1
|
Zhang T, Villalba MI, Gao R, Kasas S, von Gunten U. Effect of surfactants on inactivation of Bacillus subtilis spores by chlorine. WATER RESEARCH 2025; 272:122944. [PMID: 39708383 DOI: 10.1016/j.watres.2024.122944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 12/03/2024] [Accepted: 12/08/2024] [Indexed: 12/23/2024]
Abstract
Bacterial spores pose significant risks to human health, yet the inactivation of spores is challenging due to their unique structures and chemical compositions. This study investigated the synergistic effect between surfactants and chlorine on the inactivation kinetics of Bacillus subtilis spores. Two surfactants, cocamidopropyl betaine (CAPB) and cetyltrimethylammonium chloride (CTMA) were selected to investigate chlorine disinfection in absence and presence of surfactants. The concurrent presence of both chlorine and surfactant resulted in a moderate reduction in the lag-phases for spore inactivation and negligible increase in the second-order inactivation rate constants. In contrast, when the spores were pre-exposed to surfactants, the lag-phases decreased by about 50 % for both CAPB and CTMA, and the second-order inactivation rate constants during post-chlorination remained constant for CAPB but increased by a factor of 2.3 for CTMA, compared to the control group with phosphate buffer. This synergistic effect became more pronounced with longer surfactant pre-exposure times, reaching its maximum at 3-6 h. The observed synergistic effect suggests that surfactants can potentially enhance the permeability of the coat which is the outmost layer of B. subtilis spores and a primary barrier for chemical disinfectants. Tracing a group of B. subtilis spores sequentially treated with surfactant and chlorine by atomic force microscopy, a significant decrease in compressive stiffness of the spores was observed due to exposure to surfactants, indicating alterations in the coat by surfactants. The trend in reducing compressive stiffness aligned well with the decrease of lag-phases in inactivation kinetics. Furthermore, CTMA was found to inactivate B. subtilis spores through mechanisms different from chlorine. Chlorine primarily inactivated B. subtilis spores before damaging the inner membrane of the spores which plays a crucial role in protecting the genetic material stored in the core of the spores. In comparison, CTMA damaged 22 % of the inner membrane for an inactivation efficiency of 99 %. A synergistic effect in damaging the inner membrane was observed when applying CTMA and chlorine simultaneously instead of sequentially.
Collapse
Affiliation(s)
- Tianqi Zhang
- School of Architecture, Civil and Environmental Engineering (ENAC), École Polytechnique Fedérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - María Inés Villalba
- Laboratory of Biological Electron Microscopy (LBEM), École Polytechnique Fédérale de Lausanne (EPFL) and Université de Lausanne (UNIL), CH-1015 Lausanne, Switzerland
| | - Rongjun Gao
- School of Architecture, Civil and Environmental Engineering (ENAC), École Polytechnique Fedérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Sandor Kasas
- Laboratory of Biological Electron Microscopy (LBEM), École Polytechnique Fédérale de Lausanne (EPFL) and Université de Lausanne (UNIL), CH-1015 Lausanne, Switzerland; Centre Universitaire Romand de Médecine Légale, UFAM, Université de Lausanne, 1015 Lausanne, Switzerland
| | - Urs von Gunten
- School of Architecture, Civil and Environmental Engineering (ENAC), École Polytechnique Fedérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland; Eawag, Swiss Federal Institute of Aquatic Science and Technology (Eawag), CH-8600 Dübendorf, Switzerland.
| |
Collapse
|
2
|
D’Halluin A, Gilet L, Lablaine A, Pellegrini O, Serrano M, Tolcan A, Ventroux M, Durand S, Hamon M, Henriques A, Carballido-López R, Condon C. Embedding a ribonuclease in the spore crust couples gene expression to spore development in Bacillus subtilis. Nucleic Acids Res 2025; 53:gkae1301. [PMID: 39817517 PMCID: PMC11736430 DOI: 10.1093/nar/gkae1301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 12/16/2024] [Accepted: 01/14/2025] [Indexed: 01/18/2025] Open
Abstract
Faced with nutritional stress, some bacteria form endospores capable of enduring extreme conditions for long periods of time; yet the function of many proteins expressed during sporulation remains a mystery. We identify one such protein, KapD, as a 3'-exoribonuclease expressed under control of the mother cell-specific transcription factors SigE and SigK in Bacillus subtilis. KapD dynamically assembles over the spore surface through a direct interaction with the major crust protein CotY. KapD catalytic activity is essential for normal adhesiveness of spore surface layers. We identify the sigK mRNA as a key KapD substrate and and show that the stability of this transcript is regulated by CotY-mediated sequestration of KapD. SigK is tightly controlled through excision of a prophage-like element, transcriptional regulation and the removal of an inhibitory pro-sequence. Our findings uncover a fourth, post-transcriptional layer of control of sigK expression that couples late-stage gene expression in the mother cell to spore morphogenesis.
Collapse
Affiliation(s)
- Alexandre D’Halluin
- EGM CNRS, Université Paris-Cité,Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Laetitia Gilet
- EGM CNRS, Université Paris-Cité,Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Armand Lablaine
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France
| | - Olivier Pellegrini
- EGM CNRS, Université Paris-Cité,Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Mónica Serrano
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157Oeiras, Portugal
| | - Anastasia Tolcan
- EGM CNRS, Université Paris-Cité,Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Magali Ventroux
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France
| | - Sylvain Durand
- EGM CNRS, Université Paris-Cité,Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Marion Hamon
- Proteomics platform, FR550 Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Adriano O Henriques
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157Oeiras, Portugal
| | - Rut Carballido-López
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France
| | - Ciarán Condon
- EGM CNRS, Université Paris-Cité,Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France
| |
Collapse
|
3
|
Bidnenko V, Chastanet A, Péchoux C, Redko-Hamel Y, Pellegrini O, Durand S, Condon C, Boudvillain M, Jules M, Bidnenko E. Complex sporulation-specific expression of transcription termination factor Rho highlights its involvement in Bacillus subtilis cell differentiation. J Biol Chem 2024; 300:107905. [PMID: 39427753 PMCID: PMC11599450 DOI: 10.1016/j.jbc.2024.107905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 10/13/2024] [Accepted: 10/14/2024] [Indexed: 10/22/2024] Open
Abstract
Termination factor Rho, responsible for the main factor-dependent pathway of transcription termination and the major inhibitor of antisense transcription, is an emerging regulator of various physiological processes in microorganisms. In Gram-positive bacterium Bacillus subtilis, Rho is involved in the control of cell adaptation to starvation and, in particular, in the control of sporulation, a complex differentiation program leading to the formation of a highly resistant dormant spore. While the initiation of sporulation requires a decrease in Rho protein levels during the transition to stationary phase, the mechanisms regulating the expression of rho gene throughout the cell cycle remain largely unknown. Here we show that a drop in the activity of the vegetative SigA-dependent rho promoter causes the inhibition of rho expression in stationary phase. However, after the initiation of sporulation, rho gene is specifically reactivated in two compartments of the sporulating cell using distinct mechanisms. In the mother cell, rho expression occurs by read-through transcription initiated at the SigH-dependent promoter of the distal spo0F gene. In the forespore, rho gene is transcribed from the intrinsic promoter recognized by the alternative sigma factor SigF. These regulatory elements ensure the activity of Rho during sporulation, which appears important for the proper formation of spores. We provide experimental evidence that disruption of the spatiotemporal expression of rho during sporulation affects the resistance properties of spores, their morphology, and the ability to return to vegetative growth under favorable growth conditions.
Collapse
Affiliation(s)
- Vladimir Bidnenko
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Arnaud Chastanet
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Christine Péchoux
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas, France; MIMA2 Imaging Core Facility, Microscopie et Imagerie des Microorganismes, Animaux et Aliments, INRAE, Jouy-en-Josas, France
| | - Yulia Redko-Hamel
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Olivier Pellegrini
- Expression Génétique Microbienne, UMR8261 CNRS, Université Paris Cité, Institut de Biologie Physico-Chimique, Paris, France
| | - Sylvain Durand
- Expression Génétique Microbienne, UMR8261 CNRS, Université Paris Cité, Institut de Biologie Physico-Chimique, Paris, France
| | - Ciarán Condon
- Expression Génétique Microbienne, UMR8261 CNRS, Université Paris Cité, Institut de Biologie Physico-Chimique, Paris, France
| | - Marc Boudvillain
- Centre de Biophysique moléculaire, CNRS UPR4301, Orléans, France; Affiliated with Université d'Orléans, Orléans, France
| | - Matthieu Jules
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Elena Bidnenko
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France.
| |
Collapse
|
4
|
Martins D, Nerber HN, Roughton CG, Fasquelle A, Barwinska-Sendra A, Vollmer D, Gray J, Vollmer W, Sorg JA, Salgado PS, Henriques AO, Serrano M. Cleavage of an engulfment peptidoglycan hydrolase by a sporulation signature protease in Clostridioides difficile. Mol Microbiol 2024; 122:213-229. [PMID: 38922761 PMCID: PMC11309906 DOI: 10.1111/mmi.15291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/05/2024] [Accepted: 06/08/2024] [Indexed: 06/28/2024]
Abstract
In the model organism Bacillus subtilis, a signaling protease produced in the forespore, SpoIVB, is essential for the activation of the sigma factor σK, which is produced in the mother cell as an inactive pro-protein, pro-σK. SpoIVB has a second function essential to sporulation, most likely during cortex synthesis. The cortex is composed of peptidoglycan (PG) and is essential for the spore's heat resistance and dormancy. Surprisingly, the genome of the intestinal pathogen Clostridioides difficile, in which σK is produced without a pro-sequence, encodes two SpoIVB paralogs, SpoIVB1 and SpoIVB2. Here, we show that spoIVB1 is dispensable for sporulation, while a spoIVB2 in-frame deletion mutant fails to produce heat-resistant spores. The spoIVB2 mutant enters sporulation, undergoes asymmetric division, and completes engulfment of the forespore by the mother cell but fails to synthesize the spore cortex. We show that SpoIIP, a PG hydrolase and part of the engulfasome, the machinery essential for engulfment, is cleaved by SpoIVB2 into an inactive form. Within the engulfasome, the SpoIIP amidase activity generates the substrates for the SpoIID lytic transglycosylase. Thus, following engulfment completion, the cleavage and inactivation of SpoIIP by SpoIVB2 curtails the engulfasome hydrolytic activity, at a time when synthesis of the spore cortex peptidoglycan begins. SpoIVB2 is also required for normal late gene expression in the forespore by a currently unknown mechanism. Together, these observations suggest a role for SpoIVB2 in coordinating late morphological and gene expression events between the forespore and the mother cell.
Collapse
Affiliation(s)
- Diogo Martins
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República EAN, 2780-157 Oeiras, Portugal
| | - Hailee N. Nerber
- Texas A&M University, College Station, TX, Biology Department, Texas, USA
| | - Charlotte G. Roughton
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Amaury Fasquelle
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República EAN, 2780-157 Oeiras, Portugal
| | - Anna Barwinska-Sendra
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Daniela Vollmer
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
- Centre for Bacterial Cell Biology, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Joe Gray
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Waldemar Vollmer
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
- Centre for Bacterial Cell Biology, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Australia
| | - Joseph A. Sorg
- Texas A&M University, College Station, TX, Biology Department, Texas, USA
| | - Paula S. Salgado
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
- Centre for Bacterial Cell Biology, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Adriano O. Henriques
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República EAN, 2780-157 Oeiras, Portugal
| | - Mónica Serrano
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República EAN, 2780-157 Oeiras, Portugal
| |
Collapse
|
5
|
Kadowaki R, Tanno H, Maeno S, Endo A. Spore-forming properties and enhanced oxygen tolerance of butyrate-producing Anaerostipes spp. Anaerobe 2023; 82:102752. [PMID: 37301503 DOI: 10.1016/j.anaerobe.2023.102752] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/25/2023] [Accepted: 06/06/2023] [Indexed: 06/12/2023]
Abstract
OBJECTIVES Butyrate producing bacteria are promising candidates for next-generation probiotics. However, they are extremely sensitive to oxygen, which is a significant obstacle to their inclusion in food matrices in a viable form. The present study characterized the spore-forming properties and stress tolerance of human gut butyrate-producing Anaerostipes spp. METHODS Spore formation properties in six species of Anaerostipes spp. were studied by in vitro and in silico tests. RESULTS Spores were observed from the cells of three species using microscopic analyses, while the remaining three did not form spores under the tested conditions. Spore-forming properties were confirmed by an ethanol treatment. The spores of Anaerostipes caccae were tolerant to oxygen and survived for 15 weeks under atmospheric conditions. Spores tolerated heat stress at 70 °C, but not at 80 °C. An in silico analysis of the conservation of potential sporulation signature genes revealed that the majority of human gut butyrate-producing bacteria were classified as potential spore formers. Comparative genomics revealed that three spore-forming Anaerostipes spp. specifically possessed the spore formation-related genes of bkdR, sodA, and splB, which may be key genes for different sporulation properties in Anaerostipes spp. CONCLUSIONS The present study demonstrated the enhanced stress tolerance of butyrate producing Anaerostipes spp. for future probiotic application. Presence of specific gene(s) are possibly keys for sporulation in Anaerostipes spp.
Collapse
Affiliation(s)
- Ren Kadowaki
- Department of Food, Aroma and Cosmetic Chemistry, Faculty of Bioindustry, Tokyo University of Agriculture, 099-2493, Hokkaido, Japan
| | - Hiroki Tanno
- Department of Food, Aroma and Cosmetic Chemistry, Faculty of Bioindustry, Tokyo University of Agriculture, 099-2493, Hokkaido, Japan
| | - Shintaro Maeno
- Graduate School of Medical Sciences, Kyushu University, 812-8582, Fukuoka, Japan
| | - Akihito Endo
- Department of Food, Aroma and Cosmetic Chemistry, Faculty of Bioindustry, Tokyo University of Agriculture, 099-2493, Hokkaido, Japan; Department of Nutritional Science and Food Safety, Faculty of Applied Bioscience, Tokyo University of Agriculture, 156-8502, Tokyo, Japan.
| |
Collapse
|
6
|
Čapek J, Večerek B. Why is manganese so valuable to bacterial pathogens? Front Cell Infect Microbiol 2023; 13:943390. [PMID: 36816586 PMCID: PMC9936198 DOI: 10.3389/fcimb.2023.943390] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 01/04/2023] [Indexed: 02/05/2023] Open
Abstract
Apart from oxygenic photosynthesis, the extent of manganese utilization in bacteria varies from species to species and also appears to depend on external conditions. This observation is in striking contrast to iron, which is similar to manganese but essential for the vast majority of bacteria. To adequately explain the role of manganese in pathogens, we first present in this review that the accumulation of molecular oxygen in the Earth's atmosphere was a key event that linked manganese utilization to iron utilization and put pressure on the use of manganese in general. We devote a large part of our contribution to explanation of how molecular oxygen interferes with iron so that it enhances oxidative stress in cells, and how bacteria have learned to control the concentration of free iron in the cytosol. The functioning of iron in the presence of molecular oxygen serves as a springboard for a fundamental understanding of why manganese is so valued by bacterial pathogens. The bulk of this review addresses how manganese can replace iron in enzymes. Redox-active enzymes must cope with the higher redox potential of manganese compared to iron. Therefore, specific manganese-dependent isoenzymes have evolved that either lower the redox potential of the bound metal or use a stronger oxidant. In contrast, redox-inactive enzymes can exchange the metal directly within the individual active site, so no isoenzymes are required. It appears that in the physiological context, only redox-inactive mononuclear or dinuclear enzymes are capable of replacing iron with manganese within the same active site. In both cases, cytosolic conditions play an important role in the selection of the metal used. In conclusion, we summarize both well-characterized and less-studied mechanisms of the tug-of-war for manganese between host and pathogen.
Collapse
Affiliation(s)
- Jan Čapek
- *Correspondence: Jan Čapek, ; Branislav Večerek,
| | | |
Collapse
|
7
|
Portinha IM, Douillard FP, Korkeala H, Lindström M. Sporulation Strategies and Potential Role of the Exosporium in Survival and Persistence of Clostridium botulinum. Int J Mol Sci 2022; 23:ijms23020754. [PMID: 35054941 PMCID: PMC8775613 DOI: 10.3390/ijms23020754] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/31/2021] [Accepted: 01/07/2022] [Indexed: 01/21/2023] Open
Abstract
Clostridium botulinum produces the botulinum neurotoxin that causes botulism, a rare but potentially lethal paralysis. Endospores play an important role in the survival, transmission, and pathogenesis of C. botulinum. C. botulinum strains are very diverse, both genetically and ecologically. Group I strains are terrestrial, mesophilic, and produce highly heat-resistant spores, while Group II strains can be terrestrial (type B) or aquatic (type E) and are generally psychrotrophic and produce spores of moderate heat resistance. Group III strains are either terrestrial or aquatic, mesophilic or slightly thermophilic, and the heat resistance properties of their spores are poorly characterized. Here, we analyzed the sporulation dynamics in population, spore morphology, and other spore properties of 10 C. botulinum strains belonging to Groups I–III. We propose two distinct sporulation strategies used by C. botulinum Groups I–III strains, report their spore properties, and suggest a putative role for the exosporium in conferring high heat resistance. Strains within each physiological group produced spores with similar characteristics, likely reflecting adaptation to respective environmental habitats. Our work provides new information on the spores and on the population and single-cell level strategies in the sporulation of C. botulinum.
Collapse
|
8
|
Chen NW, Gao JL, Li HL, Xu H, Wu LF, Meng FG, Chen W, Cao YF, Xie WH, Zhang XQ, Liu SH, Jin J, He Y, Lv JW. The protective effect of manganese superoxide dismutase from thermophilic bacterium HB27 on hydrochloric acid-induced chemical cystitis in rats. Int Urol Nephrol 2021; 54:1681-1691. [PMID: 34783980 PMCID: PMC9184365 DOI: 10.1007/s11255-021-03054-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 11/06/2021] [Indexed: 11/26/2022]
Abstract
Purpose To evaluate the effects of manganese superoxide dismutase (Mn-SOD) from thermophilic bacterium HB27 (name as Tt-SOD) on chemical cystitis. Methods Control and experimental rats were infused by intravesical saline or hydrochloric acid (HCl) on the first day of the experiments. Saline, sodium hyaluronate (SH) or Tt-SOD were infused intravesically once a day for three consequent days. On the fifth day, the rats were weighted and sacrificed following a pain threshold test. The bladder was harvested for histological and biochemical analyses. Results Tt-SOD could reduce the bladder index, infiltration of inflammatory cells in tissues, serum inflammatory factors and SOD levels, mRNA expression of inflammatory factors in tissues, and increase perineal mechanical pain threshold and serum MDA and ROS levels in HCl-induced chemical cystitis. Furthermore, Tt-SOD alleviated inflammation and oxidative stress by the negative regulation of the NF-κB p65 and p38 MAPK signaling pathway. Conclusions Intravesical instillation of Tt-SOD provides protective effects against HCl-induced cystitis.
Collapse
Affiliation(s)
- Nai-Wen Chen
- Department of Urology, The Affiliated Hospital of Jiaxing University, Jiaxing, 314001, Zhejiang, China
| | - Jin-Lai Gao
- Department of Pharmacology, College of Medical, Jiaxing University, Jiaxing, Zhejiang, 314001, People's Republic of China
| | - Hai-Long Li
- Redox Medical Center for Public Health, Medical College of Soochow University, Suzhou, 215123, Jiangsu, China
| | - Hong Xu
- Department of Urology, The Affiliated Hospital of Jiaxing University, Jiaxing, 314001, Zhejiang, China
| | - Ling-Feng Wu
- Department of Urology, The Affiliated Hospital of Jiaxing University, Jiaxing, 314001, Zhejiang, China
| | - Fan-Guo Meng
- Redox Medical Center for Public Health, Medical College of Soochow University, Suzhou, 215123, Jiangsu, China
| | - Wei Chen
- Department of Urology, The Affiliated Hospital of Jiaxing University, Jiaxing, 314001, Zhejiang, China
| | - Yi-Fang Cao
- Department of Urology, The Affiliated Hospital of Jiaxing University, Jiaxing, 314001, Zhejiang, China
| | - Wen-Hua Xie
- Department of Urology, The Affiliated Hospital of Jiaxing University, Jiaxing, 314001, Zhejiang, China
| | - Xiao-Qin Zhang
- Department of Pharmacy, College of Medical, Jiaxing University, Jiaxing, Zhejiang, 314001, People's Republic of China
| | - Shi-Hui Liu
- Department of Pharmacy, College of Medical, Jiaxing University, Jiaxing, Zhejiang, 314001, People's Republic of China
| | - Jing Jin
- Department of Urology, The Affiliated Hospital of Jiaxing University, Jiaxing, 314001, Zhejiang, China.
| | - Yi He
- Department of Urology, The Affiliated Hospital of Jiaxing University, Jiaxing, 314001, Zhejiang, China.
| | - Jian-Wei Lv
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, People's Republic of China.
| |
Collapse
|
9
|
Ursem R, Swarge B, Abhyankar WR, Buncherd H, de Koning LJ, Setlow P, Brul S, Kramer G. Identification of Native Cross-Links in Bacillus subtilis Spore Coat Proteins. J Proteome Res 2021; 20:1809-1816. [PMID: 33596081 PMCID: PMC7944565 DOI: 10.1021/acs.jproteome.1c00025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The resistance properties of the bacterial spores are partially due to spore surface proteins, ∼30% of which are said to form an insoluble protein fraction. Previous research has also identified a group of spore coat proteins affected by spore maturation, which exhibit an increased level of interprotein cross-linking. However, the proteins and the types of cross-links involved, previously proposed based on indirect evidence, have yet to be confirmed experimentally. To obtain more insight into the structural basis of the proteinaceous component of the spore coat, we attempted to identify coat cross-links and the proteins involved using new peptide fractionation and bioinformatic methods. Young (day 1) and matured (day 5) Bacillus subtilis spores of wild-type and transglutaminase mutant strains were digested with formic acid and trypsin, and cross-linked peptides were enriched using strong cation exchange chromatography. The enriched cross-linked peptide fractions were subjected to Fourier-transform ion cyclotron resonance tandem mass spectrometry, and the high-quality fragmentation data obtained were analyzed using two specialized software tools, pLink2 and XiSearch, to identify cross-links. This analysis identified specific disulfide bonds between coat proteins CotE-CotE and CotJA-CotJC, obtained evidence of disulfide bonds in the spore crust proteins CotX, CotY, and CotZ, and identified dityrosine and ε-(γ)-glutamyl-lysine cross-linked coat proteins. The findings in this Letter are the first direct biochemical data on protein cross-linking in the spore coat and the first direct evidence of the cross-linked building blocks of the highly ordered and resistant structure called the spore coat.
Collapse
Affiliation(s)
| | | | | | - Hansuk Buncherd
- Faculty of Medical Technology, Prince of Songkla University, Songkhla 90110, Thailand
| | | | - Peter Setlow
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, Connecticut 06030-3305, United States
| | | | | |
Collapse
|
10
|
Freitas C, Plannic J, Isticato R, Pelosi A, Zilhão R, Serrano M, Baccigalupi L, Ricca E, Elsholz AKW, Losick R, O. Henriques A. A protein phosphorylation module patterns the Bacillus subtilis spore outer coat. Mol Microbiol 2020; 114:934-951. [PMID: 32592201 PMCID: PMC7821199 DOI: 10.1111/mmi.14562] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 06/17/2020] [Indexed: 01/09/2023]
Abstract
Assembly of the Bacillus subtilis spore coat involves over 80 proteins which self-organize into a basal layer, a lamellar inner coat, a striated electrodense outer coat and a more external crust. CotB is an abundant component of the outer coat. The C-terminal moiety of CotB, SKRB , formed by serine-rich repeats, is polyphosphorylated by the Ser/Thr kinase CotH. We show that another coat protein, CotG, with a central serine-repeat region, SKRG , interacts with the C-terminal moiety of CotB and promotes its phosphorylation by CotH in vivo and in a heterologous system. CotG itself is phosphorylated by CotH but phosphorylation is enhanced in the absence of CotB. Spores of a strain producing an inactive form of CotH, like those formed by a cotG deletion mutant, lack the pattern of electrondense outer coat striations, but retain the crust. In contrast, deletion of the SKRB region, has no major impact on outer coat structure. Thus, phosphorylation of CotG by CotH is a key factor establishing the structure of the outer coat. The presence of the cotB/cotH/cotG cluster in several species closely related to B. subtilis hints at the importance of this protein phosphorylation module in the morphogenesis of the spore surface layers.
Collapse
Affiliation(s)
- Carolina Freitas
- Instituto de Tecnologia Química e BiológicaUniversidade Nova de LisboaOeirasPortugal
- Present address:
Department of EcophysiologyMax‐Planck Institute for Terrestrial MicrobiologyKarl‐von‐Frisch‐Str. 10MarburgD‐35043Germany
| | - Jarnaja Plannic
- Instituto de Tecnologia Química e BiológicaUniversidade Nova de LisboaOeirasPortugal
- University of LjubljanaLjubljanaSlovenia
| | | | | | - Rita Zilhão
- Instituto de Tecnologia Química e BiológicaUniversidade Nova de LisboaOeirasPortugal
- Departamento de Biologia VegetalUniversidade de LisboaLisboaPortugal
| | - Mónica Serrano
- Instituto de Tecnologia Química e BiológicaUniversidade Nova de LisboaOeirasPortugal
| | | | - Ezio Ricca
- Department of BiologyUniversity Federico IINaplesItaly
| | - Alexander K. W. Elsholz
- Biological LaboratoriesHarvard UniversityCambridgeMAUSA
- Present address:
Max Planck Unit for the Science of PathogensCharitèplatz 1Berlin10117Germany
| | | | - Adriano O. Henriques
- Instituto de Tecnologia Química e BiológicaUniversidade Nova de LisboaOeirasPortugal
| |
Collapse
|
11
|
Steunou AS, Babot M, Bourbon M, Tambosi R, Durand A, Liotenberg S, Krieger‐Liszkay A, Yamaichi Y, Ouchane S. Additive effects of metal excess and superoxide, a highly toxic mixture in bacteria. Microb Biotechnol 2020; 13:1515-1529. [PMID: 32558268 PMCID: PMC7415354 DOI: 10.1111/1751-7915.13589] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 04/15/2020] [Accepted: 04/16/2020] [Indexed: 01/06/2023] Open
Abstract
Heavy metal contamination is a serious environmental problem. Understanding the toxicity mechanisms may allow to lower concentration of metals in the metal-based antimicrobial treatments of crops, and reduce metal content in soil and groundwater. Here, we investigate the interplay between metal efflux systems and the superoxide dismutase (SOD) in the purple bacterium Rubrivivax gelatinosus and other bacteria through analysis of the impact of metal accumulation. Exposure of the Cd2+ -efflux mutant ΔcadA to Cd2+ caused an increase in the amount and activity of the cytosolic Fe-Sod SodB, thereby suggesting a role of SodB in the protection against Cd2+ . In support of this conclusion, inactivation of sodB gene in the ΔcadA cells alleviated detoxification of superoxide and enhanced Cd2+ toxicity. Similar findings were described in the Cu+ -efflux mutant with Cu+ . Induction of the Mn-Sod or Fe-Sod in response to metals in other bacteria, including Escherichia coli, Pseudomonas aeruginosa, Pseudomonas putida, Vibrio cholera and Bacillus subtilis, was also shown. Both excess Cd2+ or Cu+ and superoxide can damage [4Fe-4S] clusters. The additive effect of metal and superoxide on the [4Fe-4S] could therefore explain the hypersensitive phenotype in mutants lacking SOD and the efflux ATPase. These findings underscore that ROS defence system becomes decisive for bacterial survival under metal excess.
Collapse
Affiliation(s)
- Anne Soisig Steunou
- Institute for Integrative Biology of the Cell (I2BC)CEACNRSUniversité Paris‐Saclay91198Gif‐sur‐YvetteFrance
| | - Marion Babot
- Institute for Integrative Biology of the Cell (I2BC)CEACNRSUniversité Paris‐Saclay91198Gif‐sur‐YvetteFrance
| | - Marie‐Line Bourbon
- Institute for Integrative Biology of the Cell (I2BC)CEACNRSUniversité Paris‐Saclay91198Gif‐sur‐YvetteFrance
| | - Reem Tambosi
- Institute for Integrative Biology of the Cell (I2BC)CEACNRSUniversité Paris‐Saclay91198Gif‐sur‐YvetteFrance
| | - Anne Durand
- Institute for Integrative Biology of the Cell (I2BC)CEACNRSUniversité Paris‐Saclay91198Gif‐sur‐YvetteFrance
| | - Sylviane Liotenberg
- Institute for Integrative Biology of the Cell (I2BC)CEACNRSUniversité Paris‐Saclay91198Gif‐sur‐YvetteFrance
| | - Anja Krieger‐Liszkay
- Institute for Integrative Biology of the Cell (I2BC)CEACNRSUniversité Paris‐Saclay91198Gif‐sur‐YvetteFrance
| | - Yoshiharu Yamaichi
- Institute for Integrative Biology of the Cell (I2BC)CEACNRSUniversité Paris‐Saclay91198Gif‐sur‐YvetteFrance
| | - Soufian Ouchane
- Institute for Integrative Biology of the Cell (I2BC)CEACNRSUniversité Paris‐Saclay91198Gif‐sur‐YvetteFrance
| |
Collapse
|
12
|
Zhang J, Wang H, Huang Q, Zhang Y, Zhao L, Liu F, Wang G. Four superoxide dismutases of Bacillus cereus 0-9 are non-redundant and perform different functions in diverse living conditions. World J Microbiol Biotechnol 2020; 36:12. [PMID: 31897767 DOI: 10.1007/s11274-019-2786-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Accepted: 12/14/2019] [Indexed: 10/25/2022]
Abstract
Superoxide dismutases (SODs) have been shown to exhibit high levels of conservation and exist in almost all aerobic organisms and even many strict anaerobes. There are four SODs in Bacillus cereus 0-9, and this coexistence of multiple homologous enzymes is of great significance in the evolution of bacteria. We hypothesized that the four sod genes in B. cereus 0-9 constituted non-redundant protection against oxidative damage in vivo and played unique roles in the pathogenicity of B. cereus 0-9 during different phases or growth environments. To test this hypothesis, we constructed four single-knockout mutants (∆sodA1, ∆sodA2, ∆sodS, and ∆sodC) and a mutant lacking all four sod genes (∆sod-4) of B. cereus 0-9 and assessed their various phenotypes. Our results indicated that sodA1 plays a major role in tolerance to intracellular oxidative stress and spore formation. The ∆sodA1 and ∆sod-4 mutants were very sensitive to oxidants. The spore formation of the ∆sodA1 mutant was dramatically delayed, and the ∆sod-4 mutant did not form any spores under our experimental conditions. The sodA2 gene may play an important role in negative regulation of swarming motility, pathogenicity, and phospholipase and haemolytic activity of B. cereus but also a role in positive regulation of biofilm formation under our experimental conditions. The other two genes, sodS and sodC, were key to the pathogenicity of B. cereus. The lethal rates of Helicoverpa armigera infected by the ∆sodS and ∆sodC mutants were only 26.67%, while wild-type B. cereus 0-9 caused lethality in up to 86.67% of the insects at 24 h after injection. Moreover, the ∆sod-4 mutant caused a reduced death rate of H. armigera of 46.70%, which was slightly higher than that caused by the ∆sodS and ∆sodC strains. Thus, these four sod genes were non-redundant for oxidative stress and may play different additional roles in B. cereus 0-9. These results can help us to further understand the biocontrol characteristics of B. cereus 0-9 and lay a theoretical foundation for further research.
Collapse
Affiliation(s)
- Juanmei Zhang
- Institute of Microbial Engineering, Henan University, Kaifeng, 475004, Henan, People's Republic of China.,Pharmaceutical College, Henan University, Jinming Street, Kaifeng, 475004, Henan, People's Republic of China
| | - Haodong Wang
- Institute of Microbial Engineering, Henan University, Kaifeng, 475004, Henan, People's Republic of China.,School of Life Sciences, Henan University, Jinming Street, Kaifeng, 475004, Henan, People's Republic of China
| | - Qiubin Huang
- Institute of Microbial Engineering, Henan University, Kaifeng, 475004, Henan, People's Republic of China.,School of Life Sciences, Henan University, Jinming Street, Kaifeng, 475004, Henan, People's Republic of China
| | - Ying Zhang
- Institute of Microbial Engineering, Henan University, Kaifeng, 475004, Henan, People's Republic of China.,School of Life Sciences, Henan University, Jinming Street, Kaifeng, 475004, Henan, People's Republic of China
| | - Linlin Zhao
- Institute of Microbial Engineering, Henan University, Kaifeng, 475004, Henan, People's Republic of China.,School of Life Sciences, Henan University, Jinming Street, Kaifeng, 475004, Henan, People's Republic of China
| | - Fengying Liu
- Institute of Microbial Engineering, Henan University, Kaifeng, 475004, Henan, People's Republic of China.,School of Life Sciences, Henan University, Jinming Street, Kaifeng, 475004, Henan, People's Republic of China
| | - Gang Wang
- Institute of Microbial Engineering, Henan University, Kaifeng, 475004, Henan, People's Republic of China. .,School of Life Sciences, Henan University, Jinming Street, Kaifeng, 475004, Henan, People's Republic of China.
| |
Collapse
|
13
|
Temporal and spatial regulation of protein cross-linking by the pre-assembled substrates of a Bacillus subtilis spore coat transglutaminase. PLoS Genet 2019; 15:e1007912. [PMID: 30958830 PMCID: PMC6490927 DOI: 10.1371/journal.pgen.1007912] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 04/30/2019] [Accepted: 12/21/2018] [Indexed: 11/19/2022] Open
Abstract
In many cases protein assemblies are stabilized by covalent bonds, one example of which is the formation of intra- or intermolecular ε-(γ-glutamyl)lysil cross-links catalyzed by transglutaminases (TGases). Because of the potential for unwanted cross-linking reactions, the activities of many TGases have been shown to be tightly controlled. Bacterial endospores are highly resilient cells in part because they are surrounded by a complex protein coat. Proteins in the coat that surrounds Bacillus subtilis endospores are crosslinked by a TGase (Tgl). Unlike other TGases, however, Tgl is produced in an active form, and efficiently catalyzes amine incorporation and protein cross-linking in vitro with no known additional requirements. The absence of regulatory factors raises questions as to how the activity of Tgl is controlled during spore coat assembly. Here, we show that substrates assembled onto the spore coat prior to Tgl production govern the localization of Tgl to the surface of the developing spore. We also show that Tgl residues important for substrate recognition are crucial for its localization. We identified the glutamyl (Q) and lysil (K) substrate docking sites and we show that residues on the Q side of Tgl are more important for the assembly of Tgl than those on the K side. Thus, the first step in the reaction cycle, the interaction with Q-substrates and formation of an acyl-enzyme intermediate, is also the determinant step in the localization of Tgl. Consistent with the idea that Tg exerts a “spotwelding” activity, cross-linking pre-formed assemblies, we show that C30 is an oblong hexamer in solution that is cross-linked in vitro into high molecular weight forms. Moreover, during the reaction, Tgl becomes part of the cross-linked products. We suggest that the dependency of Tgl on its substrates is used to accurately control the time, location and extent of the enzyme´s activity, directed at the covalent fortification of pre-assembled complexes at the surface of the developing spore. The orderly recruitment of proteins during the assembly of complex macromolecular structures poses challenges throughout cell biology. During endospore development in the bacterium Bacillus subtilis at least 80 proteins synthesized in the mother cell are assembled around the developing spore to form a protective coat. Regulation of coat gene expression has been described in detail but it is unknown how the information encoded by the structures of the proteins guide their assembly. We have examined the assembly of a transglutaminase, Tgl, which introduces ε-(γ-glutamyl)lysil cross-links in coat protein substrates. We describe with molecular detail a substrate-driven assembly model that directs the enzyme to the locations of its substrates where, as we suggest, it exerts a “spotwelding” activity to fortify pre-assembled complexes. The catalytic cysteine, located in a tunnel that spans the Tgl structure, first forms an acyl enzyme intermediate with a glutamine (Q) donor substrate. Then, it engages a lysine (K) donor substrate to form the cross-linked product. We have identified the Q and K acceptor ends of the Tgl tunnel, and we show that substitutions in substrate recognition residues at the Q side impair assembly more strongly than at the K side. Thus, assembly of Tgl parallels its catalytic cycle, directing the enzyme to the pre-formed complexes that are to be cross-linked.
Collapse
|
14
|
Petruk G, Donadio G, Lanzilli M, Isticato R, Monti DM. Alternative use of Bacillus subtilis spores: protection against environmental oxidative stress in human normal keratinocytes. Sci Rep 2018; 8:1745. [PMID: 29379084 PMCID: PMC5788939 DOI: 10.1038/s41598-018-20153-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 01/15/2018] [Indexed: 12/25/2022] Open
Abstract
Inorganic trivalent arsenic is a major environmental pollutant and exposure to human results in many pathologies, including keratosis and carcinoma. Here, we analyzed the effects of B. subtilis spores on human normal keratinocytes in the presence of sodium arsenite oxidative stress. Pre-treatment of cells with spores before inducing oxidative stress was able to keep normal levels of intracellular ROS, GSH and lipid peroxidation, as well as to inhibit the activation of the MAPK cascade. Moreover, spores showed a positive effect on cell proliferation, probably due to their binding on the cell surface and the activation of intracellular catalases. We found that spores exert their protective effect by the nuclear translocation of Nrf-2, involved in the activation of stress response genes. This, in turn, resulted in a protective effect against sodium arsenite stress injury, as oxidative stress markers were reported to physiological levels when cells were stressed before incubating them with spores. Therefore, B. subtilis spores can be considered as a new agent to counteract oxidative stress on normal human keratinocytes.
Collapse
Affiliation(s)
- Ganna Petruk
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte Sant'Angelo, via Cinthia 4, 80126, Naples, Italy
| | - Giuliana Donadio
- Department of Biology, University of Naples Federico II, Complesso Universitario Monte Sant'Angelo, via Cinthia 4, 80126, Naples, Italy
| | - Mariamichela Lanzilli
- Department of Biology, University of Naples Federico II, Complesso Universitario Monte Sant'Angelo, via Cinthia 4, 80126, Naples, Italy
| | - Rachele Isticato
- Department of Biology, University of Naples Federico II, Complesso Universitario Monte Sant'Angelo, via Cinthia 4, 80126, Naples, Italy.
| | - Daria Maria Monti
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte Sant'Angelo, via Cinthia 4, 80126, Naples, Italy. .,Istituto Nazionale di Biostrutture e Biosistemi (INBB), Rome, Italy.
| |
Collapse
|
15
|
Abstract
Spores of Clostridiales and Bacillales are encased in a complex series of concentric shells that provide protection, facilitate germination, and mediate interactions with the environment. Analysis of diverse spore-forming species by thin-section transmission electron microscopy reveals that the number and morphology of these encasing shells vary greatly. In some species, they appear to be composed of a small number of discrete layers. In other species, they can comprise multiple, morphologically complex layers. In addition, spore surfaces can possess elaborate appendages. For all their variability, there is a consistent architecture to the layers encasing the spore. A hallmark of all Clostridiales and Bacillales spores is the cortex, a layer made of peptidoglycan. In close association with the cortex, all species examined possess, at a minimum, a series of proteinaceous layers, called the coat. In some species, including Bacillus subtilis, only the coat is present. In other species, including Bacillus anthracis, an additional layer, called the exosporium, surrounds the coat. Our goals here are to review the present understanding of the structure, composition, assembly, and functions of the coat, primarily in the model organism B. subtilis, but also in the small but growing number of other spore-forming species where new data are showing that there is much to be learned beyond the relatively well-developed basis of knowledge in B. subtilis. To help summarize this large field and define future directions for research, we will focus on key findings in recent years.
Collapse
|
16
|
Gao T, Li Y, Ding M, Chai Y, Wang Q. The phosphotransferase system gene ptsI in Bacillus cereus regulates expression of sodA2 and contributes to colonization of wheat roots. Res Microbiol 2017; 168:524-535. [PMID: 28478075 DOI: 10.1016/j.resmic.2017.04.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 04/01/2017] [Accepted: 04/04/2017] [Indexed: 12/21/2022]
Abstract
Plant growth-promoting rhizobacteria effectively enhance plant growth and root colonization by the bacteria is a prerequisite during the process. Bacillus cereus 905, a rhizosphere bacterium originally isolated from wheat roots, colonizes the wheat rhizosphere with a large population size. We previously showed that a manganese-containing superoxide dismutase (MnSOD2), encoded by the sodA2 gene, plays an important role in colonization of the wheat rhizosphere by B. cereus 905. In this study, we identified a gene, ptsI, which positively regulates transcription of sodA2. ptsI encodes Enzyme I of the phosphotransferase system (PTS), a major regulator of carbohydrate uptake in bacteria. Assays of β-galactosidase activity and real-time quantitative PCR showed that loss of ptsI caused a 70% reduction in sodA2 expression. The ΔptsI mutant also showed a 1000-fold reduction in colonization of wheat roots, as well as a reduced growth rate in minimal media with either glucose or succinate as the sole carbon source. Artificial induction of sodA2 in the ΔptsI mutant partially restored root colonizing ability and utilization of succinate, but not glucose. These results suggest that the PTS plays an important role in rhizosphere colonization by both promoting nutrient utilization and regulating sodA2 expression in B. cereus 905.
Collapse
Affiliation(s)
- Tantan Gao
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China; Department of Biology, Northeastern University, 360 Huntington Avenue, Boston, MA 02215, USA
| | - Yan Li
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Mingzheng Ding
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Yunrong Chai
- Department of Biology, Northeastern University, 360 Huntington Avenue, Boston, MA 02215, USA.
| | - Qi Wang
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
17
|
Sporicidal activity of ceragenin CSA-13 against Bacillus subtilis. Sci Rep 2017; 7:44452. [PMID: 28294162 PMCID: PMC5353641 DOI: 10.1038/srep44452] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 02/07/2017] [Indexed: 02/07/2023] Open
Abstract
Spore-forming bacteria are a class of microorganisms that possess the ability to survive in extreme environmental conditions. Morphological features of spores assure their resistance to stress factors such as high temperature, radiation, disinfectants, and drying. Consequently, spore elimination in industrial and medical environments is very challenging. Ceragenins are a new class of cationic lipids characterized by a broad spectrum of bactericidal activity resulting from amphipathic nature and membrane-permeabilizing properties. To assess the impact of ceragenin CSA-13 on spores formed by Bacillus subtilis (ATCC 6051), we performed the series of experiments confirming that amphipathic and membrane-permeabilizing properties of CSA-13 are sufficient to disrupt the structure of B. subtilis spores resulting in decreased viability. Raman spectroscopy analysis provided evidence that upon CSA-13 treatment the number of CaDPA-positive spores was clearly diminished. As a consequence, a loss of impermeability of the inner membranes of spores, accompanied by a decrease in spore resistance and killing take place. In addition to their broad antimicrobial spectrum, ceragenins possess great potential for development as new sporicidal agents.
Collapse
|
18
|
Serrano M, Kint N, Pereira FC, Saujet L, Boudry P, Dupuy B, Henriques AO, Martin-Verstraete I. A Recombination Directionality Factor Controls the Cell Type-Specific Activation of σK and the Fidelity of Spore Development in Clostridium difficile. PLoS Genet 2016; 12:e1006312. [PMID: 27631621 PMCID: PMC5025042 DOI: 10.1371/journal.pgen.1006312] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 08/21/2016] [Indexed: 01/05/2023] Open
Abstract
The strict anaerobe Clostridium difficile is the most common cause of nosocomial diarrhea, and the oxygen-resistant spores that it forms have a central role in the infectious cycle. The late stages of sporulation require the mother cell regulatory protein σK. In Bacillus subtilis, the onset of σK activity requires both excision of a prophage-like element (skinBs) inserted in the sigK gene and proteolytical removal of an inhibitory pro-sequence. Importantly, the rearrangement is restricted to the mother cell because the skinBs recombinase is produced specifically in this cell. In C. difficile, σK lacks a pro-sequence but a skinCd element is present. The product of the skinCd gene CD1231 shares similarity with large serine recombinases. We show that CD1231 is necessary for sporulation and skinCd excision. However, contrary to B. subtilis, expression of CD1231 is observed in vegetative cells and in both sporangial compartments. Nevertheless, we show that skinCd excision is under the control of mother cell regulatory proteins σE and SpoIIID. We then demonstrate that σE and SpoIIID control the expression of the skinCd gene CD1234, and that this gene is required for sporulation and skinCd excision. CD1231 and CD1234 appear to interact and both proteins are required for skinCd excision while only CD1231 is necessary for skinCd integration. Thus, CD1234 is a recombination directionality factor that delays and restricts skinCd excision to the terminal mother cell. Finally, while the skinCd element is not essential for sporulation, deletion of skinCd results in premature activity of σK and in spores with altered surface layers. Thus, skinCd excision is a key element controlling the onset of σK activity and the fidelity of spore development.
Collapse
Affiliation(s)
- Mónica Serrano
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Nicolas Kint
- Laboratoire Pathogénese des Bactéries Anaérobies, Institut Pasteur, Paris, France
- University Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Fátima C. Pereira
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Laure Saujet
- Laboratoire Pathogénese des Bactéries Anaérobies, Institut Pasteur, Paris, France
- University Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Pierre Boudry
- Laboratoire Pathogénese des Bactéries Anaérobies, Institut Pasteur, Paris, France
- University Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Bruno Dupuy
- Laboratoire Pathogénese des Bactéries Anaérobies, Institut Pasteur, Paris, France
- University Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Adriano O. Henriques
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
- * E-mail: (AOH); (IMV)
| | - Isabelle Martin-Verstraete
- Laboratoire Pathogénese des Bactéries Anaérobies, Institut Pasteur, Paris, France
- University Paris Diderot, Sorbonne Paris Cité, Paris, France
- * E-mail: (AOH); (IMV)
| |
Collapse
|
19
|
Sporulation Temperature Reveals a Requirement for CotE in the Assembly of both the Coat and Exosporium Layers of Bacillus cereus Spores. Appl Environ Microbiol 2015; 82:232-43. [PMID: 26497467 DOI: 10.1128/aem.02626-15] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 10/15/2015] [Indexed: 11/20/2022] Open
Abstract
The Bacillus cereus spore surface layers consist of a coat surrounded by an exosporium. We investigated the interplay between the sporulation temperature and the CotE morphogenetic protein in the assembly of the surface layers of B. cereus ATCC 14579 spores and on the resulting spore properties. The cotE deletion affects the coat and exosporium composition of the spores formed both at the suboptimal temperature of 20°C and at the optimal growth temperature of 37°C. Transmission electron microscopy revealed that ΔcotE spores had a fragmented and detached exosporium when formed at 37°C. However, when produced at 20°C, ΔcotE spores showed defects in both coat and exosporium attachment and were susceptible to lysozyme and mutanolysin. Thus, CotE has a role in the assembly of both the coat and exosporium, which is more important during sporulation at 20°C. CotE was more represented in extracts from spores formed at 20°C than at 37°C, suggesting that increased synthesis of the protein is required to maintain proper assembly of spore surface layers at the former temperature. ΔcotE spores formed at either sporulation temperature were impaired in inosine-triggered germination and resistance to UV-C and H2O2 and were less hydrophobic than wild-type (WT) spores but had a higher resistance to wet heat. While underscoring the role of CotE in the assembly of B. cereus spore surface layers, our study also suggests a contribution of the protein to functional properties of additional spore structures. Moreover, it also suggests a complex relationship between the function of a spore morphogenetic protein and environmental factors such as the temperature during spore formation.
Collapse
|
20
|
Checinska A, Paszczynski A, Burbank M. Bacillusand Other Spore-Forming Genera: Variations in Responses and Mechanisms for Survival. Annu Rev Food Sci Technol 2015; 6:351-69. [DOI: 10.1146/annurev-food-030713-092332] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Aleksandra Checinska
- School of Food Science, University of Idaho, Moscow, Idaho 83844-1052 and Washington State University, Pullman, Washington 99164-6376; ,
- Present address: Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California 91109;
| | - Andrzej Paszczynski
- School of Food Science, University of Idaho, Moscow, Idaho 83844-1052 and Washington State University, Pullman, Washington 99164-6376; ,
| | - Malcolm Burbank
- School of Food Science, University of Idaho, Moscow, Idaho 83844-1052 and Washington State University, Pullman, Washington 99164-6376; ,
- Present address: BioCement Technologies Inc., Seattle, Washington 98101
| |
Collapse
|
21
|
Liu H, Yang CL, Ge MY, Ibrahim M, Li B, Zhao WJ, Chen GY, Zhu B, Xie GL. Regulatory role of tetR gene in a novel gene cluster of Acidovorax avenae subsp. avenae RS-1 under oxidative stress. Front Microbiol 2014; 5:547. [PMID: 25374564 PMCID: PMC4204640 DOI: 10.3389/fmicb.2014.00547] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 10/01/2014] [Indexed: 01/14/2023] Open
Abstract
Acidovorax avenae subsp. avenae is the causal agent of bacterial brown stripe disease in rice. In this study, we characterized a novel horizontal transfer of a gene cluster, including tetR, on the chromosome of A. avenae subsp. avenae RS-1 by genome-wide analysis. TetR acted as a repressor in this gene cluster and the oxidative stress resistance was enhanced in tetR-deletion mutant strain. Electrophoretic mobility shift assay demonstrated that TetR regulator bound directly to the promoter of this gene cluster. Consistently, the results of quantitative real-time PCR also showed alterations in expression of associated genes. Moreover, the proteins affected by TetR under oxidative stress were revealed by comparing proteomic profiles of wild-type and mutant strains via 1D SDS-PAGE and LC-MS/MS analyses. Taken together, our results demonstrated that tetR gene in this novel gene cluster contributed to cell survival under oxidative stress, and TetR protein played an important regulatory role in growth kinetics, biofilm-forming capability, superoxide dismutase and catalase activity, and oxide detoxicating ability.
Collapse
Affiliation(s)
- He Liu
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University Hangzhou, China ; Department of Plant Pathology, University of California Davis Davis, CA, USA
| | - Chun-Lan Yang
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University Hangzhou, China
| | - Meng-Yu Ge
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University Hangzhou, China
| | - Muhammad Ibrahim
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University Hangzhou, China ; Department of Biosciences, COMSATS Institute of Information Technology Sahiwal, Pakistan
| | - Bin Li
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University Hangzhou, China
| | - Wen-Jun Zhao
- Chinese Academy of Inspection and Quarantine Beijing, China
| | - Gong-You Chen
- School of Agriculture and Biology, Shanghai Jiao Tong University Shanghai, China
| | - Bo Zhu
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University Hangzhou, China
| | - Guan-Lin Xie
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University Hangzhou, China
| |
Collapse
|
22
|
Abstract
ABSTRACT
A variety of bioactive peptides and proteins have been successfully displayed on the surface of recombinant spores of
Bacillus subtilis
and other sporeformers. In most cases, spore display has been achieved by stably anchoring the foreign molecules to endogenous surface proteins or parts of them. Recombinant spores have been proposed for a large number of potential applications ranging from oral vaccine vehicles to bioremediation tools, and including biocatalysts, probiotics for animal or human use, as well as the generation and screening of mutagenesis libraries. In addition, a nonrecombinant approach has been recently developed to adsorb antigens and enzymes on the spore surface. This nonrecombinant approach appears particularly well suited for applications involving the delivery of active molecules to human or animal mucosal surfaces. Both the recombinant and nonrecombinant spore display systems have a number of advantages over cell- or phage-based systems. The stability, safety of spores of several bacterial species, and amenability to laboratory manipulations, together with the lack of some constraints limiting the use of other systems, make the spore a highly efficient platform to display heterologous proteins.
Collapse
|
23
|
A conserved cysteine residue of Bacillus subtilis SpoIIIJ is important for endospore development. PLoS One 2014; 9:e99811. [PMID: 25133632 PMCID: PMC4136701 DOI: 10.1371/journal.pone.0099811] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 05/19/2014] [Indexed: 11/20/2022] Open
Abstract
During sporulation in Bacillus subtilis, the onset of activity of the late forespore-specific sigma factor σG coincides with completion of forespore engulfment by the mother cell. At this stage, the forespore becomes a free protoplast, surrounded by the mother cell cytoplasm and separated from it by two membranes that derive from the asymmetric division septum. Continued gene expression in the forespore, isolated from the surrounding medium, relies on the SpoIIIA-SpoIIQ secretion system assembled from proteins synthesised both in the mother cell and in the forespore. The membrane protein insertase SpoIIIJ, of the YidC/Oxa1/Alb3 family, is involved in the assembly of the SpoIIIA-SpoIIQ complex. Here we show that SpoIIIJ exists as a mixture of monomers and dimers stabilised by a disulphide bond. We show that residue Cys134 within transmembrane segment 2 (TM2) of SpoIIIJ is important to stabilise the protein in the dimeric form. Labelling of Cys134 with a Cys-reactive reagent could only be achieved under stringent conditions, suggesting a tight association at least in part through TM2, between monomers in the membrane. Substitution of Cys134 by an Ala results in accumulation of the monomer, and reduces SpoIIIJ function in vivo. Therefore, SpoIIIJ activity in vivo appears to require dimer formation.
Collapse
|
24
|
Clostridium difficile spore biology: sporulation, germination, and spore structural proteins. Trends Microbiol 2014; 22:406-16. [PMID: 24814671 DOI: 10.1016/j.tim.2014.04.003] [Citation(s) in RCA: 298] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2014] [Revised: 03/27/2014] [Accepted: 04/07/2014] [Indexed: 02/06/2023]
Abstract
Clostridium difficile is a Gram-positive, spore-forming obligate anaerobe and a major nosocomial pathogen of worldwide concern. Owing to its strict anaerobic requirements, the infectious and transmissible morphotype is the dormant spore. In susceptible patients, C. difficile spores germinate in the colon to form the vegetative cells that initiate Clostridium difficile infections (CDI). During CDI, C. difficile induces a sporulation pathway that produces more spores; these spores are responsible for the persistence of C. difficile in patients and horizontal transmission between hospitalized patients. Although important to the C. difficile lifecycle, the C. difficile spore proteome is poorly conserved when compared to members of the Bacillus genus. Further, recent studies have revealed significant differences between C. difficile and Bacillus subtilis at the level of sporulation, germination, and spore coat and exosporium morphogenesis. In this review, the regulation of the sporulation and germination pathways and the morphogenesis of the spore coat and exosporium will be discussed.
Collapse
|
25
|
Abhyankar W, Pandey R, Ter Beek A, Brul S, de Koning LJ, de Koster CG. Reinforcement of Bacillus subtilis spores by cross-linking of outer coat proteins during maturation. Food Microbiol 2014; 45:54-62. [PMID: 25481062 DOI: 10.1016/j.fm.2014.03.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 03/03/2014] [Accepted: 03/06/2014] [Indexed: 10/25/2022]
Abstract
Resistance characteristics of bacterial endospores towards various environmental stresses such as chemicals and heat are in part attributed to their coat proteins. Heat resistance is developed in a late stage of sporulation and during maturation of released spores. Using our gel-free proteomic approach and LC-FT-ICR-MS/MS analysis we have monitored the efficiency of the tryptic digestion of proteins in the coat during spore maturation over a period of eight days, using metabolically (15)N labeled mature spores as reference. The results showed that during spore maturation the loss of digestion efficiency of outer coat and crust proteins synchronized with the increase in heat resistance. This implicates that spore maturation involves chemical cross-linking of outer coat and crust layer proteins leaving the inner coat layer proteins unmodified. It appears that digestion efficiencies of spore surface proteins can be linked to their location within the coat and crust layers. We also attempted to study a possible link between spore maturation and the observed heterogeneity in spore germination.
Collapse
Affiliation(s)
- Wishwas Abhyankar
- Mass Spectrometry of Biomacromolecules, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands; Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Rachna Pandey
- Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Alexander Ter Beek
- Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Stanley Brul
- Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Leo J de Koning
- Mass Spectrometry of Biomacromolecules, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Chris G de Koster
- Mass Spectrometry of Biomacromolecules, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
26
|
Involvement of alanine racemase in germination of Bacillus cereus spores lacking an intact exosporium. Arch Microbiol 2013; 196:79-85. [PMID: 24346000 DOI: 10.1007/s00203-013-0946-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 11/29/2013] [Accepted: 12/04/2013] [Indexed: 10/25/2022]
Abstract
The L-alanine mediated germination of food isolated Bacillus cereus DSA 1 spores, which lacked an intact exosporium, increased in the presence of D-cycloserine (DCS), which is an alanine racemase (Alr) inhibitor, reflecting the activity of the Alr enzyme, capable of converting L-alanine to the germination inhibitor D-alanine. Proteomic analysis of the alkaline extracts of the spore proteins, which include exosporium and coat proteins, confirmed that Alr was present in the B. cereus DSA 1 spores and matched to that encoded by B. cereus ATCC 14579, whose spore germination was strongly affected by the block of conversion of L- to D-alanine. Unlike ATCC 14579 spores, L-alanine germination of B. cereus DSA 1 spores was not affected by the preincubation with DCS, suggesting a lack of restriction in the reactant accessibility.
Collapse
|
27
|
Abhyankar W, Hossain AH, Djajasaputra A, Permpoonpattana P, Ter Beek A, Dekker HL, Cutting SM, Brul S, de Koning LJ, de Koster CG. In Pursuit of Protein Targets: Proteomic Characterization of Bacterial Spore Outer Layers. J Proteome Res 2013; 12:4507-21. [DOI: 10.1021/pr4005629] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | | | | | - Patima Permpoonpattana
- School
of Biological Sciences, Royal Holloway, University of London, Egham, Surrey TW20 0EX, United Kingdom
| | | | | | - Simon M. Cutting
- School
of Biological Sciences, Royal Holloway, University of London, Egham, Surrey TW20 0EX, United Kingdom
| | | | | | | |
Collapse
|
28
|
Aguiar VF, Donoghue AM, Arsi K, Reyes-Herrera I, Metcalf JH, de los Santos FS, Blore PJ, Donoghue DJ. Targeting Motility Properties of Bacteria in the Development of Probiotic Cultures AgainstCampylobacter jejuniin Broiler Chickens. Foodborne Pathog Dis 2013; 10:435-41. [DOI: 10.1089/fpd.2012.1302] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Vivian F. Aguiar
- Poultry Science Department, University of Arkansas, Fayetteville, Arkansas
| | - Ann M. Donoghue
- Poultry Production and Product Safety Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Fayetteville, Arkansas
| | - Komala Arsi
- Poultry Science Department, University of Arkansas, Fayetteville, Arkansas
| | | | - Joel H. Metcalf
- Poultry Science Department, University of Arkansas, Fayetteville, Arkansas
| | | | - Pamela J. Blore
- Poultry Science Department, University of Arkansas, Fayetteville, Arkansas
| | - Dan J. Donoghue
- Poultry Science Department, University of Arkansas, Fayetteville, Arkansas
| |
Collapse
|
29
|
Abstract
Spores of Clostridium difficile play a key role in the dissemination of this important human pathogen, and until recently little has been known of their functional characteristics. Genes encoding six spore coat proteins (cotA, cotB, cotCB, cotD, cotE, and sodA) were disrupted by ClosTron insertional mutagenesis. Mutation of one gene, cotA, presented a major structural defect in spore assembly, with a clear misassembly of the outermost layers of the spore coat. The CotA protein is most probably subject to posttranslational modification and could play a key role in stabilizing the spore coat. Surprisingly, mutation of the other spore coat genes did not affect the integrity of the spore, although for the cotD, cotE, and sodA mutants, enzyme activity was reduced or abolished. This could imply that these enzymatic proteins are located in the exosporium or alternatively that they are structurally redundant. Of the spore coat proteins predicted to carry enzymatic activity, three were confirmed to be enzymes using both in vivo and in vitro methods, the latter using recombinant expressed proteins. These were a manganese catalase, encoded by cotD, a superoxide dismutase (SOD), encoded by sodA, and a bifunctional enzyme with peroxiredoxin and chitinase activity, encoded by cotE. These enzymes being exposed on the spore surface would play a role in coat polymerization and detoxification of H2O2. Two additional proteins, CotF (a tyrosine-rich protein and potential substrate for SodA) and CotG (a putative manganese catalase) were shown to be located at the spore surface.
Collapse
|
30
|
Galperin MY, Mekhedov SL, Puigbo P, Smirnov S, Wolf YI, Rigden DJ. Genomic determinants of sporulation in Bacilli and Clostridia: towards the minimal set of sporulation-specific genes. Environ Microbiol 2012; 14:2870-90. [PMID: 22882546 PMCID: PMC3533761 DOI: 10.1111/j.1462-2920.2012.02841.x] [Citation(s) in RCA: 195] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Three classes of low-G+C Gram-positive bacteria (Firmicutes), Bacilli, Clostridia and Negativicutes, include numerous members that are capable of producing heat-resistant endospores. Spore-forming firmicutes include many environmentally important organisms, such as insect pathogens and cellulose-degrading industrial strains, as well as human pathogens responsible for such diseases as anthrax, botulism, gas gangrene and tetanus. In the best-studied model organism Bacillus subtilis, sporulation involves over 500 genes, many of which are conserved among other bacilli and clostridia. This work aimed to define the genomic requirements for sporulation through an analysis of the presence of sporulation genes in various firmicutes, including those with smaller genomes than B. subtilis. Cultivable spore-formers were found to have genomes larger than 2300 kb and encompass over 2150 protein-coding genes of which 60 are orthologues of genes that are apparently essential for sporulation in B. subtilis. Clostridial spore-formers lack, among others, spoIIB, sda, spoVID and safA genes and have non-orthologous displacements of spoIIQ and spoIVFA, suggesting substantial differences between bacilli and clostridia in the engulfment and spore coat formation steps. Many B. subtilis sporulation genes, particularly those encoding small acid-soluble spore proteins and spore coat proteins, were found only in the family Bacillaceae, or even in a subset of Bacillus spp. Phylogenetic profiles of sporulation genes, compiled in this work, confirm the presence of a common sporulation gene core, but also illuminate the diversity of the sporulation processes within various lineages. These profiles should help further experimental studies of uncharacterized widespread sporulation genes, which would ultimately allow delineation of the minimal set(s) of sporulation-specific genes in Bacilli and Clostridia.
Collapse
Affiliation(s)
- Michael Y Galperin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA.
| | | | | | | | | | | |
Collapse
|
31
|
Leggett MJ, McDonnell G, Denyer SP, Setlow P, Maillard JY. Bacterial spore structures and their protective role in biocide resistance. J Appl Microbiol 2012; 113:485-98. [PMID: 22574673 DOI: 10.1111/j.1365-2672.2012.05336.x] [Citation(s) in RCA: 168] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The structure and chemical composition of bacterial spores differ considerably from those of vegetative cells. These differences largely account for the unique resistance properties of the spore to environmental stresses, including disinfectants and sterilants, resulting in the emergence of spore-forming bacteria such as Clostridium difficile as major hospital pathogens. Although there has been considerable work investigating the mechanisms of action of many sporicidal biocides against Bacillus subtilis spores, there is far less information available for other species and particularly for various Clostridia. This paucity of information represents a major gap in our knowledge given the importance of Clostridia as human pathogens. This review considers the main spore structures, highlighting their relevance to spore resistance properties and detailing their chemical composition, with a particular emphasis on the differences between various spore formers. Such information will be vital for the rational design and development of novel sporicidal chemistries with enhanced activity in the future.
Collapse
Affiliation(s)
- M J Leggett
- Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK
| | | | | | | | | |
Collapse
|
32
|
Tu WY, Pohl S, Summpunn P, Hering S, Kerstan S, Harwood CR. Comparative analysis of the responses of related pathogenic and environmental bacteria to oxidative stress. Microbiology (Reading) 2012; 158:636-647. [DOI: 10.1099/mic.0.057000-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Wang Yung Tu
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, UK
| | - Susanne Pohl
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, UK
| | - Pijug Summpunn
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, UK
| | - Silvio Hering
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, UK
| | - Sandra Kerstan
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, UK
| | - Colin R. Harwood
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
33
|
Abstract
Clostridium difficile is an important human pathogen and one where the primary cause of disease is due to the transmission of spores. We have investigated the proteins found in the outer coat layers of C. difficile spores of pathogenic strain 630 (CD630). Five coat proteins, CotA, CotB, CotCB, CotD, and CotE, were shown to be expressed on the outer coat layers of the spore. We demonstrate that purified spores carry catalase, peroxiredoxin, and chitinase activity and that this activity correlates with the predicted functions of three spore coat proteins identified here, CotCB, CotD, and CotE. CotCB and CotD are putative manganese catalases, and CotE is a novel bifunctional protein with peroxiredoxin activity at its amino terminus and chitinase activity at its carboxy terminus. These enzymes could play an important role in coat assembly by polymerizing protein monomers in the coat. CotE, in addition to a role in macromolecular degradation, could play an important role in inflammation, and this may be of direct relevance to the development of the gastrointestinal symptoms that accompany C. difficile infection. Although specific enzyme activity has not yet been assigned to the proteins identified here, this work provides the first detailed study of the C. difficile spore coat.
Collapse
|
34
|
Display of recombinant proteins on Bacillus subtilis spores, using a coat-associated enzyme as the carrier. Appl Environ Microbiol 2010; 76:5926-33. [PMID: 20601499 DOI: 10.1128/aem.01103-10] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The display of proteins such as feed enzymes at the surface of bacterial spore systems has a great potential use for animal feed. Feed enzymes increase the digestibility of nutrients, leading to greater efficiency in the manufacturing of animal products and minimizing the environmental impact of increased animal production. To deliver their full potential in the gut, feed enzymes must survive the harsh conditions of the feed preparation and the gastrointestinal tract. The well-documented resistance of spores to harsh environments, together with the ability to use proteins that compose the spore as carriers for the display of passenger proteins, suggests that spores could be used as innovative tools to improve the formulation of bioactive molecules. Although some successful examples have been reported, in which abundant structural proteins of the Bacillus subtilis spore outer-coat layer were used as carriers for the display of recombinant proteins, only one convincing example resulted in the display of functional enzymes. In addition, no examples are available about the use of an inner-coat protein for the display of an active passenger enzyme. In our study, we show that the inner-coat oxalate decarboxylase (OxdD) can expose an endogenous phytase, a commonly used feed enzyme for monogastric animals, in an active form at the spore surface. Importantly, despite the higher abundance of CotG outer-coat protein, an OxdD-Phy fusion was more represented at the spore surface. The potential of OxdD as a carrier protein is further documented through the spore display of a bioactive heterologous passenger, the tetrameric beta-glucuronidase enzyme from Escherichia coli.
Collapse
|
35
|
Four superoxide dismutases contribute to Bacillus anthracis virulence and provide spores with redundant protection from oxidative stress. Infect Immun 2008; 77:274-85. [PMID: 18955476 DOI: 10.1128/iai.00515-08] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The Bacillus anthracis genome encodes four superoxide dismutases (SODs), enzymes capable of detoxifying oxygen radicals. That two of these SODs, SOD15 and SODA1, are present in the outermost layers of the B. anthracis spore is indicated by previous proteomic analyses of the exosporium. Given the requirement that spores must survive interactions with reactive oxygen species generated by cells such as macrophages during infection, we hypothesized that SOD15 and SODA1 protect the spore from oxidative stress and contribute to the pathogenicity of B. anthracis. To test these theories, we constructed a double-knockout (Delta sod15 Delta sodA1) mutant of B. anthracis Sterne strain 34F2 and assessed its lethality in an A/J mouse intranasal infection model. The 50% lethal dose of the Delta sod15 Delta sodA1 strain was similar to that of the wild type (34F2), but surprisingly, measurable whole-spore SOD activity was greater than that in 34F2. A quadruple-knockout strain (Delta sod15 Delta sodA1 Delta sodC Delta sodA2) was then generated, and as anticipated, spore-associated SOD activity was diminished. Moreover, the quadruple-knockout strain, compared to the wild type, was attenuated more than 40-fold upon intranasal challenge of mice. Spore resistance to exogenously generated oxidative stress and to macrophage-mediated killing correlated with virulence in A/J mice. Allelic exchange that restored sod15 and sodA1 to their wild-type state restored wild-type characteristics. We conclude that SOD molecules within the spore afford B. anthracis protection against oxidative stress and enhance the pathogenicity of B. anthracis in the lung. We also surmise that the presence of four SOD alleles within the genome provides functional redundancy for this key enzyme.
Collapse
|
36
|
Protozoal digestion of coat-defective Bacillus subtilis spores produces "rinds" composed of insoluble coat protein. Appl Environ Microbiol 2008; 74:5875-81. [PMID: 18689521 DOI: 10.1128/aem.01228-08] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Bacillus subtilis spore coat is a multilayer, proteinaceous structure that consists of more than 50 proteins. Located on the surface of the spore, the coat provides resistance to potentially toxic molecules as well as to predation by the protozoan Tetrahymena thermophila. When coat-defective spores are fed to Tetrahymena, the spores are readily digested. However, a residue termed a "rind" that looks like coat material remains. As observed with a phase-contrast microscope, the rinds are spherical or hemispherical structures that appear to be devoid of internal contents. Atomic force microscopy and chemical analyses showed that (i) the rinds are composed of insoluble protein largely derived from both outer and inner spore coat layers, (ii) the amorphous layer of the outer coat is largely responsible for providing spore resistance to protozoal digestion, and (iii) the rinds and intact spores do not contain significant levels of silicon.
Collapse
|
37
|
Plácido D, Fernandes CG, Isidro A, Carrondo MA, Henriques AO, Archer M. Auto-induction and purification of a Bacillus subtilis transglutaminase (Tgl) and its preliminary crystallographic characterization. Protein Expr Purif 2007; 59:1-8. [PMID: 18249137 DOI: 10.1016/j.pep.2007.12.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2007] [Revised: 12/06/2007] [Accepted: 12/10/2007] [Indexed: 11/19/2022]
Abstract
Spores of Bacillus subtilis are covered by a multi-protein protective coat which is a key factor in their extreme environmental resilience. A fraction of the coat proteins undergoes covalent cross-linking following their assembly at the spore surface. Several types of covalent cross-links are found in the coat. These include epsilon-(gamma-glutamyl)lysine bonds whose formation is catalyzed by a transglutaminase, Tgl, itself a coat component. Tgl is the smallest known transglutaminase. It bears no sequence resemblance to other proteins in databases, except for its counterparts in other Bacillus and related species, suggesting a highly specialized role in coat assembly. It is not known to what degree are the Tgl-like proteins structural and mechanistically related to other transglutaminases. Here, we have fused the His(6) tag to the C-terminal end of Tgl, and shown that the fusion protein is functional in vivo. We have overproduced B. subtilis Tgl-His(6) by auto-induction with high yield and purified the protein to nearly homogeneity in a single chromatographic step. The purified protein, active as it catalyzed the cross-linking of bovine serum albumin, behaved as a monomer of about 33kDa in solution. Lastly, Tgl was crystallized and X-ray diffraction data were collected using synchrotron radiation to 2.1A resolution. Crystals of Tgl belong to the tetragonal space group P4(1,3) and contain two molecules per asymmetric unit.
Collapse
Affiliation(s)
- Diana Plácido
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, ITQB-UNL, Av. República, Apt. 127, 2781-901 Oeiras, Portugal
| | | | | | | | | | | |
Collapse
|
38
|
Abstract
Endospores formed by Bacillus, Clostridia, and related genera are encased in a protein shell called the coat. In many species, including B. subtilis, the coat is the outermost spore structure, and in other species, such as the pathogenic organisms B. anthracis and B. cereus, the spore is encased in an additional layer called the exosporium. Both the coat and the exosporium have roles in protection of the spore and in its environmental interactions. Assembly of both structures is a function of the mother cell, one of two cellular compartments of the developing sporangium. Studies in B. subtilis have revealed that the timing of coat protein production, the guiding role of a small group of morphogenetic proteins, and several types of posttranslational modifications are essential for the fidelity of the assembly process. Assembly of the exosporium requires a set of novel proteins as well as homologues of proteins found in the outermost layers of the coat and of some of the coat morphogenetic factors, suggesting that the exosporium is a more specialized structure of a multifunctional coat. These and other insights into the molecular details of spore surface morphogenesis provide avenues for exploitation of the spore surface layers in applications for biotechnology and medicine.
Collapse
Affiliation(s)
- Adriano O Henriques
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, 2781-901 Oeiras Codex, Portugal.
| | | |
Collapse
|
39
|
CotC-CotU heterodimerization during assembly of the Bacillus subtilis spore coat. J Bacteriol 2007; 190:1267-75. [PMID: 18065538 DOI: 10.1128/jb.01425-07] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We report evidence that CotC and CotU, two previously identified components of the Bacillus subtilis spore coat, are produced concurrently in the mother cell chamber of the sporulating cell under the control of sigmaK and GerE and immediately assembled around the forming spore. In the coat, the two proteins interact to form a coat component of 23 kDa. The CotU-CotC interaction was not detected in two heterologous hosts, suggesting that it occurs only in B. subtilis. Monomeric forms of both CotU and CotC failed to be assembled at the surface of the developing spore and accumulated in the mother cell compartment of cells mutant for cotE. In contrast, neither CotU nor CotC accumulated in the mother cell compartment of cells mutant for cotH. These results suggest that CotH is required to protect both CotU and CotC in the mother cell compartment of the sporangium and that CotE is needed to allow their assembly and subsequent interaction at the spore surface.
Collapse
|
40
|
Liu P, Ewis HE, Huang YJ, Lu CD, Tai PC, Weber IT. Structure of Bacillus subtilis superoxide dismutase. Acta Crystallogr Sect F Struct Biol Cryst Commun 2007; 63:1003-1007. [PMID: 18084079 PMCID: PMC2344103 DOI: 10.1107/s1744309107054127] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2007] [Accepted: 10/29/2007] [Indexed: 05/25/2023]
Abstract
The sodA gene of Bacillus subtilis was expressed in Escherichia coli, purified and crystallized. The crystal structure of MnSOD was solved by molecular replacement with four dimers per asymmetric unit and refined to an R factor of 21.1% at 1.8 A resolution. The dimer structure is very similar to that of the related enzyme from B. anthracis. Larger structural differences were observed with the human MnSOD, which has one less helix in the helical domain and a longer loop between two beta-strands and also showed differences in three amino acids at the intersubunit interface in the dimer compared with the two bacterial MnSODs. These structural differences can be exploited in the design of drugs that selectively target the Bacillus enzymes.
Collapse
Affiliation(s)
- P. Liu
- Department of Biology, Molecular Basis of Disease Program, Georgia State University, Atlanta, Georgia 30303, USA
| | - H. E. Ewis
- Department of Biology, Molecular Basis of Disease Program, Georgia State University, Atlanta, Georgia 30303, USA
| | - Y.-J. Huang
- Department of Biology, Molecular Basis of Disease Program, Georgia State University, Atlanta, Georgia 30303, USA
| | - C.-D. Lu
- Department of Biology, Molecular Basis of Disease Program, Georgia State University, Atlanta, Georgia 30303, USA
| | - P. C. Tai
- Department of Biology, Molecular Basis of Disease Program, Georgia State University, Atlanta, Georgia 30303, USA
| | - I. T. Weber
- Department of Biology, Molecular Basis of Disease Program, Georgia State University, Atlanta, Georgia 30303, USA
| |
Collapse
|
41
|
Abstract
A number of mechanisms are responsible for the resistance of spores of Bacillus species to heat, radiation and chemicals and for spore killing by these agents. Spore resistance to wet heat is determined largely by the water content of spore core, which is much lower than that in the growing cell protoplast. A lower core water content generally gives more wet heat-resistant spores. The level and type of spore core mineral ions and the intrinsic stability of total spore proteins also play a role in spore wet heat resistance, and the saturation of spore DNA with alpha/beta-type small, acid-soluble spore proteins (SASP) protects DNA against wet heat damage. However, how wet heat kills spores is not clear, although it is not through DNA damage. The alpha/beta-type SASP are also important in spore resistance to dry heat, as is DNA repair in spore outgrowth, as Bacillus subtilis spores are killed by dry heat via DNA damage. Both UV and gamma-radiation also kill spores via DNA damage. The mechanism of spore resistance to gamma-radiation is not well understood, although the alpha/beta-type SASP are not involved. In contrast, spore UV resistance is due largely to an alteration in spore DNA photochemistry caused by the binding of alpha/beta-type SASP to the DNA, and to a lesser extent to the photosensitizing action of the spore core's large pool of dipicolinic acid. UV irradiation of spores at 254 nm does not generate the cyclobutane dimers (CPDs) and (6-4)-photoproducts (64PPs) formed between adjacent pyrimidines in growing cells, but rather a thymidyl-thymidine adduct termed spore photoproduct (SP). While SP is formed in spores with approximately the same quantum efficiency as that for generation of CPDs and 64PPs in growing cells, SP is repaired rapidly and efficiently in spore outgrowth by a number of repair systems, at least one of which is specific for SP. Some chemicals (e.g. nitrous acid, formaldehyde) again kill spores by DNA damage, while others, in particular oxidizing agents, appear to damage the spore's inner membrane so that this membrane ruptures upon spore germination and outgrowth. There are also other agents such as glutaraldehyde for which the mechanism of spore killing is unclear. Factors important in spore chemical resistance vary with the chemical, but include: (i) the spore coat proteins that likely react with and detoxify chemical agents; (ii) the relative impermeability of the spore's inner membrane that restricts access of exogenous chemicals to the spore core; (iii) the protection of spore DNA by its saturation with alpha/beta-type SASP; and (iv) DNA repair for agents that kill spores via DNA damage. Given the importance of the killing of spores of Bacillus species in the food and medical products industry, a deeper understanding of the mechanisms of spore resistance and killing may lead to improved methods for spore destruction.
Collapse
Affiliation(s)
- P Setlow
- Department of Molecular, Microbial and Structural Biology, University of Connecticut Health Center, Farmington, 06030-3305, USA.
| |
Collapse
|
42
|
Ohsawa T, Tsukahara K, Sato T, Ogura M. Superoxide stress decreases expression of srfA through inhibition of transcription of the comQXP quorum-sensing locus in Bacillus subtilis. J Biochem 2007; 139:203-11. [PMID: 16452308 DOI: 10.1093/jb/mvj023] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
During the course of screening for competence-deficient mutants in the mutant collection constructed by the Japan Consortium of Bacillus Functional Genomics, a disruption mutant of sodA encoding superoxide dismutase was identified as a mutant with decreased transformation efficiency. In fact, in the sodA mutant we observed a severe decrease in the expression of srfA required for the development of genetic competence. Northern and primer extension analyses revealed inhibition of the transcription of the comQXP quorum-sensing locus in the sodA mutant, thereby preventing srfA expression. Furthermore, an excess amount of superoxide anion induced by the addition of paraquat also resulted in a decrease in comQXP transcription. Thus, it was concluded that high levels of superoxide are able to inhibit specifically the transcription of the comQXP operon. In support of this conclusion, the effect of added paraquat was significantly alleviated in a comX-independent srfA expression system.
Collapse
Affiliation(s)
- Taku Ohsawa
- Department of Marine Science, School of Marine Science and Technology, Tokai University, 3-20-1 Orido, Shimizu, Shizuoka 424-8610, Japan
| | | | | | | |
Collapse
|
43
|
Kuwana R, Okuda N, Takamatsu H, Watabe K. Modification of GerQ reveals a functional relationship between Tgl and YabG in the coat of Bacillus subtilis spores. J Biochem 2006; 139:887-901. [PMID: 16751597 DOI: 10.1093/jb/mvj096] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Here we describe the functional relationship between YabG and transglutaminase (Tgl), enzymes that modify the spore coat proteins of Bacillus subtilis. In wild-type spores at 37 degrees C, Tgl mediates the crosslinking of GerQ into higher molecular mass forms; however, some GerQ multimers are found in tgl mutant spores, indicating that Tgl is not essential. Immunoblotting showed that spores isolated from a yabG mutant after sporulation at 37 degrees C contain only very low levels of GerQ multimers. Heat treatment for 20 min at 60 degrees C, which maximally activates the enzymatic activity of Tgl, caused crosslinking of GerQ in isolated yabG spores but not in tgl/yabG double-mutant spores. In addition, the germination frequency of the tgl/yabG spores in the presence of l-alanine with or without heat activation at 60 degrees C was lower than that of wild-type spores. These findings suggest that Tgl cooperates with YabG to mediate the temperature-dependent modification of the coat proteins, a process associated with spore germination in B. subtilis.
Collapse
Affiliation(s)
- Ritsuko Kuwana
- Faculty of Pharmaceutical Sciences, Setsunan University, Hirakata, Osaka 573-0101
| | | | | | | |
Collapse
|
44
|
Costa T, Isidro AL, Moran CP, Henriques AO. Interaction between coat morphogenetic proteins SafA and SpoVID. J Bacteriol 2006; 188:7731-41. [PMID: 16950916 PMCID: PMC1636312 DOI: 10.1128/jb.00761-06] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Morphogenetic proteins such as SpoVID and SafA govern assembly of the Bacillus subtilis endospore coat by guiding the various protein structural components to the surface of the developing spore. Previously, a screen for peptides able to interact with SpoVID led to the identification of a PYYH motif present in the C-terminal half of the SafA protein and to the subsequent demonstration that SpoVID and SafA directly interact. spoVID and safA spores show deficiencies in coat assembly and are lysozyme susceptible. Both proteins, orthologs of which are found in all Bacillus species, have LysM domains for peptidoglycan binding and localize to the cortex-coat interface. Here, we show that the interaction between SafA and SpoVID involves the PYYH motif (region B) but also a 13-amino-acid region (region A) just downstream of the N-terminal LysM domain of SafA. We show that deletion of region B does not block the interaction of SafA with SpoVID, nor does it bring about spore susceptibility to lysozyme. Nevertheless, it appears to reduce the interaction and affects the complex. In contrast, lesions in region A impaired the interaction of SafA with SpoVID in vitro and, while not affecting the accumulation of SafA in vivo, interfered with the localization of SafA around the developing spore, causing aberrant assembly of the coat and lysozyme sensitivity. A peptide corresponding to region A interacts with SpoVID, suggesting that residues within this region directly contact SpoVID. Since region A is highly conserved among SafA orthologs, this motif may be an important determinant of coat assembly in the group of Bacillus spore formers.
Collapse
Affiliation(s)
- Teresa Costa
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Avenida da República, EAN, 2781-157 Oeiras, Portugal
| | | | | | | |
Collapse
|
45
|
Passalacqua KD, Bergman NH, Herring-Palmer A, Hanna P. The superoxide dismutases of Bacillus anthracis do not cooperatively protect against endogenous superoxide stress. J Bacteriol 2006; 188:3837-48. [PMID: 16707676 PMCID: PMC1482891 DOI: 10.1128/jb.00239-06] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2006] [Accepted: 03/13/2006] [Indexed: 11/20/2022] Open
Abstract
The Bacillus anthracis chromosome encodes four unique, putative superoxide dismutase (sod) genes. During exponential growth and sporulation, sodA1, sodA2, and sodC are transcribed constitutively throughout the growth cycle as individual genes. In contrast, the transcription of sod15 occurs mainly during late exponential and sporulation phases as part of a four-gene operon that may be involved in spore formation. Vegetative cell and spore lysates of wild-type Sterne and superoxide dismutase deletion (Deltasod) mutants show detectable SOD activity for SODA1 and SODA2, and protein analysis suggests that these two proteins form active homodimers and heterodimers. A comparison of the growth of parental versus Deltasod mutants under various chemical oxidative stresses indicates that DeltasodA1 mutants are particularly sensitive to endogenously produced superoxide, whereas DeltasodA2, Deltasod15, and DeltasodC mutants remain as resistant to this stress as the parental strain. In addition, in mouse survival assays, Deltasod15 and DeltasodA1 were responsible for less end-point death, but the level of decreased virulence does not fall within a statistically significant range. Collectively, these data show that sodA1 acts as a major protectant from intracellular superoxide stress, that sod15 is transcribed as part of an operon that may play a role in cell morphology, and that sodA2 and sodC may have minor roles that are not apparent in the conditions tested here.
Collapse
Affiliation(s)
- Karla D Passalacqua
- Department of Microbiology and Immunology, University of Michigan Medical School, 1150 West Medical Center Drive, 6703 Medical Science Building II, Ann Arbor, MI 48109, USA
| | | | | | | |
Collapse
|
46
|
Jones C, Padula N, Setlow P. Effect of mechanical abrasion on the viability, disruption and germination of spores of Bacillus subtilis. J Appl Microbiol 2006; 99:1484-94. [PMID: 16313421 PMCID: PMC1361271 DOI: 10.1111/j.1365-2672.2005.02744.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AIMS To elucidate the factors influencing the sensitivity of Bacillus subtilis spores in killing and disrupting by mechanical abrasion, and the mechanism of stimulation of spore germination by abrasion. METHODS AND RESULTS Spores of B. subtilis strains were abraded by shaking with glass beads in liquid or the dry state, and spore killing, disruption and germination were determined. Dormant spores were more resistant to killing and disruption by abrasion than were growing cells or germinated spores. However, dormant spores of the wild-type strain with or without most coat proteins removed, spores of strains with mutations causing spore coat defects, spores lacking their large depot of dipicolinic acid (DPA) and spores with defects in the germination process exhibited essentially identical rates of killing and disruption by abrasion. When spores lacking all nutrient germinant receptors were enumerated by plating directly on nutrient medium, abrasion increased the plating efficiency of these spores before killing them. Spores lacking all nutrient receptors and either of the two redundant cortex-lytic enzymes behaved similarly in this regard, but the plating efficiency of spores lacking both cortex-lytic enzymes was not stimulated by abrasion. CONCLUSIONS Dormant spores are more resistant to killing and disruption by abrasion than are growing cells or germinated spores, and neither the complete coats nor DPA are important in spore resistance to such treatments. Germination is not essential for spore killing by abrasion, although abrasion can trigger spore germination by activation of either of the spore's cortex-lytic enzymes. SIGNIFICANCE AND IMPACT OF THE STUDY This work provides new insight into the mechanisms of the killing, disruption and germination of spores by abrasion and makes the surprising finding that at least much of the spore coat is not important in spore resistance to abrasion.
Collapse
Affiliation(s)
| | - N.L. Padula
- *Correspondence to: P. Setlow, Department of Molecular, Microbial and Structural Biology, University of Connecticut Health Center, Farmington, CT 06032 USA ()
| | | |
Collapse
|
47
|
McPherson DC, Kim H, Hahn M, Wang R, Grabowski P, Eichenberger P, Driks A. Characterization of the Bacillus subtilis spore morphogenetic coat protein CotO. J Bacteriol 2006; 187:8278-90. [PMID: 16321932 PMCID: PMC1317010 DOI: 10.1128/jb.187.24.8278-8290.2005] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacillus spores are protected by a structurally and biochemically complex protein shell composed of over 50 polypeptide species, called the coat. Coat assembly in Bacillus subtilis serves as a relatively tractable model for the study of the formation of more complex macromolecular structures and organelles. It is also a critical model for the discovery of strategies to decontaminate B. anthracis spores. In B. subtilis, a subset of coat proteins is known to have important roles in assembly. Here we show that the recently identified B. subtilis coat protein CotO (YjbX) has an especially important morphogenetic role. We used electron and atomic force microscopy to show that CotO controls assembly of the coat layers and coat surface topography as well as biochemical and cell-biological analyses to identify coat proteins whose assembly is CotO dependent. cotO spores are defective in germination and partially sensitive to lysozyme. As a whole, these phenotypes resemble those resulting from a mutation in the coat protein gene cotH. Nonetheless, the roles of CotH and CotO and the proteins whose assembly they direct are not identical. Based on fluorescence and electron microscopy, we suggest that CotO resides in the outer coat (although not on the coat surface). We propose that CotO and CotH participate in a late phase of coat assembly. We further speculate that an important role of these proteins is ensuring that polymerization of the outer coat layers occurs in such a manner that contiguous shells, and not unproductive aggregates, are formed.
Collapse
Affiliation(s)
- D C McPherson
- Department of Microbiology and Immunology, Loyola University Medical Center, 2160 S. 1st Ave., Maywood, IL 60153, USA
| | | | | | | | | | | | | |
Collapse
|
48
|
Klobutcher LA, Ragkousi K, Setlow P. The Bacillus subtilis spore coat provides "eat resistance" during phagocytic predation by the protozoan Tetrahymena thermophila. Proc Natl Acad Sci U S A 2006; 103:165-70. [PMID: 16371471 PMCID: PMC1324984 DOI: 10.1073/pnas.0507121102] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2005] [Indexed: 11/18/2022] Open
Abstract
Bacillus spores are highly resistant to many environmental stresses, owing in part to the presence of multiple "extracellular" layers. Although the role of some of these extracellular layers in resistance to particular stresses is known, the function of one of the outermost layers, the spore coat, is not completely understood. This study sought to determine whether the spore coat plays a role in resistance to predation by the ciliated protozoan Tetrahymena, which uses phagocytosis to ingest and degrade other microorganisms. Wild-type dormant spores of Bacillus subtilis were efficiently ingested by the protozoan Tetrahymena thermophila but were neither digested nor killed. However, spores with various coat defects were killed and digested, leaving only an outer shell termed a rind, and supporting the growth of Tetrahymena. A similar rind was generated when coat-defective spores were treated with lysozyme alone. The sensitivity of spores with different coat defects to predation by T. thermophila paralleled the spores' sensitivities to lysozyme. Spore killing by T. thermophila was by means of lytic enzymes within the protozoal phagosome, not by initial spore germination followed by killing. These findings suggest that a major function of the coat of spores of Bacillus species is to protect spores against predation. We also found that indigestible rinds were generated even from spores in which cross-linking of coat proteins was greatly reduced, implying the existence of a coat structure that is highly resistant to degradative enzymes.
Collapse
Affiliation(s)
- Lawrence A Klobutcher
- Department of Molecular, Microbial, and Structural Biology, University of Connecticut Health Center, Farmington, CT 06030-3305, USA
| | | | | |
Collapse
|
49
|
Zilhão R, Isticato R, Martins LO, Steil L, Völker U, Ricca E, Moran CP, Henriques AO. Assembly and function of a spore coat-associated transglutaminase of Bacillus subtilis. J Bacteriol 2005; 187:7753-64. [PMID: 16267299 PMCID: PMC1280291 DOI: 10.1128/jb.187.22.7753-7764.2005] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The assembly of a multiprotein coat around the Bacillus subtilis spore confers resistance to lytic enzymes and noxious chemicals and ensures normal germination. Part of the coat is cross-linked and resistant to solubilization. The coat contains epsilon-(gamma-glutamyl)lysyl cross-links, and the expression of the gene (tgl) for a spore-associated transglutaminase was shown before to be required for the cross-linking of coat protein GerQ. Here, we have investigated the assembly and function of Tgl. We found that Tgl associates, albeit at somewhat reduced levels, with the coats of mutants that are unable to assemble the outer coat (cotE), that are missing the inner coat and with a greatly altered outer coat (gerE), or that are lacking discernible inner and outer coat structures (cotE gerE double mutant). This suggests that Tgl is present at various levels within the coat lattice. The assembly of Tgl occurs independently of its own activity, as a single amino acid substitution of a cysteine to an alanine (C116A) at the active site of Tgl does not affect its accumulation or assembly. However, like a tgl insertional mutation, the tglC116A allele causes increased extractability of polypeptides of about 40, 28, and 16 kDa in addition to GerQ (20 kDa) and affects the structural integrity of the coat. We show that most Tgl is assembled onto the spore surface soon after its synthesis in the mother cell under sigma(K) control but that the complete insolubilization of at least two of the Tgl-controlled polypeptides occurs several hours later. We also show that a multicopy allele of tgl causes increased assembly of Tgl and affects the assembly, structure, and functional properties of the coat.
Collapse
Affiliation(s)
- Rita Zilhão
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras Codex, Portugal
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Real G, Pinto SM, Schyns G, Costa T, Henriques AO, Moran CP. A gene encoding a holin-like protein involved in spore morphogenesis and spore germination in Bacillus subtilis. J Bacteriol 2005; 187:6443-53. [PMID: 16159778 PMCID: PMC1236627 DOI: 10.1128/jb.187.18.6443-6453.2005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We report here studies of expression and functional analysis of a Bacillus subtilis gene, ywcE, which codes for a product with features of a holin. Primer extension analysis of ywcE transcription revealed that a single transcript accumulated from the onset of sporulation onwards, produced from a sigma(A)-type promoter bearing the TG dinucleotide motif of "extended" -10 promoters. No primer extension product was detected in vivo during growth. However, specific runoff products were produced in vitro from the ywcE promoter by purified sigma(A)-containing RNA polymerase (Esigma(A)), and the in vivo and in vitro transcription start sites were identical. These results suggested that utilization of the ywcE promoter by Esigma(A) during growth was subjected to repression. Studies with a lacZ fusion revealed that the transition-state regulator AbrB repressed the transcription of ywcE during growth. This repression was reversed at the onset of sporulation in a Spo0A-dependent manner, but Spo0A did not appear to contribute otherwise to ywcE transcription. We found ywcE to be required for proper spore morphogenesis. Spores of the ywcE mutant showed a reduced outer coat which lacked the characteristic striated pattern, and the outer coat failed to attach to the underlying inner coat. The mutant spores also accumulated reduced levels of dipicolinic acid. ywcE was also found to be important for spore germination.
Collapse
Affiliation(s)
- Gonçalo Real
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| | | | | | | | | | | |
Collapse
|