1
|
Hetta HF, Alanazi FE, Ali MAS, Alatawi AD, Aljohani HM, Ahmed R, Alansari NA, Alkhathami FM, Albogmi A, Alharbi BM, Alanzi HS, Alaqyli AB, Ramadan YN. Hypervirulent Klebsiella pneumoniae: Insights into Virulence, Antibiotic Resistance, and Fight Strategies Against a Superbug. Pharmaceuticals (Basel) 2025; 18:724. [PMID: 40430542 PMCID: PMC12115101 DOI: 10.3390/ph18050724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2025] [Revised: 05/12/2025] [Accepted: 05/13/2025] [Indexed: 05/29/2025] Open
Abstract
Community-acquired infections caused by Klebsiella pneumoniae (K. pneumoniae) have become a significant global health concern, particularly with the emergence of hypervirulent strains (hvKP). These strains are associated with severe infections, such as pyogenic liver abscesses, even in otherwise healthy individuals. Initially reported in Taiwan in the 1980s, hvKP has now spread worldwide. The pathogenicity of hvKP is attributed to an array of virulence factors that enhance its ability to colonize and evade host immune defenses. Additionally, the convergence of hypervirulence with antibiotic resistance has further complicated treatment strategies. As a member of the ESKAPE group of pathogens, K. pneumoniae exhibits high resistance to multiple antibiotics, posing a challenge for healthcare settings. This review provides a comprehensive overview of hvKP, highlighting its structural and pathogenic differences from classical K. pneumoniae strains, key virulence factors, mechanisms of antibiotic resistance, and the increasing threat of multidrug-resistant hvKP. Lastly, we discuss current treatment guidelines and emerging therapeutic strategies to combat this formidable pathogen.
Collapse
Affiliation(s)
- Helal F. Hetta
- Division of Microbiology, Immunology and Biotechnology, Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia;
| | - Fawaz E. Alanazi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia;
| | - Mostafa A. Sayed Ali
- Department of Pharmacy Practice, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia;
| | - Ahmed D. Alatawi
- Department of Clinical Pharmacy, College of Pharmacy, Jouf University, Sakaka 72388, Saudi Arabia;
| | - Hashim M. Aljohani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taibah University, Madina 41477, Saudi Arabia;
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Rehab Ahmed
- Division of Microbiology, Immunology and Biotechnology, Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia;
| | - Nuha A. Alansari
- Laboratory Medicine, College of Applied Medical Sciences, Umm Al-Qura University, Jeddah 22231, Saudi Arabia;
| | - Fahad M. Alkhathami
- College of Applied Medical Sciences, University of Tabuk, Tabuk 47315, Saudi Arabia; (F.M.A.); (H.S.A.); (A.B.A.)
| | - Alaa Albogmi
- Medical Laboratory Technology, King Abdulaziz University, Jeddah 80216, Saudi Arabia;
| | - Bander M. Alharbi
- Medical Laboratory Technology, College of Applied Medical Sciences, University of Tabuk, Tabuk 47524, Saudi Arabia;
| | - Hanadi S. Alanzi
- College of Applied Medical Sciences, University of Tabuk, Tabuk 47315, Saudi Arabia; (F.M.A.); (H.S.A.); (A.B.A.)
| | - Amirah B. Alaqyli
- College of Applied Medical Sciences, University of Tabuk, Tabuk 47315, Saudi Arabia; (F.M.A.); (H.S.A.); (A.B.A.)
| | - Yasmin N. Ramadan
- Department of Microbiology and Immunology, Faculty of Pharmacy, Assiut University, Assiut 71515, Egypt;
| |
Collapse
|
2
|
Orsi E, Schulz-Mirbach H, Cotton CAR, Satanowski A, Petri HM, Arnold SL, Grabarczyk N, Verbakel R, Jensen KS, Donati S, Paczia N, Glatter T, Küffner AM, Chotel T, Schillmüller F, De Maria A, He H, Lindner SN, Noor E, Bar-Even A, Erb TJ, Nikel PI. Computation-aided designs enable developing auxotrophic metabolic sensors for wide-range glyoxylate and glycolate detection. Nat Commun 2025; 16:2168. [PMID: 40038270 PMCID: PMC11880463 DOI: 10.1038/s41467-025-57407-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 02/18/2025] [Indexed: 03/06/2025] Open
Abstract
Auxotrophic metabolic sensors (AMS) are microbial strains modified so that biomass formation correlates with the availability of specific metabolites. These sensors are essential for bioengineering (e.g., in growth-coupled designs) but creating them is often a time-consuming and low-throughput process that can be streamlined by in silico analysis. Here, we present a systematic workflow for designing, implementing, and testing versatile AMS based on Escherichia coli. Glyoxylate, a key metabolite in (synthetic) CO2 fixation and carbon-conserving pathways, served as the test analyte. Through iterative screening of a compact metabolic model, we identify non-trivial growth-coupled designs that result in six AMS with a wide sensitivity range for glyoxylate, spanning three orders of magnitude in the detected analyte concentration. We further adapt these E. coli AMS for sensing glycolate and demonstrate their utility in both pathway engineering (testing a key metabolic module for carbon assimilation via glyoxylate) and environmental monitoring (quantifying glycolate produced by photosynthetic microalgae). Adapting this workflow to the sensing of different metabolites could facilitate the design and implementation of AMS for diverse biotechnological applications.
Collapse
Affiliation(s)
- Enrico Orsi
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark.
| | | | | | - Ari Satanowski
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Henrik M Petri
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Susanne L Arnold
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Natalia Grabarczyk
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Rutger Verbakel
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Karsten S Jensen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Stefano Donati
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Nicole Paczia
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Timo Glatter
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | | | - Tanguy Chotel
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | | | - Alberto De Maria
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Hai He
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Steffen N Lindner
- Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
- Department of Biochemistry, Charité Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität, Berlin, Germany
| | - Elad Noor
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Arren Bar-Even
- Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Tobias J Erb
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Pablo I Nikel
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark.
| |
Collapse
|
3
|
Garrido-Palazuelos LI, Aguirre-Sánchez JR, Castro-Del Campo N, López-Cuevas O, González-Torres B, Chaidez C, Medrano-Félix JA. Genomic characteristics of Salmonella Montevideo and Pomona: impact of isolation source on antibiotic resistance, virulence and metabolic capacity. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2024; 34:3972-3987. [PMID: 38576268 DOI: 10.1080/09603123.2024.2336597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 03/25/2024] [Indexed: 04/06/2024]
Abstract
Salmonella enterica is known for its disease-causing serotypes, including Montevideo and Pomona. These serotypes have been found in various environments, including river water, sediments, food, and animals. However, the global spread of these serotypes has increased, leading to many reported infections and outbreaks. The goal of this study was the genomic analysis of 48 strains of S. Montevideo and S. Pomona isolated from different sources, including clinical. Results showed that environmental strains carried more antibiotic resistance genes than the clinical strains, such as genes for resistance to aminoglycosides, chloramphenicol, and sulfonamides. Additionally, the type 4 secretion system, was only found in environmental strains. .Also many phosphotransferase transport systems were identified and the presence of genes for the alternative pathway Entner-Doudoroff. The origin of isolation may have a significant impact on the ability of Salmonella isolates to adapt and survive in different environments, leading to genomic flexibility and a selection advantage.
Collapse
Affiliation(s)
- Lennin Isaac Garrido-Palazuelos
- Laboratorio Nacional Para la Investigación En Inocuidad Alimentaria (LANIIA), Centro de Investigación En Alimentación y Desarrollo A.C (CIAD), Culiacán, México
| | - José Roberto Aguirre-Sánchez
- Laboratorio Nacional Para la Investigación En Inocuidad Alimentaria (LANIIA), Centro de Investigación En Alimentación y Desarrollo A.C (CIAD), Culiacán, México
| | - Nohelia Castro-Del Campo
- Laboratorio Nacional Para la Investigación En Inocuidad Alimentaria (LANIIA), Centro de Investigación En Alimentación y Desarrollo A.C (CIAD), Culiacán, México
| | - Osvaldo López-Cuevas
- Laboratorio Nacional Para la Investigación En Inocuidad Alimentaria (LANIIA), Centro de Investigación En Alimentación y Desarrollo A.C (CIAD), Culiacán, México
| | - Berenice González-Torres
- Laboratorio Nacional Para la Investigación En Inocuidad Alimentaria (LANIIA), Centro de Investigación En Alimentación y Desarrollo A.C (CIAD), Culiacán, México
| | - Cristóbal Chaidez
- Laboratorio Nacional Para la Investigación En Inocuidad Alimentaria (LANIIA), Centro de Investigación En Alimentación y Desarrollo A.C (CIAD), Culiacán, México
| | - José Andrés Medrano-Félix
- Investigadoras e investigadores por México Centro de Investigación En Alimentación y Desarrollo A.C. Laboratorio Nacional para la Investigación en Inocuidad Alimentaria, Culiacán, México
| |
Collapse
|
4
|
Soliman EA, Saad A, Abd El Tawab AA, Elhofy FI, Rizk AM, Elkhayat M, Kozytska T, Ilyas M, Bassiouny M, Brangsch H, Pletz MW, Neubauer H, Sprague LD, Wareth G. Exploring AMR and virulence in Klebsiella pneumoniae isolated from humans and pet animals: A complement of phenotype by WGS-derived profiles in a One Health study in Egypt. One Health 2024; 19:100904. [PMID: 39399229 PMCID: PMC11471225 DOI: 10.1016/j.onehlt.2024.100904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/25/2024] [Accepted: 09/25/2024] [Indexed: 10/15/2024] Open
Abstract
Klebsiella pneumoniae is a ubiquitous nosocomial pathogen associated with various types of infections in hospitalized patients and different animal species. In the current study, 49 Klebsiella strains isolated from humans, dogs, and cats were investigated using NGS technology. MALDI-TOF failed to identify newly discovered K. variicola and K. quasipneumoniae isolates correctly. MLST analysis revealed different sequence types among K. pneumoniae isolates, and the most frequent STs were ST29, ST219, and ST37. Three ST23 that are generally known as hypervirulent type were identified but they lacked major discriminatory determinants for hypervirulent K. pneumoniae (hvKp). K. pneumoniae isolates showed high diversity, and several isolates from humans and animals were assigned to the same ST and were almost identical. Isolates from humans exhibited more pronounced resistance patterns compared to the animal isolates. High levels of resistance were observed for piperacillin, trimethoprim/sulfamethoxazole, and cephalosporins, and resistance to carbapenem compounds was only found in isolates of human origin. Three strains of human origin were extensively drug-resistant (XDR). A diverse range of resistance genes primarily confer resistance to beta-lactams., phenicol/quinolone, aminoglycoside, macrolide, sulfonamides, and fosfomycin were identified in silico. However, there were inconsistencies between the phenotypic characterization of isolates and the set of resistance genes detected in silico in this set of Klebsiella isolates. Further research using a larger number of isolates from various sources is necessary to fully comprehend the relationship between the presence of antimicrobial resistance determinants and phenotypic data. It is also necessary to monitor the spread of K. pneumoniae from a One Health perspective in Egypt.
Collapse
Affiliation(s)
- Enas A. Soliman
- Department of Bacteriology, Immunology, and Mycology, Faculty of Veterinary Medicine, Benha University, Toukh, Moshtohor, Egypt
| | - Alaa Saad
- Department of Bacteriology, Immunology, and Mycology, Faculty of Veterinary Medicine, Benha University, Toukh, Moshtohor, Egypt
| | - Ashraf A. Abd El Tawab
- Department of Bacteriology, Immunology, and Mycology, Faculty of Veterinary Medicine, Benha University, Toukh, Moshtohor, Egypt
| | - Fatma I. Elhofy
- Department of Bacteriology, Immunology, and Mycology, Faculty of Veterinary Medicine, Benha University, Toukh, Moshtohor, Egypt
| | - Amira M. Rizk
- Department of Bacteriology, Immunology, and Mycology, Faculty of Veterinary Medicine, Benha University, Toukh, Moshtohor, Egypt
| | - Manar Elkhayat
- Department of Bacteriology, Immunology, and Mycology, Faculty of Veterinary Medicine, Benha University, Toukh, Moshtohor, Egypt
| | - Tamara Kozytska
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, 07743 Jena, Germany
| | - Majdil Ilyas
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, 07743 Jena, Germany
| | - Marwa Bassiouny
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, 07743 Jena, Germany
| | - Hanka Brangsch
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, 07743 Jena, Germany
| | - Mathias W. Pletz
- Institute of Infectious Diseases and Infection Control, Jena University Hospital, 07747 Jena, Germany
| | - Heinrich Neubauer
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, 07743 Jena, Germany
| | - Lisa D. Sprague
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, 07743 Jena, Germany
| | - Gamal Wareth
- Department of Bacteriology, Immunology, and Mycology, Faculty of Veterinary Medicine, Benha University, Toukh, Moshtohor, Egypt
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, 07743 Jena, Germany
- Institute of Infectious Diseases and Infection Control, Jena University Hospital, 07747 Jena, Germany
| |
Collapse
|
5
|
Roccor R, Wolf ME, Liu J, Eltis LD. The catabolism of ethylene glycol by Rhodococcus jostii RHA1 and its dependence on mycofactocin. Appl Environ Microbiol 2024; 90:e0041624. [PMID: 38837369 PMCID: PMC11267921 DOI: 10.1128/aem.00416-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 05/14/2024] [Indexed: 06/07/2024] Open
Abstract
Ethylene glycol (EG) is a widely used industrial chemical with manifold applications and also generated in the degradation of plastics such as polyethylene terephthalate. Rhodococcus jostii RHA1 (RHA1), a potential biocatalytic chassis, grows on EG. Transcriptomic analyses revealed four clusters of genes potentially involved in EG catabolism: the mad locus, predicted to encode mycofactocin-dependent alcohol degradation, including the catabolism of EG to glycolate; two GCL clusters, predicted to encode glycolate and glyoxylate catabolism; and the mft genes, predicted to specify mycofactocin biosynthesis. Bioinformatic analyses further revealed that the mad and mft genes are widely distributed in mycolic acid-producing bacteria such as RHA1. Neither ΔmadA nor ΔmftC RHA1 mutant strains grew on EG but grew on acetate. In resting cell assays, the ΔmadA mutant depleted glycolaldehyde but not EG from culture media. These results indicate that madA encodes a mycofactocin-dependent alcohol dehydrogenase that initiates EG catabolism. In contrast to some mycobacterial strains, the mad genes did not appear to enable RHA1 to grow on methanol as sole substrate. Finally, a strain of RHA1 adapted to grow ~3× faster on EG contained an overexpressed gene, aldA2, predicted to encode an aldehyde dehydrogenase. When incubated with EG, this strain accumulated lower concentrations of glycolaldehyde than RHA1. Moreover, ecotopically expressed aldA2 increased RHA1's tolerance for EG further suggesting that glycolaldehyde accumulation limits growth of RHA1 on EG. Overall, this study provides insights into the bacterial catabolism of small alcohols and aldehydes and facilitates the engineering of Rhodococcus for the upgrading of plastic waste streams.IMPORTANCEEthylene glycol (EG), a two-carbon (C2) alcohol, is produced in high volumes for use in a wide variety of applications. There is burgeoning interest in understanding and engineering the bacterial catabolism of EG, in part to establish circular economic routes for its use. This study identifies an EG catabolic pathway in Rhodococcus, a genus of bacteria well suited for biocatalysis. This pathway is responsible for the catabolism of methanol, a C1 feedstock, in related bacteria. Finally, we describe strategies to increase the rate of degradation of EG by increasing the transformation of glycolaldehyde, a toxic metabolic intermediate. This work advances the development of biocatalytic strategies to transform C2 feedstocks.
Collapse
Affiliation(s)
- Raphael Roccor
- Department of Microbiology and Immunology, Life Sciences Institute, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Megan E. Wolf
- Department of Microbiology and Immunology, Life Sciences Institute, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Jie Liu
- Department of Microbiology and Immunology, Life Sciences Institute, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Lindsay D. Eltis
- Department of Microbiology and Immunology, Life Sciences Institute, The University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
6
|
Kim NY, Kim OB. Oxamic transcarbamylase of Escherichia coli is encoded by the three genes allFGH (formerly fdrA, ylbE, and ylbF). Appl Environ Microbiol 2024; 90:e0095724. [PMID: 38888336 PMCID: PMC11326118 DOI: 10.1128/aem.00957-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 05/21/2024] [Indexed: 06/20/2024] Open
Abstract
Escherichia coli uses allantoin as the sole nitrogen source during anaerobic growth. In the final step of allantoin degradation, oxamic transcarbamylase (OXTCase) converts oxalurate to carbamoyl phosphate (CP) and oxamate. The activity of this enzyme was first measured in Streptococcus allantoicus in the 1960s, but no OXTCase enzyme or the encoding gene(s) have been found in any strain. This study discovered that allFGH (fdrA, ylbE, and ylbF) are the genes that encode the global orphan enzyme OXTCase. The three genes form an operon together with allK (ybcF), encoding catabolic carbamate kinase. The allFGHK operon is located directly downstream of the allECD operon that encodes enzymes for the preceding steps of OXTCase. The OXTCase kinetic parameters were analyzed using the purified protein composed of AllF-AllG-AllH (FdrA-YlbE-YlbF); for the substrate CP, KM and Vmax were 1.3 mM and 15.4 U/mg OXTCase, respectively, and for the substrate oxamate, they were 36.9 mM and 27.0 U/mg OXTCase. In addition, the OXTCase encoded by the three genes is a novel transcarbamylase that shows no similarity with known enzymes of the transcarbamylase family such as aspartate transcarbamylase, ornithine transcarbamylase, and YgeW transcarbamylase. The present study elucidated the anaerobic allantoin degradation pathway of E. coli. Therefore, we suggest that the genes fdrA, ylbE, and ylbF are renamed allF, allG, and allH, respectively.IMPORTANCEThe anaerobic allantoin degradation pathway of Escherichia coli includes a global orphan enzyme, oxamic transcarbamylase (OXTCase), which converts oxalurate to carbamoyl phosphate and oxamate. This study found that the allFGH (fdrA, ylbE, and ylbF) genes encode OXTCase. The OXTCase activity and kinetics were successfully determined with purified recombinant AllF-AllG-AllH (FdrA-YlbE-YlbF). This OXTCase is a novel transcarbamylase that shows no similarity with known enzymes of the transcarbamylase family such as aspartate transcarbamylase (ATCase), ornithine transcarbamylase (OTCase), and YgeW transcarbamylase (YTCase). In addition, OXTCase activity requires three genes, whereas ATCase is encoded by two genes, and OTCase and YTCase are encoded by a single gene. The current study discovered OXTCase, the last unknown step in allantoin degradation, and this enzyme is a new member of the transcarbamylase group that was previously unknown.
Collapse
Affiliation(s)
- Nam Yeun Kim
- Division of
EcoScience, Department of Life Science, Ewha Womans
University, Seoul,
Republic of Korea
| | - Ok Bin Kim
- Division of
EcoScience, Department of Life Science, Ewha Womans
University, Seoul,
Republic of Korea
| |
Collapse
|
7
|
Kasahara K, Kerby RL, Zhang Q, Pradhan M, Mehrabian M, Lusis AJ, Bergström G, Bäckhed F, Rey FE. Gut bacterial metabolism contributes to host global purine homeostasis. Cell Host Microbe 2023; 31:1038-1053.e10. [PMID: 37279756 PMCID: PMC10311284 DOI: 10.1016/j.chom.2023.05.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 03/25/2023] [Accepted: 05/10/2023] [Indexed: 06/08/2023]
Abstract
The microbes and microbial pathways that influence host inflammatory disease progression remain largely undefined. Here, we show that variation in atherosclerosis burden is partially driven by gut microbiota and is associated with circulating levels of uric acid (UA) in mice and humans. We identify gut bacterial taxa spanning multiple phyla, including Bacillota, Fusobacteriota, and Pseudomonadota, that use multiple purines, including UA as carbon and energy sources anaerobically. We identify a gene cluster that encodes key steps of anaerobic purine degradation and that is widely distributed among gut-dwelling bacteria. Furthermore, we show that colonization of gnotobiotic mice with purine-degrading bacteria modulates levels of UA and other purines in the gut and systemically. Thus, gut microbes are important drivers of host global purine homeostasis and serum UA levels, and gut bacterial catabolism of purines may represent a mechanism by which gut bacteria influence health.
Collapse
Affiliation(s)
- Kazuyuki Kasahara
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA; Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Robert L Kerby
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | - Qijun Zhang
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | - Meenakshi Pradhan
- Department of Molecular and Clinical Medicine, Wallenberg Laboratory, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Margarete Mehrabian
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Aldons J Lusis
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Göran Bergström
- Department of Molecular and Clinical Medicine, Wallenberg Laboratory, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden; Region Västra Götaland, Sahlgrenska University Hospital, Department of Clinical Physiology, Gothenburg, Sweden
| | - Fredrik Bäckhed
- Department of Molecular and Clinical Medicine, Wallenberg Laboratory, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden; Region Västra Götaland, Sahlgrenska University Hospital, Department of Clinical Physiology, Gothenburg, Sweden; Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Federico E Rey
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
8
|
Rodionova IA, Hosseinnia A, Kim S, Goodacre N, Zhang L, Zhang Z, Palsson B, Uetz P, Babu M, Saier MH. E. coli allantoinase is activated by the downstream metabolic enzyme, glycerate kinase, and stabilizes the putative allantoin transporter by direct binding. Sci Rep 2023; 13:7345. [PMID: 37147430 PMCID: PMC10163214 DOI: 10.1038/s41598-023-31812-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 03/17/2023] [Indexed: 05/07/2023] Open
Abstract
Allantoin is a good source of ammonium for many organisms, and in Escherichia coli it is utilized under anaerobic conditions. We provide evidence that allantoinase (AllB) is allosterically activated by direct binding of the allantoin catabolic enzyme, glycerate 2-kinase (GlxK) in the presence of glyoxylate. Glyoxylate is known to be an effector of the AllR repressor which regulates the allantoin utilization operons in E. coli. AllB has low affinity for allantoin, but its activation by GlxK leads to increased affinity for its substrate. We also show that the predicted allantoin transporter YbbW (re-named AllW) has allantoin specificity and the protein-protein interaction with AllB. Our results show that the AllB-dependent allantoin degradative pathway is subject to previously unrecognized regulatory mechanisms involving direct protein-protein interactions.
Collapse
Affiliation(s)
- Irina A Rodionova
- Department of Molecular Biology, Division of Biological Sciences, University of California at San Diego, La Jolla, CA, 92093, USA.
- Department of Bioengineering, Division of Engineering, University of California at San Diego, La Jolla, CA, 92093-0116, USA.
| | - Ali Hosseinnia
- Department of Biochemistry, University of Regina, Regina, SK, S4S 0A2, Canada
| | - Sunyoung Kim
- Department of Biochemistry, University of Regina, Regina, SK, S4S 0A2, Canada
| | - Norman Goodacre
- Center for the Study of Biological Complexity, Virginia Commonwealth University, Richmond, VA, 23284, USA
| | - Li Zhang
- Department of Molecular Biology, Division of Biological Sciences, University of California at San Diego, La Jolla, CA, 92093, USA
- College of Food Science and Engineering, Ocean University of China, Yushan Road, Shinan District, Qingdao, 266003, China
| | - Zhongge Zhang
- Department of Molecular Biology, Division of Biological Sciences, University of California at San Diego, La Jolla, CA, 92093, USA
| | - Bernhard Palsson
- Department of Bioengineering, Division of Engineering, University of California at San Diego, La Jolla, CA, 92093-0116, USA
- Department of Pediatrics, University of California San Diego, La Jolla, CA, 92093, USA
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Lyngby, Denmark
| | - Peter Uetz
- Center for the Study of Biological Complexity, Virginia Commonwealth University, Richmond, VA, 23284, USA
| | - Mohan Babu
- Department of Biochemistry, University of Regina, Regina, SK, S4S 0A2, Canada
| | - Milton H Saier
- Department of Molecular Biology, Division of Biological Sciences, University of California at San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
9
|
Huynh TN, Stewart V. Purine catabolism by enterobacteria. Adv Microb Physiol 2023; 82:205-266. [PMID: 36948655 DOI: 10.1016/bs.ampbs.2023.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
Purines are abundant among organic nitrogen sources and have high nitrogen content. Accordingly, microorganisms have evolved different pathways to catabolize purines and their metabolic products such as allantoin. Enterobacteria from the genera Escherichia, Klebsiella and Salmonella have three such pathways. First, the HPX pathway, found in the genus Klebsiella and very close relatives, catabolizes purines during aerobic growth, extracting all four nitrogen atoms in the process. This pathway includes several known or predicted enzymes not previously observed in other purine catabolic pathways. Second, the ALL pathway, found in strains from all three species, catabolizes allantoin during anaerobic growth in a branched pathway that also includes glyoxylate assimilation. This allantoin fermentation pathway originally was characterized in a gram-positive bacterium, and therefore is widespread. Third, the XDH pathway, found in strains from Escherichia and Klebsiella spp., at present is ill-defined but likely includes enzymes to catabolize purines during anaerobic growth. Critically, this pathway may include an enzyme system for anaerobic urate catabolism, a phenomenon not previously described. Documenting such a pathway would overturn the long-held assumption that urate catabolism requires oxygen. Overall, this broad capability for purine catabolism during either aerobic or anaerobic growth suggests that purines and their metabolites contribute to enterobacterial fitness in a variety of environments.
Collapse
Affiliation(s)
- TuAnh Ngoc Huynh
- Department of Food Science, University of Wisconsin, Madison, WI, United States
| | - Valley Stewart
- Department of Microbiology & Molecular Genetics, University of California, Davis, CA, United States.
| |
Collapse
|
10
|
Kim NY, Kim OB. The ybcF Gene of Escherichia coli Encodes a Local Orphan Enzyme, Catabolic Carbamate Kinase. J Microbiol Biotechnol 2022; 32:1527-1536. [PMID: 36384810 PMCID: PMC9843812 DOI: 10.4014/jmb.2210.10037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 10/31/2022] [Accepted: 11/01/2022] [Indexed: 11/18/2022]
Abstract
Escherichia coli can use allantoin as its sole nitrogen source under anaerobic conditions. The ureidoglycolate produced by double release of ammonia from allantoin can flow into either the glyoxylate shunt or further catabolic transcarbamoylation. Although the former pathway is well studied, the genes of the latter (catabolic) pathway are not known. In the catabolic pathway, ureidoglycolate is finally converted to carbamoyl phosphate (CP) and oxamate, and then CP is dephosphorylated to carbamate by a catabolic carbamate kinase (CK), whereby ATP is formed. We identified the ybcF gene in a gene cluster containing fdrA-ylbE-ylbF-ybcF that is located downstream of the allDCE-operon. Reverse transcription PCR of total mRNA confirmed that the genes fdrA, ylbE, ylbF, and ybcF are co-transcribed. Deletion of ybcF caused only a slight increase in metabolic flow into the glyoxylate pathway, probably because CP was used to de novo synthesize pyrimidine and arginine. The activity of the catabolic CK was analyzed using purified YbcF protein. The Vmax is 1.82 U/mg YbcF for CP and 1.94 U/mg YbcF for ADP, and the KM value is 0.47 mM for CP and 0.43 mM for ADP. With these results, it was experimentally revealed that the ybcF gene of E. coli encodes catabolic CK, which completes anaerobic allantoin degradation through substrate-level phosphorylation. Therefore, we suggest renaming the ybcF gene as allK.
Collapse
Affiliation(s)
- Nam Yeun Kim
- Department of Life Science, Division of EcoScience, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Ok Bin Kim
- Department of Life Science, Division of EcoScience, Ewha Womans University, Seoul 03760, Republic of Korea
| |
Collapse
|
11
|
Abstract
Acetobacter species are a major component of the gut microbiome of the fruit fly Drosophila melanogaster, a widely used model organism. While a range of studies have illuminated impacts of Acetobacter on their hosts, less is known about how association with the host impacts bacteria. A previous study identified that a purine salvage locus was commonly found in Acetobacter associated with Drosophila. In this study, we sought to verify the functions of predicted purine salvage genes in Acetobacter fabarum DsW_054 and to test the hypothesis that these bacteria can utilize host metabolites as a sole source of nitrogen. Targeted gene deletion and complementation experiments confirmed that genes encoding xanthine dehydrogenase (xdhB), urate hydroxylase (urhA), and allantoinase (puuE) were required for growth on their respective substrates as the sole source of nitrogen. Utilization of urate by Acetobacter is significant because this substrate is the major nitrogenous waste product of Drosophila, and its accumulation in the excretory system is detrimental to both flies and humans. The potential significance of our findings for host purine homeostasis and health are discussed, as are the implications for interactions among microbiota members, which differ in their capacity to utilize host metabolites for nitrogen. IMPORTANCEAcetobacter are commonly found in the gut microbiota of fruit flies, including Drosophila melanogaster. We evaluated the function of purine salvage genes in Acetobacter fabarum to test the hypothesis that this bacterium can utilize host metabolites as a source of nitrogen. Our results identify functions for three genes required for growth on urate, a major host waste product. The utilization of this and other Drosophila metabolites by gut bacteria may play a role in their survival in the host environment. Future research into how microbial metabolism impacts host purine homeostasis may lead to therapies because urate accumulation in the excretory system is detrimental to flies and humans.
Collapse
|
12
|
Tutelyan AV, Shlykova DS, Voskanyan SL, Gaponov AM, Pisarev VM. Molecular Epidemiology of Hypervirulent K. pneumoniae and Problems of Health-Care Associated Infections. Bull Exp Biol Med 2022; 172:507-522. [PMID: 35352244 PMCID: PMC8964242 DOI: 10.1007/s10517-022-05424-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Indexed: 12/25/2022]
Abstract
The review describes virulence factors of hypervirulent K. pneumoniae (hvKp) including genes determining its virulence and discusses their role in the development of health-care associated infections. The contribution of individual virulence factors and their combination to the development of the hypervirulence and the prospects of using these factors as biomarkers and therapeutic targets are described. Virulence factors of hvKp and "classical" K. pneumoniae strains (cKp) with no hypervirulence genes were compared. The mechanisms of biofilm formation by hvKp and high incidence of its antibiotic resistance are of particular importance for in health care institutions. Therefore, the development of methods for hvKp identification allowing early prevention of severe hvKp infection and novel approaches to abrogate its spreading are new challenges for epidemiology, infection diseases, and critical care medicine. New technologies including bacteriological and molecular studies make it possible to develop innovative strategies to diagnose and treat infection caused by hvKp. These include monitoring of both genetic biomarkers of hvKp and resistance plasmid that carry of virulence genes and antibiotic resistance genes, creation of immunological agents for the prevention and therapy of hvKp (vaccines, monoclonal antibodies) as well as personalized hvKp-specific phage therapies and pharmaceuticals enhancing the effect of antibiotics. A variety of approaches can reliably prepare our medicine for a new challenge: spreading of life-threatening health-care associated infections caused by antibiotic-resistant hvKp strains.
Collapse
Affiliation(s)
- A V Tutelyan
- Central Research Institute of Epidemiology, Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, Moscow, Russia
| | - D S Shlykova
- Federal Research Clinical Center of Intensive Care Medicine and Rehabilitology, Moscow, Russia
| | - Sh L Voskanyan
- Central Research Institute of Epidemiology, Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, Moscow, Russia
| | - A M Gaponov
- Central Research Institute of Epidemiology, Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, Moscow, Russia
- Federal Research Clinical Center of Intensive Care Medicine and Rehabilitology, Moscow, Russia
| | - V M Pisarev
- Central Research Institute of Epidemiology, Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, Moscow, Russia.
- Federal Research Clinical Center of Intensive Care Medicine and Rehabilitology, Moscow, Russia.
| |
Collapse
|
13
|
uvrY deletion and acetate reduce gut colonization of Crohn's disease-associated adherent-invasive Escherichia coli by decreasing expression of type 1 fimbriae. Infect Immun 2022; 90:e0066221. [PMID: 34978926 DOI: 10.1128/iai.00662-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Adherent-invasive Escherichia coli (AIEC) is involved in onset and/or exacerbation of Crohn's disease. AIEC adapts to the gut environment by altering gene-expression programs, leading to successful gut-lumen colonization. However, the underlying mechanism of gut colonization is still far from clarified. Here, we show the role of UvrY, a response regulator of bacterial two-component signal transduction systems, in AIEC gut colonization. An AIEC mutant lacking the uvrY gene exhibited impairment of competitive colonization in the murine intestinal tract. UvrY contributes to functional expression of type 1 fimbriae by activating expression of small RNA CsrB, which confers adherence and invasion into epithelial cells on AIEC. In contrast, acetate suppresses the UvrY-dependent expression of type 1 fimbriae, resulting in less efficient cell invasion and attenuated gut colonization. Our findings might lead to therapeutic interventions for CD, in which inhibitions of UvrY activation and acetate supplementation reduce the colonization levels of AIEC by decreasing type-1 fimbriae expression.
Collapse
|
14
|
HU Q, ZHAO J, LUO R, YOU L, ZHAO X, SU C, ZHANG H. The influence of microbial bacterial proteins on metabolites in the chilled tan sheep meat. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.24822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
15
|
Abdelhamid Y, Wang M, Parkhill SL, Brear P, Chee X, Rahman T, Welch M. Structure, Function and Regulation of a Second Pyruvate Kinase Isozyme in Pseudomonas aeruginosa. Front Microbiol 2021; 12:790742. [PMID: 34867929 PMCID: PMC8637920 DOI: 10.3389/fmicb.2021.790742] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 10/26/2021] [Indexed: 11/21/2022] Open
Abstract
Pseudomonas aeruginosa (PA) depends on the Entner-Doudoroff pathway (EDP) for glycolysis. The main enzymatic regulator in the lower half of the EDP is pyruvate kinase. PA contains genes that encode two isoforms of pyruvate kinase, denoted PykAPA and PykFPA. In other well-characterized organisms containing two pyruvate kinase isoforms (such as Escherichia coli) each isozyme is differentially regulated. The structure, function and regulation of PykAPA has been previously characterized in detail, so in this work, we set out to assess the biochemical and structural properties of the PykFPA isozyme. We show that pykF PA expression is induced in the presence of the diureide, allantoin. In spite of their relatively low amino acid sequence identity, PykAPA and PykFPA display broadly comparable kinetic parameters, and are allosterically regulated by a very similar set of metabolites. However, the x-ray crystal structure of PykFPA revealed significant differences compared with PykAPA. Notably, although the main allosteric regulator binding-site of PykFPA was empty, the "ring loop" covering the site adopted a partially closed conformation. Site-directed mutation of the proline residues flanking the ring loop yielded apparent "locked on" and "locked off" allosteric activation phenotypes, depending on the residue mutated. Analysis of PykFPA inter-protomer interactions supports a model in which the conformational transition(s) accompanying allosteric activation involve re-orientation of the A and B domains of the enzyme and subsequent closure of the active site.
Collapse
Affiliation(s)
- Yassmin Abdelhamid
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Meng Wang
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | | | - Paul Brear
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Xavier Chee
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom
| | - Taufiq Rahman
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom
| | - Martin Welch
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
16
|
An Escherichia coli FdrA Variant Derived from Syntrophic Coculture with a Methanogen Increases Succinate Production Due to Changes in Allantoin Degradation. mSphere 2021; 6:e0065421. [PMID: 34494882 PMCID: PMC8550087 DOI: 10.1128/msphere.00654-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Wild-type Escherichia coli was adapted to syntrophic growth with Methanobacterium formicicum for glycerol fermentation over 44 weeks. Succinate production by E. coli started to increase in the early stages of syntrophic growth. Genetic analysis of the cultured E. coli population by pooled sequencing at eight time points suggests that (i) rapid evolution occurred through repeated emergence of mutators that introduced a large number of nucleotide variants and (ii) many mutators increased to high frequencies but remained polymorphic throughout the continuous cultivation. The evolved E. coli populations exhibited gains both in fitness and succinate production, but only for growth under glycerol fermentation with M. formicicum (the condition for this laboratory evolution) and not under other growth conditions. The mutant alleles of the 69 single nucleotide polymorphisms (SNPs) identified in the adapted E. coli populations were constructed individually in the ancestral wild-type E. coli. We analyzed the phenotypic changes caused by 84 variants, including 15 nonsense variants, and found that FdrAD296Y was the most significant variant leading to increased succinate production. Transcription of fdrA was induced under anaerobic allantoin degradation conditions, and FdrA was shown to play a crucial role in oxamate production. The FdrAD296Y variant increased glyoxylate conversion to malate by accelerating oxamate production, which promotes carbon flow through the C4 branch, leading to increased succinate production. IMPORTANCE Here, we demonstrate the ability of E. coli to perform glycerol fermentation in coculture with the methanogen M. formicicum to produce succinate. We found that the production of succinate by E. coli significantly increased during successive cocultivation. Genomic DNA sequencing, evaluation of relative fitness, and construction of SNPs were performed, from which FdrAD296Y was identified as the most significant variant to enable increased succinate production by E. coli. The function of FdrA is uncertain. In this study, experiments with gene expression assays and metabolic analysis showed for the first time that FdrA could be the “orphan enzyme” oxamate:carbamoyltransferase in anaerobic allantoin degradation. Furthermore, we demonstrate that the anaerobic allantoin degradation pathway is linked to succinate production via the glyoxylate pathway during glycerol fermentation.
Collapse
|
17
|
Xu S, Lyu L, Zhu H, Huang X, Xu W, Xu W, Feng Y, Fan Y. Serum Metabolome Mediates the Antiobesity Effect of Celastrol-Induced Gut Microbial Alterations. J Proteome Res 2021; 20:4840-4851. [PMID: 34530620 DOI: 10.1021/acs.jproteome.1c00513] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The antiobesity effect of celastrol has been reported in numerous studies, but the underlying mechanism remains unclear. It is widely accepted that gut dysbiosis is closely related to obesity. The potential effect of celastrol on microbiota is worth exploring. In this study, the celastrol-induced weight loss was validated in high-fat diet (HFD)-induced obese mice, with the detection of reported phenotypes including a reduction in food intake, augments in dyslipidemia and glucose metabolism, and adipose thermogenesis. The anti-inflammatory effect of celastrol was also proved based on the alterations in serum cytokines. Antibiotic interference showed that gut microbiota contributes to celastrol-induced weight loss. Several key bacteria were identified using shotgun metagenomic sequencing to display the alterations of the intestinal microbiome in obese mice treated with celastrol. Meanwhile, the fecal and serum metabolic profiles were generated by pseudotargeted metabolomics, and changes in some critical metabolites related to appetite and metabolism were detected. Importantly, we applied in silico bidirectional mediation analysis to identify the precise connections among the alterations in gut microbes, serum metabolome, and host phenotypes induced by celastrol treatment for the first time. Therefore, we concluded that the celastrol-induced microbial changes partially contribute to the antiobesity effect via the serum metabolome. The mass spectrometry data are deposited on MetaboLights (ID: MTBLS3278).
Collapse
Affiliation(s)
- Shaohua Xu
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Liwei Lyu
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Huaichang Zhu
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Xiaoqiang Huang
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Wei Xu
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Wen Xu
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Yaqian Feng
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, China
| | - Yong Fan
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| |
Collapse
|
18
|
Lin S, Zhang T, Zhu L, Pang K, Lu S, Liao X, Ying S, Zhu L, Xu X, Wu J, Wang X. Characteristic dysbiosis in gout and the impact of a uric acid-lowering treatment, febuxostat on the gut microbiota. J Genet Genomics 2021; 48:781-791. [PMID: 34509383 DOI: 10.1016/j.jgg.2021.06.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 06/22/2021] [Accepted: 06/24/2021] [Indexed: 12/12/2022]
Abstract
Gut dysbiosis is suggested to play a critical role in the pathogenesis of gout. The aim of our study was to identify the characteristic dysbiosis of the gut microbiota in gout patients and the impact of a commonly used uric acid-lowering treatment, febuxostat on gut microbiota in gout. 16S ribosomal RNA sequencing and metagenomic shotgun sequencing was performed on fecal DNA isolated from 38 untreated gout patients, 38 gout patients treated with febuxostat, and 26 healthy controls. A restriction of gut microbiota biodiversity was detected in the untreated gout patients, and the alteration was partly restored by febuxostat. Biochemical metabolic indexes involved in liver and kidney metabolism were significantly associated with the gut microbiota composition in gout patients. Functional analysis revealed that the gut microbiome of gout patients had an enriched function on carbohydrate metabolism but a lower potential for purine metabolism, which was comparatively enhanced in the febuxostat treated gout patients. A classification microbial model obtained a high mean area under the curve up to 0.973. Therefore, gut dysbiosis characterizings gout could potentially serve as a noninvasive diagnostic tool for gout and may be a promising target of future preventive interventions.
Collapse
Affiliation(s)
- Suxian Lin
- Rheumatology Department, Wenzhou People's Hospital, Wenzhou, Zhejiang 325000, China
| | - Tao Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Lingxiao Zhu
- Rheumatology Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Kun Pang
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Saisai Lu
- Rheumatology Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Xin Liao
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Senhong Ying
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Lixia Zhu
- Rheumatology Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Xin Xu
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Jinyu Wu
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China.
| | - Xiaobing Wang
- Rheumatology Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Department of Rheumatology and Immunology, Shanghai Changzheng Hospital, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China.
| |
Collapse
|
19
|
Zhang C, Chen Q, Fan F, Tang J, Zhan T, Wang H, Zhang X. Directed evolution of alditol oxidase for the production of optically pure D-glycerate from glycerol in the engineered Escherichia coli. J Ind Microbiol Biotechnol 2021; 48:6312499. [PMID: 34196357 PMCID: PMC8788829 DOI: 10.1093/jimb/kuab041] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 06/26/2021] [Indexed: 11/16/2022]
Abstract
D-glycerate is an attractive chemical for a wide variety of pharmaceutical, cosmetic, biodegradable polymers, and other applications. Now several studies have been reported about the synthesis of glycerate by different biotechnological and chemical routes from glycerol or other feedstock. Here, we present the construction of an Escherichia coli engineered strain to produce optically pure D-glycerate by oxidizing glycerol with an evolved variant of alditol oxidase (AldO) from Streptomyces coelicolor. This is achieved by starting from a previously reported variant mAldO and employing three rounds of directed evolution, as well as the combination of growth-coupled high throughput selection with colorimetric screening. The variant eAldO3-24 displays a higher substrate affinity toward glycerol with 5.23-fold than the wild-type AldO, and a 1.85-fold increase of catalytic efficiency (kcat/KM). Then we introduced an isopropyl-β-D-thiogalactopyranoside (IPTG)-inducible T7 expression system in E. coli to overexpress the variant eAldO3-24, and deleted glucosylglycerate phosphorylase encoding gene ycjM to block the consumption of D-glycerate. Finally, the resulting strain TZ-170 produced 30.1 g/l D-glycerate at 70 h with a yield of 0.376 mol/mol in 5-l fed-batch fermentation.
Collapse
Affiliation(s)
- Chao Zhang
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 Xiqidao, Tianjin Airport Economic Park, Tianjin 300308, China.,College of Chemistry and Life Science, Changchun University of Technology, Jilin, Changchun 130012, China
| | - Qian Chen
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 Xiqidao, Tianjin Airport Economic Park, Tianjin 300308, China
| | - Feiyu Fan
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 Xiqidao, Tianjin Airport Economic Park, Tianjin 300308, China
| | - Jinlei Tang
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 Xiqidao, Tianjin Airport Economic Park, Tianjin 300308, China
| | - Tao Zhan
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 Xiqidao, Tianjin Airport Economic Park, Tianjin 300308, China
| | - Honglei Wang
- College of Chemistry and Life Science, Changchun University of Technology, Jilin, Changchun 130012, China
| | - Xueli Zhang
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 Xiqidao, Tianjin Airport Economic Park, Tianjin 300308, China
| |
Collapse
|
20
|
Bar A, Argaman L, Altuvia Y, Margalit H. Prediction of Novel Bacterial Small RNAs From RIL-Seq RNA-RNA Interaction Data. Front Microbiol 2021; 12:635070. [PMID: 34093460 PMCID: PMC8175672 DOI: 10.3389/fmicb.2021.635070] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 04/06/2021] [Indexed: 12/27/2022] Open
Abstract
The genomic revolution and subsequent advances in large-scale genomic and transcriptomic technologies highlighted hidden genomic treasures. Among them stand out non-coding small RNAs (sRNAs), shown to play important roles in post-transcriptional regulation of gene expression in both pro- and eukaryotes. Bacterial sRNA-encoding genes were initially identified in intergenic regions, but recent evidence suggest that they can be encoded within other, well-defined, genomic elements. This notion was strongly supported by data generated by RIL-seq, a RNA-seq-based methodology we recently developed for deciphering chaperon-dependent sRNA-target networks in bacteria. Applying RIL-seq to Hfq-bound RNAs in Escherichia coli, we found that ∼64% of the detected RNA pairs involved known sRNAs, suggesting that yet unknown sRNAs may be included in the ∼36% remaining pairs. To determine the latter, we first tested and refined a set of quantitative features derived from RIL-seq data, which distinguish between Hfq-dependent sRNAs and “other RNAs”. We then incorporated these features in a machine learning-based algorithm that predicts novel sRNAs from RIL-seq data, and identified high-scoring candidates encoded in various genomic regions, mostly intergenic regions and 3′ untranslated regions, but also 5′ untranslated regions and coding sequences. Several candidates were further tested and verified by northern blot analysis as Hfq-dependent sRNAs. Our study reinforces the emerging concept that sRNAs are encoded within various genomic elements, and provides a computational framework for the detection of additional sRNAs in Hfq RIL-seq data of E. coli grown under different conditions and of other bacteria manifesting Hfq-mediated sRNA-target interactions.
Collapse
Affiliation(s)
- Amir Bar
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Liron Argaman
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yael Altuvia
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Hanah Margalit
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
21
|
Zhan T, Chen Q, Zhang C, Bi C, Zhang X. Constructing a Novel Biosynthetic Pathway for the Production of Glycolate from Glycerol in Escherichia coli. ACS Synth Biol 2020; 9:2600-2609. [PMID: 32794740 DOI: 10.1021/acssynbio.0c00404] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Glycolate is an important α-hydroxy acid with a wide range of industrial applications. The current industrial production of glycolate mainly depends on chemical synthesis, but biochemical production from renewable resources using engineered microorganisms is increasingly viewed as an attractive alternative. Crude glycerol is an abundant byproduct of biodiesel production and a widely investigated potential sustainable feedstock. Here, we constructed a novel biosynthetic pathway for the production of glycolate from glycerol in Escherichia coli. The pathway starts from the oxidation of glycerol to d-glycerate by alditol oxidase, followed by sequential enzymatic dehydrogenation and decarboxylation as well as reduction reactions. We screened and characterized the catalytic activity of candidate enzymes, and a variant of alditol oxidase from Streptomyces coelicolor A3(2), 2-hydroxyglutarate-pyruvate transhydrogenase from Saccharomyces cerevisiae, α-ketoisovalerate decarboxylase from Lactococcus lactis, and aldehyde dehydrogenase from Escherichia coli were selected and assembled to create an artificial operon for the biosynthetic production of glycolate from glycerol. We also characterized the native strong constitutive promoter Plpp from E. coli and compared it with the PT7 promoter, which was employed to express the artificial operon on the plasmid pSC105-ADKA. To redirect glycerol flux toward glycolate synthesis, we deleted key genes of the native glycerol assimilation pathways and other branches of native E. coli metabolism, and we introduced a second plasmid expressing Dld3 to reduce the accumulation of the intermediate d-glycerate. Finally, the engineered strain TZ-108 harboring pSC105-ADKA and pACYC184-Plpp-Dld3 produced 0.64 g/L glycolate in shake flasks, which was increased to 4.74 g/L in fed-batch fermentation. This study provides an alternative pathway for glycolate synthesis and demonstrates the potential for producing other commodity chemicals by redesigning glycerol metabolism.
Collapse
Affiliation(s)
- Tao Zhan
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Qian Chen
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Chao Zhang
- College of Chemistry and Life Sciences, Changchun University of Technology, Changchun, Jilin 130012, China
| | - Changhao Bi
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Xueli Zhang
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| |
Collapse
|
22
|
The Adaptive Response to Long-Term Nitrogen Starvation in Escherichia coli Requires the Breakdown of Allantoin. J Bacteriol 2020; 202:JB.00172-20. [PMID: 32571968 PMCID: PMC7417836 DOI: 10.1128/jb.00172-20] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 06/15/2020] [Indexed: 01/08/2023] Open
Abstract
Bacteria initially respond to nutrient starvation by eliciting large-scale transcriptional changes. The accompanying changes in gene expression and metabolism allow the bacterial cells to effectively adapt to the nutrient-starved state. How the transcriptome subsequently changes as nutrient starvation ensues is not well understood. We used nitrogen (N) starvation as a model nutrient starvation condition to study the transcriptional changes in Escherichia coli experiencing long-term N starvation. The results reveal that the transcriptome of N-starved E. coli undergoes changes that are required to maximize chances of viability and to effectively recover growth when N starvation conditions become alleviated. We further reveal that, over time, N-starved E. coli cells rely on the degradation of allantoin for optimal growth recovery when N becomes replenished. This study provides insights into the temporally coordinated adaptive responses that occur in E. coli experiencing sustained N starvation.IMPORTANCE Bacteria in their natural environments seldom encounter conditions that support continuous growth. Hence, many bacteria spend the majority of their time in states of little or no growth due to starvation of essential nutrients. To cope with prolonged periods of nutrient starvation, bacteria have evolved several strategies, primarily manifesting themselves through changes in how the information in their genes is accessed. How these coping strategies change over time under nutrient starvation is not well understood, and this knowledge is important not only to broaden our understanding of bacterial cell function but also to potentially find ways to manage harmful bacteria. This study provides insights into how nitrogen-starved Escherichia coli bacteria rely on different genes during long-term nitrogen starvation.
Collapse
|
23
|
Nguyen J, Schein J, Hunt K, Tippmann-Feightner J, Rapp M, Stoffer-Bittner A, Nalam V, Funk A, Schultes N, Mourad G. The Nicotiana sylvestris nucleobase cation symporter 1 retains a dicot solute specificity profile. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.plgene.2020.100226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
24
|
Botou M, Yalelis V, Lazou P, Zantza I, Papakostas K, Charalambous V, Mikros E, Flemetakis E, Frillingos S. Specificity profile of NAT/NCS2 purine transporters in
Sinorhizobium
(
Ensifer
)
meliloti. Mol Microbiol 2020; 114:151-171. [DOI: 10.1111/mmi.14503] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 03/16/2020] [Indexed: 02/06/2023]
Affiliation(s)
- Maria Botou
- Laboratory of Biological Chemistry Department of Medicine School of Health Sciences University of Ioannina Ioannina Greece
| | - Vassilis Yalelis
- Laboratory of Biological Chemistry Department of Medicine School of Health Sciences University of Ioannina Ioannina Greece
| | - Panayiota Lazou
- Laboratory of Biological Chemistry Department of Medicine School of Health Sciences University of Ioannina Ioannina Greece
| | - Iliana Zantza
- Division of Pharmaceutical Chemistry Department of Pharmacy School of Health Sciences National and Kapodistrian University of Athens Athens Greece
| | - Konstantinos Papakostas
- Laboratory of Biological Chemistry Department of Medicine School of Health Sciences University of Ioannina Ioannina Greece
| | - Vassiliki Charalambous
- Laboratory of Biological Chemistry Department of Medicine School of Health Sciences University of Ioannina Ioannina Greece
| | - Emmanuel Mikros
- Division of Pharmaceutical Chemistry Department of Pharmacy School of Health Sciences National and Kapodistrian University of Athens Athens Greece
| | - Emmanouil Flemetakis
- Laboratory of Molecular Biology Department of Biotechnology Agricultural University of Athens Athens Greece
| | - Stathis Frillingos
- Laboratory of Biological Chemistry Department of Medicine School of Health Sciences University of Ioannina Ioannina Greece
| |
Collapse
|
25
|
Bugenyi AW, Cho HS, Heo J. Association between oropharyngeal microbiome and weight gain in piglets during pre and post weaning life. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2020; 62:247-262. [PMID: 32292932 PMCID: PMC7142290 DOI: 10.5187/jast.2020.62.2.247] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 02/12/2020] [Accepted: 02/13/2020] [Indexed: 12/20/2022]
Abstract
Birth weight and subsequent weight gain is of critical importance in the survival and performance of piglets on a commercial swine farm setting. Oropharyngeal microbiome could influence immunity, and feeding behavior thus impacting health and weight gain. We used 16S rRNA gene sequencing to profile the composition and predicted metabolic functionality of the oropharyngeal microbiota in 8 piglets (4 with a birthweight ≤ 1.0 kg and 4 with a birthweight ≥ 1.7 kg) at 11, 26, and 63 days of age. We found 9 genera that were significantly associated with average daily gain (ADG) at 11 days (false discovery rate, FDR < 0.05) and 26 days of age (FDR < 0.1), respectively. The microbial functional profile revealed several pathways associated with ADG (FDR < 0.05). Among these, pathways related to degradation of catechols showed a positive association with ADG at 11, 26, and 63 days of age, implying a potential to breakdown the host-derived catecholamines. We also noted that pathways related to the biodegradation of nucleosides and nucleotides increased with ADG during the pre-weaning phase, while those involved in their biosynthesis decreased. Our findings provide insights into the oropharyngeal microbial memberships and metabolic pathways that are involved in a piglet's weight gain. Thus, providing a basis for the development of strategies aimed at improving weight gain in pigs.
Collapse
Affiliation(s)
- Andrew Wange Bugenyi
- Department of Agricultural Convergence Technology, Jeonbuk National University, Jeonju 54896, Korea
| | - Ho-Seong Cho
- College of Veterinary Medicine and Veterinary Diagnostic Center, Jeonbuk National University, Iksan 54596, Korea
| | - Jaeyoung Heo
- International Agricultural Development and Cooperation Center, Jeonbuk National University, Jeonju 54896, Korea
| |
Collapse
|
26
|
Jindal S, Yang L, Day PJ, Kell DB. Involvement of multiple influx and efflux transporters in the accumulation of cationic fluorescent dyes by Escherichia coli. BMC Microbiol 2019; 19:195. [PMID: 31438868 PMCID: PMC6704527 DOI: 10.1186/s12866-019-1561-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 07/31/2019] [Indexed: 12/11/2022] Open
Abstract
Background It is widely believed that most xenobiotics cross biomembranes by diffusing through the phospholipid bilayer, and that the use of protein transporters is an occasional adjunct. According to an alternative view, phospholipid bilayer transport is negligible, and several different transporters may be involved in the uptake of an individual molecular type. We recognise here that the availability of gene knockout collections allows one to assess the contributions of all potential transporters, and flow cytometry based on fluorescence provides a convenient high-throughput assay for xenobiotic uptake in individual cells. Results We used high-throughput flow cytometry to assess the ability of individual gene knockout strains of E coli to take up two membrane-permeable, cationic fluorescent dyes, namely the carbocyanine diS-C3(5) and the DNA dye SYBR Green. Individual strains showed a large range of distributions of uptake. The range of modal steady-state uptakes for the carbocyanine between the different strains was 36-fold. Knockouts of the ATP synthase α- and β-subunits greatly inhibited uptake, implying that most uptake was ATP-driven rather than being driven by a membrane potential. Dozens of transporters changed the steady-state uptake of the dye by more than 50% with respect to that of the wild type, in either direction (increased or decreased); knockouts of known influx and efflux transporters behaved as expected, giving credence to the general strategy. Many of the knockouts with the most reduced uptake were transporter genes of unknown function (‘y-genes’). Similarly, several overexpression variants in the ‘ASKA’ collection had the anticipated, opposite effects. Similar results were obtained with SYBR Green (the range being approximately 69-fold). Although it too contains a benzothiazole motif there was negligible correlation between its uptake and that of the carbocyanine when compared across the various strains (although the membrane potential is presumably the same in each case). Conclusions Overall, we conclude that the uptake of these dyes may be catalysed by a great many transporters of putatively broad and presently unknown specificity, and that the very large range between the ‘lowest’ and the ‘highest’ levels of uptake, even in knockouts of just single genes, implies strongly that phospholipid bilayer transport is indeed negligible. This work also casts serious doubt upon the use of such dyes as quantitative stains for representing either bioenergetic parameters or the amount of cellular DNA in unfixed cells (in vivo). By contrast, it opens up their potential use as transporter assay substrates in high-throughput screening. Electronic supplementary material The online version of this article (10.1186/s12866-019-1561-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Srijan Jindal
- Department of Chemistry, The University of Manchester, 131 Princess St, Manchester, M1 7DN, UK.,Manchester Institute of Biotechnology, The University of Manchester, 131 Princess St, Manchester, M1 7DN, UK.,Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK
| | - Lei Yang
- Novo Nordisk Foundation Centre for Biosustainability, Technical University of Denmark, Building 220, Kemitorvet, 2800 Kgs, Lyngby, Denmark
| | - Philip J Day
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess St, Manchester, M1 7DN, UK.,Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK
| | - Douglas B Kell
- Department of Chemistry, The University of Manchester, 131 Princess St, Manchester, M1 7DN, UK. .,Manchester Institute of Biotechnology, The University of Manchester, 131 Princess St, Manchester, M1 7DN, UK. .,Novo Nordisk Foundation Centre for Biosustainability, Technical University of Denmark, Building 220, Kemitorvet, 2800 Kgs, Lyngby, Denmark. .,Department of Biochemistry, Institute of Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Crown St, Liverpool, L69 7ZB, UK.
| |
Collapse
|
27
|
Li W, Jayakody LN, Franden MA, Wehrmann M, Daun T, Hauer B, Blank LM, Beckham GT, Klebensberger J, Wierckx N. Laboratory evolution reveals the metabolic and regulatory basis of ethylene glycol metabolism by
Pseudomonas putida
KT2440. Environ Microbiol 2019; 21:3669-3682. [DOI: 10.1111/1462-2920.14703] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 05/29/2019] [Accepted: 06/03/2019] [Indexed: 12/30/2022]
Affiliation(s)
- Wing‐Jin Li
- Institute of Applied Microbiology‐iAMB, Aachen Biology and Biotechnology‐ABBt RWTH Aachen University Worringerweg 1, 52074 Aachen Germany
| | - Lahiru N. Jayakody
- National Bioenergy Center National Renewable Energy Laboratory Golden CO 80401 USA
| | - Mary Ann Franden
- National Bioenergy Center National Renewable Energy Laboratory Golden CO 80401 USA
| | - Matthias Wehrmann
- University of Stuttgart Institute of Biochemistry and Technical Biochemistry Allmandring 31, 70569 Stuttgart Germany
| | - Tristan Daun
- Institute of Applied Microbiology‐iAMB, Aachen Biology and Biotechnology‐ABBt RWTH Aachen University Worringerweg 1, 52074 Aachen Germany
| | - Bernhard Hauer
- University of Stuttgart Institute of Biochemistry and Technical Biochemistry Allmandring 31, 70569 Stuttgart Germany
| | - Lars M. Blank
- Institute of Applied Microbiology‐iAMB, Aachen Biology and Biotechnology‐ABBt RWTH Aachen University Worringerweg 1, 52074 Aachen Germany
| | - Gregg T. Beckham
- National Bioenergy Center National Renewable Energy Laboratory Golden CO 80401 USA
| | - Janosch Klebensberger
- University of Stuttgart Institute of Biochemistry and Technical Biochemistry Allmandring 31, 70569 Stuttgart Germany
| | - Nick Wierckx
- Institute of Applied Microbiology‐iAMB, Aachen Biology and Biotechnology‐ABBt RWTH Aachen University Worringerweg 1, 52074 Aachen Germany
- Institute of Bio‐ and Geosciences IBG‐1: Biotechnology Forschungszentrum Jülich, 52425 Jülich Germany
| |
Collapse
|
28
|
Salvador M, Abdulmutalib U, Gonzalez J, Kim J, Smith AA, Faulon JL, Wei R, Zimmermann W, Jimenez JI. Microbial Genes for a Circular and Sustainable Bio-PET Economy. Genes (Basel) 2019; 10:E373. [PMID: 31100963 PMCID: PMC6562992 DOI: 10.3390/genes10050373] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 05/10/2019] [Accepted: 05/13/2019] [Indexed: 02/03/2023] Open
Abstract
Plastics have become an important environmental concern due to their durability and resistance to degradation. Out of all plastic materials, polyesters such as polyethylene terephthalate (PET) are amenable to biological degradation due to the action of microbial polyester hydrolases. The hydrolysis products obtained from PET can thereby be used for the synthesis of novel PET as well as become a potential carbon source for microorganisms. In addition, microorganisms and biomass can be used for the synthesis of the constituent monomers of PET from renewable sources. The combination of both biodegradation and biosynthesis would enable a completely circular bio-PET economy beyond the conventional recycling processes. Circular strategies like this could contribute to significantly decreasing the environmental impact of our dependence on this polymer. Here we review the efforts made towards turning PET into a viable feedstock for microbial transformations. We highlight current bottlenecks in degradation of the polymer and metabolism of the monomers, and we showcase fully biological or semisynthetic processes leading to the synthesis of PET from sustainable substrates.
Collapse
Affiliation(s)
- Manuel Salvador
- Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK.
| | - Umar Abdulmutalib
- Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK.
| | - Jaime Gonzalez
- Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK.
| | - Juhyun Kim
- Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK.
| | - Alex A Smith
- Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK.
| | - Jean-Loup Faulon
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France.
- SYNBIOCHEM Centre, Manchester Institute of Biotechnology, University of Manchester, Manchester M1 7DN, UK.
- CNRS-UMR8030/Laboratoire iSSB, Université Paris-Saclay, 91000 Évry, France.
| | - Ren Wei
- Department of Microbiology and Bioprocess Technology, Institute of Biochemistry, Leipzig University, 04103 Leipzig, Germany.
| | - Wolfgang Zimmermann
- Department of Microbiology and Bioprocess Technology, Institute of Biochemistry, Leipzig University, 04103 Leipzig, Germany.
| | - Jose I Jimenez
- Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK.
| |
Collapse
|
29
|
Identification of a Formate-Dependent Uric Acid Degradation Pathway in Escherichia coli. J Bacteriol 2019; 201:JB.00573-18. [PMID: 30885932 DOI: 10.1128/jb.00573-18] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 02/28/2019] [Indexed: 01/31/2023] Open
Abstract
Purine is a nitrogen-containing compound that is abundant in nature. In organisms that utilize purine as a nitrogen source, purine is converted to uric acid, which is then converted to allantoin. Allantoin is then converted to ammonia. In Escherichia coli, neither urate-degrading activity nor a gene encoding an enzyme homologous to the known urate-degrading enzymes had previously been found. Here, we demonstrate urate-degrading activity in E. coli We first identified aegA as an E. coli gene involved in oxidative stress tolerance. An examination of gene expression revealed that both aegA and its paralog ygfT are expressed under both microaerobic and anaerobic conditions. The ygfT gene is localized within a chromosomal gene cluster presumably involved in purine catabolism. Accordingly, the expression of ygfT increased in the presence of exogenous uric acid, suggesting that ygfT is involved in urate degradation. Examination of the change of uric acid levels in the growth medium with time revealed urate-degrading activity under microaerobic and anaerobic conditions in the wild-type strain but not in the aegA ygfT double-deletion mutant. Furthermore, AegA- and YgfT-dependent urate-degrading activity was detected only in the presence of formate and formate dehydrogenase H. Collectively, these observations indicate the presence of urate-degrading activity in E. coli that is operational under microaerobic and anaerobic conditions. The activity requires formate, formate dehydrogenase H, and either aegA or ygfT We also identified other putative genes which are involved not only in formate-dependent but also in formate-independent urate degradation and may function in the regulation or cofactor synthesis in purine catabolism.IMPORTANCE The metabolic pathway of uric acid degradation to date has been elucidated only in aerobic environments and is not understood in anaerobic and microaerobic environments. In the current study, we showed that Escherichia coli, a facultative anaerobic organism, uses uric acid as a sole source of nitrogen under anaerobic and microaerobic conditions. We also showed that formate, formate dehydrogenase H, and either AegA or YgfT are involved in uric acid degradation. We propose that formate may act as an electron donor for a uric acid-degrading enzyme in this bacterium.
Collapse
|
30
|
Fahad S, Khan FA, Pandupuspitasari N, Hussain S, Khan IA, Saeed M, Saud S, Hassan S, Adnan M, Arif M, Alam M, Ullah H, Hakeem KR, Alharby H, Riaz M, Sameeullah M, Hammad HM, Nasim W, Ahmad S, Afzal M, Alghamdi SS, Bamagoos AA, Abd Allah EF, Huang J. Suppressing photorespiration for the improvement in photosynthesis and crop yields: A review on the role of S-allantoin as a nitrogen source. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 237:644-651. [PMID: 30870683 DOI: 10.1016/j.jenvman.2019.02.082] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 02/12/2019] [Accepted: 02/17/2019] [Indexed: 06/09/2023]
Abstract
Environmental variations resulting in biotic and abiotic stresses demand adaptive changes in the photosynthetic machinery. To cope with these challenges, plant scientists are constantly striving to enhance photosynthetic activity. The photorespiration pathway, which fixes O2 and releases CO2 in C3 plants, competes with photosynthesis. One method to increase yield would be to enhance photosynthesis by engineering the photorespiratory pathway. To date, three engineered photorespiratory pathways have been produced, of which two have been proven experimentally in the model plant, Arabidopsis thaliana. These approaches might be helpful in enhancing crop resilience to future environmental challenges. In partially photorespiratory suppressed plants, it is hypothesized that a gene cluster may have formed between bacterial glycolate dehydrogenase (GDH), glyoxylate carboligase (GCL), and tartronic semi aldehyde (TSR) genes with Arabidopsis allantoin degradation genes like Arabidopsis allantoinase (AtALN) to utilize S-allantoin as a source of nitrogen. Observations of the use of allantoin as an exclusive source of nitrogen or energy by Arabidopsis and Escherichia coli led us to propose a genetic switch control model between nitrogen assimilation and energy producing pathways in partially photorespiratory suppressed plants.
Collapse
Affiliation(s)
- Shah Fahad
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; Department of Agriculture, The University of Swabi, Pakistan.
| | - Faheem Ahmed Khan
- Molecular Biotechnology Laboratory for Triticeae Crops, Huazhong Agricultural University, Wuhan, China; Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Huazhong Agricultural University, Wuhan, 430070, China
| | | | - Saddam Hussain
- Department of Agronomy, University of Agriculture, Faisalabad, Pakistan
| | - Imtiaz Ali Khan
- Department of Agriculture, The University of Swabi, Pakistan
| | - Muhammad Saeed
- Department of Agriculture, The University of Swabi, Pakistan
| | - Shah Saud
- Department of Horticultural, Northeast Agricultural University, Harbin, 150030, China
| | - Shah Hassan
- Agriculture Extension Department, The University of Agriculture, Peshawar, 25000, Pakistan
| | - Muhammad Adnan
- Department of Agriculture, The University of Swabi, Pakistan
| | - Muhammad Arif
- Department of Agronomy, Faculty of Crop Production Sciences, The University of Agriculture, Peshawar, 25000, Pakistan
| | - Mukhtar Alam
- Department of Agriculture, The University of Swabi, Pakistan
| | - Hidayat Ullah
- Department of Agriculture, The University of Swabi, Pakistan
| | - Khalid Rehman Hakeem
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
| | - Hesham Alharby
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
| | - Muhammad Riaz
- Department of Environmental Sciences and Engineering, Government College University Faisalabad, Allama Iqbal Road, Faisalabad, Pakistan
| | - Muhammad Sameeullah
- Department of Horticulture, Faculty of Agricultural and Natural Sciences, Abant Izzet Baysal University, Bolu, Turkey
| | - Hafiz Mohkum Hammad
- Department of Environmental Sciences, COMSATS University Islamabad, 61100, Vehari Campus, Pakistan
| | - Wajid Nasim
- Department of Environmental Sciences, COMSATS University Islamabad, 61100, Vehari Campus, Pakistan
| | - Shakeel Ahmad
- Bahauddin Zakariya University Multan, 60800, Pakistan
| | - Muhammad Afzal
- Plant Production Department, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Salem Safer Alghamdi
- Plant Production Department, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Atif A Bamagoos
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
| | - Elsayed Fathi Abd Allah
- Department of Crop Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al-Khoud-123, Oman
| | - Jianliang Huang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; Hubei Collaborative Innovation Center for Grain Industry, Yangtze University, Hubei, China.
| |
Collapse
|
31
|
Paight C, Slamovits CH, Saffo MB, Lane CE. Nephromyces Encodes a Urate Metabolism Pathway and Predicted Peroxisomes, Demonstrating That These Are Not Ancient Losses of Apicomplexans. Genome Biol Evol 2019; 11:41-53. [PMID: 30500900 PMCID: PMC6320678 DOI: 10.1093/gbe/evy251] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/28/2018] [Indexed: 12/21/2022] Open
Abstract
The phylum Apicomplexa is a quintessentially parasitic lineage, whose members infect a broad range of animals. One exception to this may be the apicomplexan genus Nephromyces, which has been described as having a mutualistic relationship with its host. Here we analyze transcriptome data from Nephromyces and its parasitic sister taxon, Cardiosporidium, revealing an ancestral purine degradation pathway thought to have been lost early in apicomplexan evolution. The predicted localization of many of the purine degradation enzymes to peroxisomes, and the in silico identification of a full set of peroxisome proteins, indicates that loss of both features in other apicomplexans occurred multiple times. The degradation of purines is thought to play a key role in the unusual relationship between Nephromyces and its host. Transcriptome data confirm previous biochemical results of a functional pathway for the utilization of uric acid as a primary nitrogen source for this unusual apicomplexan.
Collapse
Affiliation(s)
| | - Claudio H Slamovits
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Mary Beth Saffo
- Department of Biological Sciences, University of Rhode Island
- Smithsonian National Museum of Natural History, Washington, District of Columbia
| | | |
Collapse
|
32
|
Martínez-Romero E, Rodríguez-Medina N, Beltrán-Rojel M, Toribio-Jiménez J, Garza-Ramos U. Klebsiella variicola and Klebsiella quasipneumoniae with capacity to adapt to clinical and plant settings. SALUD PUBLICA DE MEXICO 2018; 60:29-40. [PMID: 29689654 DOI: 10.21149/8156] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 02/24/2017] [Indexed: 11/06/2022] Open
Abstract
OBJECTIVE To compare the genetic determinants involved in plant colonization or virulence in the reported genomes of K. variicola, K. quasipneumoniae and K. pneumoniae. MATERIALS AND METHODS In silico comparisons and Jaccard analysis of genomic data were used. Fimbrial genes were detected by PCR. Biological assays were performed with plant and clinical isolates. RESULTS Plant colonization genes such as cellulases, catalases and hemagglutinins were mainly present in K. variicola genomes. Chromosomal β-lactamases were characteristic of this species and had been previously misclassified. K. variicola and K. pneumoniae isolates produced plant hormones. CONCLUSIONS A mosaic distribution of different virulence- and plant-associated genes was found in K. variicola and in K. quasipneumoniae genomes. Some plant colonizing genes were found mainly in K. variicola genomes. The term plantanosis is proposed for plant-borne human infections.
Collapse
Affiliation(s)
| | - Nadia Rodríguez-Medina
- Laboratorio de Resistencia Bacteriana, Centro de Investigación sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública. Cuernavaca, Morelos, México
| | - Marilú Beltrán-Rojel
- Laboratorio de Resistencia Bacteriana, Centro de Investigación sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública. Cuernavaca, Morelos, México
| | - Jeiry Toribio-Jiménez
- Laboratorio de Biotecnología y Genética Microbiana, Unidad Académica de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero. Chilpancingo, Guerrero, México
| | - Ulises Garza-Ramos
- Laboratorio de Resistencia Bacteriana, Centro de Investigación sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública. Cuernavaca, Morelos, México
| |
Collapse
|
33
|
Stoffer-Bittner AJ, Alexander CR, Dingman DW, Mourad GS, Schultes NP. Functional characterization of the uracil transporter from honeybee pathogen Paenibacillus larvae. Microb Pathog 2018; 124:305-310. [DOI: 10.1016/j.micpath.2018.08.059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 08/25/2018] [Indexed: 11/30/2022]
|
34
|
Zhao H, Zhou F, Xing Q, Cao Z, Liu J, Zhu G. The soluble transhydrogenase UdhA affecting the glutamate-dependent acid resistance system of Escherichia coli under acetate stress. Biol Open 2018; 7:7/9/bio031856. [PMID: 30201831 PMCID: PMC6176936 DOI: 10.1242/bio.031856] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The soluble transhydrogenase (UdhA) is one of two transhydrogenases that play a role in maintaining the balance between NAD(H) pools and NADP(H) pools in Escherichia coli. Although UdhA has been extensively used in metabolic engineering and biocatalysis for cofactor regeneration, its role in acid resistance has not been reported. Here we used DNA microarray to explore the impact of UdhA on transcript levels. We demonstrated that during growth on acetate, the expression of genes involved in the respiratory chain and Gad acid resistance system was inhibited in the udhA-knockout strain. The deletion of udhA significantly repressed the expression of six genes (gadA, gadB, gadC, gadE, hdeA and hdeB) which are involved in Gad acid resistance and resulted in low survival of the bacterium at a low pH of 4.9. Moreover, UdhA was essential for NADH production which is important for the adaptive growth of E. coli on acetate, while NADH concentration in the udhA-knockout strain was quite low and supplemental NADH significantly increased the expression of acid resistance genes and survival of the udhA-knockout strain. These results demonstrated that UdhA is an important source of NADH of E. coli growth on acetate and affects Gad acid resistance system under acetate stress. Summary: UdhA function stated in this study helps us to understand the physiological roles of UdhA affecting NADH production and Gad acid resistance system in E.coli in acetate environment.
Collapse
Affiliation(s)
- Hanjun Zhao
- The Research Center of Life Omics and Health, College of Life Sciences, Anhui Normal University, No.1 Beijing East Road, Wuhu 241000, Anhui, China
| | - Feng Zhou
- The Research Center of Life Omics and Health, College of Life Sciences, Anhui Normal University, No.1 Beijing East Road, Wuhu 241000, Anhui, China
| | - Quan Xing
- The Research Center of Life Omics and Health, College of Life Sciences, Anhui Normal University, No.1 Beijing East Road, Wuhu 241000, Anhui, China
| | - Zhengyu Cao
- The Research Center of Life Omics and Health, College of Life Sciences, Anhui Normal University, No.1 Beijing East Road, Wuhu 241000, Anhui, China
| | - Jie Liu
- The Research Center of Life Omics and Health, College of Life Sciences, Anhui Normal University, No.1 Beijing East Road, Wuhu 241000, Anhui, China
| | - Guoping Zhu
- The Research Center of Life Omics and Health, College of Life Sciences, Anhui Normal University, No.1 Beijing East Road, Wuhu 241000, Anhui, China
| |
Collapse
|
35
|
McCloskey D, Xu S, Sandberg TE, Brunk E, Hefner Y, Szubin R, Feist AM, Palsson BO. Growth Adaptation of gnd and sdhCB Escherichia coli Deletion Strains Diverges From a Similar Initial Perturbation of the Transcriptome. Front Microbiol 2018; 9:1793. [PMID: 30131786 PMCID: PMC6090065 DOI: 10.3389/fmicb.2018.01793] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 07/17/2018] [Indexed: 11/13/2022] Open
Abstract
Adaptive laboratory evolution (ALE) has emerged as a new approach with which to pursue fundamental biological inquiries and, in particular, new insights into the systemic function of a gene product. Two E. coli knockout strains were constructed: one that blocked the Pentose Phosphate Pathway (gnd KO) and one that decoupled the TCA cycle from electron transport (sdhCDAB KO). Despite major perturbations in central metabolism, minimal growth rate changes were found in the two knockout strains. More surprisingly, many similarities were found in their initial transcriptomic states that could be traced to similarly perturbed metabolites despite the differences in the network location of the gene perturbations and concomitant re-routing of pathway fluxes around these perturbations. However, following ALE, distinct metabolomic and transcriptomic states were realized. These included divergent flux and gene expression profiles in the gnd and sdhCDAB KOs to overcome imbalances in NADPH production and nitrogen/sulfur assimilation, respectively, that were not obvious limitations of growth in the unevolved knockouts. Therefore, this work demonstrates that ALE provides a productive approach to reveal novel insights of gene function at a systems level that cannot be found by observing the fresh knockout alone.
Collapse
Affiliation(s)
- Douglas McCloskey
- Department of Bioengineering, University of California, San Diego, San Diego, CA, United States.,Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Sibei Xu
- Department of Bioengineering, University of California, San Diego, San Diego, CA, United States
| | - Troy E Sandberg
- Department of Bioengineering, University of California, San Diego, San Diego, CA, United States
| | - Elizabeth Brunk
- Department of Bioengineering, University of California, San Diego, San Diego, CA, United States
| | - Ying Hefner
- Department of Bioengineering, University of California, San Diego, San Diego, CA, United States
| | - Richard Szubin
- Department of Bioengineering, University of California, San Diego, San Diego, CA, United States
| | - Adam M Feist
- Department of Bioengineering, University of California, San Diego, San Diego, CA, United States.,Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Bernhard O Palsson
- Department of Bioengineering, University of California, San Diego, San Diego, CA, United States.,Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| |
Collapse
|
36
|
Branchu P, Bawn M, Kingsley RA. Genome Variation and Molecular Epidemiology of Salmonella enterica Serovar Typhimurium Pathovariants. Infect Immun 2018; 86:e00079-18. [PMID: 29784861 PMCID: PMC6056856 DOI: 10.1128/iai.00079-18] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Salmonella enterica serovar Typhimurium is one of approximately 2,500 distinct serovars of the genus Salmonella but is exceptional in its wide distribution in the environment, livestock, and wild animals. S Typhimurium causes a large proportion of nontyphoidal Salmonella (NTS) infections, accounting for a quarter of infections, second only to S. enterica serovar Enteritidis in incidence. S Typhimurium was once considered the archetypal broad-host-range Salmonella serovar due to its wide distribution in livestock and wild animals, and much of what we know of the interaction of Salmonella with the host comes from research using a small number of laboratory strains of the serovar (LT2, SL1344, and ATCC 14028). But it has become clear that these strains do not reflect the genotypic or phenotypic diversity of S Typhimurium. Here, we review the epidemiological record of S Typhimurium and studies of the host-pathogen interactions of diverse strains of S Typhimurium. We present the concept of distinct pathovariants of S Typhimurium that exhibit diversity of host range, distribution in the environment, pathogenicity, and risk to food safety. We review recent evidence from whole-genome sequencing that has revealed the extent of genomic diversity of S Typhimurium pathovariants, the genomic basis of differences in the level of risk to human and animal health, and the molecular epidemiology of prominent strains. An improved understanding of the impact of genome variation of bacterial pathogens on pathogen-host and pathogen-environment interactions has the potential to improve quantitative risk assessment and reveal how new pathogens evolve.
Collapse
Affiliation(s)
- Priscilla Branchu
- Quadram Institute Bioscience, Norwich Research Park, Colney, Norwich, United Kingdom
| | - Matt Bawn
- Quadram Institute Bioscience, Norwich Research Park, Colney, Norwich, United Kingdom
- Earlham Institute, Norwich Research Park, Colney, Norwich, United Kingdom
| | - Robert A Kingsley
- Quadram Institute Bioscience, Norwich Research Park, Colney, Norwich, United Kingdom
| |
Collapse
|
37
|
Stoffer‐Bittner AJ, Alexander CR, Dingman DW, Mourad GS, Schultes NP. The solute transport and binding profile of a novel nucleobase cation symporter 2 from the honeybee pathogen Paenibacillus larvae. FEBS Open Bio 2018; 8:1322-1331. [PMID: 30087835 PMCID: PMC6070649 DOI: 10.1002/2211-5463.12488] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 06/22/2018] [Accepted: 06/24/2018] [Indexed: 11/29/2022] Open
Abstract
Here, we report that a novel nucleobase cation symporter 2 encoded in the genome of the honeybee bacterial pathogen Paenibacillus larvae reveals high levels of amino acid sequence similarity to the Escherichia coli and Bacillus subtilis uric acid and xanthine transporters. This transporter is named P. larvae uric acid permease-like protein (PlUacP). Even though PlUacP displays overall amino acid sequence similarities, has common secondary structures, and shares functional motifs and functionally important amino acids with E. coli xanthine and uric acid transporters, these commonalities are insufficient to assign transport function to PlUacP. The solute transport and binding profile of PlUacP was determined by radiolabeled uptake experiments via heterologous expression in nucleobase transporter-deficient Saccharomyces cerevisiae strains. PlUacP transports the purines adenine and guanine and the pyrimidine uracil. Hypoxanthine, xanthine, and cytosine are not transported by PlUacP, but, along with uric acid, bind in a competitive manner. PlUacP has strong affinity for adenine Km 7.04 ± 0.18 μm, and as with other bacterial and plant NCS2 proteins, PlUacP function is inhibited by the proton disruptor carbonyl cyanide m-chlorophenylhydrazone. The solute transport and binding profile identifies PlUacP as a novel nucleobase transporter.
Collapse
Affiliation(s)
| | | | - Douglas W. Dingman
- Department of EntomologyThe Connecticut Agricultural Experiment StationNew HavenCTUSA
| | - George S. Mourad
- Department of BiologyIndiana University‐Purdue University Fort WayneINUSA
| | - Neil P. Schultes
- Department of Plant Pathology & EcologyThe Connecticut Agricultural Experiment StationNew HavenCTUSA
| |
Collapse
|
38
|
Shi D, Caldovic L, Tuchman M. Sources and Fates of Carbamyl Phosphate: A Labile Energy-Rich Molecule with Multiple Facets. BIOLOGY 2018; 7:biology7020034. [PMID: 29895729 PMCID: PMC6022934 DOI: 10.3390/biology7020034] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 05/25/2018] [Accepted: 06/07/2018] [Indexed: 11/16/2022]
Abstract
Carbamyl phosphate (CP) is well-known as an essential intermediate of pyrimidine and arginine/urea biosynthesis. Chemically, CP can be easily synthesized from dihydrogen phosphate and cyanate. Enzymatically, CP can be synthesized using three different classes of enzymes: (1) ATP-grasp fold protein based carbamyl phosphate synthetase (CPS); (2) Amino-acid kinase fold carbamate kinase (CK)-like CPS (anabolic CK or aCK); and (3) Catabolic transcarbamylase. The first class of CPS can be further divided into three different types of CPS as CPS I, CPS II, and CPS III depending on the usage of ammonium or glutamine as its nitrogen source, and whether N-acetyl-glutamate is its essential co-factor. CP can donate its carbamyl group to the amino nitrogen of many important molecules including the most well-known ornithine and aspartate in the arginine/urea and pyrimidine biosynthetic pathways. CP can also donate its carbamyl group to the hydroxyl oxygen of a variety of molecules, particularly in many antibiotic biosynthetic pathways. Transfer of the carbamyl group to the nitrogen group is catalyzed by the anabolic transcarbamylase using a direct attack mechanism, while transfer of the carbamyl group to the oxygen group is catalyzed by a different class of enzymes, CmcH/NodU CTase, using a different mechanism involving a three-step reaction, decomposition of CP to carbamate and phosphate, transfer of the carbamyl group from carbamate to ATP to form carbamyladenylate and pyrophosphate, and transfer of the carbamyl group from carbamyladenylate to the oxygen group of the substrate. CP is also involved in transferring its phosphate group to ADP to generate ATP in the fermentation of many microorganisms. The reaction is catalyzed by carbamate kinase, which may be termed as catabolic CK (cCK) in order to distinguish it from CP generating CK. CP is a thermally labile molecule, easily decomposed into phosphate and cyanate, or phosphate and carbamate depending on the pH of the solution, or the presence of enzyme. Biological systems have developed several mechanisms including channeling between enzymes, increased affinity of CP to enzymes, and keeping CP in a specific conformation to protect CP from decomposition. CP is highly important for our health as both a lack of, or decreased, CP production and CP accumulation results in many disease conditions.
Collapse
Affiliation(s)
- Dashuang Shi
- Center for Genetic Medicine Research, Children's National Medical Center, Washington, DC 20010, USA.
- Department of Genomics and Precision Medicine, The George Washington University, Washington, DC 20010, USA.
| | - Ljubica Caldovic
- Center for Genetic Medicine Research, Children's National Medical Center, Washington, DC 20010, USA.
- Department of Genomics and Precision Medicine, The George Washington University, Washington, DC 20010, USA.
| | - Mendel Tuchman
- Center for Genetic Medicine Research, Children's National Medical Center, Washington, DC 20010, USA.
- Department of Genomics and Precision Medicine, The George Washington University, Washington, DC 20010, USA.
| |
Collapse
|
39
|
Botou M, Lazou P, Papakostas K, Lambrinidis G, Evangelidis T, Mikros E, Frillingos S. Insight on specificity of uracil permeases of the NAT/NCS2 family from analysis of the transporter encoded in the pyrimidine utilization operon ofEscherichia coli. Mol Microbiol 2018; 108:204-219. [DOI: 10.1111/mmi.13931] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/12/2018] [Indexed: 02/06/2023]
Affiliation(s)
- Maria Botou
- Laboratory of Biological Chemistry Department of Medicine School of Health Sciences; University of Ioannina; Ioannina Greece
| | - Panayiota Lazou
- Laboratory of Biological Chemistry Department of Medicine School of Health Sciences; University of Ioannina; Ioannina Greece
| | - Konstantinos Papakostas
- Laboratory of Biological Chemistry Department of Medicine School of Health Sciences; University of Ioannina; Ioannina Greece
| | - George Lambrinidis
- Division of Pharmaceutical Chemistry Department of Pharmacy School of Health Sciences; National and Kapodistrian University of Athens; Athens Greece
| | - Thomas Evangelidis
- Division of Pharmaceutical Chemistry Department of Pharmacy School of Health Sciences; National and Kapodistrian University of Athens; Athens Greece
| | - Emmanuel Mikros
- Division of Pharmaceutical Chemistry Department of Pharmacy School of Health Sciences; National and Kapodistrian University of Athens; Athens Greece
| | - Stathis Frillingos
- Laboratory of Biological Chemistry Department of Medicine School of Health Sciences; University of Ioannina; Ioannina Greece
| |
Collapse
|
40
|
Garza-Ramos U, Barrios-Camacho H, Moreno-Domínguez S, Toribio-Jiménez J, Jardón-Pineda D, Cuevas-Peña J, Sánchez-Pérez A, Duran-Bedolla J, Olguín-Rodriguez J, Román-Román A. Phenotypic and molecular characterization of Klebsiella spp. isolates causing community-acquired infections. New Microbes New Infect 2018; 23:17-27. [PMID: 29692906 PMCID: PMC5913063 DOI: 10.1016/j.nmni.2018.02.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 02/03/2018] [Accepted: 02/09/2018] [Indexed: 12/19/2022] Open
Abstract
Klebsiella spp. isolates from community-acquired infections were characterized. A total of 39 Klebsiella spp. isolates were obtained from outpatients at four rural hospitals in Mexico (2013–2014). The biochemical tests identified all as being K. pneumoniae. The molecular multiplex-PCR test identified 36 (92.4%) K. pneumoniae isolates and one (2.5%) K. variicola isolate, and phylogenetic analysis of the rpoB gene identified two isolates (5.1%) belonging to K. quasipneumoniae subsp. quasipneumoniae and K. quasivariicola. The last one was confirmed by phylogenetic analysis of six-loci concatenated genes. Mostly the isolates were multidrug resistant; however, a minority were extended-spectrum β-lactamase producing (10.2%). The extended-spectrum β-lactamase CTX-M-15 gene was identified in these isolates. Analysis of biofilm production and the hypermucoviscosity phenotype showed a total of 35 (92.3%) and seven (17.9%) of the isolates were positive for these phenotypes respectively. The K2 (4/39, 10.2%), K5 (2/39, 5.1%) and K54 (1/39, 2.5%) serotypes were identified in seven (17.9%) of the isolates, and only 28.5% (2/7) hypermucoviscous isolates were positive for the K2 and K5 serotypes. In general, the sequence type (ST) analysis and phylogenetic analysis of seven multilocus sequence typing loci were heterogeneous; however, ST29 was the most prevalent ST in the analysed isolates, accounting for 19% (4/21) of the total isolates. Two of the four ST29 isolates had the hypermucoviscosity phenotype. The virulence factors for fimbriae were the most prevalent, followed by siderophores. Community-acquired infections are caused by various species from Klebsiella genus, with different profiles of antibiotic resistance and heterogeneous virulence factors.
Collapse
Affiliation(s)
- U Garza-Ramos
- Instituto Nacional de Salud Pública (INSP), Centro de Investigación Sobre Enfermedades Infecciosas (CISEI), Laboratorio de Resistencia Bacteriana y Genómica de Bacterias, Cuernavaca, Morelos, Mexico
| | - H Barrios-Camacho
- Instituto Nacional de Salud Pública (INSP), Centro de Investigación Sobre Enfermedades Infecciosas (CISEI), Laboratorio de Resistencia Bacteriana y Genómica de Bacterias, Cuernavaca, Morelos, Mexico
| | - S Moreno-Domínguez
- Instituto Nacional de Salud Pública (INSP), Centro de Investigación Sobre Enfermedades Infecciosas (CISEI), Laboratorio de Resistencia Bacteriana y Genómica de Bacterias, Cuernavaca, Morelos, Mexico
| | - J Toribio-Jiménez
- Laboratorio de Biotecnología y Genética Microbiana, Unidad Académica de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Guerrero, Mexico
| | - D Jardón-Pineda
- Laboratorio de Biotecnología y Genética Microbiana, Unidad Académica de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Guerrero, Mexico
| | - J Cuevas-Peña
- Laboratorio de Biotecnología y Genética Microbiana, Unidad Académica de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Guerrero, Mexico
| | - A Sánchez-Pérez
- Instituto Nacional de Salud Pública (INSP), Centro de Investigación Sobre Enfermedades Infecciosas (CISEI), Laboratorio de Resistencia Bacteriana y Genómica de Bacterias, Cuernavaca, Morelos, Mexico
| | - J Duran-Bedolla
- Instituto Nacional de Salud Pública (INSP), Centro de Investigación Sobre Enfermedades Infecciosas (CISEI), Laboratorio de Resistencia Bacteriana y Genómica de Bacterias, Cuernavaca, Morelos, Mexico
| | - J Olguín-Rodriguez
- Instituto Nacional de Salud Pública (INSP), Centro de Investigación Sobre Enfermedades Infecciosas (CISEI), Laboratorio de Resistencia Bacteriana y Genómica de Bacterias, Cuernavaca, Morelos, Mexico
| | - A Román-Román
- Laboratorio de Biotecnología y Genética Microbiana, Unidad Académica de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Guerrero, Mexico
| |
Collapse
|
41
|
Alexander CR, Dingman DW, Schultes NP, Mourad GS. The solute transport profile of two Aza-guanine transporters from the Honey bee pathogen Paenibacillus larvae. FEMS Microbiol Lett 2018; 365:4828326. [DOI: 10.1093/femsle/fny018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 01/26/2018] [Indexed: 01/05/2023] Open
Affiliation(s)
- Candace R Alexander
- Department of Biology, Indiana University-Purdue University Fort Wayne, 2101 East Coliseum Blvd., Fort Wayne, IN 46805, USA
| | - Douglas W Dingman
- Department of Entomology, The Connecticut Agricultural Experiment Station, 123 Huntington St, New Haven, CT 06511, USA
| | - Neil P Schultes
- Department of Plant Pathology & Ecology, The Connecticut Agricultural Experiment Station, 123 Huntington St, New Haven, CT 06511, USA
| | - George S Mourad
- Department of Biology, Indiana University-Purdue University Fort Wayne, 2101 East Coliseum Blvd., Fort Wayne, IN 46805, USA
| |
Collapse
|
42
|
Martin RM, Bachman MA. Colonization, Infection, and the Accessory Genome of Klebsiella pneumoniae. Front Cell Infect Microbiol 2018; 8:4. [PMID: 29404282 PMCID: PMC5786545 DOI: 10.3389/fcimb.2018.00004] [Citation(s) in RCA: 566] [Impact Index Per Article: 80.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Accepted: 01/05/2018] [Indexed: 12/22/2022] Open
Abstract
Klebsiella pneumoniae is a Gram-negative pathogen that has a large accessory genome of plasmids and chromosomal gene loci. This accessory genome divides K. pneumoniae strains into opportunistic, hypervirulent, and multidrug-resistant groups and separates K. pneumoniae from two closely related species, Klebsiella variicola and Klebsiella quasipneumoniae. Some strains of K. pneumoniae act as opportunistic pathogens, infecting critically ill and immunocompromised patients. These K. pneumoniae are a common cause of health-care associated infections including pneumonia, urinary tract infections (UTIs), and bloodstream infections. K. variicola and K. quasipneumoniae are often clinically indistinguishable from opportunistic K. pneumoniae. Other strains of K. pneumoniae are hypervirulent, infecting healthy people in community settings and causing severe infections including pyogenic liver abscess, endophthalmitis, and meningitis. A third group of K. pneumoniae encode carbapenemases, making them highly antibiotic-resistant. These strains act as opportunists but are exceedingly difficult to treat. All of these groups of K. pneumoniae and related species can colonize the gastrointestinal tract, and the accessory genome may determine if a colonizing strain remains asymptomatic or progresses to cause disease. This review will explore the associations between colonization and infection with opportunistic, antibiotic-resistant, and hypervirulent K. pneumoniae strains and the role of the accessory genome in distinguishing these groups and related species. As K. pneumoniae infections become progressively more difficult to treat in the face of antibiotic resistance and hypervirulent strains, an increased understanding of the epidemiology and pathogenesis of these bacteria is vital.
Collapse
Affiliation(s)
| | - Michael A. Bachman
- Department of Pathology, Michigan Medicine, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
43
|
Uric acid in plants and microorganisms: Biological applications and genetics - A review. J Adv Res 2017; 8:475-486. [PMID: 28748114 PMCID: PMC5512154 DOI: 10.1016/j.jare.2017.05.003] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 05/07/2017] [Accepted: 05/08/2017] [Indexed: 11/23/2022] Open
Abstract
Uric acid increased accumulation and/or reduced excretion in human bodies is closely related to pathogenesis of gout and hyperuricemia. It is highly affected by the high intake of food rich in purine. Uric acid is present in both higher plants and microorganisms with species dependent concentration. Urate-degrading enzymes are found both in plants and microorganisms but the mechanisms by which plant degrade uric acid was found to be different among them. Higher plants produce various metabolites which could inhibit xanthine oxidase and xanthine oxidoreductase, so prohibit the oxidation of hypoxanthine to xanthine then to uric acid in the purine metabolism. However, microorganisms produce group of degrading enzymes uricase, allantoinase, allantoicase and urease, which catalyze the degradation of uric acid to the ammonia. In humans, researchers found that several mutations caused a pseudogenization (silencing) of the uricase gene in ancestral apes which exist as an insoluble crystalloid in peroxisomes. This is in contrast to microorganisms in which uricases are soluble and exist either in cytoplasm or peroxisomes. Moreover, many recombinant uricases with higher activity than the wild type uricases could be induced successfully in many microorganisms. The present review deals with the occurrence of uric acid in plants and other organisms specially microorganisms in addition to the mechanisms by which plant extracts, metabolites and enzymes could reduce uric acid in blood. The genetic and genes encoding for uric acid in plants and microorganisms are also presented.
Collapse
|
44
|
Argiroff WA, Zak DR, Lanser CM, Wiley MJ. Microbial Community Functional Potential and Composition Are Shaped by Hydrologic Connectivity in Riverine Floodplain Soils. MICROBIAL ECOLOGY 2017; 73:630-644. [PMID: 27807645 DOI: 10.1007/s00248-016-0883-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 10/17/2016] [Indexed: 05/12/2023]
Abstract
Riverine floodplains are ecologically and economically valuable ecosystems that are heavily threatened by anthropogenic stressors. Microbial communities in floodplain soils mediate critical biogeochemical processes, yet we understand little about the relationship between these communities and variation in hydrologic connectivity related to land management or topography. Here, we present metagenomic evidence that differences among microbial communities in three floodplain soils correspond to a long-term gradient of hydrologic connectivity. Specifically, all strictly anaerobic taxa and metabolic pathways were positively associated with increased hydrologic connectivity and flooding frequency. In contrast, most aerobic taxa and all strictly aerobic pathways were negatively related to hydrologic connectivity and flooding frequency. Furthermore, the genetic potential to metabolize organic compounds tended to decrease as hydrologic connectivity increased, which may reflect either the observed concomitant decline of soil organic matter or the parallel increase in both anaerobic taxa and pathways. A decline in soil N, accompanied by an increased genetic potential for oligotrophic N acquisition subsystems, suggests that soil nutrients also shape microbial communities in these soils. We conclude that differences among floodplain soil microbial communities can be conceptualized along a gradient of hydrologic connectivity. Additionally, we show that these differences are likely due to connectivity-related variation in flooding frequency, soil organic matter, and soil N. Our findings are particularly relevant to the restoration and management of microbially mediated biogeochemical processes in riverine floodplain wetlands.
Collapse
Affiliation(s)
- William A Argiroff
- School of Natural Resources and Environment, University of Michigan, 440 Church St., Ann Arbor, MI, 48109, USA.
| | - Donald R Zak
- School of Natural Resources and Environment, University of Michigan, 440 Church St., Ann Arbor, MI, 48109, USA
- Department of Ecology and Evolutionary Biology, University of Michigan, 830 North University, Ann Arbor, MI, 48109, USA
| | - Christine M Lanser
- School of Natural Resources and Environment, University of Michigan, 440 Church St., Ann Arbor, MI, 48109, USA
| | - Michael J Wiley
- School of Natural Resources and Environment, University of Michigan, 440 Church St., Ann Arbor, MI, 48109, USA
| |
Collapse
|
45
|
Glyoxylate detoxification is an essential function of malate synthase required for carbon assimilation in Mycobacterium tuberculosis. Proc Natl Acad Sci U S A 2017; 114:E2225-E2232. [PMID: 28265055 DOI: 10.1073/pnas.1617655114] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The glyoxylate shunt is a metabolic pathway of bacteria, fungi, and plants used to assimilate even-chain fatty acids (FAs) and has been implicated in persistence of Mycobacterium tuberculosis (Mtb). Recent work, however, showed that the first enzyme of the glyoxylate shunt, isocitrate lyase (ICL), may mediate survival of Mtb during the acute and chronic phases of infection in mice through physiologic functions apart from fatty acid metabolism. Here, we report that malate synthase (MS), the second enzyme of the glyoxylate shunt, is essential for in vitro growth and survival of Mtb on even-chain fatty acids, in part, for a previously unrecognized activity: mitigating the toxicity of glyoxylate excess arising from metabolism of even-chain fatty acids. Metabolomic profiling revealed that MS-deficient Mtb cultured on fatty acids accumulated high levels of the ICL aldehyde endproduct, glyoxylate, and increased levels of acetyl phosphate, acetoacetyl coenzyme A (acetoacetyl-CoA), butyryl CoA, acetoacetate, and β-hydroxybutyrate. These changes were indicative of a glyoxylate-induced state of oxaloacetate deficiency, acetate overload, and ketoacidosis. Reduction of intrabacterial glyoxylate levels using a chemical inhibitor of ICL restored growth of MS-deficient Mtb, despite inhibiting entry of carbon into the glyoxylate shunt. In vivo depletion of MS resulted in sterilization of Mtb in both the acute and chronic phases of mouse infection. This work thus identifies glyoxylate detoxification as an essential physiologic function of Mtb malate synthase and advances its validation as a target for drug development.
Collapse
|
46
|
Lokken KL, Walker GT, Tsolis RM. Disseminated infections with antibiotic-resistant non-typhoidal Salmonella strains: contributions of host and pathogen factors. Pathog Dis 2016; 74:ftw103. [PMID: 27765795 DOI: 10.1093/femspd/ftw103] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/07/2016] [Indexed: 11/14/2022] Open
Abstract
Non-typhoidal Salmonella enterica serovars (NTS) are generally associated with gastroenteritis; however, the very young and elderly, as well as individuals with compromised immunity, are at risk of developing disseminated infection that can manifest as bacteremia or focal infections at systemic sites. Disseminated NTS infections can be fatal and are responsible for over 600 000 deaths annually. Most of these deaths are in sub-Saharan Africa, where multidrug-resistant NTS clones are currently circulating in a population with a high proportion of individuals that are susceptible to disseminated disease. This review considers how genome degradation observed in African NTS isolates has resulted in phenotypic differences in traits related to environmental persistence and host-pathogen interactions. Further, it discusses host mechanisms promoting susceptibility to invasive infection with NTS in individuals with immunocompromising conditions. We conclude that mechanistic knowledge of how risk factors compromise immunity to disseminated NTS infection will be important for the design of interventions to protect against systemic disease.
Collapse
Affiliation(s)
- Kristen L Lokken
- Medical Microbiology and Immunology, University of California, One Shields Avenue, Davis, CA 95616, USA
| | - Gregory T Walker
- Medical Microbiology and Immunology, University of California, One Shields Avenue, Davis, CA 95616, USA
| | - Renée M Tsolis
- Medical Microbiology and Immunology, University of California, One Shields Avenue, Davis, CA 95616, USA
| |
Collapse
|
47
|
Xue J, Tan B, Yang S, Luo M, Xia H, Zhang X, Zhou X, Yang X, Yang R, Li Y, Qiu J. Influence of cAMP receptor protein (CRP) on bacterial virulence and transcriptional regulation of allS by CRP in Klebsiella pneumoniae. Gene 2016; 593:28-33. [PMID: 27502416 DOI: 10.1016/j.gene.2016.08.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 08/01/2016] [Accepted: 08/04/2016] [Indexed: 01/23/2023]
Abstract
cAMP receptor protein (CRP) is one of the most important transcriptional regulators, which can regulate large quantities of operons in different bacteria. The gene allS was well-known as allantoin-utilizing capability and involving in bacterial virulence in Klebsiella pneumoniae (K. pneumoniae). The specific DNA recognition motif of transcription regulator CRP was found in allS promoter region. Therefore, this study is aimed to investigate the function of CRP on virulence and its transcriptional regulation mechanism to gene allS in K. pneumoniae. The wild-type (WT) K. pneumoniae NTUH-2044, crp knockout (Kp-Δcrp) and the complemented knockout (KpC-Δcrp) strains were used to determine the function of crp gene. The lacZ fusion, qRT-PCR, electrophoretic mobility shift and DNase I footprinting assays were performed to study the transcriptional regulation of CRP on allS. The result showed a decreased virulence in crp knockout strain. Complement through supplementing crp fragment in expression plasmid partially restore virulence of knockout bacteria. The CRP could bind to the allS promoter-proximal region and the binding site was further refined to be located from 60bp to 94bp upstream of the allS promoter. Based on these results, we proposed that CRP is an essential virulence regulator and knock out of crp gene will result in reduced virulence in K. pneumoniae. In the meantime, the transcription of gene allS is positively regulated by CRP via directly binding to upstream of allS promoter.
Collapse
Affiliation(s)
- Jian Xue
- School of Public Health and Management, Chongqing Medical University, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing 400016, China
| | - Bin Tan
- Yubei District Center for Disease Control and Prevention, Chongqing 401120, China
| | - Shiya Yang
- School of Public Health and Management, Chongqing Medical University, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing 400016, China
| | - Mei Luo
- School of Public Health and Management, Chongqing Medical University, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing 400016, China
| | - Huiming Xia
- School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Xian Zhang
- School of Public Health and Management, Chongqing Medical University, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing 400016, China
| | - Xipeng Zhou
- School of Public Health and Management, Chongqing Medical University, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing 400016, China
| | - Xianxian Yang
- School of Public Health and Management, Chongqing Medical University, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing 400016, China
| | - Ruifu Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Yingli Li
- School of Public Health and Management, Chongqing Medical University, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing 400016, China.
| | - Jingfu Qiu
- School of Public Health and Management, Chongqing Medical University, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing 400016, China.
| |
Collapse
|
48
|
Cam Y, Alkim C, Trichez D, Trebosc V, Vax A, Bartolo F, Besse P, François JM, Walther T. Engineering of a Synthetic Metabolic Pathway for the Assimilation of (d)-Xylose into Value-Added Chemicals. ACS Synth Biol 2016; 5:607-18. [PMID: 26186096 DOI: 10.1021/acssynbio.5b00103] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
A synthetic pathway for (d)-xylose assimilation was stoichiometrically evaluated and implemented in Escherichia coli strains. The pathway proceeds via isomerization of (d)-xylose to (d)-xylulose, phosphorylation of (d)-xylulose to obtain (d)-xylulose-1-phosphate (X1P), and aldolytic cleavage of the latter to yield glycolaldehyde and DHAP. Stoichiometric analyses showed that this pathway provides access to ethylene glycol with a theoretical molar yield of 1. Alternatively, both glycolaldehyde and DHAP can be converted to glycolic acid with a theoretical yield that is 20% higher than for the exclusive production of this acid via the glyoxylate shunt. Simultaneous expression of xylulose-1 kinase and X1P aldolase activities, provided by human ketohexokinase-C and human aldolase-B, respectively, restored growth of a (d)-xylulose-5-kinase mutant on xylose. This strain produced ethylene glycol as the major metabolic endproduct. Metabolic engineering provided strains that assimilated the entire C2 fraction into the central metabolism or that produced 4.3 g/L glycolic acid at a molar yield of 0.9 in shake flasks.
Collapse
Affiliation(s)
- Yvan Cam
- INSA, UPS, INP, LISBP, Université de Toulouse, 135 Avenue de Rangueil, 31077 Toulouse, France
- INRA, UMR792 Ingénierie des Systèmes Biologiques et des Procédés (LISBP),, 31077 Toulouse, France
- UMR5504, CNRS, 31077 Toulouse, France
- TWB, 3 rue des Satellites, Canal Biotech Building 2, 31400 Toulouse, France
| | - Ceren Alkim
- INSA, UPS, INP, LISBP, Université de Toulouse, 135 Avenue de Rangueil, 31077 Toulouse, France
- INRA, UMR792 Ingénierie des Systèmes Biologiques et des Procédés (LISBP),, 31077 Toulouse, France
- UMR5504, CNRS, 31077 Toulouse, France
- TWB, 3 rue des Satellites, Canal Biotech Building 2, 31400 Toulouse, France
| | - Debora Trichez
- INSA, UPS, INP, LISBP, Université de Toulouse, 135 Avenue de Rangueil, 31077 Toulouse, France
- INRA, UMR792 Ingénierie des Systèmes Biologiques et des Procédés (LISBP),, 31077 Toulouse, France
- UMR5504, CNRS, 31077 Toulouse, France
- TWB, 3 rue des Satellites, Canal Biotech Building 2, 31400 Toulouse, France
| | - Vincent Trebosc
- INSA, UPS, INP, LISBP, Université de Toulouse, 135 Avenue de Rangueil, 31077 Toulouse, France
- INRA, UMR792 Ingénierie des Systèmes Biologiques et des Procédés (LISBP),, 31077 Toulouse, France
- UMR5504, CNRS, 31077 Toulouse, France
- TWB, 3 rue des Satellites, Canal Biotech Building 2, 31400 Toulouse, France
| | - Amélie Vax
- INSA, UPS, INP, LISBP, Université de Toulouse, 135 Avenue de Rangueil, 31077 Toulouse, France
- INRA, UMR792 Ingénierie des Systèmes Biologiques et des Procédés (LISBP),, 31077 Toulouse, France
- UMR5504, CNRS, 31077 Toulouse, France
- TWB, 3 rue des Satellites, Canal Biotech Building 2, 31400 Toulouse, France
| | - François Bartolo
- INSA, UPS, INP, LISBP, Université de Toulouse, 135 Avenue de Rangueil, 31077 Toulouse, France
- Département Génie Mathématiques et Modélisation (GMM), 135 Avenue de Rangueil, 31077 Toulouse, France
| | - Philippe Besse
- INSA, UPS, INP, LISBP, Université de Toulouse, 135 Avenue de Rangueil, 31077 Toulouse, France
- Département Génie Mathématiques et Modélisation (GMM), 135 Avenue de Rangueil, 31077 Toulouse, France
| | - Jean Marie François
- INSA, UPS, INP, LISBP, Université de Toulouse, 135 Avenue de Rangueil, 31077 Toulouse, France
- INRA, UMR792 Ingénierie des Systèmes Biologiques et des Procédés (LISBP),, 31077 Toulouse, France
- UMR5504, CNRS, 31077 Toulouse, France
- TWB, 3 rue des Satellites, Canal Biotech Building 2, 31400 Toulouse, France
| | - Thomas Walther
- INSA, UPS, INP, LISBP, Université de Toulouse, 135 Avenue de Rangueil, 31077 Toulouse, France
- INRA, UMR792 Ingénierie des Systèmes Biologiques et des Procédés (LISBP),, 31077 Toulouse, France
- UMR5504, CNRS, 31077 Toulouse, France
- TWB, 3 rue des Satellites, Canal Biotech Building 2, 31400 Toulouse, France
| |
Collapse
|
49
|
Abstract
We review literature on the metabolism of ribo- and deoxyribonucleotides, nucleosides, and nucleobases in Escherichia coli and Salmonella,including biosynthesis, degradation, interconversion, and transport. Emphasis is placed on enzymology and regulation of the pathways, at both the level of gene expression and the control of enzyme activity. The paper begins with an overview of the reactions that form and break the N-glycosyl bond, which binds the nucleobase to the ribosyl moiety in nucleotides and nucleosides, and the enzymes involved in the interconversion of the different phosphorylated states of the nucleotides. Next, the de novo pathways for purine and pyrimidine nucleotide biosynthesis are discussed in detail.Finally, the conversion of nucleosides and nucleobases to nucleotides, i.e.,the salvage reactions, are described. The formation of deoxyribonucleotides is discussed, with emphasis on ribonucleotidereductase and pathways involved in fomation of dUMP. At the end, we discuss transport systems for nucleosides and nucleobases and also pathways for breakdown of the nucleobases.
Collapse
|
50
|
AllR Controls the Expression of Streptomyces coelicolor Allantoin Pathway Genes. Appl Environ Microbiol 2015; 81:6649-59. [PMID: 26187964 DOI: 10.1128/aem.02098-15] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 07/10/2015] [Indexed: 11/20/2022] Open
Abstract
Streptomyces species are native inhabitants of soil, a natural environment where nutrients can be scarce and competition fierce. They have evolved ways to metabolize unusual nutrients, such as purines and its derivatives, which are highly abundant in soil. Catabolism of these uncommon carbon and nitrogen sources needs to be tightly regulated in response to nutrient availability and environmental stimulus. Recently, the allantoin degradation pathway was characterized in Streptomyces coelicolor. However, there are questions that remained unanswered, particularly regarding pathway regulation. Here, using a combination of proteomics and genetic approaches, we identified the negative regulator of the allantoin pathway, AllR. In vitro studies confirmed that AllR binds to the promoter regions of allantoin catabolic genes and determined the AllR DNA binding motif. In addition, effector studies showed that allantoic acid, and glyoxylate, to a lesser extent, inhibit the binding of AllR to the DNA. Inactivation of AllR repressor leads to the constitutive expression of the AllR regulated genes and intriguingly impairs actinorhodin and undecylprodigiosin production. Genetics and proteomics analysis revealed that among all genes from the allantoin pathway that are upregulated in the allR mutant, the hyi gene encoding a hydroxypyruvate isomerase (Hyi) is responsible of the impairment of antibiotic production.
Collapse
|