1
|
Govorunova EG, Sineshchekov OA, Li H, Spudich JL. Microbial Rhodopsins: Diversity, Mechanisms, and Optogenetic Applications. Annu Rev Biochem 2017; 86:845-872. [PMID: 28301742 PMCID: PMC5747503 DOI: 10.1146/annurev-biochem-101910-144233] [Citation(s) in RCA: 260] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Microbial rhodopsins are a family of photoactive retinylidene proteins widespread throughout the microbial world. They are notable for their diversity of function, using variations of a shared seven-transmembrane helix design and similar photochemical reactions to carry out distinctly different light-driven energy and sensory transduction processes. Their study has contributed to our understanding of how evolution modifies protein scaffolds to create new protein chemistry, and their use as tools to control membrane potential with light is fundamental to optogenetics for research and clinical applications. We review the currently known functions and present more in-depth assessment of three functionally and structurally distinct types discovered over the past two years: (a) anion channelrhodopsins (ACRs) from cryptophyte algae, which enable efficient optogenetic neural suppression; (b) cryptophyte cation channelrhodopsins (CCRs), structurally distinct from the green algae CCRs used extensively for neural activation and from cryptophyte ACRs; and
Collapse
Affiliation(s)
- Elena G Govorunova
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas 77030; , , ,
| | - Oleg A Sineshchekov
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas 77030; , , ,
| | - Hai Li
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas 77030; , , ,
| | - John L Spudich
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas 77030; , , ,
| |
Collapse
|
2
|
Abstract
Anion channelrhodopsins (ACRs) are a class of light-gated channels recently identified in cryptophyte algae that provide unprecedented fast and powerful hyperpolarizing tools for optogenetics. Analysis of photocurrents generated by Guillardia theta ACR 1 (GtACR1) and its mutants in response to laser flashes showed that GtACR1 gating comprises two separate mechanisms with opposite dependencies on the membrane voltage and pH and involving different amino acid residues. The first mechanism, characterized by slow opening and fast closing of the channel, is regulated by Glu-68. Neutralization of this residue (the E68Q mutation) specifically suppressed this first mechanism, but did not eliminate it completely at high pH. Our data indicate the involvement of another, yet-unidentified pH-sensitive group X. Introducing a positive charge at the Glu-68 site (the E68R mutation) inverted the channel gating so that it was open in the dark and closed in the light, without altering its ion selectivity. The second mechanism, characterized by fast opening and slow closing of the channel, was not substantially affected by the E68Q mutation, but was controlled by Cys-102. The C102A mutation reduced the rate of channel closing by the second mechanism by ∼100-fold, whereas it had only a twofold effect on the rate of the first. The results show that anion conductance by ACRs has a fundamentally different structural basis than the relatively well studied conductance by cation channelrhodopsins (CCRs), not attributable to simply a modification of the CCR selectivity filter.
Collapse
|
3
|
Orban-Glaß I, Voskoboynikova N, Busch KB, Klose D, Rickert C, Mosslehy W, Roder F, Wilkens V, Piehler J, Engelhard M, Steinhoff HJ, Klare JP. Clustering and dynamics of phototransducer signaling domains revealed by site-directed spin labeling electron paramagnetic resonance on SRII/HtrII in membranes and nanodiscs. Biochemistry 2014; 54:349-62. [PMID: 25489970 DOI: 10.1021/bi501160q] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In halophilic archaea the photophobic response is mediated by the membrane-embedded 2:2 photoreceptor/-transducer complex SRII/HtrII, the latter being homologous to the bacterial chemoreceptors. Both systems bias the rotation direction of the flagellar motor via a two-component system coupled to an extended cytoplasmic signaling domain formed by a four helical antiparallel coiled-coil structure. For signal propagation by the HAMP domains connecting the transmembrane and cytoplasmic domains, it was suggested that a two-state thermodynamic equilibrium found for the first HAMP domain in NpSRII/NpHtrII is shifted upon activation, yet signal propagation along the coiled-coil transducer remains largely elusive, including the activation mechanism of the coupled kinase CheA. We investigated the dynamic and structural properties of the cytoplasmic tip domain of NpHtrII in terms of signal transduction and putative oligomerization using site-directed spin labeling electron paramagnetic resonance spectroscopy. We show that the cytoplasmic tip domain of NpHtrII is engaged in a two-state equilibrium between a dynamic and a compact conformation like what was found for the first HAMP domain, thus strengthening the assumption that dynamics are the language of signal transfer. Interspin distance measurements in membranes and on isolated 2:2 photoreceptor/transducer complexes in nanolipoprotein particles provide evidence that archaeal photoreceptor/-transducer complexes analogous to chemoreceptors form trimers-of-dimers or higher-order assemblies even in the absence of the cytoplasmic components CheA and CheW, underlining conservation of the overall mechanistic principles underlying archaeal phototaxis and bacterial chemotaxis systems. Furthermore, our results revealed a significant influence of the NpHtrII signaling domain on the NpSRII photocycle kinetics, providing evidence for a conformational coupling of SRII and HtrII in these complexes.
Collapse
Affiliation(s)
- Ioan Orban-Glaß
- Macromolecular Structure Group, Department of Physics, University of Osnabrück , Barbarastrasse 7, 49076 Osnabrück, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Sasaki J, Takahashi H, Furutani Y, Sineshchekov OA, Spudich JL, Kandori H. His166 is the Schiff base proton acceptor in attractant phototaxis receptor sensory rhodopsin I. Biochemistry 2014; 53:5923-9. [PMID: 25162914 PMCID: PMC4172204 DOI: 10.1021/bi500831n] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Photoactivation of attractant phototaxis receptor sensory rhodopsin I (SRI) in Halobacterium salinarum entails transfer of a proton from the retinylidene chromophore's Schiff base (SB) to an unidentified acceptor residue on the cytoplasmic half-channel, in sharp contrast to other microbial rhodopsins, including the closely related repellent phototaxis receptor SRII and the outward proton pump bacteriorhodopsin, in which the SB proton acceptor is an aspartate residue salt-bridged to the SB in the extracellular (EC) half-channel. His166 on the cytoplasmic side of the SB in SRI has been implicated in the SB proton transfer reaction by mutation studies, and mutants of His166 result in an inverted SB proton release to the EC as well as inversion of the protein's normally attractant phototaxis signal to repellent. Here we found by difference Fourier transform infrared spectroscopy the appearance of Fermi-resonant X-H stretch modes in light-minus-dark difference spectra; their assignment with (15)N labeling and site-directed mutagenesis demonstrates that His166 is the SB proton acceptor during the photochemical reaction cycle of the wild-type SRI-HtrI complex.
Collapse
Affiliation(s)
- Jun Sasaki
- Department of Frontier Materials, Nagoya Institute of Technology , Showa-ku, Nagoya 466-8555, Japan
| | | | | | | | | | | |
Collapse
|
5
|
Karan R, Capes MD, DasSarma P, DasSarma S. Cloning, overexpression, purification, and characterization of a polyextremophilic β-galactosidase from the Antarctic haloarchaeon Halorubrum lacusprofundi. BMC Biotechnol 2013; 13:3. [PMID: 23320757 PMCID: PMC3556326 DOI: 10.1186/1472-6750-13-3] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Accepted: 01/14/2013] [Indexed: 01/18/2023] Open
Abstract
Background Halorubrum lacusprofundi is a cold-adapted halophilic archaeon isolated from Deep Lake, a perennially cold and hypersaline lake in Antarctica. Its genome sequencing project was recently completed, providing access to many genes predicted to encode polyextremophilic enzymes active in both extremely high salinity and cold temperatures. Results Analysis of the genome sequence of H. lacusprofundi showed a gene cluster for carbohydrate utilization containing a glycoside hydrolase family 42 β-galactosidase gene, named bga. In order to study the biochemical properties of the β-galactosidase enzyme, the bga gene was PCR amplified, cloned, and expressed in the genetically tractable haloarchaeon Halobacterium sp. NRC-1 under the control of a cold shock protein (cspD2) gene promoter. The recombinant β-galactosidase protein was produced at 20-fold higher levels compared to H. lacusprofundi, purified using gel filtration and hydrophobic interaction chromatography, and identified by SDS-PAGE, LC-MS/MS, and ONPG hydrolysis activity. The purified enzyme was found to be active over a wide temperature range (−5 to 60°C) with an optimum of 50°C, and 10% of its maximum activity at 4°C. The enzyme also exhibited extremely halophilic character, with maximal activity in either 4 M NaCl or KCl. The polyextremophilic β-galactosidase was also stable and active in 10–20% alcohol-aqueous solutions, containing methanol, ethanol, n-butanol, or isoamyl alcohol. Conclusion The H. lacusprofundi β-galactosidase is a polyextremophilic enzyme active in high salt concentrations and low and high temperature. The enzyme is also active in aqueous-organic mixed solvents, with potential applications in synthetic chemistry. H. lacuprofundi proteins represent a significant biotechnology resource and for developing insights into enzyme catalysis under water limiting conditions. This study provides a system for better understanding how H. lacusprofundi is successful in a perennially cold, hypersaline environment, with relevance to astrobiology.
Collapse
Affiliation(s)
- Ram Karan
- Department of Microbiology and Immunology, University of Maryland School of Medicine, and Institute of Marine and Environmental Technology, University System of Maryland, 701 E Pratt Street, Baltimore, MD 21202, USA
| | | | | | | |
Collapse
|
6
|
Sasaki J, Tsai AL, Spudich JL. Opposite displacement of helix F in attractant and repellent signaling by sensory rhodopsin-Htr complexes. J Biol Chem 2011; 286:18868-77. [PMID: 21454480 DOI: 10.1074/jbc.m110.200345] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Two forms of the phototaxis receptor sensory rhodopsin I distinguished by differences in its photoactive site have been shown to be directly correlated with attractant and repellent signaling by the dual-signaling protein. In prior studies, differences in the photoactive site defined the two forms, namely the direction of light-induced proton transfer from the chromophore and the pK(a) of an Asp counterion to the protonated chromophore. Here, we show by both in vivo and in vitro measurements that the two forms are distinct protein conformers with structural similarities to two conformers seen in the light-driven proton transport cycle of the related protein bacteriorhodopsin. Measurements of spontaneous cell motility reversal frequencies, an in vivo measure of histidine kinase activity in the phototaxis system, indicate that the two forms are a photointerconvertible pair, with one conformer activating and the other inhibiting the kinase. Protein conformational changes in these photoconversions monitored by site-directed spin labeling show that opposite structural changes in helix F, distant from the photoactive site, correspond to the opposite phototaxis signals. The results provide the first direct evidence that displacements of helix F are directly correlated with signaling and impact our understanding of the sensory rhodopsin I signaling mechanism and the evolution of diverse functionality in this protein family.
Collapse
Affiliation(s)
- Jun Sasaki
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Medical School, Houston, Texas 77030, USA
| | | | | |
Collapse
|
7
|
Abstract
In Escherichia coli, the aerotaxis receptor Aer is an atypical receptor because it senses intracellular redox potential. The Aer sensor is a cytoplasmic, N-terminal PAS domain that is tethered to the membrane by a 47-residue F1 linker. Here we investigated the function, topology, and orientation of F1 by employing random mutagenesis, cysteine scanning, and disulfide cross-linking. No native residue was obligatory for function, most deleterious substitutions had radically different side chain properties, and all F1 mutants but one were functionally rescued by the chemoreceptor Tar. Cross-linking studies were consistent with the predicted α-helical structure in the N-terminal F1 region and demonstrated trigonal interactions among the F1 linkers from three Aer monomers, presumably within trimer-of-dimer units, as well as binary interactions between subunits. Using heterodimer analyses, we also demonstrated the importance of arginine residues near the membrane interface, which may properly anchor the Aer protein in the membrane. By incorporating these data into a homology model of Aer, we developed a model for the orientation of the Aer F1 and PAS regions in an Aer lattice that is compatible with the known dimensions of the chemoreceptor lattice. We propose that the F1 region facilitates the orientation of PAS and HAMP domains during folding and thereby promotes the stability of the PAS and HAMP domains in Aer.
Collapse
|
8
|
Sineshchekov OA, Sasaki J, Wang J, Spudich JL. Attractant and repellent signaling conformers of sensory rhodopsin-transducer complexes. Biochemistry 2010; 49:6696-704. [PMID: 20590098 PMCID: PMC2914491 DOI: 10.1021/bi100798w] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Attractant and repellent signaling conformers of the dual-signaling phototaxis receptor sensory rhodopsin I and its transducer subunit (SRI−HtrI) have recently been distinguished experimentally by the opposite connection of their retinylidene protonated Schiff bases to the outwardly located periplasmic side and inwardly located cytoplasmic side. Here we show that the pKa of the outwardly located Asp76 counterion in the outwardly connected conformer is lowered by ∼1.5 units from that of the inwardly connected conformer. The pKa difference enables quantitative determination of the relative amounts of the two conformers in wild-type cells and behavioral mutants prior to photoexcitation, comparison of their absorption spectra, and determination of their relative signaling efficiency. We have shown that the one-photon excitation of the SRI−HtrI attractant conformer causes a Schiff base connectivity switch from inwardly connected to outwardly connected states in the attractant signaling photoreaction. Conversely, a second near-UV photon drives the complex back to the inwardly connected conformer in the repellent signaling photoreaction. The results suggest a model of the color-discriminating dual-signaling mechanism in which phototaxis responses (his-kinase modulation) result from the photointerconversion of the two oppositely connected SRI−HtrI conformers by one-photon and two-photon activation. Furthermore, we find that the related repellent phototaxis SRII−HtrII receptor complex has an outwardly connected retinylidene Schiff base like the repellent signaling forms of the SRI−HtrI complex, indicating the general applicability of macro conformational changes, which can be detected by the connectivity switch, to phototaxis signaling by sensory rhodopsin−transducer complexes.
Collapse
Affiliation(s)
- Oleg A Sineshchekov
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Medical School, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|
9
|
Campbell AJ, Watts KJ, Johnson MS, Taylor BL. Gain-of-function mutations cluster in distinct regions associated with the signalling pathway in the PAS domain of the aerotaxis receptor, Aer. Mol Microbiol 2010; 77:575-86. [PMID: 20545849 DOI: 10.1111/j.1365-2958.2010.07231.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The Aer receptor monitors internal energy (redox) levels in Escherichia coli with an FAD-containing PAS domain. Here, we randomly mutagenized the region encoding residues 14-119 of the PAS domain and found 72 aerotaxis-defective mutants, 24 of which were gain-of-function, signal-on mutants. The mutations were mapped onto an Aer homology model based on the structure of the PAS-FAD domain in NifL from Azotobacter vinlandii. Signal-on lesions clustered in the FAD binding pocket, the beta-scaffolding and in the N-cap loop. We suggest that the signal-on lesions mimic the 'signal-on' state of the PAS domain, and therefore may be markers for the signal-in and signal-out regions of this domain. We propose that the reduction of FAD rearranges the FAD binding pocket in a way that repositions the beta-scaffolding and the N-cap loop. The resulting conformational changes are likely to be conveyed directly to the HAMP domain, and on to the kinase control module. In support of this hypothesis, we demonstrated disulphide band formation between cysteines substituted at residues N98C or I114C in the PAS beta-scaffold and residue Q248C in the HAMP AS-2 helix.
Collapse
Affiliation(s)
- Asharie J Campbell
- Division of Microbiology and Molecular Genetics, Loma Linda University, Loma Linda, CA 92350, USA
| | | | | | | |
Collapse
|
10
|
Suzuki D, Irieda H, Homma M, Kawagishi I, Sudo Y. Phototactic and chemotactic signal transduction by transmembrane receptors and transducers in microorganisms. SENSORS 2010; 10:4010-39. [PMID: 22319339 PMCID: PMC3274258 DOI: 10.3390/s100404010] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2010] [Revised: 03/29/2010] [Accepted: 04/09/2010] [Indexed: 12/17/2022]
Abstract
Microorganisms show attractant and repellent responses to survive in the various environments in which they live. Those phototaxic (to light) and chemotaxic (to chemicals) responses are regulated by membrane-embedded receptors and transducers. This article reviews the following: (1) the signal relay mechanisms by two photoreceptors, Sensory Rhodopsin I (SRI) and Sensory Rhodopsin II (SRII) and their transducers (HtrI and HtrII) responsible for phototaxis in microorganisms; and (2) the signal relay mechanism of a chemoreceptor/transducer protein, Tar, responsible for chemotaxis in E. coli. Based on results mainly obtained by our group together with other findings, the possible molecular mechanisms for phototaxis and chemotaxis are discussed.
Collapse
Affiliation(s)
- Daisuke Suzuki
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya, 464-8602, Japan; E-Mails: (D.S.); (H.I.); (M.H.)
| | - Hiroki Irieda
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya, 464-8602, Japan; E-Mails: (D.S.); (H.I.); (M.H.)
| | - Michio Homma
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya, 464-8602, Japan; E-Mails: (D.S.); (H.I.); (M.H.)
| | - Ikuro Kawagishi
- Department of Frontier Bioscience, Hosei University, Koganei, Tokyo, 184-8584, Japan; E-Mail: (I.K.)
- Research Center for Micro-Nano Technology, Hosei University, Koganei, Tokyo, 184-8584, Japan
| | - Yuki Sudo
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya, 464-8602, Japan; E-Mails: (D.S.); (H.I.); (M.H.)
- PRESTO, Japan Science and Technology Agency (JST), 4-1-8 Honcho Kawaguchi, Saitama, 332-0012, Japan
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +81-52-789-2993; Fax: +81-52-789-3001
| |
Collapse
|
11
|
Yagasaki J, Suzuki D, Ihara K, Inoue K, Kikukawa T, Sakai M, Fujii M, Homma M, Kandori H, Sudo Y. Spectroscopic studies of a sensory rhodopsin I homologue from the archaeon Haloarcula vallismortis. Biochemistry 2010; 49:1183-90. [PMID: 20067303 DOI: 10.1021/bi901824a] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Sensory rhodopsin I (SRI) functions as a dual receptor regulating both negative and positive phototaxis. It transmits light signals through changes in protein-protein interactions with its transducer protein, HtrI. The phototaxis function of Halobacterium salinarum SRI (HsSRI) has been well characterized using genetic and molecular techniques, whereas that of Salinibacter ruber SRI (SrSRI) has not. SrSRI has the advantage of high protein stability compared with HsSRI and, therefore, provided new information about structural changes and Cl(-) binding of SRI. However, nothing is known about the functional role of SrSRI in phototaxis behavior. In this study, we expressed a SRI homologue from the archaeon Haloarcula vallismortis (HvSRI) as a recombinant protein which uses all-trans-retinal as a chromophore. Functionally important residues of HsSRI are completely conserved in HvSRI (unlike in SrSRI), and HvSRI is extremely stable in buffers without Cl(-). Taking advantage of the high stability, we characterized the photochemical properties of HvSRI under acidic and basic conditions and observed the effects of Cl(-) on the protein under both conditions. Fourier transform infrared results revealed that the structural changes in HvSRI were quite similar to those in HsSRI and SrSRI. Thus, HvSRI can become a useful protein model for improving our understanding of the molecular mechanism of the dual photosensing by SRI.
Collapse
Affiliation(s)
- Jin Yagasaki
- Department of Frontier Materials, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Streif S, Oesterhelt D, Marwan W. A predictive computational model of the kinetic mechanism of stimulus-induced transducer methylation and feedback regulation through CheY in archaeal phototaxis and chemotaxis. BMC SYSTEMS BIOLOGY 2010; 4:27. [PMID: 20298562 PMCID: PMC2857822 DOI: 10.1186/1752-0509-4-27] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2009] [Accepted: 03/18/2010] [Indexed: 11/10/2022]
Abstract
Background Photo- and chemotaxis of the archaeon Halobacterium salinarum is based on the control of flagellar motor switching through stimulus-specific methyl-accepting transducer proteins that relay the sensory input signal to a two-component system. Certain members of the transducer family function as receptor proteins by directly sensing specific chemical or physical stimuli. Others interact with specific receptor proteins like the phototaxis photoreceptors sensory rhodopsin I and II, or require specific binding proteins as for example some chemotaxis transducers. Receptor activation by light or a change in receptor occupancy by chemical stimuli results in reversible methylation of glutamate residues of the transducer proteins. Both, methylation and demethylation reactions are involved in sensory adaptation and are modulated by the response regulator CheY. Results By mathematical modeling we infer the kinetic mechanisms of stimulus-induced transducer methylation and adaptation. The model (deterministic and in the form of ordinary differential equations) correctly predicts experimentally observed transducer demethylation (as detected by released methanol) in response to attractant and repellent stimuli of wildtype cells, a cheY deletion mutant, and a mutant in which the stimulated transducer species is methylation-deficient. Conclusions We provide a kinetic model for signal processing in photo- and chemotaxis in the archaeon H. salinarum suggesting an essential role of receptor cooperativity, antagonistic reversible methylation, and a CheY-dependent feedback on transducer demethylation.
Collapse
Affiliation(s)
- Stefan Streif
- Max Planck Institute for Dynamics of Complex Technical Systems, Molecular Network Analysis Group, Sandtorstr, 1, Magdeburg, Germany.
| | | | | |
Collapse
|
13
|
Sudo Y, Okada A, Suzuki D, Inoue K, Irieda H, Sakai M, Fujii M, Furutani Y, Kandori H, Homma M. Characterization of a Signaling Complex Composed of Sensory Rhodopsin I and Its Cognate Transducer Protein from the Eubacterium Salinibacter ruber. Biochemistry 2009; 48:10136-45. [DOI: 10.1021/bi901338d] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yuki Sudo
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan
- PRESTO, Japan Science and Technology Agency (JST), 4-1-8 Honcho Kawaguchi, Saitama 332-0012, Japan
| | - Akiko Okada
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan
| | - Daisuke Suzuki
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan
| | - Keiichi Inoue
- Chemical Resources Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8503, Japan
| | - Hiroki Irieda
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan
| | - Makoto Sakai
- Chemical Resources Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8503, Japan
| | - Masaaki Fujii
- Chemical Resources Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8503, Japan
| | - Yuji Furutani
- Department of Frontier Materials, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| | - Hideki Kandori
- Department of Frontier Materials, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| | - Michio Homma
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan
| |
Collapse
|
14
|
Suzuki D, Sudo Y, Furutani Y, Takahashi H, Homma M, Kandori H. Structural Changes of Salinibacter Sensory Rhodopsin I upon Formation of the K and M Photointermediates. Biochemistry 2008; 47:12750-9. [DOI: 10.1021/bi801358b] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Daisuke Suzuki
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya, 464-8602, Japan, and Department of Frontier Materials, Nagoya Institute of Technology, Showa-ku, Nagoya, 466-8555, Japan
| | - Yuki Sudo
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya, 464-8602, Japan, and Department of Frontier Materials, Nagoya Institute of Technology, Showa-ku, Nagoya, 466-8555, Japan
| | - Yuji Furutani
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya, 464-8602, Japan, and Department of Frontier Materials, Nagoya Institute of Technology, Showa-ku, Nagoya, 466-8555, Japan
| | - Hazuki Takahashi
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya, 464-8602, Japan, and Department of Frontier Materials, Nagoya Institute of Technology, Showa-ku, Nagoya, 466-8555, Japan
| | - Michio Homma
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya, 464-8602, Japan, and Department of Frontier Materials, Nagoya Institute of Technology, Showa-ku, Nagoya, 466-8555, Japan
| | - Hideki Kandori
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya, 464-8602, Japan, and Department of Frontier Materials, Nagoya Institute of Technology, Showa-ku, Nagoya, 466-8555, Japan
| |
Collapse
|
15
|
Abstract
Sensory rhodopsin I (SRI) in Halobacterium salinarum acts as a receptor for single-quantum attractant and two-quantum repellent phototaxis, transmitting light stimuli via its bound transducer HtrI. Signal-inverting mutations in the SRI-HtrI complex reverse the single-quantum response from attractant to repellent. Fast intramolecular charge movements reported here reveal that the unphotolyzed SRI-HtrI complex exists in two conformational states, which differ by their connection of the retinylidene Schiff base in the SRI photoactive site to inner or outer half-channels. In single-quantum photochemical reactions, the conformer with the Schiff base connected to the cytoplasmic (CP) half-channel generates an attractant signal, whereas the conformer with the Schiff base connected to the extracellular (EC) half-channel generates a repellent signal. In the wild-type complex the conformer equilibrium is poised strongly in favor of that with CP-accessible Schiff base. Signal-inverting mutations shift the equilibrium in favor of the EC-accessible Schiff base form, and suppressor mutations shift the equilibrium back toward the CP-accessible Schiff base form, restoring the wild-type phenotype. Our data show that the sign of the behavioral response directly correlates with the state of the connectivity switch, not with the direction of proton movements or changes in acceptor pK(a). These findings identify a shared fundamental process in the mechanisms of transport and signaling by the rhodopsin family. Furthermore, the effects of mutations in the HtrI subunit of the complex on SRI Schiff base connectivity indicate that the two proteins are tightly coupled to form a single unit that undergoes a concerted conformational transition.
Collapse
|
16
|
Kitajima-Ihara T, Furutani Y, Suzuki D, Ihara K, Kandori H, Homma M, Sudo Y. Salinibacter sensory rhodopsin: sensory rhodopsin I-like protein from a eubacterium. J Biol Chem 2008; 283:23533-41. [PMID: 18566451 PMCID: PMC3259787 DOI: 10.1074/jbc.m802990200] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2008] [Revised: 06/05/2008] [Indexed: 11/06/2022] Open
Abstract
Halobacterium salinarum sensory rhodopsin I (HsSRI), a dual receptor regulating both negative and positive phototaxis in haloarchaea, transmits light signals through changes in protein-protein interactions with its transducer, halobacterial transducer protein I (HtrI). Haloarchaea also have another sensor pigment, sensory rhodopsin II (SRII), which functions as a receptor regulating negative phototaxis. Compared with HsSRI, the signal relay mechanism of SRII is well characterized because SRII from Natronomonus pharaonis (NpSRII) is much more stable than HsSRI and HsSRII, especially in dilute salt solutions and is much more resistant to detergents. Two genes encoding SRI homologs were identified from the genome sequence of the eubacterium Salinibacter ruber. Those sequences are distantly related to HsSRI ( approximately 40% identity) and contain most of the amino acid residues identified as necessary for its function. To determine whether those genes encode functional protein(s), we cloned and expressed them in Escherichia coli. One of them (SrSRI) was expressed well as a recombinant protein having all-trans retinal as a chromophore. UV-Vis, low-temperature UV-Vis, pH-titration, and flash photolysis experiments revealed that the photochemical properties of SrSRI are similar to those of HsSRI. In addition to the expression system, the high stability of SrSRI makes it possible to prepare large amounts of protein and enables studies of mutant proteins that will allow new approaches to investigate the photosignaling process of SRI-HtrI.
Collapse
Affiliation(s)
- Tomomi Kitajima-Ihara
- Division of Biological Science, Graduate
School of Science and the Center for Gene
Research, Nagoya University, Chikusa-Ku, Nagoya, 464-8602, Japan and the
Department of Materials Science and Engineering,
Nagoya Institute of Technology, Showa-ku, Nagoya, 466-8555, Japan
| | - Yuji Furutani
- Division of Biological Science, Graduate
School of Science and the Center for Gene
Research, Nagoya University, Chikusa-Ku, Nagoya, 464-8602, Japan and the
Department of Materials Science and Engineering,
Nagoya Institute of Technology, Showa-ku, Nagoya, 466-8555, Japan
| | - Daisuke Suzuki
- Division of Biological Science, Graduate
School of Science and the Center for Gene
Research, Nagoya University, Chikusa-Ku, Nagoya, 464-8602, Japan and the
Department of Materials Science and Engineering,
Nagoya Institute of Technology, Showa-ku, Nagoya, 466-8555, Japan
| | - Kunio Ihara
- Division of Biological Science, Graduate
School of Science and the Center for Gene
Research, Nagoya University, Chikusa-Ku, Nagoya, 464-8602, Japan and the
Department of Materials Science and Engineering,
Nagoya Institute of Technology, Showa-ku, Nagoya, 466-8555, Japan
| | - Hideki Kandori
- Division of Biological Science, Graduate
School of Science and the Center for Gene
Research, Nagoya University, Chikusa-Ku, Nagoya, 464-8602, Japan and the
Department of Materials Science and Engineering,
Nagoya Institute of Technology, Showa-ku, Nagoya, 466-8555, Japan
| | - Michio Homma
- Division of Biological Science, Graduate
School of Science and the Center for Gene
Research, Nagoya University, Chikusa-Ku, Nagoya, 464-8602, Japan and the
Department of Materials Science and Engineering,
Nagoya Institute of Technology, Showa-ku, Nagoya, 466-8555, Japan
| | - Yuki Sudo
- Division of Biological Science, Graduate
School of Science and the Center for Gene
Research, Nagoya University, Chikusa-Ku, Nagoya, 464-8602, Japan and the
Department of Materials Science and Engineering,
Nagoya Institute of Technology, Showa-ku, Nagoya, 466-8555, Japan
| |
Collapse
|
17
|
Kim SY, Waschuk SA, Brown LS, Jung KH. Screening and characterization of proteorhodopsin color-tuning mutations in Escherichia coli with endogenous retinal synthesis. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2008; 1777:504-13. [PMID: 18433714 DOI: 10.1016/j.bbabio.2008.03.010] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2008] [Revised: 03/08/2008] [Accepted: 03/13/2008] [Indexed: 11/18/2022]
Abstract
Proteorhodopsin is photoactive 7-transmembrane protein, which uses all-trans retinal as a chromophore. Proteorhodopsin subfamilies are spectrally tuned in accordance with the depth of habitat of the host organisms, numerous species of marine picoplankton. We try to find residues critical for the spectral tuning through the use of random PCR mutagenesis and endogenous retinal biosynthesis. We obtained 16 isolates with changed color by screening in Escherichia coli with internal retinal biosynthesis system containing genes for beta-carotene biosynthesis and retinal synthase. Some isolates contained multiple substitutions, which could be separated to give 20 single mutations influencing the spectral properties. The color-changing residues are distributed through the protein except for the helix A, and about a half of the mutations is localized on the helices C and D, implying their importance for color tuning. In the pumping form of the pigment, absorption maxima in 8 mutants are red-shifted and in 12 mutants are blue-shifted compared to the wild-type. The results of flash-photolysis showed that most of the low pumping activity mutants possess slower rates of M decay and O decay. These results suggest that the color-tuning residues are not restricted to the retinal binding pocket, in accord with a recent evolutionary analysis.
Collapse
Affiliation(s)
- So Young Kim
- Department of Life Science and Interdisciplinary Program of Integrated Biotechnology, Sogang University, Mapo-Gu, Seoul, Korea
| | | | | | | |
Collapse
|
18
|
Furutani Y, Takahashi H, Sasaki J, Sudo Y, Spudich JL, Kandori H. Structural Changes of Sensory Rhodopsin I and Its Transducer Protein Are Dependent on the Protonated State of Asp76. Biochemistry 2008; 47:2875-83. [DOI: 10.1021/bi702050c] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yuji Furutani
- Department of Materials Science and Engineering, Nagoya Institute of Technology, Showa-ku, Nagoya, 466-8555, Japan, and Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, Texas 77030
| | - Hazuki Takahashi
- Department of Materials Science and Engineering, Nagoya Institute of Technology, Showa-ku, Nagoya, 466-8555, Japan, and Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, Texas 77030
| | - Jun Sasaki
- Department of Materials Science and Engineering, Nagoya Institute of Technology, Showa-ku, Nagoya, 466-8555, Japan, and Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, Texas 77030
| | - Yuki Sudo
- Department of Materials Science and Engineering, Nagoya Institute of Technology, Showa-ku, Nagoya, 466-8555, Japan, and Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, Texas 77030
| | - John L. Spudich
- Department of Materials Science and Engineering, Nagoya Institute of Technology, Showa-ku, Nagoya, 466-8555, Japan, and Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, Texas 77030
| | - Hideki Kandori
- Department of Materials Science and Engineering, Nagoya Institute of Technology, Showa-ku, Nagoya, 466-8555, Japan, and Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, Texas 77030
| |
Collapse
|
19
|
Jung KH. The distinct signaling mechanisms of microbial sensory rhodopsins in Archaea, Eubacteria and Eukarya. Photochem Photobiol 2007; 83:63-9. [PMID: 16968113 DOI: 10.1562/2006-03-20-ir-853] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Most of the known archaeal-type microbial rhodopsins are retinal-binding ion transporters, such as bacteriorhodopsin (BR) and proteorhodopsin (PR). Their identification is the result of extensive studies of their photochemical and biophysical properties. The cells containing these pigments, however, use other microbial rhodopsins as photosensors to monitor environmental light signals. From the early studies of sensory rhodopsin I (HsSRI) in Halobacterium salinarum and sensory rhodopsin II (NpSRII) in Natronomonas pharaonis, we now know that several microbial sensory rhodopsins in the other major domain of life relay information on light intensity and quality to the cell. Three of the most studied photosensory transduction mechanisms of these microbial rhodopsins are dealt with in this review. We discuss recent progress in the understanding of genomic organization, photochemical properties and photosignaling mechanisms with respect to biological function.
Collapse
Affiliation(s)
- Kwang-Hwan Jung
- Department of Life Science and Interdisciplinary Program of Integrated Biotechnology, Sogang University, Shinsu-Dong, Mapo-Gu, Seoul, Korea.
| |
Collapse
|
20
|
Sasaki J, Phillips BJ, Chen X, Van Eps N, Tsai AL, Hubbell WL, Spudich JL. Different dark conformations function in color-sensitive photosignaling by the sensory rhodopsin I-HtrI complex. Biophys J 2007; 92:4045-53. [PMID: 17351006 PMCID: PMC1868990 DOI: 10.1529/biophysj.106.101121] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The haloarchaeal phototaxis receptor sensory rhodopsin I (SRI) in complex with its transducer HtrI delivers an attractant signal from excitation with an orange photon and a repellent signal from a second near-UV photon excitation. Using a proteoliposome system with purified SRI in complex with its transducer HtrI, we identified by site-directed fluorescence labeling a site (Ser(155)) on SRI that is conformationally active in signal relay to HtrI. Using site-directed spin labeling of Ser(155)Cys with a nitroxide side chain, we detected a change in conformation following one-photon excitation such that the spin probe exhibits a splitting of the outer hyperfine extrema (2A'(zz)) significantly smaller than that of the electron paramagnetic resonance spectrum in the dark state. The dark conformations of five mutant complexes that do not discriminate between orange and near-UV excitation show shifts to lower or higher 2A'(zz) values correlated with the alterations in their motility behavior to one- and two-photon stimuli. These data are interpreted in terms of a model in which the dark complex is populated by two conformers in the wild type, one that inhibits the CheA kinase (A) and the other that activates it (R), shifted in the dark by mutations and shifted in the wild-type SRI-HtrI complex in opposite directions by one-photon and two-photon reactions.
Collapse
Affiliation(s)
- Jun Sasaki
- Center for Membrane Biology, Department of Biochemistry & Molecular Biology, University of Texas Medical School, Houston, Texas 77030, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Watts KJ, Sommer K, Fry SL, Johnson MS, Taylor BL. Function of the N-terminal cap of the PAS domain in signaling by the aerotaxis receptor Aer. J Bacteriol 2006; 188:2154-62. [PMID: 16513745 PMCID: PMC1428145 DOI: 10.1128/jb.188.6.2154-2162.2006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Aer, the Escherichia coli receptor for behavioral responses to oxygen (aerotaxis), energy, and redox potential, contains a PAS sensory-input domain. Within the PAS superfamily, the N-terminal segment (N-cap) is poorly conserved and its role is not well understood. We investigated the role of the N-cap (residues 1 to 19) in the Aer PAS domain by missense and truncation mutagenesis. Aer-PAS N-cap truncations and an Aer-M21P substitution resulted in low cellular levels of the mutant proteins, suggesting that the N-terminal region was important for stabilizing the structure of the PAS domain. The junction of the N-cap and PAS core was critical for signaling in Aer. Mutations and truncations in the sequence encoding residues 15 to 21 introduced a range of phenotypes, including defects in FAD binding, constant tumbling motility, and an inverse response in which E. coli cells migrated away from oxygen concentrations to which they are normally attracted. The proximity of two N-cap regions in an Aer dimer was assessed in vivo by oxidatively cross-linking serial cysteine substitutions. Cross-linking of several cysteine replacements at 23 degrees C was attenuated at 10 degrees C, indicating contact was not at a stable dimer interface but required lateral mobility. We observed large multimers of Aer when we combined cross-linking of N-cap residues with a cysteine replacement that cross-links exclusively at the Aer dimer interface. This suggests that the PAS N-cap faces outwards in a dimer and that PAS-PAS contacts can occur between adjacent dimers.
Collapse
Affiliation(s)
- Kylie J Watts
- Division of Microbiology and Molecular Genetics, Loma Linda University, Loma Linda, CA 92350, USA
| | | | | | | | | |
Collapse
|
22
|
Berquist BR, Müller JA, DasSarma S. 27 Genetic Systems for Halophilic Archaea. J Microbiol Methods 2006. [DOI: 10.1016/s0580-9517(08)70030-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
|
23
|
Ma Q, Johnson MS, Taylor BL. Genetic analysis of the HAMP domain of the Aer aerotaxis sensor localizes flavin adenine dinucleotide-binding determinants to the AS-2 helix. J Bacteriol 2005; 187:193-201. [PMID: 15601703 PMCID: PMC538817 DOI: 10.1128/jb.187.1.193-201.2005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2004] [Accepted: 09/17/2004] [Indexed: 11/20/2022] Open
Abstract
HAMP domains are signal transduction domains typically located between the membrane anchor and cytoplasmic signaling domain of the proteins in which they occur. The prototypical structure consists of two helical amphipathic sequences (AS-1 and AS-2) connected by a region of undetermined structure. The Escherichia coli aerotaxis receptor, Aer, has a HAMP domain and a PAS domain with a flavin adenine dinucleotide (FAD) cofactor that senses the intracellular energy level. Previous studies reported mutations in the HAMP domain that abolished FAD binding to the PAS domain. In this study, using random and site-directed mutagenesis, we identified the distal helix, AS-2, as the component of the HAMP domain that stabilizes FAD binding. AS-2 in Aer is not amphipathic and is predicted to be buried. Mutations in the sequence coding for the contiguous proximal signaling domain altered signaling by Aer but did not affect FAD binding. The V264M residue replacement in this region resulted in an inverted response in which E. coli cells expressing the mutant Aer protein were repelled by oxygen. Bioinformatics analysis of aligned HAMP domains indicated that the proximal signaling domain is conserved in other HAMP domains that are not involved in chemotaxis or aerotaxis. Only one null mutation was found in the coding sequence for the HAMP AS-1 and connector regions, suggesting that these are not active signal transduction sites. We consider a model in which the signal from FAD is transmitted across a PAS-HAMP interface to AS-2 or the proximal signaling domain.
Collapse
Affiliation(s)
- Qinhong Ma
- Division of Microbiology and Molecular Genetics, Loma Linda University, Loma Linda, CA 92350, USA
| | | | | |
Collapse
|
24
|
Watts KJ, Ma Q, Johnson MS, Taylor BL. Interactions between the PAS and HAMP domains of the Escherichia coli aerotaxis receptor Aer. J Bacteriol 2004; 186:7440-9. [PMID: 15489456 PMCID: PMC523216 DOI: 10.1128/jb.186.21.7440-7449.2004] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2004] [Accepted: 07/27/2004] [Indexed: 11/20/2022] Open
Abstract
The Escherichia coli energy-sensing Aer protein initiates aerotaxis towards environments supporting optimal cellular energy. The Aer sensor is an N-terminal, FAD-binding, PAS domain. The PAS domain is linked by an F1 region to a membrane anchor, and in the C-terminal half of Aer, a HAMP domain links the membrane anchor to the signaling domain. The F1 region, membrane anchor, and HAMP domain are required for FAD binding. Presumably, alterations in the redox potential of FAD induce conformational changes in the PAS domain that are transmitted to the HAMP and C-terminal signaling domains. In this study we used random mutagenesis and intragenic pseudoreversion analysis to examine functional interactions between the HAMP domain and the N-terminal half of Aer. Missense mutations in the HAMP domain clustered in the AS-2 alpha-helix and abolished FAD binding to Aer, as previously reported. Three amino acid replacements in the Aer-PAS domain, S28G, A65V, and A99V, restored FAD binding and aerotaxis to the HAMP mutants. These suppressors are predicted to surround a cleft in the PAS domain that may bind FAD. On the other hand, suppression of an Aer-C253R HAMP mutant was specific to an N34D substitution with a predicted location on the PAS surface, suggesting that residues C253 and N34 interact or are in close proximity. No suppressor mutations were identified in the F1 region or membrane anchor. We propose that functional interactions between the PAS domain and the HAMP AS-2 helix are required for FAD binding and aerotactic signaling by Aer.
Collapse
Affiliation(s)
- Kylie J Watts
- Division of Microbiology and Molecular Genetics, Loma Linda University, Loma Linda, CA 92350, USA
| | | | | | | |
Collapse
|
25
|
Chen X, Spudich JL. Five Residues in the HtrI Transducer Membrane-proximal Domain Close the Cytoplasmic Proton-conducting Channel of Sensory Rhodopsin I. J Biol Chem 2004; 279:42964-9. [PMID: 15252049 DOI: 10.1074/jbc.m406503200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transducer-free sensory rhodopsins carry out light-driven proton transport in Halobacterium salinarum membranes. Transducer binding converts the proton pumps to signal-relay devices in which the transport is inhibited. In sensory rhodopsin I (SRI) binding of its cognate transducer HtrI inhibits transport by closing a cytoplasmic proton-conducting channel necessary for proton uptake during the SRI photochemical reaction cycle. To investigate the channel closure, a series of HtrI mutants truncated in the membrane-proximal cytoplasmic portion of an SRI-HtrI fusion were constructed and expressed in H. salinarum membranes. We found that binding of the membrane-embedded portion of HtrI is insufficient for channel closure, whereas cytoplasmic extension of the second HtrI transmembrane helix by 13 residues blocks proton conduction through the channel as well as full-length HtrI. Specifically the closure activity is localized in this 13-residue membrane-proximal cytoplasmic domain to the 5 final residues, each of which incrementally contributes to reduction of proton conductivity. Moreover, these same residues in the dark incrementally and proportionally increase the pKa of the Asp-76 counterion to the protonated Schiff base chromophore in the membrane-embedded photoactive site. We conclude that this critical region of HtrI alters the dark conformation of SRI as well as light-induced channel opening. The 5 residues in HtrI correspond in position to 5 residues demonstrated on the homologous NpHtrII to interact with the E-F loop of its cognate receptor NpSRII in the accompanying article (Yang, C.-S., Sineshchekov, O., Spudich, E. N., and Spudich, J. L. (2004) J. Biol. Chem. 279, 42970-42976). These results strongly suggest that the membrane-proximal region of Htr proteins interact with their cognate sensory rhodopsin cytoplasmic domains as part of the signal-relay coupling between the proteins.
Collapse
Affiliation(s)
- Xinpu Chen
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Medical School at Houston, Houston, Texas 77030, USA
| | | |
Collapse
|
26
|
Yang CS, Sineshchekov O, Spudich EN, Spudich JL. The Cytoplasmic Membrane-proximal Domain of the HtrII Transducer Interacts with the E-F Loop of Photoactivated Natronomonas pharaonis Sensory Rhodopsin II. J Biol Chem 2004; 279:42970-6. [PMID: 15262967 DOI: 10.1074/jbc.m406504200] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The structures of the cytoplasmic loops of the phototaxis receptor sensory rhodopsin II (SRII) and the membrane-proximal cytoplasmic domain of its bound transducer HtrII were examined in the dark and in the light-activated state by fluorescent probes and cysteine cross-linking. Light decreased the accessibility of E-F loop position 154 in the SRII-HtrII complex, but not in free SRII, consistent with HtrII proximity, which was confirmed by tryptophans placed within a 5-residue region identified in the HtrII membrane-proximal domain that exhibited Forster resonance energy transfer to a fluorescent probe at position 154 in SRII. The Forster resonance energy transfer was eliminated in the signaling deficient HtrII mutant G83F without loss of affinity for SRII. Finally, the presence of SRII and HtrII reciprocally inhibit homodimer disulfide cross-linking reactions in their membrane-proximal domains, showing that each interferes with the others self-interaction in this region. The results demonstrate close proximity between SRII-HtrII in the membrane-proximal domain, and in addition, light stimulation of the SRII inhibition of HtrII cross-linking was observed, indicating that the contact is enhanced in the photoactivated complex. A mechanism is proposed in which photoactivation alters the SRII-HtrII interaction in the membrane-proximal region during the signal relay process.
Collapse
Affiliation(s)
- Chii-Shen Yang
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|
27
|
Bergo V, Spudich EN, Spudich JL, Rothschild KJ. Conformational changes detected in a sensory rhodopsin II-transducer complex. J Biol Chem 2003; 278:36556-62. [PMID: 12821665 DOI: 10.1074/jbc.m303719200] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Sensory rhodopsins (SRs) are light receptors that belong to the growing family of microbial rhodopsins. SRs have now been found in all three major domains of life including archaea, bacteria, and eukaryotes. One of the most extensively studied sensory rhodopsins is SRII, which controls a blue light avoidance motility response in the halophilic archaeon Natronobacterium pharaonis. This seven-helix integral membrane protein forms a tight intermolecular complex with its cognate transducer protein, HtrII. In this work, the structural changes occurring in a fusion complex consisting of SRII and the two transmembrane helices (TM1 and TM2) of HtrII were investigated by time-resolved Fourier transform infrared difference spectroscopy. Although most of the structural changes observed in SRII are conserved in the fusion complex, several distinct changes are found. A reduction in the intensity of a prominent amide I band observed for SRII indicates that its structural changes are altered in the fusion complex, possibly because of the close interaction of TM2 with the F helix, which interferes with the F helix outward tilt. Deprotonation of at least one Asp/Glu residue is detected in the transducer-free receptor with a pKa near 7 that is abolished or altered in the fusion complex. Changes are also detected in spectral regions characteristic of Asn and Tyr vibrations. At high hydration levels, transducer-fusion interactions lead to a stabilization of an M-like intermediate that most likely corresponds to an active signaling form of the transducer. These findings are discussed in the context of a recently elucidated x-ray structure of the fusion complex.
Collapse
Affiliation(s)
- Vladislav Bergo
- Department of Physics and Molecular Biophysics Laboratory, Boston University, Boston, Massachusetts 02215, USA
| | | | | | | |
Collapse
|
28
|
Yu J, Shen G, Wang T, Bryant DA, Golbeck JH, McIntosh L. Suppressor mutations in the study of photosystem I biogenesis: sll0088 is a previously unidentified gene involved in reaction center accumulation in Synechocystis sp. strain PCC 6803. J Bacteriol 2003; 185:3878-87. [PMID: 12813082 PMCID: PMC161560 DOI: 10.1128/jb.185.13.3878-3887.2003] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2003] [Accepted: 04/16/2003] [Indexed: 11/20/2022] Open
Abstract
In previous work, some members of our group isolated mutant strains of Synechocystis sp. strain PCC 6803 in which point mutations had been inserted into the psaC gene to alter the cysteine residues to the F(A) and F(B) iron-sulfur clusters in the PsaC subunit of photosystem I (J. P. Yu, I. R. Vassiliev, Y. S. Jung, J. H. Golbeck, and L. McIntosh, J. Biol. Chem. 272:8032-8039, 1997). These mutant strains did not grow photoautotrophically due to suppressed levels of chlorophyll a and photosystem I. In the results described here, we show that suppressor mutations produced strains that are capable of photoautotrophic growth at moderate light intensity (20 micromol m(-2) s(-1)). Two separate suppressor strains of C14S(PsaC), termed C14S(PsaC)-R62 and C14S(PsaC)-R18, were studied and found to have mutations in a previously uncharacterized open reading frame of the Synechocystis sp. strain PCC 6803 genome named sll0088. C14S(PsaC)-R62 was found to substitute Pro for Arg at residue 161 as the result of a G482-->C change in sll0088, and C14S(PsaC)-R18 was found to have a three-amino-acid insertion of Gly-Tyr-Phe following Cys231 as the result of a TGGTTATTT duplication at T690 in sll0088. These suppressor strains showed near-wild-type levels of chlorophyll a and photosystem I, yet the serine oxygen ligand to F(B) was retained as shown by the retention of the S > or = 3/2 spin state of the [4Fe-4S] cluster. The inactivation of sll0088 by insertion of a kanamycin resistance cartridge in the primary C14S(PsaC) mutant produced an engineered suppressor strain capable of photoautotrophic growth. There was no difference in psaC gene expression or in the amount of PsaC protein assembled in thylakoids between the wild type and an sll0088 deletion mutant. The sll0088 gene encodes a protein predicted to be a transcriptional regulator with sequence similarities to transcription factors in other prokaryotic and eukaryotic organisms, including Arabidopsis thaliana. The protein contains a typical helix-turn-helix DNA-binding motif and can be classified as a negative regulator by phylogenetic analysis. This suggests that the product of sll0088 has a role in regulating the biogenesis of photosystem I.
Collapse
Affiliation(s)
- Jianping Yu
- MSU-DOE Plant Research Laboratory and Biochemistry and Molecular Biology Department, Michigan State University, East Lansing, Michigan 48824, USA
| | | | | | | | | | | |
Collapse
|
29
|
Bornhorst JA, Falke JJ. Evidence that both ligand binding and covalent adaptation drive a two-state equilibrium in the aspartate receptor signaling complex. J Gen Physiol 2001; 118:693-710. [PMID: 11723162 PMCID: PMC2229510 DOI: 10.1085/jgp.118.6.693] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2001] [Accepted: 11/05/2001] [Indexed: 11/20/2022] Open
Abstract
The transmembrane aspartate receptor of bacterial chemotaxis regulates an associated kinase protein in response to both attractant binding to the receptor periplasmic domain and covalent modification of four adaptation sites on the receptor cytoplasmic domain. The existence of at least 16 covalent modification states raises the question of how many stable signaling conformations exist. In the simplest case, the receptor could have just two stable conformations ("on" and "off") yielding the two-state behavior of a toggle-switch. Alternatively, covalent modification could incrementally shift the receptor between many more than two stable conformations, thereby allowing the receptor to function as a rheostatic switch. An important distinction between these models is that the observed functional parameters of a toggle-switch receptor could strongly covary as covalent modification shifts the equilibrium between the on- and off-states, due to population-weighted averaging of the intrinsic on- and off-state parameters. By contrast, covalent modification of a rheostatic receptor would create new conformational states with completely independent parameters. To resolve the toggle-switch and rheostat models, the present study has generated all 16 homogeneous covalent modification states of the receptor adaptation sites, and has compared their effects on the attractant affinity and kinase activity of the reconstituted receptor-kinase signaling complex. This approach reveals that receptor covalent modification modulates both attractant affinity and kinase activity up to 100-fold, respectively. The regulatory effects of individual adaptation sites are not perfectly additive, indicating synergistic interactions between sites. The three adaptation sites at positions 295, 302, and 309 are more important than the site at position 491 in regulating attractant affinity and kinase activity, thereby explaining the previously observed dominance of the former three sites in in vivo studies. The most notable finding is that covalent modification of the adaptation sites alters the receptor attractant affinity and the receptor-regulated kinase activity in a highly correlated fashion, strongly supporting the toggle-switch model. Similarly, certain mutations that drive the receptor into the kinase activating state are found to have correlated effects on attractant affinity. Together these results provide strong evidence that chemotaxis receptors possess just two stable signaling conformations and that the equilibrium between these pure on- and off-states is modulated by both attractant binding and covalent adaptation. It follows that the attractant and adaptation signals drive the same conformational change between the two settings of a toggle. An approach that quantifies the fractional occupancy of the on- and off-states is illustrated.
Collapse
Affiliation(s)
- Joshua A. Bornhorst
- Department of Chemistry and Biochemistry, University of Colorado at Boulder, Boulder, Colorado 80309
| | - Joseph J. Falke
- Department of Chemistry and Biochemistry, University of Colorado at Boulder, Boulder, Colorado 80309
| |
Collapse
|
30
|
Jung KH, Spudich EN, Trivedi VD, Spudich JL. An archaeal photosignal-transducing module mediates phototaxis in Escherichia coli. J Bacteriol 2001; 183:6365-71. [PMID: 11591681 PMCID: PMC100132 DOI: 10.1128/jb.183.21.6365-6371.2001] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Halophilic archaea, such as Halobacterium salinarum and Natronobacterium pharaonis, alter their swimming behavior by phototaxis responses to changes in light intensity and color using visual pigment-like sensory rhodopsins (SRs). In N. pharaonis, SRII (NpSRII) mediates photorepellent responses through its transducer protein, NpHtrII. Here we report the expression of fusions of NpSRII and NpHtrII and fusion hybrids with eubacterial cytoplasmic domains and analyze their function in vivo in haloarchaea and in eubacteria. A fusion in which the C terminus of NpSRII is connected by a short flexible linker to NpHtrII is active in phototaxis signaling for H. salinarum, showing that the fusion does not inhibit functional receptor-transducer interactions. We replaced the cytoplasmic portions of this fusion protein with the cytoplasmic domains of Tar and Tsr, chemotaxis transducers from enteric eubacteria. Purification of the fusion protein from H. salinarum and Tar fusion chimera from Escherichia coli membranes shows that the proteins are not cleaved and exhibit absorption spectra characteristic of wild-type membranes. Their photochemical reaction cycles in H. salinarum and E. coli membranes, respectively, are similar to those of native NpSRII in N. pharaonis. These fusion chimeras mediate retinal-dependent phototaxis responses by Escherichia coli, establishing that the nine-helix membrane portion of the receptor-transducer complex is a modular functional unit able to signal in heterologous membranes. This result confirms a current model for SR-Htr signal transduction in which the Htr transducers are proposed to interact physically and functionally with their cognate sensory rhodopsins via helix-helix contacts between their transmembrane segments.
Collapse
Affiliation(s)
- K H Jung
- Department of Microbiology and Molecular Genetics, University of Texas-Houston Medical School, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|
31
|
Taylor BL, Rebbapragada A, Johnson MS. The FAD-PAS domain as a sensor for behavioral responses in Escherichia coli. Antioxid Redox Signal 2001; 3:867-79. [PMID: 11761333 DOI: 10.1089/15230860152665037] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Aer, the aerotaxis receptor in Escherichia coli, is a member of a novel class of flavoproteins that act as redox sensors. The internal energy of the cell is coupled to the redox state of the electron transport system, and this status is sensed by Aer(FAD). This is a more versatile sensory response system than if E. coli sensed oxygen per se. Energy-depleting conditions that decrease electron transport also alter the redox state of the electron transport system. Aer responds by sending a signal to the flagellar motor to change direction. The output of other sensory systems that utilize redox sensors is more commonly transcriptional regulation than a behavioral response. Analysis in silico showed Aer to be part of a superfamily of PAS domain proteins that sense the intracellular environment. In Aer, FAD binds to the PAS domain. By using site-specific mutagenesis, residues critical for FAD binding and sensory transduction were identified in the PAS domain. The PAS domain appears to interact with a linker region in the C-terminus. The linker region is a member of a HAMP domain family, which has signal transduction roles in other systems.
Collapse
Affiliation(s)
- B L Taylor
- Department of Microbiology and Molecular Genetics, School of Medicine, Loma Linda University, CA 92350, USA.
| | | | | |
Collapse
|
32
|
Spudich JL, Yang CS, Jung KH, Spudich EN. Retinylidene proteins: structures and functions from archaea to humans. Annu Rev Cell Dev Biol 2001; 16:365-92. [PMID: 11031241 DOI: 10.1146/annurev.cellbio.16.1.365] [Citation(s) in RCA: 453] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Retinylidene proteins, containing seven membrane-embedded alpha-helices that form an internal pocket in which the chromophore retinal is bound, are ubiquitous in photoreceptor cells in eyes throughout the animal kingdom. They are also present in a diverse range of other organisms and locations, such as archaeal prokaryotes, unicellular eukaryotic microbes, the dermal tissue of frogs, the pineal glands of lizards and birds, the hypothalamus of toads, and the human brain. Their functions include light-driven ion transport and phototaxis signaling in microorganisms, and retinal isomerization and various types of photosignal transduction in higher animals. The aims of this review are to examine this group of photoactive proteins as a whole, to summarize our current understanding of structure/function relationships in the best-studied examples, and to report recent new developments.
Collapse
Affiliation(s)
- J L Spudich
- Department of Microbiology and Molecular Genetics, University of Texas Medical School, Houston, Texas 77030, USA.
| | | | | | | |
Collapse
|
33
|
Schmies G, Engelhard M, Wood PG, Nagel G, Bamberg E. Electrophysiological characterization of specific interactions between bacterial sensory rhodopsins and their transducers. Proc Natl Acad Sci U S A 2001; 98:1555-9. [PMID: 11171989 PMCID: PMC29295 DOI: 10.1073/pnas.98.4.1555] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The halobacterial phototaxis receptors sensory rhodopsin I and II (SRI, SRII) enable the bacteria to seek optimal light conditions for ion pumping by bacteriorhodopsin and/or halorhodopsin. The incoming signal is transferred across the plasma membrane by means of receptor-specific transducer proteins that bind tightly to their corresponding photoreceptors. To investigate the receptor/transducer interaction, advantage is taken of the observation that both SRI and SRII can function as proton pumps. SRI from Halobacterium salinarum, which triggers the positive phototaxis, the photophobic receptor SRII from Natronobacterium pharaonis (pSRII), as well as the mutant pSRII-F86D were expressed in Xenopus oocytes. Voltage-clamp studies confirm that SRI and pSRII function as light-driven, outwardly directed proton pumps with a much stronger voltage dependence than the ion pumps bacteriorhodopsin and halorhodopsin. Coexpression of SRI and pSRII-F86D with their corresponding transducers suppresses the proton transport, revealing a tight binding and specific interaction of the two proteins. These latter results may be exploited to further analyze the binding interaction of the photoreceptors with their downstream effectors.
Collapse
Affiliation(s)
- G Schmies
- Max-Planck-Institut für Molekulare Physiologie, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany
| | | | | | | | | |
Collapse
|
34
|
Electrophysiological characterization of specific interactions between bacterial sensory rhodopsins and their transducers. Proc Natl Acad Sci U S A 2001. [PMID: 11171989 PMCID: PMC29295 DOI: 10.1073/pnas.031562298] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The halobacterial phototaxis receptors sensory rhodopsin I and II (SRI, SRII) enable the bacteria to seek optimal light conditions for ion pumping by bacteriorhodopsin and/or halorhodopsin. The incoming signal is transferred across the plasma membrane by means of receptor-specific transducer proteins that bind tightly to their corresponding photoreceptors. To investigate the receptor/transducer interaction, advantage is taken of the observation that both SRI and SRII can function as proton pumps. SRI from Halobacterium salinarum, which triggers the positive phototaxis, the photophobic receptor SRII from Natronobacterium pharaonis (pSRII), as well as the mutant pSRII-F86D were expressed in Xenopus oocytes. Voltage-clamp studies confirm that SRI and pSRII function as light-driven, outwardly directed proton pumps with a much stronger voltage dependence than the ion pumps bacteriorhodopsin and halorhodopsin. Coexpression of SRI and pSRII-F86D with their corresponding transducers suppresses the proton transport, revealing a tight binding and specific interaction of the two proteins. These latter results may be exploited to further analyze the binding interaction of the photoreceptors with their downstream effectors.
Collapse
|
35
|
Cercignani G, Frediani A, Lucia S, Petracchi D. Competition-integration of blue and orange stimuli in Halobacterium salinarum cannot occur solely in SRI photoreceptor. Biophys J 2000; 79:1554-60. [PMID: 10969016 PMCID: PMC1301048 DOI: 10.1016/s0006-3495(00)76406-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Experiments on the integration of blue and orange stimuli in Halobacterium salinarum were performed by using different combinations of blue and orange steps. The results show that the prevalence of the blue stimulus over the orange one depends on both the blue and the orange light intensities. A quantitative analysis of the current hypotheses on the phototransduction of orange and UV-blue light stimuli is presented, showing that the balancing between the two antagonistic stimuli should depend only on the intensity of the blue stimulus and not on that of the orange one, provided that the combination of the two stimuli occurs linearly at the photoreceptor stage. We conclude that blue and orange stimuli elicit distinct intracellular signals whose integration occurs downstream of the photoreceptor.
Collapse
Affiliation(s)
- G Cercignani
- Università di Pisa, Dipartimento Fisiologia e Biochimica, I-56126 Pisa, Italy
| | | | | | | |
Collapse
|
36
|
Sasaki J, Spudich JL. Proton transport by sensory rhodopsins and its modulation by transducer-binding. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1460:230-9. [PMID: 10984603 DOI: 10.1016/s0005-2728(00)00142-0] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The study of light-induced proton transfers in the archaeal sensory rhodopsins (SR), phototaxis receptors in Halobacterium salinarum, has contributed important insights into their mechanism of signaling to their cognate transducer subunits in the signaling complex. Essential features of the bacteriorhodopsin (BR) pumping mechanism have been conserved in the evolution of the sensors, which carry out light-driven electrogenic proton transport when their transducers are removed. The interaction of SRI with its transducer blocks proton-conducting channels in the receptor thereby inhibiting its proton pumping, indicating that the pump machinery, rather than the transport activity itself, is functionally important for signaling. Analysis of SRII mutants has shown that the salt bridge between the protonated Schiff base and its counterion Asp73 constrains the receptor in its inactive conformation. Similarly, in BR, the corresponding salt bridge between the protonated Schiff base and Asp85 contributes to constraining the protein in a conformation in which its cytoplasmic channel is closed. Transducer chimera studies further indicate that the receptor conformational changes are transmitted from the sensors to their cognate transducers through transmembrane helix-helix interaction. These and other results reviewed here support a signaling mechanism in which tilting of helices on the cytoplasmic side (primarily outward tilting of helix F), similar to that which occurs in BR in its open cytoplasmic channel conformation, causes structural alterations in the transducer transmembrane helices.
Collapse
Affiliation(s)
- J Sasaki
- Department of Space and Earth Science, Osaka University, Osaka 560-0043, Japan
| | | |
Collapse
|
37
|
Repik A, Rebbapragada A, Johnson MS, Haznedar JÖ, Zhulin IB, Taylor BL. PAS domain residues involved in signal transduction by the Aer redox sensor of Escherichia coli. Mol Microbiol 2000; 36:806-16. [PMID: 10844669 PMCID: PMC1805630 DOI: 10.1046/j.1365-2958.2000.01910.x] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
PAS domains sense oxygen, redox potential and light, and are implicated in behaviour, circadian rhythmicity, development and metabolic regulation. Although PAS domains are widespread in archaea, bacteria and eukaryota, the mechanism of signal transduction has been elucidated only for the bacterial photo sensor PYP and oxygen sensor FixL. We investigated the signalling mechanism in the PAS domain of Aer, the redox potential sensor and aerotaxis transducer in Escherichia coli. Forty-two residues in Aer were substituted using cysteine-replacement mutagenesis. Eight mutations resulted in a null phenotype for aerotaxis, the behavioural response to oxygen. Four of them also led to the loss of the non-covalently bound FAD cofactor. Three mutant Aer proteins, N34C, F66C and N85C, transmitted a constant signal-on bias. One mutation, Y111C, inverted signalling by the transducer so that positive stimuli produced negative signals and vice versa. Residues critical for signalling were mapped onto a three-dimensional model of the Aer PAS domain, and an FAD-binding site and 'active site' for signal transduction are proposed.
Collapse
Affiliation(s)
| | | | | | | | | | - Barry L. Taylor
- Correspondence: Barry L. Taylor, Department of Microbiology and Molecular Genetics, Loma Linda University, Loma Linda, CA 92350, Telephone: (909) 558-4480, Fax: (909) 558-4035, E-mail:
| |
Collapse
|
38
|
Manson MD. Allele-specific suppression as a tool to study protein-protein interactions in bacteria. Methods 2000; 20:18-34. [PMID: 10610801 DOI: 10.1006/meth.1999.0902] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Suppression analysis is well suited to study the interactions of gene products. It offers the advantage of simplicity for any organism for which a convenient genetic system has been developed, which holds for a wide spectrum of bacteria and an ever-increasing number of unicellular as well as complex eukaryotes. No other method provides as much information about the functional relationships of biological macromolecules. The intrinsic value of suppression analysis is enhanced by advances in genomics and in biophysical techniques for investigating the properties of nucleic acids and proteins, such as X-ray crystallography, liquid and solid-state nuclear magnetic resonance, electron spin labeling, and isothermal calorimetry. These approaches confirm and complement whatever is revealed by genetics. Despite these sterling qualities, suppression analysis has its dangers, less in execution than in conceptualization of experiments and interpretation of data. A consistent nomenclature is essential for a uniform and widespread understanding of the results. Familiarity with the genetic background and idiosyncracies of the organism studied is critical in avoiding extraneous phenomena that can affect the outcome. Finally, it is imperative not to underestimate potentially bizarre and improbable consequences that can transpire when rigorous genetic selection is maintained for an appreciable length of time. The article begins with a somewhat pedagogical discussion of genetic terminology. It then moves on to the necessary precautions to observe while planning and conducting suppression analysis. The remainder of the article considers different manifestations of suppression: bypass suppression; gradients of suppression; suppression by relaxed specificity; allele-specific "suppression at a distance"; and true conformational suppression. The treatment is not exhaustive, but representative examples have been gleaned from the recent bacterial literature.
Collapse
Affiliation(s)
- M D Manson
- Department of Biology, Texas A&M University, College Station, Texas 77843, USA.
| |
Collapse
|
39
|
Abstract
Energy taxis is widespread in motile bacteria and in some species is the only known behavioral response. The bacteria monitor their cellular energy levels and respond to a decrease in energy by swimming to a microenvironment that reenergizes the cells. This is in contrast to classical Escherichia coli chemotaxis in which sensing of stimuli is independent of cellular metabolism. Energy taxis encompasses aerotaxis (taxis to oxygen), phototaxis, redox taxis, taxis to alternative electron acceptors, and chemotaxis to a carbon source. All of these responses share a common signal transduction pathway. An environmental stimulus, such as oxygen concentration or light intensity, modulates the flow of reducing equivalents through the electron transport system. A transducer senses the change in electron transport, or possibly a related parameter such as proton motive force, and initiates a signal that alters the direction of swimming. The Aer and Tsr proteins in E. coli are newly recognized transducers for energy taxis. Aer is homologous to E. coli chemoreceptors but unique in having a PAS domain and a flavin-adenine dinucleotide cofactor that is postulated to interact with a component of the electron transport system. PAS domains are energy-sensing modules that are found in proteins from archaea to humans. Tsr, the serine chemoreceptor, is an independent transducer for energy taxis, but its sensory mechanism is unknown. Energy taxis has a significant ecological role in vertical stratification of microorganisms in microbial mats and water columns. It plays a central role in the behavior of magnetotactic bacteria and also appears to be important in plant-microbe interactions.
Collapse
Affiliation(s)
- B L Taylor
- Department of Microbiology and Molecular Genetics, School of Medicine, Loma Linda University, California 92350, USA.
| | | | | |
Collapse
|
40
|
Abstract
Sensory rhodopsin II (SRII) in Halobacterium salinarum membranes is a phototaxis receptor that signals through its bound transducer HtrII for avoidance of blue-green light. In the present study we investigated the proton movements during the photocycle of SRII in the HtrII-free and HtrII-complexed form. We monitored sustained light-induced pH changes with a pH electrode, and laser flash-induced pH changes with the pH indicator pyranine using sealed membrane vesicles and open sheets containing the free or the complexed receptor. The results demonstrated that SRII takes up a proton in M-to-O conversion and releases it during O-decay. The uptake and release are from and to the extracellular side, and therefore SRII does not transport the proton across the membrane. The pH dependence of the SRII photocycle indicated the presence of a protonatable group (pK(a) approximately 7.5) in the extracellular proton-conducting path, which plays a role in proton uptake by the Schiff base in the M-to-O conversion. The extracellular proton circulation produced by SRII was not blocked by HtrII complexation, unlike the cytoplasmic proton conduction in SRI that was found in the same series of measurements to be blocked by its transducer, HtrI. The implications of this finding for current models of SRI and SRII signaling are discussed.
Collapse
Affiliation(s)
- J Sasaki
- Department of Microbiology & Molecular Genetics, University of Texas Medical School, Houston, Texas 77030 USA
| | | |
Collapse
|
41
|
Perazzona B, Spudich JL. Identification of methylation sites and effects of phototaxis stimuli on transducer methylation in Halobacterium salinarum. J Bacteriol 1999; 181:5676-83. [PMID: 10482508 PMCID: PMC94087 DOI: 10.1128/jb.181.18.5676-5683.1999] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The two transducers in the phototaxis system of the archaeon Halobacterium salinarum, HtrI and HtrII, are methyl-accepting proteins homologous to the chemotaxis transducers in eubacteria. Consensus sequences predict three glutamate pairs containing potential methylation sites in HtrI and one in HtrII. Mutagenic substitution of an alanine pair for one of these, Glu265-Glu266, in HtrI and for the homologous Glu513-Glu514 in HtrII eliminated methylation of these two transducers, as demonstrated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis autofluorography. Photostimulation of the repellent receptor sensory rhodopsin II (SRII) induced reversible demethylation of HtrII, while no detectable change in the extent of methylation of HtrI was observed in response to stimulation of its cognate sensory rhodopsin, the attractant receptor SRI. Cells containing HtrI or HtrII with all consensus sites replaced by alanine still exhibited phototaxis responses and behavioral adaptation, and methanol release assays showed that methyl group turnover was still induced in response to photostimulation of SRI or SRII. By pulse-chase experiments with in vivo L-[methyl-(3)H]methionine-labeled cells, we found that repetitive photostimulation of SRI complexed with wild-type (or nonmethylatable) HtrI induced methyl group turnover in transducers other than HtrI to the same extent as in wild-type HtrI. Both attractant and repellent stimuli cause a transient increase in the turnover rate of methyl groups in wild-type H. salinarum cells. This result is unlike that obtained with Escherichia coli, in which attractant stimuli decrease and repellent stimuli increase turnover rate, and is similar to that obtained with Bacillus subtilis, which also shows turnover rate increases regardless of the nature of the stimulus. We found that a CheY deletion mutant of H. salinarum exhibited the E. coli-like asymmetric pattern, as has recently also been observed in B. subtilis. Further, we demonstrate that the CheY-dependent feedback effect does not require the stimulated transducer to be methylatable and operates globally on other transducers present in the cell.
Collapse
Affiliation(s)
- B Perazzona
- Department of Microbiology and Molecular Genetics, The University of Texas Medical School, Houston, Texas 77030, USA
| | | |
Collapse
|
42
|
Zhang XN, Zhu J, Spudich JL. The specificity of interaction of archaeal transducers with their cognate sensory rhodopsins is determined by their transmembrane helices. Proc Natl Acad Sci U S A 1999; 96:857-62. [PMID: 9927658 PMCID: PMC15315 DOI: 10.1073/pnas.96.3.857] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Chimeras of the Halobacterium salinarum transducers HtrI and HtrII were constructed to study the structural determinants for their specific interaction with the phototaxis receptors sensory rhodopsins I and II (SRI and SRII), respectively. Interaction of receptors and transducers was assessed by two criteria: phototaxis responses by the cells and transducer-modulation of receptor photochemical reaction kinetics in membranes. Coexpression of HtrI with SRII or HtrII with SRI did not result in interaction by either criterion. Each receptor was coexpressed with chimeric transducers in which various domains of the two transducers were interchanged. The results show that the presence of the two transmembrane helices of HtrI in a chimera is necessary and sufficient for functional transducer complexation with SRI, i.e., for wild-type SRI photoreactions and attractant and 2-photon repellent phototaxis responses. Additionally, a previously demonstrated chaperone-like facilitation of SRI folding or stability by HtrI was shown to depend only on the two transmembrane helices of HtrI in chimeric transducers. Similarly, the two transmembrane helices of HtrII specify interaction with the repellent receptor SRII according to motility analysis and laser-flash spectroscopy. The results support a model in which the membrane domains of the receptor/transducer complexes, consisting of the seven helices of the receptor interacting with the four-helix bundle of the transducer dimer, produce SRI- and SRII-specific signals to the flagellar motor by means of interchangeable cytoplasmic domains.
Collapse
Affiliation(s)
- X N Zhang
- Department of Microbiology and Molecular Genetics, The University of Texas Medical School, Houston, TX 77030, USA
| | | | | |
Collapse
|
43
|
Zhang XN, Spudich JL. HtrI is a dimer whose interface is sensitive to receptor photoactivation and His-166 replacements in sensory rhodopsin I. J Biol Chem 1998; 273:19722-8. [PMID: 9677402 DOI: 10.1074/jbc.273.31.19722] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Single cysteine substitutions were introduced into three positions of otherwise cysteineless HtrI, a phototaxis transducer found in Halobacterium salinarum that transmits signals from the photoreceptor sensory rhodopsin I (SRI) to a cytoplasmic pathway controlling the cell's motility. Oxidative cross-linking of the monocysteine HtrI mutants in membrane suspensions resulted in dimer forms evident in SDS-polyacrylamide gels. The rate of cross-linking of I64C on the cytoplasmic side of HtrI was accelerated by SRI binding in the dark and further increased by SRI photoactivation. Several residue replacements of His-166 in SRI accelerated the cross-linking rate of I64C in the dark and His-166 mutants that exhibit "inverted signaling" (mediating repellent instead of the normally attractant response to orange light) inverted the light effect on the cross-linking rate of I64C. Secondary structure prediction of HtrI indicates a coiled coil structure in the cytoplasmic region following TM2, a dimerization domain found in a diverse group of proteins. We conclude that 1) HtrI exists as a dimer both in the absence of SRI and in the SRI-HtrI complex, 2) binding of SRI in the dark increases reactivity of the two cysteines at position 64 in the dimer by increasing their proximity or mobility, 3) light activation of wild-type SRI further increases their reactivity, 4) His-166 replacements in the SRI receptor have conformational effects on the structure of HtrI at position 64, and 5) inverted signaling by His-166 mutants likely results from an inverted conformational change at this region induced by SRI photoactivation.
Collapse
Affiliation(s)
- X N Zhang
- Department of Microbiology and Molecular Genetics, University of Texas Medical School, Houston, Texas 77030, USA
| | | |
Collapse
|
44
|
Abstract
The archaeal rhodopsins are a family of seven-transmembrane-helix, visual pigment-like proteins found in Halobacterium salinarum and related halophilic Archaea. Two, bacteriorhodopsin (BR) and halorhodopsin (HR), are transport rhodopsins that carry out light-driven electrogenic translocation of protons and chloride, respectively, across the cell membrane. The other two, sensory rhodopsins I and II (SRI and SRII), are phototaxis receptors that send signals to tightly bound transducer proteins that in turn control a phosphorylation cascade modulating the cell's flagellar motors. Recent progress has cast light on how nature has modified the common design of these proteins to carry out their distinctly different functions: electrogenic ion transport and non-electrogenic signal transduction. A key shared mechanism between BR and SRII appears to be an interhelical salt bridge locked conformational switch that is released by photoisomerization of retinal. In BR disruption of the lock opens a cytoplasmic half-channel that ensures uptake of the transported proton from the cytoplasmic side of the membrane at a critical time in the pumping cycle. Transducer-free SRI uses the same mechanism to carry out light-driven proton transport, but interaction with its transducer blocks the cytoplasmic half-channel thereby interrupting the transport cycle. In SRI, transducer interaction also disrupts the salt bridge in the dark, poising the receptor in an intermediate conformation able to produce opposite signals depending on the colour of the stimulus light. A model for signalling is proposed in which the salt bridge-controlled half-channel is used to modulate interaction with the Htr proteins when the receptor signalling states are formed.
Collapse
Affiliation(s)
- J L Spudich
- Department of Microbiology and Molecular Genetics, University of Texas Medical School, Houston 77030, USA.
| |
Collapse
|