1
|
Zafar MA, Sanchez-Alberola N, Wolf RE. Genetic evidence for a novel interaction between transcriptional activator SoxS and region 4 of the σ(70) subunit of RNA polymerase at class II SoxS-dependent promoters in Escherichia coli. J Mol Biol 2011; 407:333-53. [PMID: 21195716 PMCID: PMC3070153 DOI: 10.1016/j.jmb.2010.12.037] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Revised: 12/22/2010] [Accepted: 12/23/2010] [Indexed: 11/30/2022]
Abstract
Escherichia coli SoxS activates transcription of the genes of the soxRS regulon, which provide the cell's defense against oxidative stress. In response to this stress, SoxS is synthesized de novo. Because the DNA binding site of SoxS is highly degenerate, SoxS efficiently activates transcription by the mechanism of prerecruitment. In prerecruitment, newly synthesized SoxS first forms binary complexes with RNA polymerase. These complexes then scan the chromosome for class I and II SoxS-dependent promoters, using the specific DNA-recognition properties of SoxS and σ(70) to distinguish SoxS-dependent promoters from the vast excess of sequence-equivalent soxboxes that do not reside in promoters. Previously, we determined that SoxS interacts with RNA polymerase in two ways: by making protein-protein interactions with the DNA-binding determinant of the α subunit and by interacting with σ(70) region 4 (σ(70) R4) both "on-DNA" and "off-DNA." Here, we address the question of how SoxS and σ(70) R4 coexist at class II promoters, where the binding site for SoxS either partially or completely overlaps the -35 region of the promoter, which is usually bound by σ(70) R4. To do so, we created a tri-alanine scanning library that covers all of σ(70) R4. We determined that interactions between σ(70) R4 and the DNA in the promoter's -35 region are required for activation of class I promoters, where the binding site lies upstream of the -35 hexamer, but they are not required at class II promoters. In contrast, specific three-amino-acid stretches are required for activation of class I (lac) and class II (galP1) cyclic AMP receptor protein-dependent promoters. We conclude from these data that SoxS and σ(70) R4 interact with each other in a novel way at class II SoxS-dependent promoters such that the two proteins do not accommodate one another in the -35 region but instead SoxS binding there occludes the binding of σ(70) R4.
Collapse
Affiliation(s)
| | - Neus Sanchez-Alberola
- Department of Biological Sciences University of Maryland Baltimore County Baltimore, MD 21250
| | - Richard E. Wolf
- Department of Biological Sciences University of Maryland Baltimore County Baltimore, MD 21250
| |
Collapse
|
2
|
Abstract
Spo0A, a classical two-component-type response regulator in Bacillus subtilis, binds to a specific DNA sequence found in many promoters to repress or activate the transcription of over 100 genes. On the spoIIG promoter, one of the Spo0A binding sites, centered at position -40, overlaps a consensus -35 element that may also interact with region 4 of the sigma A (sigma(A)) subunit of RNA polymerase. Molecular modeling corroborated by genetic evidence led us to propose that the binding of Spo0A to this site repositions sigma(A) region 4 on the promoter. Therefore, we used a chemical nuclease, p-bromoacetamidobenzyl-EDTA-Fe, that was covalently tethered to a single cysteine in region 4 of sigma(A) to map the position of sigma(A) on the promoter. The results indicated that in the absence of Spo0A, sigma(A) region 4 of the RNA polymerase was located near the -35 element sequence centered at position -40. However, in the presence of Spo0A, sigma(A) region 4 was displaced downstream from the -35 element by 4 bp. These and other results support the model in which the binding of Spo0A to the spoIIG promoter stimulates promoter utilization by repositioning prebound RNA polymerase and stabilizing the repositioned RNA polymerase-promoter complex at a new position that aligns sigma(A) region 2 with the -10 region sequences of the promoter, thus facilitating open complex formation.
Collapse
|
3
|
Cavanagh AT, Klocko AD, Liu X, Wassarman KM. Promoter specificity for 6S RNA regulation of transcription is determined by core promoter sequences and competition for region 4.2 of sigma70. Mol Microbiol 2008; 67:1242-56. [PMID: 18208528 DOI: 10.1111/j.1365-2958.2008.06117.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
6S RNA binds sigma70-RNA polymerase and downregulates transcription at many sigma70-dependent promoters, but others escape regulation even during stationary phase when the majority of the transcription machinery is bound by the RNA. We report that core promoter elements determine this promoter specificity; a weak -35 element allows a promoter to be 6S RNA sensitive, and an extended -10 element similarly determines 6S RNA inhibition except when a consensus -35 element is present. These two features together predicted that hundreds of mapped Escherichia coli promoters might be subject to 6S RNA dampening in stationary phase. Microarray analysis confirmed 6S RNA-dependent downregulation of expression from 68% of the predicted genes, which corresponds to 49% of the expressed genes containing mapped E. coli promoters and establishes 6S RNA as a global regulator in stationary phase. We also demonstrate a critical role for region 4.2 of sigma70 in RNA polymerase interactions with 6S RNA. Region 4.2 binds the -35 element during transcription initiation; therefore we propose one mechanism for 6S RNA regulation of transcription is through competition for binding region 4.2 of sigma70.
Collapse
Affiliation(s)
- Amy T Cavanagh
- Department of Bacteriology, University of Wisconsin, Madison, WI, USA
| | | | | | | |
Collapse
|
4
|
Nickels BE, Garrity SJ, Mekler V, Minakhin L, Severinov K, Ebright RH, Hochschild A. The interaction between sigma70 and the beta-flap of Escherichia coli RNA polymerase inhibits extension of nascent RNA during early elongation. Proc Natl Acad Sci U S A 2005; 102:4488-93. [PMID: 15761057 PMCID: PMC555512 DOI: 10.1073/pnas.0409850102] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The sigma-subunit of bacterial RNA polymerase (RNAP) is required for promoter-specific transcription initiation. This function depends on specific intersubunit interactions that occur when sigma associates with the RNAP core enzyme to form RNAP holoenzyme. Among these interactions, that between conserved region 4 of sigma and the flap domain of the RNAP beta-subunit (beta-flap) is critical for recognition of the major class of bacterial promoters. Here, we describe the isolation of amino acid substitutions in region 4 of Escherichia coli sigma(70) that have specific effects on the sigma(70) region 4/beta-flap interaction, either weakening or strengthening it. Using these sigma(70) mutants, we demonstrate that the sigma region 4/beta-flap interaction also can affect events occurring downstream of transcription initiation during early elongation. Specifically, our results provide support for a structure-based proposal that, when bound to the beta-flap, sigma region 4 presents a barrier to the extension of the nascent RNA as it emerges from the RNA exit channel. Our findings support the view that the transition from initiation to elongation involves a staged disruption of sigma-core interactions.
Collapse
Affiliation(s)
- Bryce E Nickels
- Department of Microbiology and Molecular Genetics, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA
| | | | | | | | | | | | | |
Collapse
|
5
|
Marr MT, Roberts JW, Brown SE, Klee M, Gussin GN. Interactions among CII protein, RNA polymerase and the lambda PRE promoter: contacts between RNA polymerase and the -35 region of PRE are identical in the presence and absence of CII protein. Nucleic Acids Res 2004; 32:1083-90. [PMID: 14872063 PMCID: PMC373397 DOI: 10.1093/nar/gkh261] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The DNA recognition sequence for the transcriptional activator, CII protein, which is critical for lysogenization by bacteriophage lambda, overlaps the -35 region of the P(RE) promoter. Data presented here show that activation by CII does not change the pattern of cleavage of the -35 region of P(RE) by iron (S)-1-(p-bromoacetamidobenzyl)-EDTA (Fe-BABE) conjugated to the sigma subunit of RNA polymerase (RNAP). Thus, the overall interaction between sigma and the -35 region of P(RE) is not significantly altered by CII. Therefore, the effects of the activator on RNAP binding to the promoter and formation of open complexes do not reflect a large-scale qualitative change in the nature of the interaction between RNAP and promoter DNA. The ability of CII to stimulate lysogenization is reduced in the presence of plasmid-borne rpoA variants encoding alanine substitutions at several positions in the C-terminal domain of the alpha subunit. However, it has not been possible to identify residues that directly affect the interaction between the activator and RNA polymerase.
Collapse
Affiliation(s)
- Michael T Marr
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | | | | | | | | |
Collapse
|
6
|
Grainger DC, Belyaeva TA, Lee DJ, Hyde EI, Busby SJW. Binding of the Escherichia coli MelR protein to the melAB promoter: orientation of MelR subunits and investigation of MelR-DNA contacts. Mol Microbiol 2003; 48:335-48. [PMID: 12675795 DOI: 10.1046/j.1365-2958.2003.t01-1-03434.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The Escherichia coli MelR protein is a melibiose-triggered transcription factor, belonging to the AraC family, that activates transcription initiation at the melAB promoter. Activation is dependent on the binding of MelR to four 18 bp sites, centred at position -42.5 (site 2'), position -62.5 (site 2), position -100.5 (site 1) and position -120.5 (site 1') relative to the melAB transcription start point. Activation also depends on the binding of CRP to a single site located between MelR binding site 1 and site 2. All members of the AraC family contain two helix-turn-helix (HTH) motifs that contact two segments of the DNA major groove at target sites on the same DNA face. In this work, we have studied the binding of MelR to different sites at the melAB promoter, focusing on the orientation of binding of the two MelR HTH motifs, and the juxtaposition of the different bound MelR subunits with respect to each other. To do this, MelR was engineered to contain a single cysteine residue adjacent to either one or the other HTH motif. The MelR derivatives were purified, and the cysteine residues were tagged with p-bromoacetamidobenzyl-EDTA-Fe, an inorganic DNA cleavage reagent. Patterns of DNA cleavage after MelR binding were then used to determine the positions of the two HTH motifs at target sites. In order to simplify our analysis, we exploited an engineered derivative of the melAB promoter in which MelR binding to site 2 and site 2', in the absence of CRP, is sufficient for transcription activation. To assist in the interpretation of our results, we also used a shortened derivative of MelR, MelR173, that is able to bind to site 2 but not to site 2'. Our results show that MelR binds as a direct repeat to site 2 and site 2' with the C-terminal HTH located towards the promoter-proximal end of each site. The orientation in which MelR binds to site 2' appears to be determined by MelR-MelR interactions rather than by MelR-DNA interactions. In complementary experiments, we used genetic analysis to investigate the importance of different residues in the two HTH motifs of MelR. Epistasis experiments provided evidence that supports the proposed orientation of binding of MelR at its target site.
Collapse
Affiliation(s)
- David C Grainger
- School of Biosciences, The University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | | | | | | | | |
Collapse
|
7
|
Pande S, Makela A, Dove SL, Nickels BE, Hochschild A, Hinton DM. The bacteriophage T4 transcription activator MotA interacts with the far-C-terminal region of the sigma70 subunit of Escherichia coli RNA polymerase. J Bacteriol 2002; 184:3957-64. [PMID: 12081968 PMCID: PMC135182 DOI: 10.1128/jb.184.14.3957-3964.2002] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2001] [Accepted: 04/24/2002] [Indexed: 11/20/2022] Open
Abstract
Transcription from bacteriophage T4 middle promoters uses Escherichia coli RNA polymerase together with the T4 transcriptional activator MotA and the T4 coactivator AsiA. AsiA binds tightly within the C-terminal portion of the sigma70 subunit of RNA polymerase, while MotA binds to the 9-bp MotA box motif, which is centered at -30, and also interacts with sigma70. We show here that the N-terminal half of MotA (MotA(NTD)), which is thought to include the activation domain, interacts with the C-terminal region of sigma70 in an E. coli two-hybrid assay. Replacement of the C-terminal 17 residues of sigma70 with comparable sigma38 residues abolishes the interaction with MotA(NTD) in this assay, as does the introduction of the amino acid substitution R608C. Furthermore, in vitro transcription experiments indicate that a polymerase reconstituted with a sigma70 that lacks C-terminal amino acids 604 to 613 or 608 to 613 is defective for MotA-dependent activation. We also show that a proteolyzed fragment of MotA that contains the C-terminal half (MotA(CTD)) binds DNA with a K(D(app)) that is similar to that of full-length MotA. Our results support a model for MotA-dependent activation in which protein-protein contact between DNA-bound MotA and the far-C-terminal region of sigma70 helps to substitute functionally for an interaction between sigma70 and a promoter -35 element.
Collapse
Affiliation(s)
- Suchira Pande
- Laboratory of Molecular and Cellular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0830, USA
| | | | | | | | | | | |
Collapse
|
8
|
Abstract
Covalent modification methods allow an almost unlimited range of functionality to be introduced into proteins. In concert with genetic techniques, chemical strategies have had significant impact in the field of enzyme design. Major recent developments include introducing catalytic activity into inactive proteins, modifying the selectivity and/or reactivity of existing enzymes and designing novel enzyme-based biosensors. New chemical methods promise to further increase the range of functionality that can be incorporated into proteins. These results suggest that semi-synthetic methods will play a key role in the development of future biocatalysts.
Collapse
Affiliation(s)
- C M Tann
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | |
Collapse
|
9
|
Qi D, Tann CM, Haring D, Distefano MD. Generation of new enzymes via covalent modification of existing proteins. Chem Rev 2001; 101:3081-111. [PMID: 11710063 DOI: 10.1021/cr000059o] [Citation(s) in RCA: 203] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- D Qi
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | | | | |
Collapse
|
10
|
Wigneshweraraj SR, Chaney MK, Ishihama A, Buck M. Regulatory sequences in sigma 54 localise near the start of DNA melting. J Mol Biol 2001; 306:681-701. [PMID: 11243780 DOI: 10.1006/jmbi.2000.4393] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Transcription initiation by the enhancer-dependent sigma(54) RNA polymerase holoenzyme is positively regulated after promoter binding. The promoter DNA melting process is subject to activation by an enhancer-bound activator protein with nucleoside triphosphate hydrolysis activity. Tethered iron chelate probes attached to amino and carboxyl-terminal domains of sigma(54) were used to map sigma(54)-DNA interaction sites. The two domains localise to form a centre over the -12 promoter region. The use of deletion mutants of sigma(54) suggests that amino-terminal and carboxyl-terminal sequences are both needed for the centre to function. Upon activation, the relationship between the centre and promoter DNA changes. We suggest that the activator re-organises the centre to favour stable open complex formation through adjustments in sigma(54)-DNA contact and sigma(54) conformation. The centre is close to the active site of the RNA polymerase and includes sigma(54) regulatory sequences needed for DNA melting upon activation. This contrasts systems where activators recruit RNA polymerase to promoter DNA, and the protein and DNA determinants required for activation localise away from promoter sequences closely associated with the start of DNA melting.
Collapse
Affiliation(s)
- S R Wigneshweraraj
- Department of Biology, Imperial College of Science Technology and Medicine, Imperial College Road, London, SW7 2AZ, UK
| | | | | | | |
Collapse
|
11
|
Rhodius VA, Busby SJ. Interactions between activating region 3 of the Escherichia coli cyclic AMP receptor protein and region 4 of the RNA polymerase sigma(70) subunit: application of suppression genetics. J Mol Biol 2000; 299:311-24. [PMID: 10860740 DOI: 10.1006/jmbi.2000.3737] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The Escherichia coli cyclic AMP receptor protein, CRP, induces transcription at Class II CRP-dependent promoters by making three different activatory contacts with different surfaces of holo RNA polymerase. One contact surface of CRP, known as Activating Region 3 (AR3), is functional in the downstream subunit of the CRP dimer and is predicted to interact with region 4 of the RNAP sigma(70) subunit. We have previously shown that a mutant CRP derivative that activates transcription primarily via AR3, CRP HL159 KE101 KN52, requires the positively charged residues K593, K597 and R599 in sigma(70) for activation. Here, we have used the positive control substitution, EK58, to disrupt AR3-dependent activation by CRP HL159 KE101 KN52. We then screened random mutant libraries and an alanine scan library of sigma(70) for candidates that restore activation by CRP HL159 KE101 KN52 EK58. We found that changes at R596 and R599 in sigma(70) can restore activation by CRP HL159 KE101 KN52 EK58. This suggests that the side-chains of both R596 and R599 in sigma(70) clash with K58 in CRP. Maximal activation by CRP HL159 KE101 KN52 EK58 is achieved with the substitutions RE596 or RD596 in sigma(70). We propose that there are specific charge-charge interactions between E596 or D596 in sigma(70) and K58 in AR3. Thus, no increase in activation is observed in the presence of another positive control substitution, EG58 (CRP HL159 KE101 KN52 EG58). Similarly, both sigma(70) RE596 and sigma(70) RD596 can restore activation by CRP EK58 but not CRP EG58, and they both decrease activation by wild-type CRP. We suggest that E596 and D596 in sigma(70) can positively interact with K58 in AR3, thereby enhancing activation, but negatively interact with E58, thereby decreasing activation. The substitution, KA52 in AR3 increases Class II CRP-dependent activation by removing an inhibitory lysine residue. However, this increase is not observed in the presence of either sigma(70) RE596 or sigma(70) RD596. We conclude that the inhibitory side-chain, K52 in AR3, clashes with R596 in sigma(70). Finally, we show that the sigma(70) RE596 and RD596 substitutions affect CRP-dependent activation from Class II, but not Class I, promoters.
Collapse
Affiliation(s)
- V A Rhodius
- School of Biosciences, The University of Birmingham, Birmingham, B15 2TT, UK
| | | |
Collapse
|