesting that VAP could function as a circulating hormone similar to the Caenorhabditis elegans MSP protein. In this review, we discuss not only the intracellular functions of VAP but also the recently discovered extracellular functions and their implications for neurodegenerative disease.
Collapse
Affiliation(s)
- Kosuke Kamemura
- Department of Biological Science, Graduate School of Science, Hiroshima University, Hiroshima, Japan
| | - Takahiro Chihara
- Department of Biological Science, Graduate School of Science, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
14
|
Mao D, Lin G, Tepe B, Zuo Z, Tan KL, Senturk M, Zhang S, Arenkiel BR, Sardiello M, Bellen HJ. VAMP associated proteins are required for autophagic and lysosomal degradation by promoting a PtdIns4P-mediated endosomal pathway. Autophagy 2019; 15:1214-1233. [PMID: 30741620 DOI: 10.1080/15548627.2019.1580103] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Mutations in the ER-associated VAPB/ALS8 protein cause amyotrophic lateral sclerosis and spinal muscular atrophy. Previous studies have argued that ER stress may underlie the demise of neurons. We find that loss of VAP proteins (VAPs) leads to an accumulation of aberrant lysosomes and impairs lysosomal degradation. VAPs mediate ER to Golgi tethering and their loss may affect phosphatidylinositol-4-phosphate (PtdIns4P) transfer between these organelles. We found that loss of VAPs elevates PtdIns4P levels in the Golgi, leading to an expansion of the endosomal pool derived from the Golgi. Fusion of these endosomes with lysosomes leads to an increase in lysosomes with aberrant acidity, contents, and shape. Importantly, reducing PtdIns4P levels with a PtdIns4-kinase (PtdIns4K) inhibitor, or removing a single copy of Rab7, suppress macroautophagic/autophagic degradation defects as well as behavioral defects observed in Drosophila Vap33 mutant larvae. We propose that a failure to tether the ER to the Golgi when VAPs are lost leads to an increase in Golgi PtdIns4P levels, and an expansion of endosomes resulting in an accumulation of dysfunctional lysosomes and a failure in proper autophagic lysosomal degradation. Abbreviations: ALS: amyotrophic lateral sclerosis; CSF: cerebrospinal fluid; CERT: ceramide transfer protein; FFAT: two phenylalanines in an acidic tract; MSP: major sperm proteins; OSBP: oxysterol binding protein; PH: pleckstrin homology; PtdIns4P: phosphatidylinositol-4-phosphate; PtdIns4K: phosphatidylinositol 4-kinase; UPR: unfolded protein response; VAMP: vesicle-associated membrane protein; VAPA/B: mammalian VAPA and VAPB proteins; VAPs: VAMP-associated proteins (referring to Drosophila Vap33, and human VAPA and VAPB).
Collapse
Affiliation(s)
- Dongxue Mao
- a Program in Developmental Biology , Baylor College of Medicine , Houston , TX , USA
| | - Guang Lin
- b Department of Molecular and Human Genetics , Baylor College of Medicine , Houston , TX , USA
| | - Burak Tepe
- a Program in Developmental Biology , Baylor College of Medicine , Houston , TX , USA
| | - Zhongyuan Zuo
- b Department of Molecular and Human Genetics , Baylor College of Medicine , Houston , TX , USA
| | - Kai Li Tan
- a Program in Developmental Biology , Baylor College of Medicine , Houston , TX , USA
| | - Mumine Senturk
- a Program in Developmental Biology , Baylor College of Medicine , Houston , TX , USA
| | - Sheng Zhang
- c The Brown Foundation Institute of Molecular Medicine , University of Texas McGovern Medical School at Houston , Houston , TX , USA.,d Department of Neurobiology and Anatomy , University of Texas McGovern Medical School at Houston , Houston , TX , USA.,e Programs in Genetics & Epigenetics and Neuroscience , University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences (MD Anderson UTHealth GSBS) , Houston , TX , USA
| | - Benjamin R Arenkiel
- a Program in Developmental Biology , Baylor College of Medicine , Houston , TX , USA.,b Department of Molecular and Human Genetics , Baylor College of Medicine , Houston , TX , USA.,f Texas Children's Hospital , Jan and Dan Duncan Neurological Research Institute , Houston , TX , USA.,g Department of Neuroscience , Baylor College of Medicine , Houston , TX , USA
| | - Marco Sardiello
- b Department of Molecular and Human Genetics , Baylor College of Medicine , Houston , TX , USA.,f Texas Children's Hospital , Jan and Dan Duncan Neurological Research Institute , Houston , TX , USA
| | - Hugo J Bellen
- a Program in Developmental Biology , Baylor College of Medicine , Houston , TX , USA.,b Department of Molecular and Human Genetics , Baylor College of Medicine , Houston , TX , USA.,f Texas Children's Hospital , Jan and Dan Duncan Neurological Research Institute , Houston , TX , USA.,g Department of Neuroscience , Baylor College of Medicine , Houston , TX , USA.,h Baylor College of Medicine , Howard Hughes Medical Institute , Houston , TX , USA
| |
Collapse
|
15
|
Singh B, Khurana P, Khurana JP, Singh P. Gene encoding vesicle-associated membrane protein-associated protein from Triticum aestivum (TaVAP) confers tolerance to drought stress. Cell Stress Chaperones 2018; 23:411-428. [PMID: 29116579 PMCID: PMC5904086 DOI: 10.1007/s12192-017-0854-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 10/08/2017] [Accepted: 10/13/2017] [Indexed: 12/21/2022] Open
Abstract
Abiotic stresses like drought, salinity, high and low temperature, and submergence are major factors that limit the crop productivity. Hence, identification of genes associated with stress response in crops is a prerequisite for improving their tolerance to adverse environmental conditions. In an earlier study, we had identified a drought-inducible gene, vesicle-associated membrane protein-associated protein (TaVAP), in developing grains of wheat. In this study, we demonstrate that TaVAP is able to complement yeast and Arabidopsis mutants, which are impaired in their respective orthologs, signifying functional conservation. Constitutive expression of TaVAP in Arabidopsis imparted tolerance to water stress conditions without any apparent yield penalty. Enhanced tolerance to water stress was associated with maintenance of higher relative water content, photosynthetic efficiency, and antioxidant activities. Compared to wild type, the TaVAP-overexpressing plants showed enhanced lateral root proliferation that was attributed to higher endogenous levels of IAA. These studies are the first to demonstrate that TaVAP plays a critical role in growth and development in plants, and is a potential candidate for improving the abiotic stress tolerance in crop plants.
Collapse
Affiliation(s)
- Brinderjit Singh
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
- Interdisciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India
| | - Paramjit Khurana
- Interdisciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India
| | - Jitendra P Khurana
- Interdisciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India
| | - Prabhjeet Singh
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, Punjab, 143005, India.
| |
Collapse
|
16
|
Gaspar ML, Chang YF, Jesch SA, Aregullin M, Henry SA. Interaction between repressor Opi1p and ER membrane protein Scs2p facilitates transit of phosphatidic acid from the ER to mitochondria and is essential for INO1 gene expression in the presence of choline. J Biol Chem 2017; 292:18713-18728. [PMID: 28924045 DOI: 10.1074/jbc.m117.809970] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 09/08/2017] [Indexed: 12/20/2022] Open
Abstract
In the yeast Saccharomyces cerevisiae, the Opi1p repressor controls the expression of INO1 via the Opi1p/Ino2p-Ino4p regulatory circuit. Inositol depletion favors Opi1p interaction with both Scs2p and phosphatidic acid at the endoplasmic reticulum (ER) membrane. Inositol supplementation, however, favors the translocation of Opi1p from the ER into the nucleus, where it interacts with the Ino2p-Ino4p complex, attenuating transcription of INO1 A strain devoid of Scs2p (scs2Δ) and a mutant, OPI1FFAT, lacking the ability to interact with Scs2p were utilized to examine the specific role(s) of the Opi1p-Scs2p interaction in the regulation of INO1 expression and overall lipid metabolism. Loss of the Opi1p-Scs2p interaction reduced INO1 expression and conferred inositol auxotrophy. Moreover, inositol depletion in strains lacking this interaction resulted in Opi1p being localized to sites of lipid droplet formation, coincident with increased synthesis of triacylglycerol. Supplementation of choline to inositol-depleted growth medium led to decreased TAG synthesis in all three strains. However, in strains lacking the Opi1p-Scs2p interaction, Opi1p remained in the nucleus, preventing expression of INO1 These data support the conclusion that a specific pool of phosphatidic acid, associated with lipid droplet formation in the perinuclear ER, is responsible for the initial rapid exit of Opi1p from the nucleus to the ER and is required for INO1 expression in the presence of choline. Moreover, the mitochondria-specific phospholipid, cardiolipin, was significantly reduced in both strains compromised for Opi1p-Scs2p interaction, indicating that this interaction is required for the transfer of phosphatidic acid from the ER to the mitochondria for cardiolipin synthesis.
Collapse
Affiliation(s)
- Maria L Gaspar
- From the Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853
| | - Yu-Fang Chang
- From the Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853
| | - Stephen A Jesch
- From the Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853
| | - Manuel Aregullin
- From the Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853
| | - Susan A Henry
- From the Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853
| |
Collapse
|
17
|
Amyotrophic Lateral Sclerosis Pathogenesis Converges on Defects in Protein Homeostasis Associated with TDP-43 Mislocalization and Proteasome-Mediated Degradation Overload. Curr Top Dev Biol 2017; 121:111-171. [DOI: 10.1016/bs.ctdb.2016.07.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
18
|
James AW, Gowsalya R, Nachiappan V. Dolichyl pyrophosphate phosphatase-mediated N -glycosylation defect dysregulates lipid homeostasis in Saccharomyces cerevisiae. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:1705-1718. [DOI: 10.1016/j.bbalip.2016.08.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 08/05/2016] [Accepted: 08/09/2016] [Indexed: 12/28/2022]
|
19
|
Masuda M, Oshima A, Noguchi T, Kagiwada S. Induction of intranuclear membranes by overproduction of Opi1p and Scs2p, regulators for yeast phospholipid biosynthesis, suggests a mechanism for Opi1p nuclear translocation. J Biochem 2015; 159:351-61. [PMID: 26590299 DOI: 10.1093/jb/mvv105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 09/24/2015] [Indexed: 12/17/2022] Open
Abstract
In the yeast Saccharomyces cerevisiae, the expression of phospholipid biosynthetic genes is suppressed by the Opi1p negative regulator. Opi1p enters into the nucleoplasm from the nuclear membrane to suppress the gene expression under repressing conditions. The binding of Opi1p to the nuclear membrane requires an integral membrane protein, Scs2p and phosphatidic acid (PA). Although it is demonstrated that the association of Opi1p with membranes is affected by PA levels, how Opi1p dissociates from Scs2p is unknown. Here, we found that fluorescently labelled Opi1p accumulated on a perinuclear region in an Scs2p-dependent manner. Electron microscopic analyses indicated that the perinuclear region consists of intranuclear membranes, which may be formed by the invagination of the nuclear membrane due to the accumulation of Opi1p and Scs2p in a restricted area. As expected, localization of Opi1p and Scs2p in the intranuclear membranes was detected by immunoelectron microscopy. Biochemical analysis showed that Opi1p recovered in the membrane fraction was detergent insoluble while Scs2p was soluble, implying that Opi1p behaves differently from Scs2p in the fraction. We hypothesize that Opi1p dissociates from Scs2p after targeting to the nuclear membrane, making it possible to be released from the membrane quickly when PA levels decrease.
Collapse
Affiliation(s)
- Miki Masuda
- Department of Biological Sciences, Faculty of Science, Nara Women's University, Nara 630-8506, Japan
| | - Ayaka Oshima
- Department of Biological Sciences, Faculty of Science, Nara Women's University, Nara 630-8506, Japan
| | - Tetsuko Noguchi
- Department of Biological Sciences, Faculty of Science, Nara Women's University, Nara 630-8506, Japan
| | - Satoshi Kagiwada
- Department of Biological Sciences, Faculty of Science, Nara Women's University, Nara 630-8506, Japan
| |
Collapse
|
20
|
Kara M, Axton RA, Jackson M, Ghaffari S, Buerger K, Watt AJ, Taylor AH, Orr B, Hardy WR, Peault B, Forrester LM. A Role for MOSPD1 in Mesenchymal Stem Cell Proliferation and Differentiation. Stem Cells 2015; 33:3077-86. [PMID: 26175344 PMCID: PMC4737116 DOI: 10.1002/stem.2102] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 05/31/2015] [Indexed: 12/12/2022]
Abstract
Mesenchymal stem cells (MSCs) isolated from many tissues including bone marrow and fat can be expanded in vitro and can differentiate into a range of different cell types such as bone, cartilage, and adipocytes. MSCs can also exhibit immunoregulatory properties when transplanted but, although a number of clinical trials using MSCs are in progress, the molecular mechanisms that control their production, proliferation, and differentiation are poorly understood. We identify MOSPD1 as a new player in this process. We generated MOSPD1-null embryonic stem cells (ESCs) and demonstrate that they are deficient in their ability to differentiate into a number of cell lineages including osteoblasts, adipocytes, and hematopoietic progenitors. The self-renewal capacity of MOSPD1-null ESCs was normal and they exhibited no obvious defects in early germ layer specification nor in epithelial to mesenchymal transition (EMT), indicating that MOSPD1 functions after these key steps in the differentiation process. Mesenchymal stem cell (MSC)-like cells expressing CD73, CD90, and CD105 were generated from MOSPD1-null ESCs but their growth rate was significantly impaired implying that MOSPD1 plays a role in MSC proliferation. Phenotypic deficiencies exhibited by MOSPD1-null ESCs were rescued by exogenous expression of MOSPD1, but not MOSPD3 indicating distinct functional properties of these closely related genes. Our in vitro studies were supported by RNA-sequencing data that confirmed expression of Mospd1 mRNA in cultured, proliferating perivascular pre-MSCs isolated from human tissue. This study adds to the growing body of knowledge about the function of this largely uncharacterized protein family and introduces a new player in the control of MSC proliferation and differentiation.
Collapse
Affiliation(s)
- Madina Kara
- MRC Centre for Regenerative MedicineEdinburghUK
| | | | | | | | | | | | | | - Brigid Orr
- MRC Centre for Regenerative MedicineEdinburghUK
| | - Winters R. Hardy
- Orthopaedic Hospital Research CenterUniversity of California at Los AngelesLos AngelesCaliforniaUSA
| | - Bruno Peault
- MRC Centre for Regenerative MedicineEdinburghUK
- Orthopaedic Hospital Research CenterUniversity of California at Los AngelesLos AngelesCaliforniaUSA
| | | |
Collapse
|
21
|
Weber-Boyvat M, Kentala H, Peränen J, Olkkonen VM. Ligand-dependent localization and function of ORP-VAP complexes at membrane contact sites. Cell Mol Life Sci 2015; 72:1967-87. [PMID: 25420878 PMCID: PMC11114005 DOI: 10.1007/s00018-014-1786-x] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 10/17/2014] [Accepted: 11/17/2014] [Indexed: 01/08/2023]
Abstract
Oxysterol-binding protein/OSBP-related proteins (ORPs) constitute a conserved family of sterol/phospholipid-binding proteins with lipid transporter or sensor functions. We investigated the spatial occurrence and regulation of the interactions of human OSBP/ORPs or the S. cerevisiae orthologs, the Osh (OSBP homolog) proteins, with their endoplasmic reticulum (ER) anchors, the VAMP-associated proteins (VAPs), by employing bimolecular fluorescence complementation and pull-down set-ups. The ORP-VAP interactions localize frequently at distinct subcellular sites, shown in several cases to represent membrane contact sites (MCSs). Using established ORP ligand-binding domain mutants and pull-down assays with recombinant proteins, we show that ORP liganding regulates the ORP-VAP association, alters the subcellular targeting of ORP-VAP complexes, or modifies organelle morphology. There is distinct protein specificity in the effects of the mutants on subcellular targeting of ORP-VAP complexes. We provide evidence that complexes of human ORP2 and VAPs at ER-lipid droplet interfaces regulate the hydrolysis of triglycerides and lipid droplet turnover. The data suggest evolutionarily conserved, complex ligand-dependent functions of ORP-VAP complexes at MCSs, with implications for cellular lipid homeostasis and signaling.
Collapse
Affiliation(s)
- Marion Weber-Boyvat
- Minerva Foundation Institute for Medical Research, Biomedicum 2U, Tukholmankatu 8, 00290 Helsinki, Finland
| | - Henriikka Kentala
- Minerva Foundation Institute for Medical Research, Biomedicum 2U, Tukholmankatu 8, 00290 Helsinki, Finland
| | - Johan Peränen
- Cell and Molecular Biology Program, Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland
| | - Vesa M. Olkkonen
- Minerva Foundation Institute for Medical Research, Biomedicum 2U, Tukholmankatu 8, 00290 Helsinki, Finland
- Institute of Biomedicine, Anatomy, University of Helsinki, 00014 Helsinki, Finland
| |
Collapse
|
22
|
Nair S, Traini M, Dawes IW, Perrone GG. Genome-wide analysis of Saccharomyces cerevisiae identifies cellular processes affecting intracellular aggregation of Alzheimer's amyloid-β42: importance of lipid homeostasis. Mol Biol Cell 2014; 25:2235-49. [PMID: 24870034 PMCID: PMC4116298 DOI: 10.1091/mbc.e13-04-0216] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Amyloid-β (Aβ)-containing plaques are a major neuropathological feature of Alzheimer's disease (AD). The two major isoforms of Aβ peptide associated with AD are Aβ40 and Aβ42, of which the latter is highly prone to aggregation. Increased presence and aggregation of intracellular Aβ42 peptides is an early event in AD progression. Improved understanding of cellular processes affecting Aβ42 aggregation may have implications for development of therapeutic strategies. Aβ42 fused to green fluorescent protein (Aβ42-GFP) was expressed in ∼4600 mutants of a Saccharomyces cerevisiae genome-wide deletion library to identify proteins and cellular processes affecting intracellular Aβ42 aggregation by assessing the fluorescence of Aβ42-GFP. This screening identified 110 mutants exhibiting intense Aβ42-GFP-associated fluorescence. Four major cellular processes were overrepresented in the data set, including phospholipid homeostasis. Disruption of phosphatidylcholine, phosphatidylserine, and/or phosphatidylethanolamine metabolism had a major effect on intracellular Aβ42 aggregation and localization. Confocal microscopy indicated that Aβ42-GFP localization in the phospholipid mutants was juxtaposed to the nucleus, most likely associated with the endoplasmic reticulum (ER)/ER membrane. These data provide a genome-wide indication of cellular processes that affect intracellular Aβ42-GFP aggregation and may have important implications for understanding cellular mechanisms affecting intracellular Aβ42 aggregation and AD disease progression.
Collapse
Affiliation(s)
- S Nair
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - M Traini
- Atherosclerosis Laboratory, ANZAC Research Institute, Concord Hospital, Concord, NSW 2139, Australia
| | - I W Dawes
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, AustraliaRamaciotti Centre for Gene Function Analysis, University of New South Wales, Sydney, NSW 2052, Australia
| | - G G Perrone
- School of Science and Health, University of Western Sydney, Penrith, NSW 1797, Australia
| |
Collapse
|
23
|
Disruption of theSCS2Ortholog in the Alkane-Assimilating YeastYarrowia lipolyticaImpairs Its Growth onn-Decane, but Does Not Impair Inositol Prototrophy. Biosci Biotechnol Biochem 2014; 72:2219-23. [DOI: 10.1271/bbb.80230] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
24
|
Markgraf DF, Klemm RW, Junker M, Hannibal-Bach HK, Ejsing CS, Rapoport TA. An ER protein functionally couples neutral lipid metabolism on lipid droplets to membrane lipid synthesis in the ER. Cell Rep 2013; 6:44-55. [PMID: 24373967 PMCID: PMC3947819 DOI: 10.1016/j.celrep.2013.11.046] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 11/01/2013] [Accepted: 11/27/2013] [Indexed: 01/22/2023] Open
Abstract
Eukaryotic cells store neutral lipids such as triacylglycerol (TAG) in lipid droplets (LDs). Here, we have addressed how LDs are functionally linked to the endoplasmic reticulum (ER). We show that, in S. cerevisiae, LD growth is sustained by LD-localized enzymes. When LDs grow in early stationary phase, the diacylglycerol acyl-transferase Dga1p moves from the ER to LDs and is responsible for all TAG synthesis from diacylglycerol (DAG). During LD breakdown in early exponential phase, an ER membrane protein (Ice2p) facilitates TAG utilization for membrane-lipid synthesis. Ice2p has a cytosolic domain with affinity for LDs and is required for the efficient utilization of LD-derived DAG in the ER. Ice2p breaks a futile cycle on LDs between TAG degradation and synthesis, promoting the rapid relocalization of Dga1p to the ER. Our results show that Ice2p functionally links LDs with the ER and explain how cells switch neutral lipid metabolism from storage to consumption.
Collapse
Affiliation(s)
- Daniel F Markgraf
- Department of Cell Biology, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Robin W Klemm
- Department of Cell Biology, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Mirco Junker
- Department of Cell Biology, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Hans K Hannibal-Bach
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense, Denmark
| | - Christer S Ejsing
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense, Denmark
| | - Tom A Rapoport
- Department of Cell Biology, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
25
|
Kajiwara K, Ikeda A, Aguilera-Romero A, Castillon GA, Kagiwada S, Hanada K, Riezman H, Muñiz M, Funato K. Osh proteins regulate COPII-mediated vesicular transport of ceramide from the endoplasmic reticulum in budding yeast. J Cell Sci 2013; 127:376-87. [PMID: 24213531 DOI: 10.1242/jcs.132001] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Lipids synthesized at the endoplasmic reticulum (ER) are delivered to the Golgi by vesicular and non-vesicular pathways. ER-to-Golgi transport is crucial for maintaining the different membrane lipid composition and identities of organelles. Despite their importance, mechanisms regulating transport remain elusive. Here we report that in yeast coat protein complex II (COPII) vesicle-mediated transport of ceramide from the ER to the Golgi requires oxysterol-binding protein homologs, Osh proteins, which have been implicated in lipid homeostasis. Because Osh proteins are not required to transport proteins to the Golgi, these results indicate a specific requirement for the Osh proteins in the transport of ceramide. In addition, we provide evidence that Osh proteins play a negative role in COPII vesicle biogenesis. Together, our data suggest that ceramide transport and sphingolipid levels between the ER and Golgi are maintained by two distinct functions of Osh proteins, which negatively regulate COPII vesicle formation and positively control a later stage, presumably fusion of ceramide-enriched vesicles with Golgi compartments.
Collapse
Affiliation(s)
- Kentaro Kajiwara
- Department of Biofunctional Science and Technology, Graduate School of Biosphere Science, Hiroshima University, Hiroshima 739-8528, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Qiu L, Qiao T, Beers M, Tan W, Wang H, Yang B, Xu Z. Widespread aggregation of mutant VAPB associated with ALS does not cause motor neuron degeneration or modulate mutant SOD1 aggregation and toxicity in mice. Mol Neurodegener 2013; 8:1. [PMID: 23281774 PMCID: PMC3538568 DOI: 10.1186/1750-1326-8-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Accepted: 12/29/2012] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND A proline-to-serine substitution at position-56 (P56S) of vesicle-associated membrane protein-associated protein B (VAPB) causes a form of dominantly inherited motor neuron disease (MND), including typical and atypical amyotrophic lateral sclerosis (ALS) and a mild late-onset spinal muscular atrophy (SMA). VAPB is an integral endoplasmic reticulum (ER) protein and has been implicated in various cellular processes, including ER stress, the unfolded protein response (UPR) and Ca2+ homeostasis. However, it is unclear how the P56S mutation leads to neurodegeneration and muscle atrophy in patients. The formation of abnormal VAPB-positive inclusions by mutant VAPB suggests a possible toxic gain of function as an underlying mechanism. Furthermore, the amount of VAPB protein is reported to be reduced in sporadic ALS patients and mutant SOD1G93A mice, leading to the hypothesis that wild type VAPB plays a role in the pathogenesis of ALS without VAPB mutations. RESULTS To investigate the pathogenic mechanism in vivo, we generated human wild type (wtVAPB) and mutant VAPB (muVAPB) transgenic mice that expressed the transgenes broadly in the CNS. We observed robust VAPB-positive aggregates in the spinal cord of muVAPB transgenic mice. However, we failed to find an impairment of motor function and motor neuron degeneration. We also did not detect any change in the endogenous VAPB level or evidence for induction of the unfolded protein response (UPR) and coaggregation of VAPA with muVAPB. Furthermore, we crossed these VAPB transgenic mice with mice that express mutant SOD1G93A and develop motor neuron degeneration. Overexpression of neither wtVAPB nor muVAPB modulated the protein aggregation and disease progression in the SOD1G93A mice. CONCLUSION Overexpression of VAPBP56S mutant to approximately two-fold of the endogenous VAPB in mouse spinal cord produced abundant VAPB aggregates but was not sufficient to cause motor dysfunction or motor neuron degeneration. Furthermore, overexpression of either muVAPB or wtVAPB does not modulate the course of ALS in SOD1G93A mice. These results suggest that changes in wild type VAPB do not play a significant role in ALS cases that are not caused by VAPB mutations. Furthermore, these results suggest that muVAPB aggregates are innocuous and do not cause motor neuron degeneration by a gain-of-toxicity, and therefore, a loss of function may be the underlying mechanism.
Collapse
Affiliation(s)
- Linghua Qiu
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01602, USA.
| | | | | | | | | | | | | |
Collapse
|
27
|
De Vos KJ, Mórotz GM, Stoica R, Tudor EL, Lau KF, Ackerley S, Warley A, Shaw CE, Miller CC. VAPB interacts with the mitochondrial protein PTPIP51 to regulate calcium homeostasis. Hum Mol Genet 2012; 21:1299-311. [PMID: 22131369 PMCID: PMC3284118 DOI: 10.1093/hmg/ddr559] [Citation(s) in RCA: 442] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Revised: 11/01/2011] [Accepted: 11/22/2011] [Indexed: 12/12/2022] Open
Abstract
A proline to serine substitution at position 56 in the gene encoding vesicle-associated membrane protein-associated protein B (VAPB) causes some dominantly inherited familial forms of motor neuron disease including amyotrophic lateral sclerosis (ALS) type-8. VAPB is an integral endoplasmic reticulum (ER) protein whose amino-terminus projects into the cytosol. Overexpression of ALS mutant VAPBP56S disrupts ER structure but the mechanisms by which it induces disease are not properly understood. Here we show that VAPB interacts with the outer mitochondrial membrane protein, protein tyrosine phosphatase-interacting protein 51 (PTPIP51). ER and mitochondria are both stores for intracellular calcium (Ca(2+)) and Ca(2+) exchange between these organelles occurs at regions of ER that are closely apposed to mitochondria. These are termed mitochondria-associated membranes (MAM). We demonstrate that VAPB is a MAM protein and that loss of either VAPB or PTPIP51 perturbs uptake of Ca(2+) by mitochondria following release from ER stores. Finally, we demonstrate that VAPBP56S has altered binding to PTPIP51 and increases Ca(2+) uptake by mitochondria following release from ER stores. Damage to ER, mitochondria and Ca(2+) homeostasis are all seen in ALS and we discuss the implications of our findings in this context.
Collapse
Affiliation(s)
- Kurt J. De Vos
- Department of Neuroscience and
- Department of Clinical Neurosciences, MRC Centre for Neurodegeneration Research, Institute of Psychiatry, King's College London, London SE5 8AF, UK
| | | | | | | | - Kwok-Fai Lau
- Department of Neuroscience and
- Department of Biochemistry, The Chinese University of Hong Kong, Shatin, NT, Hong Kong and
| | | | - Alice Warley
- Centre for Ultrastructural Imaging, King's College London, London SE1 1UL, UK
| | - Christopher E. Shaw
- Department of Clinical Neurosciences, MRC Centre for Neurodegeneration Research, Institute of Psychiatry, King's College London, London SE5 8AF, UK
| | - Christopher C.J. Miller
- Department of Neuroscience and
- Department of Clinical Neurosciences, MRC Centre for Neurodegeneration Research, Institute of Psychiatry, King's College London, London SE5 8AF, UK
| |
Collapse
|
28
|
Felberbaum R, Wilson NR, Cheng D, Peng J, Hochstrasser M. Desumoylation of the endoplasmic reticulum membrane VAP family protein Scs2 by Ulp1 and SUMO regulation of the inositol synthesis pathway. Mol Cell Biol 2012; 32:64-75. [PMID: 22025676 PMCID: PMC3255706 DOI: 10.1128/mcb.05878-11] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Accepted: 10/11/2011] [Indexed: 11/20/2022] Open
Abstract
Posttranslational protein modification by the ubiquitin-like SUMO protein is critical to eukaryotic cell regulation, but much remains unknown regarding its operation and substrates. Here we report that specific mutations in the Saccharomyces cerevisiae Ulp1 SUMO protease, including its coiled-coil (CC) domain, lead to the accumulation of distinct sumoylated proteins in vivo. A prominent ~50-kDa sumoylated protein accumulates in a Ulp1 CC mutant. The protein was identified as Scs2, an endoplasmic reticulum (ER) membrane protein that regulates phosphatidylinositol synthesis and lipid trafficking. Mutation of lysine 180 of Scs2 abolishes its sumoylation. Notably, impairment of either cellular sumoylation or cellular desumoylation mechanisms inhibits cell growth in the absence of inositol and exacerbates the inositol auxotrophy caused by deletion of SCS2. Mutants lacking the Ulp2 SUMO protease are the most severely affected, and this defect was traced to the mutants' impaired ability to induce transcription of INO1, which encodes the rate-limiting enzyme of inositol biosynthesis. Conversely, inositol starvation induces a striking change in the profiles of total cellular SUMO conjugates. These results provide the first evidence of cross-regulation between the SUMO and inositol pathways, including the sumoylation of an ER membrane protein central to phospholipid synthesis and phosphoinositide signaling.
Collapse
Affiliation(s)
| | - Nicole R. Wilson
- Molecular Biophysics & Biochemistry, Yale University, New Haven, Connecticut, USA
| | - Dongmei Cheng
- Department of Human Genetics, Center for Neurodegenerative Diseases, Emory University, Atlanta, Georgia, USA
| | - Junmin Peng
- Department of Human Genetics, Center for Neurodegenerative Diseases, Emory University, Atlanta, Georgia, USA
| | - Mark Hochstrasser
- Departments of Molecular, Cell, & Developmental Biology
- Molecular Biophysics & Biochemistry, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
29
|
Lacomble S, Vaughan S, Deghelt M, Moreira-Leite FF, Gull K. A Trypanosoma brucei protein required for maintenance of the flagellum attachment zone and flagellar pocket ER domains. Protist 2011; 163:602-15. [PMID: 22186015 PMCID: PMC3405529 DOI: 10.1016/j.protis.2011.10.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Revised: 10/31/2011] [Accepted: 10/31/2011] [Indexed: 01/24/2023]
Abstract
Trypanosomes and Leishmanias are important human parasites whose cellular architecture is centred on the single flagellum. In trypanosomes, this flagellum is attached to the cell along a complex flagellum attachment zone (FAZ), comprising flagellar and cytoplasmic components, the integrity of which is required for correct cell morphogenesis and division. The cytoplasmic FAZ cytoskeleton is conspicuously associated with a sheet of endoplasmic reticulum termed the ‘FAZ ER’. In the present work, 3D electron tomography of bloodstream form trypanosomes was used to clarify the nature of the FAZ ER. We also identified TbVAP, a T. brucei protein whose knockdown by RNAi in procyclic form cells leads to a dramatic reduction in the FAZ ER, and in the ER associated with the flagellar pocket. TbVAP is an orthologue of VAMP-associated proteins (VAPs), integral ER membrane proteins whose mutation in humans has been linked to familial motor neuron disease. The localisation of tagged TbVAP and the phenotype of TbVAP RNAi in procyclic form trypanosomes are consistent with a function for TbVAP in the maintenance of sub-populations of the ER associated with the FAZ and the flagellar pocket. Nevertheless, depletion of TbVAP did not affect cell viability or cell cycle progression.
Collapse
Affiliation(s)
- Sylvain Lacomble
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom
| | | | | | | | | |
Collapse
|
30
|
Abstract
The yeast Saccharomyces cerevisiae, with its full complement of organelles, synthesizes membrane phospholipids by pathways that are generally common to those found in higher eukaryotes. Phospholipid synthesis in yeast is regulated in response to a variety of growth conditions (e.g., inositol supplementation, zinc depletion, and growth stage) by a coordination of genetic (e.g., transcriptional activation and repression) and biochemical (e.g., activity modulation and localization) mechanisms. Phosphatidate (PA), whose cellular levels are controlled by the activities of key phospholipid synthesis enzymes, plays a central role in the transcriptional regulation of phospholipid synthesis genes. In addition to the regulation of gene expression, phosphorylation of key phospholipid synthesis catalytic and regulatory proteins controls the metabolism of phospholipid precursors and products.
Collapse
Affiliation(s)
- George M Carman
- Department of Food Science and Rutgers Center for Lipid Research, Rutgers University, New Brunswick, New Jersey 08901, USA.
| | | |
Collapse
|
31
|
Wilson JD, Thompson SL, Barlowe C. Yet1p-Yet3p interacts with Scs2p-Opi1p to regulate ER localization of the Opi1p repressor. Mol Biol Cell 2011; 22:1430-9. [PMID: 21372176 PMCID: PMC3084666 DOI: 10.1091/mbc.e10-07-0559] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
A major phospholipid regulatory circuit in yeast is controlled by Scs2p, an ER membrane protein that binds the transcriptional repressor protein Opi1p. Here we show that the Yet1p–Yet3p complex acts in derepression of INO1 through physical association with Scs2p–Opi1p. Lipid sensing mechanisms at the endoplasmic reticulum (ER) coordinate an array of biosynthetic pathways. A major phospholipid regulatory circuit in yeast is controlled by Scs2p, an ER membrane protein that binds the transcriptional repressor protein Opi1p. Cells grown in the absence of inositol sequester Scs2p–Opi1p at the ER and derepress target genes including INO1. We recently reported that Yet1p and Yet3p, the yeast homologues of BAP29 and BAP31, are required for normal growth in the absence of inositol. Here we show that the Yet1p–Yet3p complex acts in derepression of INO1 through physical association with Scs2p–Opi1p. Yet complex binding to Scs2p–Opi1p was enhanced by inositol starvation, although the interaction between Scs2p and Opi1p was not influenced by YET1 or YET3 deletion. Interestingly, live-cell imaging analysis indicated that Opi1p does not efficiently relocalize to the ER during inositol starvation in yet3Δ cells. Together our data demonstrate that a physical association between the Yet complex and Scs2p–Opi1p is required for proper localization of the Opi1p repressor to ER membranes and subsequent INO1 derepression.
Collapse
Affiliation(s)
- Joshua D Wilson
- Department of Biochemistry, Dartmouth Medical School, Hanover, NH 03755, USA
| | | | | |
Collapse
|
32
|
Gkogkas C, Wardrope C, Hannah M, Skehel P. The ALS8-associated mutant VAPB(P56S) is resistant to proteolysis in neurons. J Neurochem 2011; 117:286-94. [PMID: 21275991 DOI: 10.1111/j.1471-4159.2011.07201.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
VAMP/synaptobrevin associated proteins A and B (VAPA and VAPB), are type IV membrane proteins enriched on ER and Golgi membranes. Both VAPA and B interact with cytoplasmic lipid transport proteins and cytoskeletal elements to maintain the structure and composition of ER and Golgi membranes. Truncated forms of both proteins are present in some tissues but the functional significance of this is not clear. In rodents processing of VAPA occurs in most tissues, however, truncated forms of VAPB have only been reported in brain tissue. It is demonstrated here that the extent of VAPB processing in rat increases during postnatal development and that it is restricted to neurons. The C-terminal polypeptide generated by this cleavage reaction remains associated with cell membranes, but its subcellular distribution is distinct from the full-length protein. A mutant form of VAPB is associated with a familial form of neurodegenerative disease, amyotrophic lateral sclerosis type 8. The mutant protein, VAPB(P56S) , is resistant to truncation in primary neuronal cultures, although remains sensitive to some form of proteolysis when over-expressed in HEK293 cells. These data suggest that neuronal cells have a particular requirement for VAPB proteolysis and that reduced levels of processed polypeptides may contribute to the neurodegeneration associated with amyotrophic lateral sclerosis type 8.
Collapse
Affiliation(s)
- Christos Gkogkas
- Centre for Integrative Physiology, The University of Edinburgh, Edinburgh, UK
| | | | | | | |
Collapse
|
33
|
Villa-García MJ, Choi MS, Hinz FI, Gaspar ML, Jesch SA, Henry SA. Genome-wide screen for inositol auxotrophy in Saccharomyces cerevisiae implicates lipid metabolism in stress response signaling. Mol Genet Genomics 2011; 285:125-49. [PMID: 21136082 PMCID: PMC3037835 DOI: 10.1007/s00438-010-0592-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Accepted: 11/20/2010] [Indexed: 12/13/2022]
Abstract
Inositol auxotrophy (Ino(-) phenotype) in budding yeast has classically been associated with misregulation of INO1 and other genes involved in lipid metabolism. To identify all non-essential yeast genes that are necessary for growth in the absence of inositol, we carried out a genome-wide phenotypic screening for deletion mutants exhibiting Ino(-) phenotypes under one or more growth conditions. We report the identification of 419 genes, including 385 genes not previously reported, which exhibit this phenotype when deleted. The identified genes are involved in a wide range of cellular processes, but are particularly enriched in those affecting transcription, protein modification, membrane trafficking, diverse stress responses, and lipid metabolism. Among the Ino(-) mutants involved in stress response, many exhibited phenotypes that are strengthened at elevated temperature and/or when choline is present in the medium. The role of inositol in regulation of lipid metabolism and stress response signaling is discussed.
Collapse
Affiliation(s)
- Manuel J. Villa-García
- Department of Molecular Biology and Genetics, Cornell University, 249 Biotechnology Building, Ithaca, NY 14853, USA
| | - Myung Sun Choi
- Department of Molecular Biology and Genetics, Cornell University, 249 Biotechnology Building, Ithaca, NY 14853, USA
| | - Flora I. Hinz
- Department of Molecular Biology and Genetics, Cornell University, 249 Biotechnology Building, Ithaca, NY 14853, USA
| | - María L. Gaspar
- Department of Molecular Biology and Genetics, Cornell University, 249 Biotechnology Building, Ithaca, NY 14853, USA
| | - Stephen A. Jesch
- Department of Molecular Biology and Genetics, Cornell University, 249 Biotechnology Building, Ithaca, NY 14853, USA
| | - Susan A. Henry
- Department of Molecular Biology and Genetics, Cornell University, 249 Biotechnology Building, Ithaca, NY 14853, USA
| |
Collapse
|
34
|
Chen HJ, Anagnostou G, Chai A, Withers J, Morris A, Adhikaree J, Pennetta G, de Belleroche JS. Characterization of the properties of a novel mutation in VAPB in familial amyotrophic lateral sclerosis. J Biol Chem 2010; 285:40266-81. [PMID: 20940299 PMCID: PMC3001007 DOI: 10.1074/jbc.m110.161398] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2010] [Revised: 10/01/2010] [Indexed: 12/13/2022] Open
Abstract
Following the mutation screening of genes known to cause amyotrophic lateral sclerosis (ALS) in index cases from 107 familial ALS (FALS) kindred, a point mutation was identified in vesicle-associated membrane protein-associated protein B (VAPB), or VAMP-associated protein B, causing an amino acid change from threonine to isoleucine at codon 46 (T46I) in one FALS case but not in 257 controls. This is an important finding because it is only the second mutation identified in this gene that causes ALS. In order to investigate the pathogenic effects of this mutation, we have used a motor neuron cell line and tissue-specific expression of the mutant protein in Drosophila. We provide substantial evidence for the pathogenic effects of this mutation in abolishing the effect of wild type VAPB in the unfolded protein response, promoting ubiquitin aggregate formation, and activating neuronal cell death. We also report that expression of the mutant protein in the Drosophila motor system induces aggregate deposition, endoplasmic reticulum disorganization, and chaperone up-regulation both in neurons and in muscles. Our integrated analysis of the pathogenic effect of the T46I mutation and the previously identified P56S mutation indicate extensive commonalities in the disease mechanism for these two mutations. In summary, we show that this newly identified mutation in human FALS has a pathogenic effect, supporting and reinforcing the role of VAPB as a causative gene of ALS.
Collapse
Affiliation(s)
- Han-Jou Chen
- From the Centre for Neuroscience, Division of Experimental Medicine, Faculty of Medicine, Hammersmith Hospital, Imperial College London, London W12 0NN, United Kingdom and
| | - Georgia Anagnostou
- From the Centre for Neuroscience, Division of Experimental Medicine, Faculty of Medicine, Hammersmith Hospital, Imperial College London, London W12 0NN, United Kingdom and
| | - Andrea Chai
- the Euan MacDonald Centre for Motor Neurone Disease Research, Centre for Integrative Physiology, School of Biomedical Sciences, University of Edinburgh, Edinburgh EH8 9XD, United Kingdom
| | - James Withers
- the Euan MacDonald Centre for Motor Neurone Disease Research, Centre for Integrative Physiology, School of Biomedical Sciences, University of Edinburgh, Edinburgh EH8 9XD, United Kingdom
| | - Alex Morris
- From the Centre for Neuroscience, Division of Experimental Medicine, Faculty of Medicine, Hammersmith Hospital, Imperial College London, London W12 0NN, United Kingdom and
| | - Jason Adhikaree
- From the Centre for Neuroscience, Division of Experimental Medicine, Faculty of Medicine, Hammersmith Hospital, Imperial College London, London W12 0NN, United Kingdom and
| | - Giuseppa Pennetta
- the Euan MacDonald Centre for Motor Neurone Disease Research, Centre for Integrative Physiology, School of Biomedical Sciences, University of Edinburgh, Edinburgh EH8 9XD, United Kingdom
| | - Jackie S. de Belleroche
- From the Centre for Neuroscience, Division of Experimental Medicine, Faculty of Medicine, Hammersmith Hospital, Imperial College London, London W12 0NN, United Kingdom and
| |
Collapse
|
35
|
Nakamichi S, Yamanaka K, Suzuki M, Watanabe T, Kagiwada S. Human VAPA and the yeast VAP Scs2p with an altered proline distribution can phenocopy amyotrophic lateral sclerosis-associated VAPB(P56S). Biochem Biophys Res Commun 2010; 404:605-9. [PMID: 21144830 DOI: 10.1016/j.bbrc.2010.12.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2010] [Accepted: 12/02/2010] [Indexed: 10/18/2022]
Abstract
A human isoform of the vesicle-associated membrane protein-associated proteins (VAPs), VAPB, causes amyotrophic lateral sclerosis eight due to the missense mutation of Pro-56, whereas human VAPA and the yeast VAP Scs2p proteins are not significantly affected by similar mutations. We have found that VAPA and Scs2p have three prolines present in a conserved region however VAPB has only two prolines in this region. Consequently, this mutation in VAPB (VAPB(P56S)) leaves a single proline in this region whereas other VAPs can retain two proline residues even if the proline equivalent to the Pro-56 is substituted. When Scs2p and VAPA were mutated to be equivalent to VAPB(P56S) in terms of the distribution of proline residues in this region, Scs2p became inactive and aggregated, and VAPA localize to membranous aggregates indistinguishable from those induced by VAPB(P56S). This suggests that the appropriate distribution of three conserved prolines, not the existence of a particular proline, confers VAPA and Scs2p resistance to the Pro-56 mutation and, therefore, is critical for VAP activities.
Collapse
Affiliation(s)
- Shoko Nakamichi
- Department of Biological Science and Environment, Graduate School of Humanities and Sciences, Nara Women's University, Nara 630-8506, Japan
| | | | | | | | | |
Collapse
|
36
|
Han SM, Cottee PA, Miller MA. Sperm and oocyte communication mechanisms controlling C. elegans fertility. Dev Dyn 2010; 239:1265-81. [PMID: 20034089 DOI: 10.1002/dvdy.22202] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
During sexual reproduction in many species, sperm and oocyte secrete diffusible signaling molecules to help orchestrate the biological symphony of fertilization. In the Caenorhabditis elegans gonad, bidirectional signaling between sperm and oocyte is important for guiding sperm to the fertilization site and inducing oocyte maturation. The molecular mechanisms that regulate sperm guidance and oocyte maturation are being delineated. Unexpectedly, these mechanisms are providing insight into human diseases, such as amyotrophic lateral sclerosis, spinal muscular atrophy, and cancer. Here we review sperm and oocyte communication in C. elegans and discuss relationships to human disorders.
Collapse
Affiliation(s)
- Sung Min Han
- Department of Cell Biology, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | | | | |
Collapse
|
37
|
Suzuki H, Kanekura K, Levine TP, Kohno K, Olkkonen VM, Aiso S, Matsuoka M. ALS-linked P56S-VAPB, an aggregated loss-of-function mutant of VAPB, predisposes motor neurons to ER stress-related death by inducing aggregation of co-expressed wild-type VAPB. J Neurochem 2010. [DOI: 10.1111/j.0022-3042.2008.05857.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
38
|
Fasana E, Fossati M, Ruggiano A, Brambillasca S, Hoogenraad CC, Navone F, Francolini M, Borgese N. A VAPB mutant linked to amyotrophic lateral sclerosis generates a novel form of organized smooth endoplasmic reticulum. FASEB J 2009; 24:1419-30. [PMID: 20008544 DOI: 10.1096/fj.09-147850] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
VAPB (vesicle-associated membrane protein-associated protein B) is an endoplasmic reticulum (ER)-resident tail-anchored adaptor protein involved in lipid transport. A dominantly inherited mutant, P56S-VAPB, causes a familial form of amyotrophic lateral sclerosis (ALS) and forms poorly characterized inclusion bodies in cultured cells. To provide a cell biological basis for the understanding of mutant VAPB pathogenicity, we investigated its biogenesis and the inclusions that it generates. Translocation assays in cell-free systems and in cultured mammalian cells were used to investigate P56S-VAPB membrane insertion, and the inclusions were characterized by confocal imaging and electron microscopy. We found that mutant VAPB inserts post-translationally into ER membranes in a manner indistinguishable from the wild-type protein but that it rapidly clusters to form inclusions that remain continuous with the rest of the ER. Inclusions were induced by the mutant also when it was expressed at levels comparable to the endogenous wild-type protein. Ultrastructural analysis revealed that the inclusions represent a novel form of organized smooth ER (OSER) consisting in a limited number of parallel cisternae (usually 2 or 3) interleaved by a approximately 30 nm-thick electron-dense cytosolic layer. Our results demonstrate that the ALS-linked VAPB mutant causes dramatic ER restructuring that may underlie its pathogenicity in motoneurons.
Collapse
Affiliation(s)
- Elisa Fasana
- Consiglio Nazionale delle Ricerche Institute of Neuroscience, via Vanvitelli 32, 20129 Milano, Italy
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Suzuki H, Kanekura K, Levine TP, Kohno K, Olkkonen VM, Aiso S, Matsuoka M. ALS-linked P56S-VAPB, an aggregated loss-of-function mutant of VAPB, predisposes motor neurons to ER stress-related death by inducing aggregation of co-expressed wild-type VAPB. J Neurochem 2009; 108:973-985. [PMID: 19183264 DOI: 10.1111/j.1471-4159.2008.05857.x] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A point mutation (P56S) in the vapb gene encoding an endoplasmic reticulum (ER)-integrated membrane protein [vesicle-associated membrane protein-associated protein B (VAPB)] causes autosomal-dominant amyotrophic lateral sclerosis. In our earlier study, we showed that VAPB may be involved in the IRE1/XBP1 signaling of the unfolded protein response, an ER reaction to inhibit accumulation of unfolded/ misfolded proteins, while P56S-VAPB formed insoluble aggregates and lost the ability to mediate the pathway (lossof- function), and suggested that P56S-VAPB promoted the aggregation of co-expressed wild-type (wt)-VAPB. In this study, a yeast inositol-auxotrophy assay has confirmed that P56S-VAPB is functionally a null mutant in vivo. The interaction between P56S-VAPB and wt-VAPB takes place with a high affinity through the major sperm protein domain in addition to the interaction through the C-terminal transmembrane domain. Consequently, wt-VAPB is speculated to preferentially interact with co-expressed P56S-VAPB, leading to the recruitment of wt-VAPB into cytosolic aggregates and the attenuation of its normal function. We have also found that expression of P56S-VAPB increases the vulnerability of NSC34 motoneuronal cells to ER stress-induced death. These results lead us to hypothesize that the total loss of VAPB function in unfolded protein response, induced by one P56S mutant allele, may contribute to the development of P56SVAPB- induced amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- Hiroaki Suzuki
- Department of Cell Biology and Neuroscience, KEIO University School of Medicine, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
40
|
Saita S, Shirane M, Natume T, Iemura SI, Nakayama KI. Promotion of neurite extension by protrudin requires its interaction with vesicle-associated membrane protein-associated protein. J Biol Chem 2009; 284:13766-13777. [PMID: 19289470 DOI: 10.1074/jbc.m807938200] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Protrudin is a protein that contains a Rab11-binding domain and a FYVE (lipid-binding) domain and that functions to promote neurite formation through interaction with the GDP-bound form of Rab11. Protrudin also contains a short sequence motif designated FFAT (two phenylalanines in an acidic tract), which in other proteins has been shown to mediate binding to vesicle-associated membrane protein-associated protein (VAP). We now show that protrudin associates and colocalizes with VAP-A, an isoform of VAP expressed in the endoplasmic reticulum. Both the interaction between protrudin and VAP-A as well as the induction of process formation by protrudin were markedly inhibited by mutation of the FFAT motif. Furthermore, depletion of VAP-A by RNA interference resulted in mislocalization of protrudin as well as in inhibition of neurite outgrowth induced by nerve growth factor in rat pheochromocytoma PC12 cells. These defects resulting from depletion of endogenous rat VAP-A in PC12 cells were corrected by forced expression of (RNA interference-resistant) human VAP-A but not by VAP-A mutants that have lost the ability to interact with protrudin. These results suggest that VAP-A is an important regulator both of the subcellular localization of protrudin and of its ability to stimulate neurite outgrowth.
Collapse
Affiliation(s)
- Shotaro Saita
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Fukuoka 812-8582, Japan; CREST, Japan Science and Technology Corporation, Kawaguchi, Saitama 332-0012, Japan
| | - Michiko Shirane
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Fukuoka 812-8582, Japan; CREST, Japan Science and Technology Corporation, Kawaguchi, Saitama 332-0012, Japan
| | - Tohru Natume
- National Institutes of Advanced Industrial Science, Kohtoh-ku, Tokyo 135-0064, Japan
| | - Shun-Ichiro Iemura
- National Institutes of Advanced Industrial Science, Kohtoh-ku, Tokyo 135-0064, Japan
| | - Keiichi I Nakayama
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Fukuoka 812-8582, Japan; CREST, Japan Science and Technology Corporation, Kawaguchi, Saitama 332-0012, Japan.
| |
Collapse
|
41
|
ER stress and unfolded protein response in amyotrophic lateral sclerosis. Mol Neurobiol 2009; 39:81-9. [PMID: 19184563 DOI: 10.1007/s12035-009-8054-3] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2008] [Accepted: 01/15/2009] [Indexed: 12/11/2022]
Abstract
Several theories on the pathomechanism of amyotrophic lateral sclerosis (ALS) have been proposed: misfolded protein aggregates, mitochondrial dysfunction, increased glutamate toxicity, increased oxidative stress, disturbance of intracellular trafficking, and so on. In parallel, a number of drugs that have been developed to alleviate the putative key pathomechanism of ALS have been under clinical trials. Unfortunately, however, almost all studies have finished unsuccessfully. This fact indicates that the key ALS pathomechanism still remains a tough enigma. Recent studies with autopsied ALS patients and studies using mutant SOD1 (mSOD1) transgenic mice have suggested that endoplasmic reticulum (ER) stress-related toxicity may be a relevant ALS pathomechanism. Levels of ER stress-related proteins were upregulated in motor neurons in the spinal cords of ALS patients. It was also shown that mSOD1, translocated to the ER, caused ER stress in neurons in the spinal cord of mSOD1 transgenic mice. We recently reported that the newly identified ALS-causative gene, vesicle-associated membrane protein-associated protein B (VAPB), plays a pivotal role in unfolded protein response (UPR), a physiological reaction against ER stress. The ALS-linked P56S mutation in VAPB nullifies the function of VAPB, resulting in motoneuronal vulnerability to ER stress. In this review, we summarize recent advances in research on the ALS pathomechanism especially addressing the putative involvement of ER stress and UPR dysfunction.
Collapse
|
42
|
Mousley CJ, Tyeryar K, Ile KE, Schaaf G, Brost RL, Boone C, Guan X, Wenk MR, Bankaitis VA. Trans-Golgi network and endosome dynamics connect ceramide homeostasis with regulation of the unfolded protein response and TOR signaling in yeast. Mol Biol Cell 2008; 19:4785-803. [PMID: 18753406 DOI: 10.1091/mbc.e08-04-0426] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Synthetic genetic array analyses identify powerful genetic interactions between a thermosensitive allele (sec14-1(ts)) of the structural gene for the major yeast phosphatidylinositol transfer protein (SEC14) and a structural gene deletion allele (tlg2Delta) for the Tlg2 target membrane-soluble N-ethylmaleimide-sensitive factor attachment protein receptor. The data further demonstrate Sec14 is required for proper trans-Golgi network (TGN)/endosomal dynamics in yeast. Paradoxically, combinatorial depletion of Sec14 and Tlg2 activities elicits trafficking defects from the endoplasmic reticulum, and these defects are accompanied by compromise of the unfolded protein response (UPR). UPR failure occurs downstream of Hac1 mRNA splicing, and it is further accompanied by defects in TOR signaling. The data link TGN/endosomal dynamics with ceramide homeostasis, UPR activity, and TOR signaling in yeast, and they identify the Sit4 protein phosphatase as a primary conduit through which ceramides link to the UPR. We suggest combinatorial Sec14/Tlg2 dysfunction evokes inappropriate turnover of complex sphingolipids in endosomes. One result of this turnover is potentiation of ceramide-activated phosphatase-mediated down-regulation of the UPR. These results provide new insight into Sec14 function, and they emphasize the TGN/endosomal system as a central hub for homeostatic regulation in eukaryotes.
Collapse
Affiliation(s)
- Carl J Mousley
- Department of Cell and Developmental Biology, Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC 27599-7090, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Tsuda H, Han SM, Yang Y, Tong C, Lin YQ, Mohan K, Haueter C, Zoghbi A, Harati Y, Kwan J, Miller MA, Bellen HJ. The amyotrophic lateral sclerosis 8 protein VAPB is cleaved, secreted, and acts as a ligand for Eph receptors. Cell 2008; 133:963-77. [PMID: 18555774 PMCID: PMC2494862 DOI: 10.1016/j.cell.2008.04.039] [Citation(s) in RCA: 180] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2007] [Revised: 02/04/2008] [Accepted: 04/20/2008] [Indexed: 11/22/2022]
Abstract
VAP proteins (human VAPB/ALS8, Drosophila VAP33, and C. elegans VPR-1) are homologous proteins with an amino-terminal major sperm protein (MSP) domain and a transmembrane domain. The MSP domain is named for its similarity to the C. elegans MSP protein, a sperm-derived hormone that binds to the Eph receptor and induces oocyte maturation. A point mutation (P56S) in the MSP domain of human VAPB is associated with Amyotrophic lateral sclerosis (ALS), but the mechanisms underlying the pathogenesis are poorly understood. Here we show that the MSP domains of VAP proteins are cleaved and secreted ligands for Eph receptors. The P58S mutation in VAP33 leads to a failure to secrete the MSP domain as well as ubiquitination, accumulation of inclusions in the endoplasmic reticulum, and an unfolded protein response. We propose that VAP MSP domains are secreted and act as diffusible hormones for Eph receptors. This work provides insight into mechanisms that may impact the pathogenesis of ALS.
Collapse
Affiliation(s)
- Hiroshi Tsuda
- Department of Molecular and Human Genetics, Baylor College of Medicine, University of Alabama, Birmingham, Alabama
| | - Sung Min Han
- Department of Cell Biology, School of Medicine, University of Alabama, Birmingham, Alabama
| | - Youfeng Yang
- Department of Cell Biology, School of Medicine, University of Alabama, Birmingham, Alabama
| | - Chao Tong
- Department of Molecular and Human Genetics, Baylor College of Medicine, University of Alabama, Birmingham, Alabama
| | - Yong Qi Lin
- Howard Hughes Medical Institute, Baylor College of Medicine, Houston, Texas 77030
| | - Kriti Mohan
- Department of Molecular and Human Genetics, Baylor College of Medicine, University of Alabama, Birmingham, Alabama
| | - Claire Haueter
- Howard Hughes Medical Institute, Baylor College of Medicine, Houston, Texas 77030
| | - Anthony Zoghbi
- Department of Molecular and Human Genetics, Baylor College of Medicine, University of Alabama, Birmingham, Alabama
| | - Yadollah Harati
- Department of Neurology, Baylor College of Medicine, Houston, Texas 77030
| | - Justin Kwan
- Department of Neurology, Baylor College of Medicine, Houston, Texas 77030
| | - Michael A. Miller
- Department of Cell Biology, School of Medicine, University of Alabama, Birmingham, Alabama
| | - Hugo J. Bellen
- Department of Molecular and Human Genetics, Baylor College of Medicine, University of Alabama, Birmingham, Alabama
- Howard Hughes Medical Institute, Baylor College of Medicine, Houston, Texas 77030
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas 77030
| |
Collapse
|
44
|
Ratnaparkhi A, Lawless GM, Schweizer FE, Golshani P, Jackson GR. A Drosophila model of ALS: human ALS-associated mutation in VAP33A suggests a dominant negative mechanism. PLoS One 2008; 3:e2334. [PMID: 18523548 PMCID: PMC2390852 DOI: 10.1371/journal.pone.0002334] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2007] [Accepted: 04/25/2008] [Indexed: 01/01/2023] Open
Abstract
ALS8 is caused by a dominant mutation in an evolutionarily conserved protein, VAPB (vesicle-associated membrane protein (VAMP)-associated membrane protein B)/ALS8). We have established a fly model of ALS8 using the corresponding mutation in Drosophila VAPB (dVAP33A) and examined the effects of this mutation on VAP function using genetic and morphological analyses. By simultaneously assessing the effects of VAPwt and VAPP58S on synaptic morphology and structure, we demonstrate that the phenotypes produced by neuronal expression of VAPP58S resemble VAP loss of function mutants and are opposite those of VAP overexpression, suggesting that VAPP58S may function as a dominant negative. This is brought about by aggregation of VAPP58S and recruitment of wild type VAP into these aggregates. Importantly, we also demonstrate that the ALS8 mutation in dVAP33A interferes with BMP signaling pathways at the neuromuscular junction, identifying a new mechanism underlying pathogenesis of ALS8. Furthermore, we show that mutant dVAP33A can serve as a powerful tool to identify genetic modifiers of VAPB. This new fly model of ALS, with its robust pathological phenotypes, should for the first time allow the power of unbiased screens in Drosophila to be applied to study of motor neuron diseases.
Collapse
Affiliation(s)
- Anuradha Ratnaparkhi
- Department of Neurology, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, California, United States of America
| | - George M. Lawless
- Department of Neurology, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, California, United States of America
| | - Felix E. Schweizer
- Department of Neurobiology, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, California, United States of America
| | - Peyman Golshani
- Department of Neurology, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, California, United States of America
| | - George R. Jackson
- Department of Neurology, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, California, United States of America
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
45
|
Lev S, Ben Halevy D, Peretti D, Dahan N. The VAP protein family: from cellular functions to motor neuron disease. Trends Cell Biol 2008; 18:282-90. [PMID: 18468439 DOI: 10.1016/j.tcb.2008.03.006] [Citation(s) in RCA: 184] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2008] [Revised: 03/24/2008] [Accepted: 03/31/2008] [Indexed: 01/10/2023]
Abstract
The VAMP-associated proteins (VAPs) are highly conserved integral endoplasmic reticulum membrane proteins implicated in diverse cellular functions, including the regulation of lipid transport and homeostasis, membrane trafficking, neurotransmitter release, stabilization of presynaptic microtubules, and the unfolded protein response. Recently, a single missense mutation within the human VAP-B gene was identified in three forms of familial motor neuron disease. In this review, we integrate results from studies of yeast, fly and mammalian VAPs that provide insight into the structural features of these proteins, the network of VAP-interacting proteins, their possible physiological functions, and their involvement in motor neuron disease.
Collapse
Affiliation(s)
- Sima Lev
- The Molecular Cell Biology Department, Weizmann Institute of Science, Rehovot 76100, Israel.
| | | | | | | |
Collapse
|
46
|
Chai A, Withers J, Koh YH, Parry K, Bao H, Zhang B, Budnik V, Pennetta G. hVAPB, the causative gene of a heterogeneous group of motor neuron diseases in humans, is functionally interchangeable with its Drosophila homologue DVAP-33A at the neuromuscular junction. Hum Mol Genet 2008; 17:266-80. [PMID: 17947296 PMCID: PMC3516386 DOI: 10.1093/hmg/ddm303] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Motor neuron diseases (MNDs) are progressive neurodegenerative disorders characterized by selective death of motor neurons leading to spasticity, muscle wasting and paralysis. Human VAMP-associated protein B (hVAPB) is the causative gene of a clinically diverse group of MNDs including amyotrophic lateral sclerosis (ALS), atypical ALS and late-onset spinal muscular atrophy. The pathogenic mutation is inherited in a dominant manner. Drosophila VAMP-associated protein of 33 kDa A (DVAP-33A) is the structural homologue of hVAPB and regulates synaptic remodeling by affecting the size and number of boutons at neuromuscular junctions. Associated with these structural alterations are compensatory changes in the physiology and ultrastructure of synapses, which maintain evoked responses within normal boundaries. DVAP-33A and hVAPB are functionally interchangeable and transgenic expression of mutant DVAP-33A in neurons recapitulates major hallmarks of the human diseases including locomotion defects, neuronal death and aggregate formation. Aggregate accumulation is accompanied by a depletion of the endogenous protein from its normal localization. These findings pinpoint to a possible role of hVAPB in synaptic homeostasis and emphasize the relevance of our fly model in elucidating the patho-physiology underlying motor neuron degeneration in humans.
Collapse
Affiliation(s)
- Andrea Chai
- Center for Neuroscience Research, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Summerhall, Edinburgh EH9 1QH, UK
| | - James Withers
- Center for Neuroscience Research, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Summerhall, Edinburgh EH9 1QH, UK
| | - Young Ho Koh
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA 01605-2324, USA
- Ilsong Institute of Life Science, Hallym University, Anyang, Kyunggi-do 431-060, Korea
| | - Katherine Parry
- Center for Neuroscience Research, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Summerhall, Edinburgh EH9 1QH, UK
| | - Hong Bao
- Department of Zoology, University of Oklahoma, Norman, OK 73019, USA
| | - Bing Zhang
- Department of Zoology, University of Oklahoma, Norman, OK 73019, USA
| | - Vivian Budnik
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA 01605-2324, USA
| | - Giuseppa Pennetta
- Center for Neuroscience Research, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Summerhall, Edinburgh EH9 1QH, UK
| |
Collapse
|
47
|
González-Agüero M, Pavez L, Ibáñez F, Pacheco I, Campos-Vargas R, Meisel LA, Orellana A, Retamales J, Silva H, González M, Cambiazo V. Identification of woolliness response genes in peach fruit after post-harvest treatments. JOURNAL OF EXPERIMENTAL BOTANY 2008; 59:1973-86. [PMID: 18453640 PMCID: PMC2413281 DOI: 10.1093/jxb/ern069] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2007] [Revised: 01/28/2008] [Accepted: 01/31/2008] [Indexed: 05/21/2023]
Abstract
Woolliness is a physiological disorder of peaches and nectarines that becomes apparent when fruit are ripened after prolonged periods of cold storage. This disorder is of commercial importance since shipping of peaches to distant markets and storage before selling require low temperature. However, knowledge about the molecular basis of peach woolliness is still incomplete. To address this issue, a nylon macroarray containing 847 non-redundant expressed sequence tags (ESTs) from a ripe peach fruit cDNA library was developed and used. Gene expression changes of peach fruit (Prunus persica cv. O'Henry) ripened for 7 d at 21 degrees C (juicy fruit) were compared with those of fruit stored for 15 d at 4 degrees C and then ripened for 7 d at 21 degrees C (woolly fruit). A total of 106 genes were found to be differentially expressed between juicy and woolly fruit. Data analysis indicated that the activity of most of these genes (>90%) was repressed in the woolly fruit. In cold-stored peaches (cv. O'Henry), the expression level of selected genes (cobra, endopolygalacturonase, cinnamoyl-CoA-reductase, and rab11) was lower than in the juicy fruit, and it remained low in woolly peaches after ripening, a pattern that was conserved in woolly fruit from two other commercial cultivars (cv. Flamekist and cv. Elegant Lady). In addition, the results of this study indicate that molecular changes during fruit woolliness involve changes in the expression of genes associated with cell wall metabolism and endomembrane trafficking. Overall, the results reported here provide an initial characterization of the transcriptome activity of peach fruit under different post-harvest treatments.
Collapse
Affiliation(s)
- Mauricio González-Agüero
- Laboratorio de Bioinformática y Expresión Génica, INTA-Universidad de Chile, Millennium Nucleus Center for Genomics of the Cell (CGC), Santiago, Chile
| | - Leonardo Pavez
- Laboratorio de Bioinformática y Expresión Génica, INTA-Universidad de Chile, Millennium Nucleus Center for Genomics of the Cell (CGC), Santiago, Chile
| | - Freddy Ibáñez
- Laboratorio de Bioinformática y Expresión Génica, INTA-Universidad de Chile, Millennium Nucleus Center for Genomics of the Cell (CGC), Santiago, Chile
| | - Igor Pacheco
- Laboratorio de Bioinformática y Expresión Génica, INTA-Universidad de Chile, Millennium Nucleus Center for Genomics of the Cell (CGC), Santiago, Chile
| | | | - Lee A. Meisel
- Millennium Nucleus in Plant Cell Biology and Plant Biotechnology Center, Andres Bello University, Santiago, Chile
| | - Ariel Orellana
- Millennium Nucleus in Plant Cell Biology and Plant Biotechnology Center, Andres Bello University, Santiago, Chile
| | - Julio Retamales
- Faculty of Agricultural Sciences, Universidad de Chile, Santiago, Chile
| | - Herman Silva
- Millennium Nucleus in Plant Cell Biology and Plant Biotechnology Center, Andres Bello University, Santiago, Chile
| | - Mauricio González
- Laboratorio de Bioinformática y Expresión Génica, INTA-Universidad de Chile, Millennium Nucleus Center for Genomics of the Cell (CGC), Santiago, Chile
| | - Verónica Cambiazo
- Laboratorio de Bioinformática y Expresión Génica, INTA-Universidad de Chile, Millennium Nucleus Center for Genomics of the Cell (CGC), Santiago, Chile
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
48
|
Carman GM, Henry SA. Phosphatidic acid plays a central role in the transcriptional regulation of glycerophospholipid synthesis in Saccharomyces cerevisiae. J Biol Chem 2007; 282:37293-7. [PMID: 17981800 PMCID: PMC3565216 DOI: 10.1074/jbc.r700038200] [Citation(s) in RCA: 170] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- George M Carman
- Department of Food Science and the Rutgers Center for Lipid Research, Rutgers University, New Brunswick, NJ 08901, USA.
| | | |
Collapse
|
49
|
Saito S, Matsui H, Kawano M, Kumagai K, Tomishige N, Hanada K, Echigo S, Tamura S, Kobayashi T. Protein phosphatase 2Cepsilon is an endoplasmic reticulum integral membrane protein that dephosphorylates the ceramide transport protein CERT to enhance its association with organelle membranes. J Biol Chem 2007; 283:6584-93. [PMID: 18165232 DOI: 10.1074/jbc.m707691200] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protein phosphatase 2Cepsilon (PP2Cepsilon), a mammalian PP2C family member, is expressed in various tissues and is implicated in the negative regulation of stress-activated protein kinase pathways. We show that PP2Cepsilon is an endoplasmic reticulum (ER) transmembrane protein with a transmembrane domain at the amino terminus and the catalytic domain facing the cytoplasm. Yeast two-hybrid screening of a human brain library using PP2Cepsilon as bait resulted in the isolation of a cDNA that encoded vesicle-associated membrane protein-associated protein A (VAPA). VAPA is an ER resident integral membrane protein involved in recruiting lipid-binding proteins such as the ceramide transport protein CERT to the ER membrane. Expression of PP2Cepsilon resulted in dephosphorylation of CERT in a VAPA expression-dependent manner, which was accompanied by redistribution of CERT from the cytoplasm to the Golgi apparatus. The expression of PP2Cepsilon also enhanced the association between CERT and VAPA. In addition, knockdown of PP2Cepsilon expression by short interference RNA attenuated the interaction between CERT and VAPA and the sphingomyelin synthesis. These results suggest that CERT is a physiological substrate of PP2Cepsilon and that dephosphorylation of CERT by PP2Cepsilon may play an important role in the regulation of ceramide trafficking from the ER to the Golgi apparatus.
Collapse
Affiliation(s)
- Satoko Saito
- Department of Biochemistry, Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Craven RJ, Mallory JC, Hand RA. Regulation of Iron Homeostasis Mediated by the Heme-binding Protein Dap1 (Damage Resistance Protein 1) via the P450 Protein Erg11/Cyp51. J Biol Chem 2007; 282:36543-51. [DOI: 10.1074/jbc.m706770200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|