1
|
Al Mamun AAM, Kissoon K, Kishida K, Shropshire WC, Hanson B, Christie PJ. IncFV plasmid pED208: Sequence analysis and evidence for translocation of maintenance/leading region proteins through diverse type IV secretion systems. Plasmid 2022; 123-124:102652. [PMID: 36228885 PMCID: PMC10018792 DOI: 10.1016/j.plasmid.2022.102652] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/02/2022] [Accepted: 10/04/2022] [Indexed: 12/04/2022]
Abstract
Two phylogenetically distantly-related IncF plasmids, F and pED208, serve as important models for mechanistic and structural studies of F-like type IV secretion systems (T4SSFs) and F pili. Here, we present the pED208 sequence and compare it to F and pUMNF18, the closest match to pED208 in the NCBI database. As expected, gene content of the three cargo regions varies extensively, although the maintenance/leading regions (MLRs) and transfer (Tra) regions also carry novel genes or motifs with predicted modulatory effects on plasmid stability, dissemination and host range. By use of a Cre recombinase assay for translocation (CRAfT), we recently reported that pED208-carrying donors translocate several products of the MLR (ParA, ParB1, ParB2, SSB, PsiB, PsiA) intercellularly through the T4SSF. Here, we extend these findings by reporting that pED208-carrying donors translocate 10 additional MLR proteins during conjugation. In contrast, two F plasmid-encoded toxin components of toxin-antitoxin (TA) modules, CcdB and SrnB, were not translocated at detectable levels through the T4SSF. Remarkably, most or all of the pED208-encoded MLR proteins and CcdB and SrnB were translocated through heterologous T4SSs encoded by IncN and IncP plasmids pKM101 and RP4, respectively. Together, our sequence analyses underscore the genomic diversity of the F plasmid superfamily, and our experimental data demonstrate the promiscuous nature of conjugation machines for protein translocation. Our findings raise intriguing questions about the nature of T4SS translocation signals and of the biological and evolutionary consequences of conjugative protein transfer.
Collapse
Affiliation(s)
- Abu Amar M Al Mamun
- Department of Microbiology and Molecular Genetics, University of Texas Health Science Center, McGovern School of Medicine, Fannin St, Houston, TX 77030, United States of America.
| | - Kimberly Kissoon
- Department of Microbiology and Molecular Genetics, University of Texas Health Science Center, McGovern School of Medicine, Fannin St, Houston, TX 77030, United States of America
| | - Kouhei Kishida
- Department of Microbiology and Molecular Genetics, University of Texas Health Science Center, McGovern School of Medicine, Fannin St, Houston, TX 77030, United States of America
| | - William C Shropshire
- Center for Antimicrobial Resistance and Microbial Genomics, University of Texas Health Science Center, McGovern School of Medicine, Houston, TX, USA; Center for Infectious Diseases, University of Texas Health Science Center, School of Public Health, Houston, TX, USA
| | - Blake Hanson
- Center for Antimicrobial Resistance and Microbial Genomics, University of Texas Health Science Center, McGovern School of Medicine, Houston, TX, USA; Center for Infectious Diseases, University of Texas Health Science Center, School of Public Health, Houston, TX, USA
| | - Peter J Christie
- Department of Microbiology and Molecular Genetics, University of Texas Health Science Center, McGovern School of Medicine, Fannin St, Houston, TX 77030, United States of America.
| |
Collapse
|
2
|
Protein Dynamics in F-like Bacterial Conjugation. Biomedicines 2020; 8:biomedicines8090362. [PMID: 32961700 PMCID: PMC7555446 DOI: 10.3390/biomedicines8090362] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/15/2020] [Accepted: 09/17/2020] [Indexed: 01/21/2023] Open
Abstract
Efficient in silico development of novel antibiotics requires high-resolution, dynamic models of drug targets. As conjugation is considered the prominent contributor to the spread of antibiotic resistance genes, targeted drug design to disrupt vital components of conjugative systems has been proposed to lessen the proliferation of bacterial antibiotic resistance. Advancements in structural imaging techniques of large macromolecular complexes has accelerated the discovery of novel protein-protein interactions in bacterial type IV secretion systems (T4SS). The known structural information regarding the F-like T4SS components and complexes has been summarized in the following review, revealing a complex network of protein-protein interactions involving domains with varying degrees of disorder. Structural predictions were performed to provide insight on the dynamicity of proteins within the F plasmid conjugative system that lack structural information.
Collapse
|
3
|
Abstract
All plasmids that spread by conjugative transfer encode a relaxase. That includes plasmids that encode the type IV secretion machinery necessary to mediate cell to cell transfer, as well as mobilizable plasmids that exploit the existence of other plasmids' type IV secretion machinery to enable their own lateral spread. Relaxases perform key functions in plasmid transfer by first binding to their cognate plasmid as part of a multiprotein complex called the relaxosome, which is then specifically recognized by a receptor protein at the opening of the secretion channel. Relaxases catalyze a site- and DNA-strand-specific cleavage reaction on the plasmid then pilot the single strand of plasmid DNA through the membrane-spanning type IV secretion channel as a nucleoprotein complex. In the recipient cell, relaxases help terminate the transfer process efficiently and stabilize the incoming plasmid DNA. Here, we review the well-studied MOBF family of relaxases to describe the biochemistry of these versatile enzymes and integrate current knowledge into a mechanistic model of plasmid transfer in Gram-negative bacteria.
Collapse
|
4
|
Kishida K, Inoue K, Ohtsubo Y, Nagata Y, Tsuda M. Host Range of the Conjugative Transfer System of IncP-9 Naphthalene-Catabolic Plasmid NAH7 and Characterization of Its oriT Region and Relaxase. Appl Environ Microbiol 2017; 83:e02359-16. [PMID: 27742684 PMCID: PMC5165122 DOI: 10.1128/aem.02359-16] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 10/06/2016] [Indexed: 12/21/2022] Open
Abstract
NAH7 and pWW0 from gammaproteobacterial Pseudomonas putida strains are IncP-9 conjugative plasmids that carry the genes for degradation of naphthalene and toluene, respectively. Although such genes on these plasmids are well-characterized, experimental investigation of their conjugation systems remains at a primitive level. To clarify these conjugation systems, in this study, we investigated the NAH7-encoded conjugation system by (i) analyzing the origin of its conjugative transfer (oriT)-containing region and its relaxase, which specifically nicks within the oriT region for initiation of transfer, and (ii) comparing the conjugation systems between NAH7 and pWW0. The NAH7 oriT (oriTN) region was located within a 430-bp fragment, and the strand-specific nicking (nic) site and its upstream sequences that were important for efficient conjugation in the oriTN region were identified. Unlike many other relaxases, the NAH7 relaxase exhibited unique features in its ability to catalyze, in a conjugation-independent manner, the site-specific intramolecular recombination between two copies of the oriTN region, between two copies of the pWW0 oriT (oriTW) region (which is clearly different from the oriTN region), and between the oriTN and oriTW regions. The pWW0 relaxase, which is also clearly different from the NAH7 relaxase, was strongly suggested to have the ability to conjugatively and efficiently mobilize the oriTN-containing plasmid. Such a plasmid was, in the presence of the NAH7Δnic derivative, conjugatively transferable to alphaproteobacterial and betaproteobacterial strains in which the NAH7 replication machinery is nonfunctional, indicating that the NAH7 conjugation system has a broader host range than its replication system. IMPORTANCE Various studies have strongly suggested an important contribution of conjugative transfer of catabolic plasmids to the rapid and wide dissemination of the plasmid-loaded degradation genes to microbial populations. Degradation genes on such plasmids are often loaded on transposons, which can be inserted into the genomes of the recipient bacterial strains where the transferred plasmids cannot replicate. The aim was to advance detailed molecular knowledge of the determinants of host range for plasmids. This aim is expected to be easily and comprehensively achieved using an experimental strategy in which the oriT region is connected with a plasmid that has a broad host range of replication. Using such a strategy in this study, we showed that (i) the NAH7 oriT-relaxase system has unique properties that are significantly different from other well-studied systems and (ii) the host range of the NAH7 conjugation system is broader than previously thought.
Collapse
Affiliation(s)
- Kouhei Kishida
- Department of Environmental Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Kei Inoue
- Department of Environmental Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Yoshiyuki Ohtsubo
- Department of Environmental Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Yuji Nagata
- Department of Environmental Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Masataka Tsuda
- Department of Environmental Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| |
Collapse
|
5
|
Guja KE, Schildbach JF. Completing the specificity swap: Single-stranded DNA recognition by F and R100 TraI relaxase domains. Plasmid 2015; 80:1-7. [PMID: 25841886 DOI: 10.1016/j.plasmid.2015.03.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Revised: 03/23/2015] [Accepted: 03/24/2015] [Indexed: 11/27/2022]
Abstract
During conjugative plasmid transfer, one plasmid strand is cleaved and transported to the recipient bacterium. For F and related plasmids, TraI contains the relaxase or nickase activity that cleaves the plasmid DNA strand. F TraI36, the F TraI relaxase domain, binds a single-stranded origin of transfer (oriT) DNA sequence with high affinity and sequence specificity. The TraI36 domain from plasmid R100 shares 91% amino acid sequence identity with F TraI36, but its oriT DNA binding site differs by two of eleven bases. Both proteins readily distinguish between F and R100 binding sites. In earlier work, two amino acid substitutions in the DNA binding cleft were shown to be sufficient to change the R100 TraI36 DNA-binding specificity to that of F TraI36. In contrast, three substitutions could make F TraI36 more "R100-like", but failed to completely alter the specificity. Here we identify one additional amino acid substitution that completes the specificity swap from F to R100. To our surprise, adding further substitutions from R100 to the F background were detrimental to binding instead of being neutral, indicating that their effects were influenced by their structural context. These results underscore the complex and subtle nature of DNA recognition by relaxases and have implications for the evolution of relaxase binding sites and oriT sequences.
Collapse
Affiliation(s)
- Kip E Guja
- Department of Biology, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Joel F Schildbach
- Department of Biology, Johns Hopkins University, Baltimore, Maryland 21218, USA.
| |
Collapse
|
6
|
Peng Y, Lu J, Wong JJW, Edwards RA, Frost LS, Mark Glover JN. Mechanistic basis of plasmid-specific DNA binding of the F plasmid regulatory protein, TraM. J Mol Biol 2014; 426:3783-3795. [PMID: 25284757 DOI: 10.1016/j.jmb.2014.09.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 09/04/2014] [Accepted: 09/11/2014] [Indexed: 11/18/2022]
Abstract
The conjugative transfer of bacterial F plasmids relies on TraM, a plasmid-encoded protein that recognizes multiple DNA sites to recruit the plasmid to the conjugative pore. In spite of the high degree of amino acid sequence conservation between TraM proteins, many of these proteins have markedly different DNA binding specificities that ensure the selective recruitment of a plasmid to its cognate pore. Here we present the structure of F TraM RHH (ribbon-helix-helix) domain bound to its sbmA site. The structure indicates that a pair of TraM tetramers cooperatively binds an underwound sbmA site containing 12 base pairs per turn. The sbmA is composed of 4 copies of a 5-base-pair motif, each of which is recognized by an RHH domain. The structure reveals that a single conservative amino acid difference in the RHH β-ribbon between F and pED208 TraM changes its specificity for its cognate 5-base-pair sequence motif. Specificity is also dictated by the positioning of 2-base-pair spacer elements within sbmA; in F sbmA, the spacers are positioned between motifs 1 and 2 and between motifs 3 and 4, whereas in pED208 sbmA, there is a single spacer between motifs 2 and 3. We also demonstrate that a pair of F TraM tetramers can cooperatively bind its sbmC site with an affinity similar to that of sbmA in spite of a lack of sequence similarity between these DNA elements. These results provide a basis for the prediction of the DNA binding properties of the family of TraM proteins.
Collapse
Affiliation(s)
- Yun Peng
- Department of Biochemistry, University of Alberta, Edmonton, AB, T6G 2H7, Canada
| | - Jun Lu
- Department of Biochemistry, University of Alberta, Edmonton, AB, T6G 2H7, Canada
| | - Joyce J W Wong
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ross A Edwards
- Department of Biochemistry, University of Alberta, Edmonton, AB, T6G 2H7, Canada
| | - Laura S Frost
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E9, Canada
| | - J N Mark Glover
- Department of Biochemistry, University of Alberta, Edmonton, AB, T6G 2H7, Canada.
| |
Collapse
|
7
|
Wong JJW, Lu J, Glover JNM. Relaxosome function and conjugation regulation in F-like plasmids - a structural biology perspective. Mol Microbiol 2012; 85:602-17. [PMID: 22788760 DOI: 10.1111/j.1365-2958.2012.08131.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The tra operon of the prototypical F plasmid and its relatives enables transfer of a copy of the plasmid to other bacterial cells via the process of conjugation. Tra proteins assemble to form the transferosome, the transmembrane pore through which the DNA is transferred, and the relaxosome, a complex of DNA-binding proteins at the origin of DNA transfer. F-like plasmid conjugation is characterized by a high degree of plasmid specificity in the interactions of tra components, and is tightly regulated at the transcriptional, translational and post-translational levels. Over the past decade, X-ray crystallography of conjugative components has yielded insights into both specificity and regulatory mechanisms. Conjugation is repressed by FinO, an RNA chaperone which increases the lifetime of the small RNA, FinP. Recent work has resulted in a detailed model of FinO/FinP interactions and the discovery of a family of FinO-like RNA chaperones. Relaxosome components include TraI, a relaxase/helicase, and TraM, which mediates signalling between the transferosome and relaxosome for transfer initiation. The structures of TraI and TraM bound to oriT DNA reveal the basis of specific recognition of DNA for their cognate plasmid. Specificity also exists in TraI and TraM interactions with the transferosome protein TraD.
Collapse
Affiliation(s)
- Joyce J W Wong
- Department of Biochemistry, University of Alberta, Edmonton, AB, T6G 2H7, Canada
| | | | | |
Collapse
|
8
|
Wong JJW, Lu J, Edwards RA, Frost LS, Glover JNM. Structural basis of cooperative DNA recognition by the plasmid conjugation factor, TraM. Nucleic Acids Res 2011; 39:6775-88. [PMID: 21565799 PMCID: PMC3159463 DOI: 10.1093/nar/gkr296] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The conjugative transfer of F-like plasmids such as F, R1, R100 and pED208, between bacterial cells requires TraM, a plasmid-encoded DNA-binding protein. TraM tetramers bridge the origin of transfer (oriT) to a key component of the conjugative pore, the coupling protein TraD. Here we show that TraM recognizes a high-affinity DNA-binding site, sbmA, as a cooperative dimer of tetramers. The crystal structure of the TraM-sbmA complex from the plasmid pED208 shows that binding cooperativity is mediated by DNA kinking and unwinding, without any direct contact between tetramers. Sequence-specific DNA recognition is carried out by TraM's N-terminal ribbon-helix-helix (RHH) domains, which bind DNA in a staggered arrangement. We demonstrate that both DNA-binding specificity, as well as selective interactions between TraM and the C-terminal tail of its cognate TraD mediate conjugation specificity within the F-like family of plasmids. The ability of TraM to cooperatively bind DNA without interaction between tetramers leaves the C-terminal TraM tetramerization domains free to make multiple interactions with TraD, driving recruitment of the plasmid to the conjugative pore.
Collapse
Affiliation(s)
- Joyce J W Wong
- Department of Biochemistry, School of Molecular and Systems Medicine, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | | | | | | | | |
Collapse
|
9
|
Lang S, Gruber K, Mihajlovic S, Arnold R, Gruber CJ, Steinlechner S, Jehl MA, Rattei T, Fröhlich KU, Zechner EL. Molecular recognition determinants for type IV secretion of diverse families of conjugative relaxases. Mol Microbiol 2010; 78:1539-55. [PMID: 21143323 DOI: 10.1111/j.1365-2958.2010.07423.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In preparation for transfer conjugative type IV secretion systems (T4SS) produce a nucleoprotein adduct containing a relaxase enzyme covalently linked to the 5' end of single-stranded plasmid DNA. The bound relaxase is expected to present features necessary for selective recognition by the type IV coupling protein (T4CP), which controls substrate entry to the envelope spanning secretion machinery. We prove that the IncF plasmid R1 relaxase TraI is translocated to the recipient cells. Using a Cre recombinase assay (CRAfT) we mapped two internally positioned translocation signals (TS) on F-like TraI proteins that independently mediate efficient recognition and secretion. Tertiary structure predictions for the TS matched best helicase RecD2 from Deinococcus radiodurans. The TS is widely conserved in MOB(F) and MOB(Q) families of relaxases. Structure/function relationships within the TS were identified by mutation. A key residue in specific recognition by T4CP TraD was revealed by a fidelity switch phenotype for an F to plasmid R1 exchange L626H mutation. Finally, we show that physical linkage of the relaxase catalytic domain to a TraI TS is necessary for efficient conjugative transfer.
Collapse
Affiliation(s)
- Silvia Lang
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50, 8010 Graz, Austria
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Abstract
Nucleases cleave the phosphodiester bonds of nucleic acids and may be endo or exo, DNase or RNase, topoisomerases, recombinases, ribozymes, or RNA splicing enzymes. In this review, I survey nuclease activities with known structures and catalytic machinery and classify them by reaction mechanism and metal-ion dependence and by their biological function ranging from DNA replication, recombination, repair, RNA maturation, processing, interference, to defense, nutrient regeneration or cell death. Several general principles emerge from this analysis. There is little correlation between catalytic mechanism and biological function. A single catalytic mechanism can be adapted in a variety of reactions and biological pathways. Conversely, a single biological process can often be accomplished by multiple tertiary and quaternary folds and by more than one catalytic mechanism. Two-metal-ion-dependent nucleases comprise the largest number of different tertiary folds and mediate the most diverse set of biological functions. Metal-ion-dependent cleavage is exclusively associated with exonucleases producing mononucleotides and endonucleases that cleave double- or single-stranded substrates in helical and base-stacked conformations. All metal-ion-independent RNases generate 2',3'-cyclic phosphate products, and all metal-ion-independent DNases form phospho-protein intermediates. I also find several previously unnoted relationships between different nucleases and shared catalytic configurations.
Collapse
|
11
|
Nash RP, Habibi S, Cheng Y, Lujan SA, Redinbo MR. The mechanism and control of DNA transfer by the conjugative relaxase of resistance plasmid pCU1. Nucleic Acids Res 2010; 38:5929-43. [PMID: 20448025 PMCID: PMC2943615 DOI: 10.1093/nar/gkq303] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Bacteria expand their genetic diversity, spread antibiotic resistance genes, and obtain virulence factors through the highly coordinated process of conjugative plasmid transfer (CPT). A plasmid-encoded relaxase enzyme initiates and terminates CPT by nicking and religating the transferred plasmid in a sequence-specific manner. We solved the 2.3 Å crystal structure of the relaxase responsible for the spread of the resistance plasmid pCU1 and determined its DNA binding and nicking capabilities. The overall fold of the pCU1 relaxase is similar to that of the F plasmid and plasmid R388 relaxases. However, in the pCU1 structure, the conserved tyrosine residues (Y18,19,26,27) that are required for DNA nicking and religation were displaced up to 14 Å out of the relaxase active site, revealing a high degree of mobility in this region of the enzyme. In spite of this flexibility, the tyrosines still cleaved the nic site of the plasmid’s origin of transfer, and did so in a sequence-specific, metal-dependent manner. Unexpectedly, the pCU1 relaxase lacked the sequence-specific DNA binding previously reported for the homologous F and R388 relaxase enzymes, despite its high sequence and structural similarity with both proteins. In summary, our work outlines novel structural and functional aspects of the relaxase-mediated conjugative transfer of plasmid pCU1.
Collapse
Affiliation(s)
- Rebekah Potts Nash
- Department of Chemistry, University of North Carolina, Chapel Hill, CB 3290 and Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, CB 7260, Chapel Hill, NC 27599, USA
| | | | | | | | | |
Collapse
|
12
|
de la Cruz F, Frost LS, Meyer RJ, Zechner EL. Conjugative DNA metabolism in Gram-negative bacteria. FEMS Microbiol Rev 2010; 34:18-40. [PMID: 19919603 DOI: 10.1111/j.1574-6976.2009.00195.x] [Citation(s) in RCA: 267] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Bacterial conjugation in Gram-negative bacteria is triggered by a signal that connects the relaxosome to the coupling protein (T4CP) and transferosome, a type IV secretion system. The relaxosome, a nucleoprotein complex formed at the origin of transfer (oriT), consists of a relaxase, directed to the nic site by auxiliary DNA-binding proteins. The nic site undergoes cleavage and religation during vegetative growth, but this is converted to a cleavage and unwinding reaction when a competent mating pair has formed. Here, we review the biochemistry of relaxosomes and ponder some of the remaining questions about the nature of the signal that begins the process.
Collapse
|
13
|
Comparative biology of two natural variants of the IncQ-2 family plasmids, pRAS3.1 and pRAS3.2. J Bacteriol 2009; 191:6436-46. [PMID: 19684126 DOI: 10.1128/jb.00864-09] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Plasmids pRAS3.1 and pRAS3.2 are two closely related, natural variants of the IncQ-2 plasmid family that have identical plasmid backbones except for two differences. Plasmid pRAS3.1 has five 6-bp repeat sequences in the promoter region of the mobB gene and four 22-bp iterons in its oriV region, whereas pRAS3.2 has only four 6-bp repeats and three 22-bp iterons. Plasmid pRAS3.1 was found to have a higher copy number than pRAS3.2, and we show that the extra 6-bp repeat results in an increase in mobB and downstream mobA/repB expression. Placement of repB (primase) behind an arabinose-inducible promoter in trans resulted in an increase in repB expression and an approximately twofold increase in the copy number of plasmids with identical numbers of 22-bp iterons. The pRAS3 plasmids were shown to have a previously unrecognized toxin-antitoxin plasmid stability module within their replicons. The ability of the pRAS3 plasmids to mobilize the oriT regions of two other plasmids of the IncQ-2 family, pTF-FC2 and pTC-F14, suggested that the mobilization proteins pRAS3 are relaxed and can mobilize oriT regions with substantially different sequences. Plasmids pRAS3.1 and pRAS3.2 were highly incompatible with plasmids pTF-FC2 and pTC-F14, and this incompatibility was removed on inactivation of an open reading frame situated downstream of the mobCDE mobilization genes rather than being due to the 22-bp oriV-associated iterons. We propose that the pRAS3 plasmids represent a third, gamma incompatibility group within the IncQ-2 family plasmids.
Collapse
|
14
|
The r1162 mob proteins can promote conjugative transfer from cryptic origins in the bacterial chromosome. J Bacteriol 2008; 191:1574-80. [PMID: 19074386 DOI: 10.1128/jb.01471-08] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The mobilization proteins of the broad-host-range plasmid R1162 can initiate conjugative transfer of a plasmid from a 19-bp locus that is partially degenerate in sequence. Such loci are likely to appear by chance in the bacterial chromosome and could act as cryptic sites for transfer of chromosomal DNA when R1162 is present. The R1162-dependent transfer of chromosomal DNA, initiated from one such potential site in Pectobacterium atrosepticum, is shown here. A second active site was identified in Escherichia coli, where it is also shown that large amounts of DNA are transferred. This transfer probably reflects the combined activity of the multiple cryptic origins in the chromosome. Transfer of chromosomal DNA due to the presence of a plasmid in the cytoplasm describes a previously unrecognized potential for the exchange of bacterial DNA.
Collapse
|
15
|
Hekman K, Guja K, Larkin C, Schildbach JF. An intrastrand three-DNA-base interaction is a key specificity determinant of F transfer initiation and of F TraI relaxase DNA recognition and cleavage. Nucleic Acids Res 2008; 36:4565-72. [PMID: 18611948 PMCID: PMC2504302 DOI: 10.1093/nar/gkn422] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Bacterial conjugation, transfer of a single conjugative plasmid strand between bacteria, diversifies prokaryotic genomes and disseminates antibiotic resistance genes. As a prerequisite for transfer, plasmid-encoded relaxases bind to and cleave the transferred plasmid strand with sequence specificity. The crystal structure of the F TraI relaxase domain with bound single-stranded DNA suggests binding specificity is partly determined by an intrastrand three-way base-pairing interaction. We showed previously that single substitutions for the three interacting bases could significantly reduce binding. Here we examine the effect of single and double base substitutions at these positions on plasmid mobilization. Many substitutions reduce transfer, although the detrimental effects of some substitutions can be partially overcome by substitutions at a second site. We measured the affinity of the F TraI relaxase domain for several DNA sequence variants. While reduced transfer generally correlates with reduced binding affinity, some oriT variants transfer with an efficiency different than expected from their binding affinities, indicating ssDNA binding and cleavage do not correlate absolutely. Oligonucleotide cleavage assay results suggest the essential function of the three-base interaction may be to position the scissile phosphate for cleavage, rather than to directly contribute to binding affinity.
Collapse
Affiliation(s)
- Katherine Hekman
- Department of Biology, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA
| | | | | | | |
Collapse
|
16
|
Chen Y, Staddon JH, Dunny GM. Specificity determinants of conjugative DNA processing in the Enterococcus faecalis plasmid pCF10 and the Lactococcus lactis plasmid pRS01. Mol Microbiol 2007; 63:1549-64. [PMID: 17302827 PMCID: PMC2650854 DOI: 10.1111/j.1365-2958.2007.05610.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The DNA-processing region of the Enterococcus faecalis pheromone-responsive plasmid pCF10 is highly similar to that of the otherwise unrelated plasmid pRS01 from Lactococcus lactis. A transfer-proficient pRS01 derivative was unable to mobilize plasmids containing the pCF10 origin of transfer, oriT. In contrast, pRS01 oriT-containing plasmids could be mobilized by pCF10 at a low frequency. Relaxases PcfG and LtrB were both capable of binding to single-stranded oriT DNAs; LtrB was highly specific for its cognate oriT, whereas PcfG could recognize both pCF10 and pRS01 oriT. However, pcfG was unable to complement an ltrB insertion mutation. Genetic analysis showed that pcfF of pCF10 and ltrF of pRS01 are also essential for plasmid transfer. Purified PcfF and LtrF possess double-stranded DNA binding activities for the inverted repeat within either oriT sequence. PcfG and LtrB were recruited into their cognate F-oriT DNA complex through direct interactions with their cognate accessory protein. PcfG also could interact with LtrF when pCF10 oriT was present. In vivo cross-complementation analysis showed that ltrF partially restored the pCF10DeltapcfF mutant transfer ability when provided in trans, whereas pcfF failed to complement an ltrF mutation. Specificity of conjugative DNA processing in these plasmids involves both DNA-protein and protein-protein interactions.
Collapse
Affiliation(s)
- Yuqing Chen
- Department of Microbiology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | | | | |
Collapse
|
17
|
Larkin C, Haft RJF, Harley MJ, Traxler B, Schildbach JF. Roles of active site residues and the HUH motif of the F plasmid TraI relaxase. J Biol Chem 2007; 282:33707-33713. [PMID: 17890221 DOI: 10.1074/jbc.m703210200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Bacterial conjugation, transfer of a single strand of a conjugative plasmid between bacteria, requires sequence-specific single-stranded DNA endonucleases called relaxases or nickases. Relaxases contain an HUH (His-hydrophobe-His) motif, part of a three-His cluster that binds a divalent cation required for the cleavage reaction. Crystal structures of the F plasmid TraI relaxase domain, with and without bound single-stranded DNA, revealed an extensive network of interactions involving HUH and other residues. Here we study the roles of these residues in TraI function. Whereas substitutions for the three His residues alter metal-binding properties of the protein, the same substitution at each position elicits different effects, indicating that the residues contribute asymmetrically to metal binding. Substitutions for a conserved Asp that interacts with one HUH His demonstrate that the Asp modulates metal affinity despite its distance from the metal. The bound metal enhances binding of ssDNA to the protein, consistent with a role for the metal in positioning the scissile phosphate for cleavage. Most substitutions tested caused significantly reduced in vitro cleavage activities and in vivo transfer efficiencies. In summary, the results suggest that the metal-binding His cluster in TraI is a finely tuned structure that achieves a sufficient affinity for metal while avoiding the unfavorable electrostatics that would result from placing an acidic residue near the scissile phosphate of the bound ssDNA.
Collapse
Affiliation(s)
- Christopher Larkin
- Department of Biology, The Johns Hopkins University, Baltimore, Maryland 21218
| | - Rembrandt J F Haft
- Department of Microbiology, University of Washington, Seattle, Washington 98195
| | - Matthew J Harley
- Department of Biology, The Johns Hopkins University, Baltimore, Maryland 21218
| | - Beth Traxler
- Department of Microbiology, University of Washington, Seattle, Washington 98195
| | - Joel F Schildbach
- Department of Biology, The Johns Hopkins University, Baltimore, Maryland 21218.
| |
Collapse
|
18
|
Ragonese H, Haisch D, Villareal E, Choi JH, Matson SW. The F plasmid‐encoded TraM protein stimulates relaxosome‐mediated cleavage atoriTthrough an interaction with TraI. Mol Microbiol 2007; 63:1173-84. [PMID: 17238924 DOI: 10.1111/j.1365-2958.2006.05576.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Conjugative DNA transfer is a highly conserved process for the direct transfer of DNA from a donor to a recipient. The conjugative initiator proteins are key players in the DNA processing reactions that initiate DNA transfer - they introduce a site- and strand-specific break in the DNA backbone via a transesterification that leaves the initiator protein covalently bound on the 5'-end of the cleaved DNA strand. The action of the initiator protein at the origin of transfer (oriT) is governed by auxiliary proteins that alter the architecture of the DNA molecule, allowing binding of the initiator protein. In the F plasmid system, two auxiliary proteins have roles in establishing the relaxosome: the host-encoded IHF and the plasmid-encoded TraY. Together, these proteins direct the loading of TraI which contains the catalytic centre for the transesterification. The F-oriT sequence includes a binding site for another plasmid-encoded protein, TraM, which is required for DNA transfer. Here the impact of TraM protein on the formation and activity of the F plasmid relaxosome has been examined. Purified TraM stimulates the formation of relaxed DNA in a reaction that requires the minimal components of the relaxosome, TraI, TraY and IHF. Unlike TraY and IHF, TraM is not essential for the formation of the relaxosome in vitro and TraM cannot substitute for either TraY or IHF in this process. The TraM binding site sbmC, along with both IHF binding sites, is essential for stimulation of the relaxase reaction. In addition, stimulation of transesterification appears to require the C-terminal domain of TraI suggesting that TraM and TraI may interact through this domain on TraI. Taken together, these results provide additional evidence of a role for TraM as a component of the relaxosome, suggest a previously unknown interaction between TraI and TraM, and allow us to propose a molecular role for the C-terminal domain of TraI.
Collapse
Affiliation(s)
- Heather Ragonese
- Department of Biology, University of North Carolina at Chapel Hill, NC 27599, USA
| | | | | | | | | |
Collapse
|
19
|
Gomis-Rüth FX, Coll M. Cut and move: protein machinery for DNA processing in bacterial conjugation. Curr Opin Struct Biol 2006; 16:744-52. [PMID: 17079132 DOI: 10.1016/j.sbi.2006.10.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2006] [Revised: 09/15/2006] [Accepted: 10/18/2006] [Indexed: 11/24/2022]
Abstract
Conjugation is a paradigmatic example of horizontal or lateral gene transfer, whereby DNA is translocated between bacterial cells. It provides a route for the rapid acquisition of new genetic information. Increased antibiotic resistance among pathogens is a troubling consequence of this microbial capacity. DNA transfer across cell membranes requires a sophisticated molecular machinery that involves the participation of several proteins in DNA processing and replication, cell recruitment, and the transport of DNA and proteins from donor to recipient cells. Although bacterial conjugation was first reported in the 1940s, only now are we beginning to unravel the molecular mechanisms behind this process. In particular, structural biology is revealing the detailed molecular architecture of several of the pieces involved.
Collapse
Affiliation(s)
- F Xavier Gomis-Rüth
- Institut de Biologia Molecular de Barcelona (CSIC), Parc Científic de Barcelona, Josep Samitier 1-5, 08028 Barcelona, Spain
| | | |
Collapse
|
20
|
Lu J, Edwards RA, Wong JJW, Manchak J, Scott PG, Frost LS, Glover JNM. Protonation-mediated structural flexibility in the F conjugation regulatory protein, TraM. EMBO J 2006; 25:2930-9. [PMID: 16710295 PMCID: PMC1500842 DOI: 10.1038/sj.emboj.7601151] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2005] [Accepted: 04/27/2006] [Indexed: 11/09/2022] Open
Abstract
TraM is essential for F plasmid-mediated bacterial conjugation, where it binds to the plasmid DNA near the origin of transfer, and recognizes a component of the transmembrane DNA transfer complex, TraD. Here we report the 1.40 A crystal structure of the TraM core tetramer (TraM58-127). TraM58-127 is a compact eight-helical bundle, in which the N-terminal helices from each protomer interact to form a central, parallel four-stranded coiled-coil, whereas each C-terminal helix packs in an antiparallel arrangement around the outside of the structure. Four protonated glutamic acid residues (Glu88) are packed in a hydrogen-bonded arrangement within the central four-helix bundle. Mutational and biophysical analyses indicate that this protonated state is in equilibrium with a deprotonated tetrameric form characterized by a lower helical content at physiological pH and temperature. Comparison of TraM to its Glu88 mutants predicted to stabilize the helical structure suggests that the protonated state is the active form for binding TraD in conjugation.
Collapse
Affiliation(s)
- Jun Lu
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Ross A Edwards
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Joyce J W Wong
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Jan Manchak
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Paul G Scott
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Laura S Frost
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - J N Mark Glover
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2H7. Tel.: +1 780 492 2136; Fax: +1 780 492 0886; E-mail:
| |
Collapse
|
21
|
Lavigne JP, Botella E, O'Callaghan D. [Type IV secretion system and their effectors: an update]. ACTA ACUST UNITED AC 2006; 54:296-303. [PMID: 16473480 DOI: 10.1016/j.patbio.2005.04.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2004] [Accepted: 04/12/2005] [Indexed: 12/26/2022]
Abstract
Subversion of eukaryotic hosts by bacterial pathogens requires specialized macromolecules secretion systems delivering virulence factors either into the environment or directly into host cells. Transport of molecules across bacterial and eukaryotic membranes is a process requiring multi-component machineries called secretion systems. This review focuses on the Type IV secretion system. This complex is required for genetic exchange (DNA transport) and secretion of effectors (proteins, macromolecules, DNA-proteins complex) into target cells. They transport a wide variety of substrates including large DNA/protein complexes, multi protein toxins, or individual proteins. We describe recent advances on the structure and the function of this secretion system, their effectors and their effects on the functions of eukaryotic cell.
Collapse
Affiliation(s)
- J-P Lavigne
- Inserm U 431, faculté de médecine, avenue Kennedy, 30908 Nîmes cedex 02, France.
| | | | | |
Collapse
|
22
|
Larkin C, Datta S, Harley MJ, Anderson BJ, Ebie A, Hargreaves V, Schildbach JF. Inter- and intramolecular determinants of the specificity of single-stranded DNA binding and cleavage by the F factor relaxase. Structure 2006; 13:1533-44. [PMID: 16216584 DOI: 10.1016/j.str.2005.06.013] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2005] [Revised: 06/17/2005] [Accepted: 06/20/2005] [Indexed: 11/29/2022]
Abstract
The TraI protein of conjugative plasmid F factor binds and cleaves a single-stranded region of the plasmid prior to transfer to a recipient. TraI36, an N-terminal TraI fragment, binds ssDNA with a subnanomolar K(D) and remarkable sequence specificity. The structure of the TraI36 Y16F variant bound to ssDNA reveals specificity determinants, including a ssDNA intramolecular 3 base interaction and two pockets within the protein's binding cleft that accommodate bases in a knob-into-hole fashion. Mutagenesis results underscore the intricate design of the binding site, with the greatest effects resulting from substitutions for residues that both contact ssDNA and stabilize protein structure. The active site architecture suggests that the bound divalent cation, which is essential for catalysis, both positions the DNA by liganding two oxygens of the scissile phosphate and increases the partial positive charge on the phosphorus to enhance nucleophilic attack.
Collapse
Affiliation(s)
- Chris Larkin
- Department of Biology, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, USA
| | | | | | | | | | | | | |
Collapse
|
23
|
Christie PJ, Atmakuri K, Krishnamoorthy V, Jakubowski S, Cascales E. Biogenesis, architecture, and function of bacterial type IV secretion systems. Annu Rev Microbiol 2006; 59:451-85. [PMID: 16153176 PMCID: PMC3872966 DOI: 10.1146/annurev.micro.58.030603.123630] [Citation(s) in RCA: 482] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Type IV secretion (T4S) systems are ancestrally related to bacterial conjugation machines. These systems assemble as a translocation channel, and often also as a surface filament or protein adhesin, at the envelopes of Gram-negative and Gram-positive bacteria. These organelles mediate the transfer of DNA and protein substrates to phylogenetically diverse prokaryotic and eukaryotic target cells. Many basic features of T4S are known, including structures of machine subunits, steps of machine assembly, substrates and substrate recognition mechanisms, and cellular consequences of substrate translocation. A recent advancement also has enabled definition of the translocation route for a DNA substrate through a T4S system of a Gram-negative bacterium. This review emphasizes the dynamics of assembly and function of model conjugation systems and the Agrobacterium tumefaciens VirB/D4 T4S system. We also summarize salient features of the increasingly studied effector translocator systems of mammalian pathogens.
Collapse
Affiliation(s)
- Peter J Christie
- Department of Microbiology and Molecular Genetics, UT-Houston Medical School, Houston, Texas 77030, USA.
| | | | | | | | | |
Collapse
|
24
|
Lu J, Frost LS. Mutations in the C-terminal region of TraM provide evidence for in vivo TraM-TraD interactions during F-plasmid conjugation. J Bacteriol 2005; 187:4767-73. [PMID: 15995191 PMCID: PMC1169504 DOI: 10.1128/jb.187.14.4767-4773.2005] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Conjugation is a major mechanism for disseminating genetic information in bacterial populations, but the signal that triggers it is poorly understood in gram-negative bacteria. F-plasmid-mediated conjugation requires TraM, a homotetramer, which binds cooperatively to three binding sites within the origin of transfer. Using in vitro assays, TraM has previously been shown to interact with the coupling protein TraD. Here we present evidence that F conjugation also requires TraM-TraD interactions in vivo. A three-plasmid system was used to select mutations in TraM that are defective for F conjugation but competent for tetramerization and cooperative DNA binding to the traM promoter region. One mutation, K99E, was particularly defective in conjugation and was further characterized by affinity chromatography and coimmunoprecipitation assays that suggested it was defective in interacting with TraD. A C-terminal deletion (S79*, where the asterisk represents a stop codon) and a missense mutation (F121S), which affects tetramerization, also reduced the affinity of TraM for TraD. We propose that the C-terminal region of TraM interacts with TraD, whereas its N-terminal domain is involved in DNA binding. This arrangement of functional domains could in part allow TraM to receive the mating signal generated by donor-recipient contact and transfer it to the relaxosome, thereby triggering DNA transfer.
Collapse
Affiliation(s)
- Jun Lu
- Department of Biological Sciences, University of Alberta, Canada
| | | |
Collapse
|
25
|
Lu J, Zhao W, Frost LS. Mutational analysis of TraM correlates oligomerization and DNA binding with autoregulation and conjugative DNA transfer. J Biol Chem 2004; 279:55324-33. [PMID: 15509578 DOI: 10.1074/jbc.m409352200] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
F plasmid TraM, an autoregulatory homotetramer, is essential for F plasmid bacterial conjugative transfer, one of the major mechanisms for horizontal gene dissemination. TraM cooperatively binds to three sites (sbmA, -B, and -C) near the origin of transfer in the F plasmid. To examine whether or not tetramerization of TraM is required for autoregulation and F conjugation, we used a two-plasmid system to screen for autoregulation-defective traM mutants generated by random PCR mutagenesis. A total of 72 missense mutations in TraM affecting autoregulation were selected, all of which also resulted in a loss of TraM function during F conjugation. Mutational analysis of TraM defined three regions important for F conjugation, including residues 3-10 (region I), 31-53 (region II), and 80-121 (region III); in addition, residues 3-47 were also important for the immunoreactivity of TraM. Biochemical analysis of mutant proteins indicated that region I defined a DNA binding domain that was not involved in tetramerization, whereas regions II and III were important for both tetramerization and efficient DNA binding. Mutations in region III affected the cooperativity of binding of TraM to sbmA, -B, and -C. Our results suggest that tetramerization is important for specific DNA binding, which, in turn, is essential for traM autoregulation and F conjugation. These findings support the hypothesis that TraM functions as a "signaling" factor that triggers DNA transport during F conjugation.
Collapse
Affiliation(s)
- Jun Lu
- Department of Biological Sciences, CW405 Biological Sciences Building, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | | | | |
Collapse
|
26
|
Engledow AS, Medrano EG, Mahenthiralingam E, LiPuma JJ, Gonzalez CF. Involvement of a plasmid-encoded type IV secretion system in the plant tissue watersoaking phenotype of Burkholderia cenocepacia. J Bacteriol 2004; 186:6015-24. [PMID: 15342570 PMCID: PMC515160 DOI: 10.1128/jb.186.18.6015-6024.2004] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2004] [Accepted: 06/16/2004] [Indexed: 01/04/2023] Open
Abstract
Burkholderia cenocepacia strain K56-2, a representative of the Burkholderia cepacia complex, is part of the epidemic and clinically problematic ET12 lineage. The strain produced plant tissue watersoaking (ptw) on onion tissue, which is a plant disease-associated trait. Using plasposon mutagenesis, mutants in the ptw phenotype were generated. The translated sequence of a disrupted gene (ptwD4) from a ptw-negative mutant showed homology to VirD4-like proteins. Analysis of the region proximal to the transfer gene homolog identified a gene cluster located on the 92-kb resident plasmid that showed homology to type IV secretion systems. The role of ptwD4, ptwC, ptwB4, and ptwB10 in the expression of ptw activity was determined by conducting site-directed mutagenesis. The ptw phenotype was not expressed by K56-2 derivatives with a disruption in ptwD4, ptwB4, or ptwB10 but was observed in a derivative with a disruption in ptwC. Complementation of ptw-negative K56-2 derivatives in trans resulted in complete restoration of the ptw phenotype. In addition, analysis of culture supernatants revealed that the putative ptw effector(s) was a secreted, heat-stable protein(s) that caused plasmolysis of plant protoplasts. A second chromosomally encoded type IV secretion system with complete homology to the VirB-VirD system was identified in K56-2. Site-directed mutagenesis of key secretory genes in the VirB-VirD system did not affect expression of the ptw phenotype. Our findings indicate that in strain K56-2, the plasmid-encoded Ptw type IV secretion system is responsible for the secretion of a plant cytotoxic protein(s).
Collapse
Affiliation(s)
- Amanda S Engledow
- Department of Plant Pathology & Microbiology, Texas A&M University, 2132 TAMU, College Station, TX 77843, USA
| | | | | | | | | |
Collapse
|
27
|
Abstract
Bacteria use type IV secretion systems (T4SS) to translocate macromolecular substrates destined for bacterial, plant or human target cells. The T4SS are medically important, contributing to virulence-gene spread, genome plasticity and the alteration of host cellular processes during infection. The T4SS are ancestrally related to bacterial conjugation machines, but present-day functions include (i) conjugal transfer of DNA by cell-to-cell contact, (ii) translocation of effector molecules to eukaryotic target cells, and (iii) DNA uptake from or release to the extracellular milieu. Rapid progress has been made toward identification of type IV secretion substrates and the requirements for substrate recognition.
Collapse
Affiliation(s)
- Zhiyong Ding
- Department of Microbiology and Molecular Genetics, The University of Texas-Houston Medical School, Houston, TX 77030, USA
| | | | | |
Collapse
|
28
|
Harley MJ, Schildbach JF. Swapping single-stranded DNA sequence specificities of relaxases from conjugative plasmids F and R100. Proc Natl Acad Sci U S A 2003; 100:11243-8. [PMID: 14504391 PMCID: PMC208742 DOI: 10.1073/pnas.2035001100] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2003] [Indexed: 11/18/2022] Open
Abstract
Conjugative plasmid transfer is an important mechanism for diversifying prokaryotic genomes and disseminating antibiotic resistance. Relaxases are conjugative plasmid-encoded proteins essential for plasmid transfer. Relaxases bind and cleave one plasmid strand site- and sequence-specifically before transfer of the cleaved strand. TraI36, a domain of F plasmid TraI that contains relaxase activity, binds a plasmid sequence in single-stranded form with subnanomolar KD and high sequence specificity. Despite 91% amino acid sequence identity, TraI36 domains from plasmids F and R100 discriminate between binding sites. The binding sites differ by 2 of 11 bases, but both proteins bind their cognate site with three orders of magnitude higher affinity than the other site. To identify specificity determinants, we generated variants having R100 amino acids in the F TraI36 background. Although most retain F specificity, the Q193R/R201Q variant binds the R100 site with 10-fold greater affinity than the F site. The reverse switch (R193Q/Q201R) in R100 TraI36 confers a wild-type F specificity on the variant. Nonadditivity of individual amino acid and base contributions to recognition suggests that the specificity difference derives from multiple interactions. The F TraI36 crystal structure shows positions 193 and 201 form opposite sides of a pocket within the binding cleft, suggesting binding involves knob-into-hole interactions. Specificity is presumably modulated by altering the composition of the pocket. Our results demonstrate that F-like relaxases can switch between highly sequence-specific recognition of different sequences with minimal amino acid substitution.
Collapse
Affiliation(s)
- Matthew J Harley
- Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | | |
Collapse
|
29
|
Francia MV, Clewell DB. Transfer origins in the conjugative Enterococcus faecalis plasmids pAD1 and pAM373: identification of the pAD1 nic site, a specific relaxase and a possible TraG-like protein. Mol Microbiol 2002; 45:375-95. [PMID: 12123451 DOI: 10.1046/j.1365-2958.2002.03007.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The Enterococcus faecalis conjugative plasmids pAD1 and pAM373 encode a mating response to the peptide sex pheromones cAD1 and cAM373 respectively. Sequence determination of both plasmids has recently been completed with strong similarity evident over many of the structural genes related to conjugation. pAD1 has two origins of transfer, with oriT1 being located within the repA determinant, whereas the more efficiently utilized oriT2 is located between orf53 and orf57, two genes found in the present study to be essential for conjugation. We have found a similarly located oriT to be present in pAM373. oriT2 corresponds to about 285 bp based on its ability to facilitate mobilization by pAD1 when ligated to the shuttle vector pAM401; however, it was not mobilized by pAM373. In contrast, a similarly ligated fragment containing the oriT of pAM373 did not facilitate mobilization by pAD1 but was efficiently mobilized by pAM373. The oriT sites of the two plasmids each contained a homologous large inverted repeat (spanning about 140 bp) adjacent to a series of non-homologous short (6 bp) direct repeats. A hybrid construction containing the inverted repeat of pAM373 and direct repeats of pAD1 was mobilized efficiently by pAD1 but not by pAM373, indicating a significantly greater degree of specificity is associated with the direct repeats. Mutational (deletion) analyses of the pAD1 oriT2 inverted repeat structure suggested its importance in facilitating transfer or perhaps ligation of the ends of the newly transferred DNA strand. Analyses showed that Orf57 (to be called TraX) is the relaxase, which was found to induce a specific nick in the large inverted repeat inside oriT; the protein also facilitated site-specific recombination between two oriT2 sites. Orf53 (to be called TraW) exhibits certain structural similarities to TraG-like proteins, although there is little overall homology.
Collapse
Affiliation(s)
- M Victoria Francia
- Department of Biologic and Materials Sciences, School of Dentistry, The University of Michigan, Ann Arbor, 48109, USA
| | | |
Collapse
|
30
|
Lu J, Manchak J, Klimke W, Davidson C, Firth N, Skurray RA, Frost LS. Analysis and characterization of the IncFV plasmid pED208 transfer region. Plasmid 2002; 48:24-37. [PMID: 12206753 DOI: 10.1016/s0147-619x(02)00007-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
pED208 is a transfer-derepressed mutant of the IncFV plasmid, F(0)lac, which has an IS2 element inserted in its traY gene, resulting in constitutive overexpression of its transfer (tra) region. The pED208 transfer region, which encodes proteins responsible for pilus synthesis and conjugative plasmid transfer, was sequenced and found to be very similar to the F tra region in terms of its organization although most pED208 tra proteins share only about 45% amino acid identity. All the essential genes for F transfer had homologs within the pED208 transfer region with the exception of traQ, which encodes the chaperone for stable F-pilin expression. F(0)lac appears to have a fertility inhibition system different than the FinOP system of other F-like plasmids, and its transfer efficiency was increased in the presence of F or R100, suggesting that it could be mobilized by these plasmids. The F-like transfer systems specified by F, R100, and F(0)lac were highly specific for their cognate origins of transfer (oriT) as measured by their abilities to mobilize chimeric oriT-containing plasmids.
Collapse
Affiliation(s)
- Jun Lu
- Department of Biological Sciences, CW405 Biological Sciences Building, University of Alberta, Edmonton, Alberta, Canada T6G 2E9
| | | | | | | | | | | | | |
Collapse
|
31
|
Fekete RA, Frost LS. Characterizing the DNA contacts and cooperative binding of F plasmid TraM to its cognate sites at oriT. J Biol Chem 2002; 277:16705-11. [PMID: 11875064 DOI: 10.1074/jbc.m111682200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
TraM is a DNA binding protein required for conjugative transfer of the self-transmissible IncF group of plasmids, including F, R1, and R100. F TraM binds to three sites in F oriT: two high affinity binding sites, sbmA and sbmB, which are direct repeats of nearly identical sequence involved in the autoregulation of the traM gene; and a lower affinity site, sbmC, an inverted repeat important for transfer, which is situated nearest to the nic site where transfer originates. TraM bound cooperatively to its binding sites at oriT; the presence of sbmA and sbmB increased the affinity for sbmC 10-fold. Bending of oriT DNA by TraM was minimal, suggesting that TraM, a tetramer, was able to loop the DNA when bound to sbmA and sbmB simultaneously. Hydroxyl radical footprinting of DNA of sbmA and sbmC revealed that TraM contacted the DNA within a region previously delineated by DNase I footprinting. TraM protected the CT bases within the sequence CTAG, which occurred at 12-base intervals on the top and bottom strand of sbmA, most consistently with other protected bases. The footprint on sbmC revealed that the predicted inverted repeats were protected by TraM with a pattern that began at the center of the repeats and radiated outward at 11-12 base intervals toward the 5'-ends of either strand. At high protein concentrations, this pattern extended beyond the footprint defined by DNase I, suggesting that the DNA was wrapped around the protein forming a nucleosome-like structure, which could aid in preparing the DNA for transfer.
Collapse
Affiliation(s)
- Richard A Fekete
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | | |
Collapse
|
32
|
Stern JC, Schildbach JF. DNA recognition by F factor TraI36: highly sequence-specific binding of single-stranded DNA. Biochemistry 2001; 40:11586-95. [PMID: 11560509 DOI: 10.1021/bi010877q] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The TraI protein has two essential roles in transfer of conjugative plasmid F Factor. As part of a complex of DNA-binding proteins, TraI introduces a site- and strand-specific nick at the plasmid origin of transfer (oriT), cutting the DNA strand that is transferred to the recipient cell. TraI also acts as a helicase, presumably unwinding the plasmid strands prior to transfer. As an essential feature of its nicking activity, TraI is capable of binding and cleaving single-stranded DNA oligonucleotides containing an oriT sequence. The specificity of TraI DNA recognition was examined by measuring the binding of oriT oligonucleotide variants to TraI36, a 36-kD amino-terminal domain of TraI that retains the sequence-specific nucleolytic activity. TraI36 recognition is highly sequence-specific for an 11-base region of oriT, with single base changes reducing affinity by as much as 8000-fold. The binding data correlate with plasmid mobilization efficiencies: plasmids containing sequences bound with lower affinities by TraI36 are transferred between cells at reduced frequencies. In addition to the requirement for high affinity binding to oriT, efficient in vitro nicking and in vivo plasmid mobilization requires a pyrimidine immediately 5' of the nick site. The high sequence specificity of TraI single-stranded DNA recognition suggests that despite its recognition of single-stranded DNA, TraI is capable of playing a major regulatory role in initiation and/or termination of plasmid transfer.
Collapse
Affiliation(s)
- J C Stern
- Department of Biology, The Johns Hopkins University, Baltimore, Maryland 21218, USA
| | | |
Collapse
|
33
|
Karl W, Bamberger M, Zechner EL. Transfer protein TraY of plasmid R1 stimulates TraI-catalyzed oriT cleavage in vivo. J Bacteriol 2001; 183:909-14. [PMID: 11208788 PMCID: PMC94957 DOI: 10.1128/jb.183.3.909-914.2001] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The effect of TraY protein on TraI-catalyzed strand scission at the R1 transfer origin (oriT) in vivo was investigated. As expected, the cleavage reaction was not detected in Escherichia coli cells expressing tral and the integration host factor (IHF) in the absence of other transfer proteins. The TraM dependence of strand scission was found to be inversely correlated with the presence of TraY. Thus, the TraY and TraM proteins could each enhance cleaving activity at oriT in the absence of the other. In contrast, no detectable intracellular cleaving activity was exhibited by TraI in an IHF mutant strain despite the additional presence of both TraM and TraY. An essential role for IHF in this reaction in vivo is, therefore, implied. Mobilization experiments employing recombinant R1 oriT constructions and a heterologous conjugative helper plasmid were used to investigate the independent contributions of TraY and TraM to the R1 relaxosome during bacterial conjugation. In accordance with earlier observations, traY was dispensable for mobilization in the presence of traM, but mobilization did not occur in the absence of both traM and traY. Interestingly, although the cleavage assays demonstrate that TraM and TraY independently promote strand scission in vivo, TraM remained essential for mobilization of the R1 origin even in the presence of TraY. These findings suggest that, whereas TraY and TraM function may overlap to a certain extent in the R1 relaxosome, TraM additionally performs a second function that is essential for successful conjugative transmission of plasmid DNA.
Collapse
Affiliation(s)
- W Karl
- Institut für Molekularbiologie, Biochemie und Mikrobiologie, Karl-Franzens-Universität Graz, A-8010 Graz, Austria
| | | | | |
Collapse
|