1
|
devI is an evolutionarily young negative regulator of Myxococcus xanthus development. J Bacteriol 2015; 197:1249-62. [PMID: 25645563 DOI: 10.1128/jb.02542-14] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED During starvation-induced development of Myxococcus xanthus, thousands of rod-shaped cells form mounds in which they differentiate into spores. The dev locus includes eight genes followed by clustered regularly interspaced short palindromic repeats (CRISPRs), comprising a CRISPR-Cas system (Cas stands for CRISPR associated) typically involved in RNA interference. Mutations in devS or devR of a lab reference strain permit mound formation but impair sporulation. We report that natural isolates of M. xanthus capable of normal development are highly polymorphic in the promoter region of the dev operon. We show that the dev promoter is predicted to be nonfunctional in most natural isolates and is dispensable for development of a laboratory reference strain. Moreover, deletion of the dev promoter or the small gene immediately downstream of it, here designated devI (development inhibitor), suppressed the sporulation defect of devS or devR mutants in the lab strain. Complementation experiments and the result of introducing a premature stop codon in devI support a model in which DevRS proteins negatively autoregulate expression of devI, whose 40-residue protein product DevI inhibits sporulation if overexpressed. DevI appears to act in a cell-autonomous manner since experiments with conditioned medium and with cell mixtures gave no indication of extracellular effects. Strikingly, we report that devI is entirely absent from most M. xanthus natural isolates and was only recently integrated into the developmental programs of some lineages. These results provide important new insights into both the evolutionary history of the dev operon and its mechanistic role in M. xanthus sporulation. IMPORTANCE Certain mutations in the dev CRISPR-Cas (clustered regularly interspaced short palindromic repeat-associated) system of Myxococcus xanthus impair sporulation. The link between development and a CRISPR-Cas system has been a mystery. Surprisingly, DNA sequencing of natural isolates revealed that many appear to lack a functional dev promoter, yet these strains sporulate normally. Deletion of the dev promoter or the small gene downstream of it suppressed the sporulation defect of a lab strain with mutations in dev genes encoding Cas proteins. The results support a model in which the Cas proteins DevRS prevent overexpression of the small gene devI, which codes for an inhibitor of sporulation. Phylogenetic analysis of natural isolates suggests that devI and the dev promoter were only recently acquired in some lineages.
Collapse
|
2
|
Transcription factor MrpC binds to promoter regions of hundreds of developmentally-regulated genes in Myxococcus xanthus. BMC Genomics 2014; 15:1123. [PMID: 25515642 PMCID: PMC4320627 DOI: 10.1186/1471-2164-15-1123] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 12/08/2014] [Indexed: 11/30/2022] Open
Abstract
Background Myxococcus xanthus is a bacterium that undergoes multicellular development when starved. Cells move to aggregation centers and form fruiting bodies in which cells differentiate into dormant spores. MrpC appears to directly activate transcription of fruA, which also codes for a transcription factor. Both MrpC and FruA are crucial for aggregation and sporulation. The two proteins bind cooperatively in promoter regions of some developmental genes. Results Chromatin immunoprecipitation followed by DNA sequencing (ChIP-seq) and bioinformatic analysis of cells that had formed nascent fruiting bodies revealed 1608 putative MrpC binding sites. These sites included several known to bind MrpC and they were preferentially distributed in likely promoter regions, especially those of genes up-regulated during development. The up-regulated genes include 22 coding for protein kinases. Some of these are known to be directly involved in fruiting body formation and several negatively regulate MrpC accumulation. Our results also implicate MrpC as a direct activator or repressor of genes coding for several transcription factors known to be important for development, for a major spore protein and several proteins important for spore formation, for proteins involved in extracellular A- and C-signaling, and intracellular ppGpp-signaling during development, and for proteins that control the fate of other proteins or play a role in motility. We found that the putative MrpC binding sites revealed by ChIP-seq are enriched for DNA sequences that strongly resemble a consensus sequence for MrpC binding proposed previously. MrpC2, an N-terminally truncated form of MrpC, bound to DNA sequences matching the consensus in all 11 cases tested. Using longer DNA segments containing 15 of the putative MrpC binding sites from our ChIP-seq analysis as probes in electrophoretic mobility shift assays, evidence for one or more MrpC2 binding site was observed in all cases and evidence for cooperative binding of MrpC2 and FruA was seen in 13 cases. Conclusions We conclude that MrpC and MrpC2 bind to promoter regions of hundreds of developmentally-regulated genes in M. xanthus, in many cases cooperatively with FruA. This binding very likely up-regulates protein kinases, and up- or down-regulates other proteins that profoundly influence the developmental process. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-1123) contains supplementary material, which is available to authorized users.
Collapse
|
3
|
Combinatorial regulation of fmgD by MrpC2 and FruA during Myxococcus xanthus development. J Bacteriol 2011; 193:1681-9. [PMID: 21257775 DOI: 10.1128/jb.01541-10] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Upon starvation, a dense population of rod-shaped Myxococcus xanthus bacteria coordinate their movements to construct mounds in which some of the cells differentiate to spherical spores. During this process of fruiting body formation, short-range C-signaling between cells regulates their movements and the expression of genes important for sporulation. C-signaling activates FruA, a transcription factor that binds cooperatively with another transcription factor, MrpC2, upstream of the fmgA and fmgBC promoters, activating transcription. We have found that a third C-signal-dependent gene, herein named fmgD, is subject to combinatorial control by FruA and MrpC2. The two proteins appear to bind cooperatively upstream of the fmgD promoter and activate transcription. FruA binds proximal to the fmgD promoter, as in the fmgBC promoter region, whereas MrpC2 binds proximal to the fmgA promoter. A novel feature of the fmgD promoter region is the presence of a second MrpC2 binding site partially overlapping the promoter and therefore likely to mediate repression. The downstream MrpC2 site appears to overlap the FruA site, so the two transcription factors may compete for binding, which in both cases appears to be cooperative with MrpC2 at the upstream site. We propose that binding of MrpC2 to the downstream site represses fmgD transcription until C-signaling causes the concentration of active FruA to increase sufficiently to outcompete the downstream MrpC2 for cooperative binding with the upstream MrpC2. This would explain why fmgD transcription begins later during development and is more dependent on C-signaling than transcription of fmgA and fmgBC.
Collapse
|
4
|
Combinatorial regulation by a novel arrangement of FruA and MrpC2 transcription factors during Myxococcus xanthus development. J Bacteriol 2009; 191:2753-63. [PMID: 19201804 DOI: 10.1128/jb.01818-08] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Myxococcus xanthus is a gram-negative soil bacterium that undergoes multicellular development upon nutrient limitation. Intercellular signals control cell movements and regulate gene expression during the developmental process. C-signal is a short-range signal essential for aggregation and sporulation. C-signaling regulates the fmgA gene by a novel mechanism involving cooperative binding of the response regulator FruA and the transcription factor/antitoxin MrpC2. Here, we demonstrate that regulation of the C-signal-dependent fmgBC operon is under similar combinatorial control by FruA and MrpC2, but the arrangement of binding sites is different than in the fmgA promoter region. MrpC2 was shown to bind to a crucial cis-regulatory sequence in the fmgBC promoter region. FruA was required for MrpC and/or MrpC2 to associate with the fmgBC promoter region in vivo, and expression of an fmgB-lacZ fusion was abolished in a fruA mutant. Recombinant FruA was shown to bind to an essential regulatory sequence located slightly downstream of the MrpC2-binding site in the fmgBC promoter region. Full-length FruA, but not its C-terminal DNA-binding domain, enhanced the formation of complexes with fmgBC promoter region DNA, when combined with MrpC2. This effect was nearly abolished with fmgBC DNA fragments having a mutation in either the MrpC2- or FruA-binding site, indicating that binding of both proteins to DNA is important for enhancement of complex formation. These results are similar to those observed for fmgA, where FruA and MrpC2 bind cooperatively upstream of the promoter, except that in the fmgA promoter region the FruA-binding site is located slightly upstream of the MrpC2-binding site. Cooperative binding of FruA and MrpC2 appears to be a conserved mechanism of gene regulation that allows a flexible arrangement of binding sites and coordinates multiple signaling pathways.
Collapse
|
5
|
Viswanathan P, Murphy K, Julien B, Garza AG, Kroos L. Regulation of dev, an operon that includes genes essential for Myxococcus xanthus development and CRISPR-associated genes and repeats. J Bacteriol 2007; 189:3738-50. [PMID: 17369305 PMCID: PMC1913320 DOI: 10.1128/jb.00187-07] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Expression of dev genes is important for triggering spore differentiation inside Myxococcus xanthus fruiting bodies. DNA sequence analysis suggested that dev and cas (CRISPR-associated) genes are cotranscribed at the dev locus, which is adjacent to CRISPR (clustered regularly interspaced short palindromic repeats). Analysis of RNA from developing M. xanthus confirmed that dev and cas genes are cotranscribed with a short upstream gene and at least two repeats of the downstream CRISPR, forming the dev operon. The operon is subject to strong, negative autoregulation during development by DevS. The dev promoter was identified. Its -35 and -10 regions resemble those recognized by M. xanthus sigma(A) RNA polymerase, the homolog of Escherichia coli sigma(70), but the spacer may be too long (20 bp); there is very little expression during growth. Induction during development relies on at least two positive regulatory elements located in the coding region of the next gene upstream. At least two positive regulatory elements and one negative element lie downstream of the dev promoter, such that the region controlling dev expression spans more than 1 kb. The results of testing different fragments for dev promoter activity in wild-type and devS mutant backgrounds strongly suggest that upstream and downstream regulatory elements interact functionally. Strikingly, the 37-bp sequence between the two CRISPR repeats that, minimally, are cotranscribed with dev and cas genes exactly matches a sequence in the bacteriophage Mx8 intP gene, which encodes a form of the integrase needed for lysogenization of M. xanthus.
Collapse
Affiliation(s)
- Poorna Viswanathan
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | | | | | | | | |
Collapse
|
6
|
Yoder-Himes DR, Kroos L. Regulation of the Myxococcus xanthus C-signal-dependent Omega4400 promoter by the essential developmental protein FruA. J Bacteriol 2006; 188:5167-76. [PMID: 16816188 PMCID: PMC1539954 DOI: 10.1128/jb.00318-06] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The bacterium Myxococcus xanthus employs extracellular signals to coordinate aggregation and sporulation during multicellular development. Extracellular, contact-dependent signaling that involves the CsgA protein (called C-signaling) activates FruA, a putative response regulator that governs a branched signaling pathway inside cells. One branch regulates cell movement, leading to aggregation. The other branch regulates gene expression, leading to sporulation. C-signaling is required for full expression of most genes induced after 6 h into development, including the gene identified by Tn5 lac insertion Omega4400. To determine if FruA is a direct regulator of Omega4400 transcription, a combination of in vivo and in vitro experiments was performed. Omega4400 expression was abolished in a fruA mutant. The DNA-binding domain of FruA bound specifically to DNA upstream of the promoter -35 region in vitro. Mutations between bp -86 and -77 greatly reduced binding. One of these mutations had been shown previously to reduce Omega4400 expression in vivo and make it independent of C-signaling. For the first time, chromatin immunoprecipitation (ChIP) experiments were performed on M. xanthus. The ChIP experiments demonstrated that FruA is associated with the Omega4400 promoter region late in development, even in the absence of C-signaling. Based on these results, we propose that FruA directly activates Omega4400 transcription to a moderate level prior to C-signaling and, in response to C-signaling, binds near bp -80 and activates transcription to a higher level. Also, the highly localized effects of mutations between bp -86 and -77 on DNA binding in vitro, together with recently published footprints, allow us to predict a consensus binding site of GTCG/CGA/G for the FruA DNA-binding domain.
Collapse
Affiliation(s)
- Deborah R Yoder-Himes
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | | |
Collapse
|
7
|
Viswanathan P, Singer M, Kroos L. Role of sigmaD in regulating genes and signals during Myxococcus xanthus development. J Bacteriol 2006; 188:3246-56. [PMID: 16621817 PMCID: PMC1447441 DOI: 10.1128/jb.188.9.3246-3256.2006] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Starvation-induced development of Myxococcus xanthus is an excellent model for biofilm formation because it involves cell-cell signaling to coordinate formation of multicellular mounds, gene expression, and cellular differentiation into spores. The role of sigma(D), an alternative sigma factor important for viability in stationary phase and for stress responses, was investigated during development by measuring signal production, gene expression, and sporulation of a sigD null mutant alone and upon codevelopment with wild-type cells or signaling mutants. The sigD mutant responded to starvation by inducing (p)ppGpp synthesis normally but was impaired for production of A-signal, an early cell density signal, and for production of the morphogenetic C-signal. Induction of early developmental genes was greatly reduced, and expression of those that depend on A-signal was not restored by codevelopment with wild-type cells, indicating that sigma(D) is needed for cellular responses to A-signal. Despite these early developmental defects, the sigD mutant responded to C-signal supplied by codeveloping wild-type cells by inducing a subset of late developmental genes. sigma(D) RNA polymerase is dispensable for transcription of this subset, but a distinct regulatory class, which includes genes essential for sporulation, requires sigma(D) RNA polymerase or a gene under its control, cell autonomously. The level of sigD transcript in a relA mutant during growth is much lower than in wild-type cells, suggesting that (p)ppGpp positively regulates sigD transcription in growing cells. The sigD transcript level drops in wild-type cells after 20 min of starvation and remains low after 40 min but rises in a relA mutant after 40 min, suggesting that (p)ppGpp negatively regulates sigD transcription early in development. We conclude that sigma(D) synthesized during growth occupies a position near the top of a regulatory hierarchy governing M. xanthus development, analogous to sigma factors that control biofilm formation of other bacteria.
Collapse
Affiliation(s)
- Poorna Viswanathan
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, USA
| | | | | |
Collapse
|
8
|
Nariya H, Inouye S. A protein Ser/Thr kinase cascade negatively regulates the DNA-binding activity of MrpC, a smaller form of which may be necessary for the Myxococcus xanthus development. Mol Microbiol 2006; 60:1205-17. [PMID: 16689796 DOI: 10.1111/j.1365-2958.2006.05178.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The developmental process of Myxococcus xanthus is achieved by the expression of a specific set of genes under the influence of developmental signals. MrpC is a member of the CRP family of transcription regulators, essential for fruA expression during development. The Pkn8-Pkn14 protein kinase cascade negatively regulates mrpC expression (H. Nariya and S. Inouye, 2005. Mol Microbiol 58: 367-379). Elevated levels of mrpC in pkn8 and pkn14 deletion strains (Deltapkn8 and Deltapkn14) induce untimely FruA production during vegetative growth resulting in significantly faster fruiting body development. mrpC expression is presumably activated by MrpA and MrpB which belong to a two-component His-Asp phosphorelay system and is proposed to require MrpC on the basis of the genetic analysis. In the present study, we demonstrate that MrpC binds to at least eight sites in the upstream region of its promoter. Based on analysis of MrpC binding sites in the mrpC and fruA promoter regions, there are two types of MrpC-specific binding sequences. Importantly, MrpC-binding activity was greatly reduced upon its phosphorylation by Pkn14. MrpC2, a transcription activator for fruA expression, lacks the N-terminal 25 residues of MrpC and exhibited four- and eightfold greater binding activity to the mrpC and fruA promoter regions respectively. Pkn14 was not able to phosphorylate MrpC2 and phosphorylates MrpC at Thr residue(s), thus Thr-21 and/or Thr-22 is (are) the likely site(s) of MrpC phosphorylation. MrpC2 was not detected in a lonD mutant in which fruA expression is low. Thus, the LonD protease essential for development may play an important role for the activation of MrpC-binding activity through its proteolytic processing to MrpC2, required for developmental progression. MrpC2, only detectable during development in DZF1, was present at high levels during vegetative growth in Deltapkn8 and Deltapkn14, thus MrpC phosphorylation may inhibit its proteolytic processing. Based on these results, we propose a mechanism by which two transcription factors essential to development, MrpC and FruA, are regulated during the M. xanthus life cycle.
Collapse
Affiliation(s)
- Hirofumi Nariya
- Department of Biochemistry, Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| | | |
Collapse
|
9
|
Viswanathan K, Viswanathan P, Kroos L. Mutational analysis of the Myxococcus xanthus Omega4406 promoter region reveals an upstream negative regulatory element that mediates C-signal dependence. J Bacteriol 2006; 188:515-24. [PMID: 16385042 PMCID: PMC1347317 DOI: 10.1128/jb.188.2.515-524.2006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
C signaling plays a key role in coordinating cell movement and differentiation during the multicellular developmental process of Myxococcus xanthus. C signaling regulates expression of genes induced after about 6 h into development, when cells are forming mounds. One gene whose expression depends absolutely on C signaling was identified by insertion of a transposable element at site Omega4406 which generated a transcriptional fusion between lacZ and an upstream promoter. We have investigated regulation of the Omega4406 promoter. A 5' deletion revealed a negative regulatory element located between bp -533 and -100 relative to the transcriptional start site. In the absence of this element, the promoter was still developmentally regulated but about fourfold more active. Also, the truncated promoter region retained normal dependence on two developmental regulators, FruA and DevS, but lost its dependence on the C-signaling protein CsgA. We infer that C signaling partially overcomes the negative effect of the upstream element on activity of the Omega4406 promoter. Deletion of downstream DNA between bp 50 and 140 caused a threefold loss in expression, suggesting that a positive regulatory element lies in this region. Additional positive and negative regulatory elements are present in the region from bp -69 to -49, based on the effects of multiple-base-pair mutations. Within this region, a 5-bp element and a C-box-like sequence resemble sequences found in other developmentally regulated M. xanthus promoter regions, but the effects of single-base-pair changes in these sequences suggest that each functions uniquely. We conclude that regulation of the Omega4406 promoter involves multiple positive and negative regulatory elements located upstream and downstream of the region typically bound by RNA polymerase.
Collapse
Affiliation(s)
- Kartik Viswanathan
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | | | | |
Collapse
|
10
|
Loconto J, Viswanathan P, Nowak SJ, Gloudemans M, Kroos L. Identification of the omega4406 regulatory region, a developmental promoter of Myxococcus xanthus, and a DNA segment responsible for chromosomal position-dependent inhibition of gene expression. J Bacteriol 2005; 187:4149-62. [PMID: 15937177 PMCID: PMC1151744 DOI: 10.1128/jb.187.12.4149-4162.2005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
When starved, Myxococcus xanthus cells send signals to each other that coordinate their movements, gene expression, and differentiation. C-signaling requires cell-cell contact, and increasing contact brought about by cell alignment in aggregates is thought to increase C-signaling, which induces expression of many genes, causing rod-shaped cells to differentiate into spherical spores. C-signaling involves the product of the csgA gene. A csgA mutant fails to express many genes that are normally induced after about 6 h into the developmental process. One such gene was identified by insertion of Tn5 lac at site omega4406 in the M. xanthus chromosome. Tn5 lac fused transcription of lacZ to the upstream omega4406 promoter. In this study, the omega4406 promoter region was identified by analyzing mRNA and by testing different upstream DNA segments for the ability to drive developmental lacZ expression in M. xanthus. The 5' end of omega4406 mRNA mapped to approximately 1.3 kb upstream of the Tn5 lac insertion. A 1.0-kb DNA segment from 0.8 to 1.8 kb upstream of the Tn5 lac insertion, when fused to lacZ and integrated at a phage attachment site in the M. xanthus chromosome, showed a similar pattern of developmental expression as Tn5 lac Omega4406. The DNA sequence upstream of the putative transcriptional start site was strikingly similar to promoter regions of other C-signal-dependent genes. Developmental lacZ expression from the 1.0-kb segment was abolished in a csgA mutant but was restored upon codevelopment of the csgA mutant with wild-type cells, which supply C-signal, demonstrating that the omega4406 promoter responds to extracellular C-signaling. Interestingly, the 0.8-kb DNA segment immediately upstream of Tn5 lac omega4406 inhibited expression of a downstream lacZ reporter in transcriptional fusions integrated at a phage attachment site in the chromosome but not at the normal omega4406 location. To our knowledge, this is the first example in M. xanthus of a chromosomal position-dependent effect on gene expression attributable to a DNA segment outside the promoter region.
Collapse
Affiliation(s)
- Jennifer Loconto
- Department of Biochemistry, Michigan State University, East Lansing, MI 48824, USA
| | | | | | | | | |
Collapse
|
11
|
Srinivasan D, Kroos L. Mutational analysis of the fruA promoter region demonstrates that C-Box and 5-base-pair elements are important for expression of an essential developmental gene of Myxococcus xanthus. J Bacteriol 2004; 186:5961-7. [PMID: 15317804 PMCID: PMC516827 DOI: 10.1128/jb.186.17.5961-5967.2004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Myxococcus xanthus uses extracellular signals during development to regulate gene expression. C-signaling regulates the expression of many genes induced after 6 h into development. FruA is a protein that is necessary for cells to respond to C-signaling, but expression of the fruA gene does not depend on C-signaling. Yet the fruA promoter region has a C box and a 5-bp element, similar to the promoter regions of several C-signal-dependent genes, where these sequences are crucial. Here, we show that the C box and 5-bp elements are important for expression of fruA, demonstrating for the first time that these sequences play a role in the expression of a gene that does not depend on C-signaling and is required for M. xanthus development.
Collapse
Affiliation(s)
- D Srinivasan
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | | |
Collapse
|
12
|
Nielsen M, Rasmussen AA, Ellehauge E, Treuner-Lange A, Søgaard-Andersen L. HthA, a putative DNA-binding protein, and HthB are important for fruiting body morphogenesis in Myxococcus xanthus. MICROBIOLOGY-SGM 2004; 150:2171-2183. [PMID: 15256560 DOI: 10.1099/mic.0.27151-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In response to starvation, Myxococcus xanthus initiates a developmental programme that results in the formation of spore-filled multicellular fruiting bodies. Fruiting body formation depends on the temporal and spatial coordination of aggregation and sporulation and involves temporally and spatially coordinated changes in gene expression. This paper reports the identification of two genes, hthA and hthB, that are important for fruiting body formation. hthA and hthB are co-transcribed, and transcription of the two genes decreases strongly during development. Loss of HthA and HthB function results in delayed aggregation, a reduction in the level of sporulation, and abnormal developmental gene expression. Extracellular complementation experiments showed that the developmental defects caused by loss of HthA and HthB function are not due to the inability to synthesize an intercellular signal required for fruiting body formation. HthA, independent of HthB, is required for aggregation. HthB, alone or in combination with HthA, is required for sporulation. HthA is predicted to contain a C-terminal helix-turn-helix DNA-binding domain. Intriguingly, the N-terminal part of HthA does not exhibit significant amino acid similarity to proteins in the databases. The HthB protein lacks homologues in the databases. The results suggest that HthA is a novel DNA-binding protein, which regulates transcription of genes important for aggregation, and that HthB, alone or in combination with HthA, stimulates sporulation.
Collapse
Affiliation(s)
- Mette Nielsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| | - Anders Aa Rasmussen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| | - Eva Ellehauge
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| | - Anke Treuner-Lange
- Institut für Mikrobiologie und Molekularbiologie, Interdisziplinäres Forschungszentrum der Universität Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| | - Lotte Søgaard-Andersen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| |
Collapse
|
13
|
Yoder DR, Kroos L. Mutational analysis of the Myxococcus xanthus Omicron4499 promoter region reveals shared and unique properties in comparison with other C-signal-dependent promoters. J Bacteriol 2004; 186:3766-76. [PMID: 15175290 PMCID: PMC419929 DOI: 10.1128/jb.186.12.3766-3776.2004] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The bacterium Myxococcus xanthus undergoes multicellular development during times of nutritional stress and uses extracellular signals to coordinate cell behavior. C-signal affects gene expression late in development, including that of Omega4499, an operon identified by insertion of Tn5 lac into the M. xanthus chromosome. The Omega4499 promoter region has several sequences in common with those found previously to be important for expression of other C-signal-dependent promoters. To determine if these sequences are important for Omega4499 promoter activity, the effects of mutations on expression of a downstream reporter gene were tested in M. xanthus. Although the promoter resembles those recognized by Escherichia coli sigma(54), mutational analysis implied that a sigma(70)-type sigma factor likely recognizes the promoter. A 7-bp sequence known as a C box and a 5-bp element located 6 bp upstream of the C box have been shown to be important for expression of other C-signal-dependent promoters. The Omega4499 promoter region has C boxes centered at -33 and -55 bp, with 5-bp elements located 7 and 8 bp upstream, respectively. A multiple-base-pair mutation in any of these sequences reduced Omega4499 promoter activity more than twofold. Single base-pair mutations in the C box centered at -33 bp yielded a different pattern of effects on expression than similar mutations in other C boxes, indicating that each functions somewhat differently. An element from about -81 to -77 bp exerted a twofold positive effect on expression but did not appear to be responsible for the C-signal dependence of the Omega4499 promoter. Mutations in sigD and sigE, which are genes that encode sigma factors, reduced expression from the Omega4499 promoter. The results provide further insight into the regulation of C-signal-dependent genes, demonstrating both shared and unique properties among the promoter regions so far examined.
Collapse
Affiliation(s)
- Deborah R Yoder
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | | |
Collapse
|
14
|
Yoder DR, Kroos L. Mutational analysis of the Myxococcus xanthus Omega4400 promoter region provides insight into developmental gene regulation by C signaling. J Bacteriol 2004; 186:661-71. [PMID: 14729691 PMCID: PMC321499 DOI: 10.1128/jb.186.3.661-671.2004] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Myxococcus xanthus utilizes extracellular signals during development to coordinate cell movement, differentiation, and changes in gene expression. One of these signals, the C signal, regulates the expression of many genes, including Omega4400, a gene identified by an insertion of Tn5 lac into the chromosome. Expression of Tn5 lac Omega4400 is reduced in csgA mutant cells, which fail to perform C signaling, and the promoter region has several sequences similar to sequences found in the regulatory regions of other C-signal-dependent genes. One such gene, Omega4403, depends absolutely on the C signal for expression, and its promoter region has been characterized previously by mutational analysis. To determine if the similar sequences within the Omega4400 and Omega4403 regulatory regions function in the same way, deletion analysis and site-directed mutagenesis of the Omega4400 promoter region were performed. A 7-bp sequence centered at -49 bp, termed a C box, is identical in the Omega4400 and Omega4403 promoter regions, yet mutations in the individual base pairs affected expression from the two promoters very differently. Also, a single-base-pair change within a similar 5-bp element, which is centered at -61 bp in both promoter regions, had very different effects on the activities of the two promoters. Further mutational analysis showed that two regions are important for Omega4400 expression; one region, from -63 to -31 bp, is required for Omega4400 expression, and the other, from -86 to -81 bp, exerts a two- to fourfold effect on expression and is at least partially responsible for the C signal dependence of the Omega4400 promoter. Mutations in sigD and sigE, which are genes that encode sigma factors, abolished and reduced Omega4400 expression, respectively. Expression of Omega4400 in actB or actC mutants correlated well with the altered levels of C signal produced in these mutants. Our results provide the first detailed analysis of an M. xanthus regulatory region that depends partially on C signaling for expression and indicate that similar DNA sequences in the Omega4400 and Omega4403 promoter regions function differently.
Collapse
Affiliation(s)
- Deborah R Yoder
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, USA
| | | |
Collapse
|
15
|
Caberoy NB, Welch RD, Jakobsen JS, Slater SC, Garza AG. Global mutational analysis of NtrC-like activators in Myxococcus xanthus: identifying activator mutants defective for motility and fruiting body development. J Bacteriol 2003; 185:6083-94. [PMID: 14526020 PMCID: PMC225022 DOI: 10.1128/jb.185.20.6083-6094.2003] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2003] [Accepted: 07/18/2003] [Indexed: 11/20/2022] Open
Abstract
The multicellular developmental cycle of Myxococcus xanthus requires large-scale changes in gene transcription, and recent findings indicate that NtrC-like activators play a prominent role in regulating these changes. In this study, we made insertions in 28 uncharacterized ntrC-like activator (nla) genes and found that eight of these insertions cause developmental defects. Hence, these results are consistent with the idea that M. xanthus uses a series of different NtrC-like activators during fruiting body development. Four of the eight developmental mutants we identified have motility defects. The nla1, nla19, and nla23 mutants show S-motility defects, while the nla24 mutant shows defects in both S-motility and A-motility. During development, aggregation of the nla1, nla19, and nla23 mutants is delayed slightly and the nla24 mutant shows no signs of aggregation or sporulation. The nla4, nla6, nla18, and nla28 mutants have no appreciable loss in motility, but they fail to aggregate and to sporulate normally. The nla18 mutant belongs to a special class of developmental mutants whose defects can be rescued when they are codeveloped with wild-type cells, suggesting that nla18 fails to produce a cell-cell signal required for development. The three remaining activator mutants, nla4, nla6, and nla28, appear to have complex developmental phenotypes that include deficiencies in cell-cell developmental signals.
Collapse
Affiliation(s)
- Nora B Caberoy
- School of Molecular Biosciences, Washington State University, Pullman, Washington 99164-4234, USA
| | | | | | | | | |
Collapse
|
16
|
Viswanathan P, Kroos L. cis Elements necessary for developmental expression of a Myxococcus xanthus gene that depends on C signaling. J Bacteriol 2003; 185:1405-14. [PMID: 12562812 PMCID: PMC142851 DOI: 10.1128/jb.185.4.1405-1414.2003] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cell contact-mediated C signaling coordinates morphogenesis and gene expression during development of Myxococcus xanthus. One promoter that depends on C signaling for transcription lies upstream of Omega4403, the site of a Tn5 lac insertion in the genome. The Omega4403 promoter has a C-box sequence centered at -49 bp that matches the consensus 5'-CAYYCCY-3', which is found in several C-signal-dependent promoters. Mutational analysis of the Omega4403 promoter region was performed to test the importance of the C box and to identify other cis-acting elements. A 6-bp change in the -10 region eliminated promoter activity, but a 6-bp change in the -35 region decreased activity only about twofold. Certain single-base-pair changes in the C box centered at -49 bp abolished promoter activity, establishing the importance of this sequence element. Single-base-pair changes in a C-box-like sequence centered at -77 bp also abolished promoter activity, but the pattern of mutational effects was different from that for the C box centered at -49 bp. Additional single-base-pair changes indicated that all 10 bp from -79 to -70 bp are important for Omega4403 promoter activity. Mutations at -59, -61, -62, and -63 bp also abolished promoter activity, defining a 5-bp element from -63 to -59 bp. This 5-bp element is separated from the 10-bp element (i.e., -79 to -70 bp) by 6 bp that can be changed without loss of promoter activity. Likewise, the 5 bp between the 5-bp element and the C box can be changed without loss of activity, but deletion of these 5 bp abolished activity, indicating that spacing is important. Sequences similar to the 5- and 10-bp elements, as well as the C box, are present in other C-signal-dependent promoters, suggesting some similarity in the regulatory mechanisms, but there are also indications that these cis elements do not function identically in the different promoters.
Collapse
Affiliation(s)
- Poorna Viswanathan
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, USA
| | | |
Collapse
|
17
|
Hao T, Biran D, Velicer GJ, Kroos L. Identification of the Omega4514 regulatory region, a developmental promoter of Myxococcus xanthus that is transcribed in vitro by the major vegetative RNA polymerase. J Bacteriol 2002; 184:3348-59. [PMID: 12029052 PMCID: PMC135106 DOI: 10.1128/jb.184.12.3348-3359.2002] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2001] [Accepted: 03/29/2002] [Indexed: 11/20/2022] Open
Abstract
Omega4514 is the site of a Tn5 lac insertion in the Myxococcus xanthus genome that fuses lacZ expression to a developmentally regulated promoter. DNA upstream of the insertion site was cloned, and the promoter was localized. The promoter resembles vegetative promoters in sequence, and sigma(A) RNA polymerase, the major form of RNA polymerase in growing M. xanthus, initiated transcription from this promoter in vitro. Two complete open reading frames were identified downstream of the promoter and before the Omega4514 insertion. The first gene product (ORF1) has a putative helix-turn-helix DNA-binding motif and shows sequence similarity to transcriptional regulators. ORF2 is most similar to subunit A of glutaconate coenzyme A (CoA) transferase, which is involved in glutamate fermentation. Tn5 lac Omega4514 is inserted in the third codon of ORF3, which is similar to subunit B of glutaconate CoA-transferase. An orf1 disruption mutant exhibited a mild sporulation defect, whereas neither a disruption of orf2 nor insertion Omega4514 in orf3 caused a defect. Based on DNA sequence analysis, the three genes are likely to be cotranscribed with a fourth gene whose product is similar to alcohol dehydrogenases. ORF1 delays and reduces expression of the operon during development, but relief from this negative autoregulation does not fully explain the regulation of the operon, because expression from a small promoter-containing fragment is strongly induced during development of an orf1 mutant. Also, multiple upstream DNA elements are necessary for full developmental expression. These results suggest that transcriptional activation also regulates the operon. Omega4514 is the first example of a developmentally regulated M. xanthus operon that is transcribed by the major vegetative RNA polymerase, and its regulation appears to involve both negative autoregulation by ORF1 and positive regulation by one or more transcriptional activators.
Collapse
Affiliation(s)
- Tong Hao
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, USA
| | | | | | | |
Collapse
|
18
|
Treuner-Lange A, Ward MJ, Zusman DR. Pph1 from Myxococcus xanthus is a protein phosphatase involved in vegetative growth and development. Mol Microbiol 2001; 40:126-40. [PMID: 11298281 DOI: 10.1046/j.1365-2958.2001.02362.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Myxococcus xanthus is a Gram-negative bacterium with a complex life cycle that includes vegetative swarming on rich medium and, upon starvation, aggregation to form fruiting bodies containing spores. Both of these behaviours require multiple Ser/Thr protein kinases. In this paper, we report the first Ser/Thr protein phosphatase gene, pph1, from M. xanthus. DNA sequence analysis of pph1 indicates that it encodes a protein of 254 residues (Mr = 28 308) with strong homology to eukaryotic PP2C phosphatases and that it belongs to a new group of bacterial protein phosphatases that are distinct from bacterial PP2C phosphatases such as RsbU, RsbX and SpoIIE. Recombinant His-tagged Pph1 was purified from Escherichia coli and shown to have Mn2+ or Mg2+ dependent, okadaic acid-resistant phosphatase activity on a synthetic phosphorylated peptide, RRA(pT)VA, indicating that Pph1 is a PP2C phosphatase. Pph1-expression was observed under both vegetative and developmental conditions, but peaked during early aggregation. A pph1 null mutant showed defects during late vegetative growth, swarming and glycerol spore formation. Under starvation-induced developmental conditions, the mutant showed reduced aggregation and failure to form fruiting bodies with viable spores. Using the yeast two-hybrid system, we have observed a strong interaction between Pph1 and the M. xanthus protein kinase Pkn5, a negative effector of development. These results suggest a functional link between a Pkn2-type protein kinase and a PP2C phosphatase.
Collapse
Affiliation(s)
- A Treuner-Lange
- Department of Molecular and Cell Biology, 401 Barker Hall, University of California, Berkeley, CA 94720-3204, USA
| | | | | |
Collapse
|
19
|
Garza AG, Harris BZ, Greenberg BM, Singer M. Control of asgE expression during growth and development of Myxococcus xanthus. J Bacteriol 2000; 182:6622-9. [PMID: 11073904 PMCID: PMC111402 DOI: 10.1128/jb.182.23.6622-6629.2000] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
One of the earliest events in the Myxococcus xanthus developmental cycle is production of an extracellular cell density signal called A-signal (or A-factor). Previously, we showed that cells carrying an insertion in the asgE gene fail to produce normal levels of this cell-cell signal. In this study we found that expression of asgE is growth phase regulated and developmentally regulated. Several lines of evidence indicate that asgE is cotranscribed with an upstream gene during development. Using primer extension analyses, we identified two 5' ends for this developmental transcript. The DNA sequence upstream of one 5' end has similarity to the promoter regions of several genes that are A-signal dependent, whereas sequences located upstream of the second 5' end show similarity to promoter elements identified for genes that are C-signal dependent. Consistent with this result is our finding that mutants failing to produce A-signal or C-signal are defective for developmental expression of asgE. In contrast to developing cells, the large majority of the asgE transcript found in vegetative cells appears to be monocistronic. This finding suggests that asgE uses different promoters for expression during vegetative growth and development. Growth phase regulation of asgE is abolished in a relA mutant, indicating that this vegetative promoter is induced by starvation. The data presented here, in combination with our previous results, indicate that the level of AsgE in vegetative cells is sufficient for this protein to carry out its function during development.
Collapse
Affiliation(s)
- A G Garza
- Section of Microbiology, University of California, Davis, Davis, California 95616, USA
| | | | | | | |
Collapse
|
20
|
Ichikawa H, Kroos L. Combined action of two transcription factors regulates genes encoding spore coat proteins of Bacillus subtilis. J Biol Chem 2000; 275:13849-55. [PMID: 10788508 DOI: 10.1074/jbc.275.18.13849] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
During sporulation of Bacillus subtilis, spore coat proteins encoded by cot genes are expressed in the mother cell and deposited on the forespore. Transcription of the cotB, cotC, and cotX genes by final sigma(K) RNA polymerase is activated by a small, DNA-binding protein called GerE. The promoter region of each of these genes has two GerE binding sites. 5' deletions that eliminated the more upstream GerE site decreased expression of lacZ fused to cotB and cotX by approximately 80% and 60%, respectively but had no effect on cotC-lacZ expression. The cotC-lacZ fusion was expressed later during sporulation than the other two fusions. Primer extension analysis confirmed that cotB mRNA increases first during sporulation, followed by cotX and cotC mRNAs over a 2-h period. In vitro transcription experiments suggest that the differential pattern of cot gene expression results from the combined action of GerE and another transcription factor, SpoIIID. A low concentration of GerE activated cotB transcription by final sigma(K) RNA polymerase, whereas a higher concentration was needed to activate transcription of cotX or cotC. SpoIIID at low concentration repressed cotC transcription, whereas a higher concentration only partially repressed cotX transcription and had little effect on cotB transcription. DNase I footprinting showed that SpoIIID binds strongly to two sites in the cotC promoter region, binds weakly to one site in the cotX promoter, and does not bind specifically to cotB. We propose that late in sporulation the rising level of GerE and the falling level of SpoIIID, together with the position and affinity of binding sites for these transcription factors in cot gene promoters, dictates the timing and level of spore coat protein synthesis, ensuring optimal assembly of the protein shell on the forespore surface.
Collapse
Affiliation(s)
- H Ichikawa
- Department of Biochemistry, Michigan State University, East Lansing, Michigan 48824, USA
| | | |
Collapse
|
21
|
Colonial organization and intercellular communication in microorganisms. Microbiology (Reading) 2000. [DOI: 10.1007/bf02756730] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
|
22
|
Fisseha M, Biran D, Kroos L. Identification of the Omega4499 regulatory region controlling developmental expression of a Myxococcus xanthus cytochrome P-450 system. J Bacteriol 1999; 181:5467-75. [PMID: 10464222 PMCID: PMC94057 DOI: 10.1128/jb.181.17.5467-5475.1999] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Omega4499 is the site of a Tn5 lac insertion in the Myxococcus xanthus chromosome that fuses lacZ expression to a developmentally regulated promoter. Cell-cell interactions that occur during development, including C signaling, are required for normal expression of Tn5 lac Omega4499. The DNA upstream of the Omega4499 insertion has been cloned, and the promoter has been localized. Analysis of the DNA sequence downstream of the promoter revealed one complete open reading frame and a second partial open reading frame that is interrupted by Tn5 lac Omega4499. The predicted products of these open reading frames are highly similar to reductase and oxidase components of bacterial cytochrome P-450 systems, which allow catabolism or anabolism of unusual compounds. However, the function of the gene products of the Omega4499 locus remains unclear because M. xanthus containing Tn5 lac Omega4499 exhibits no apparent defect in growth, developmental aggregation, fruiting body formation, or sporulation. Deletion analysis of the Omega4499 regulatory region showed that multiple DNA elements spanning more than 500 bp upstream of the transcriptional start site contribute to developmental promoter activity. At least two DNA elements, one downstream of -49 bp and one between -49 and -218 bp, boosted activity of the promoter in response to intercellular C signaling. Three sequences in the Omega4499 promoter region, centered at -55, -33, and -1 bp, nearly match a 7-bp sequence found in other C signal-dependent promoters. We propose that these sequences, matching the consensus sequence 5'-CAYYCCY-3', be called C box sequences, and we speculate that these sequences are cis-acting regulatory elements important for the expression of M. xanthus genes that depend upon intercellular C signaling during development.
Collapse
Affiliation(s)
- M Fisseha
- Department of Biochemistry, Michigan State University, East Lansing, Michigan 48824, USA
| | | | | |
Collapse
|