1
|
Two-step chromosome segregation in the stalked budding bacterium Hyphomonas neptunium. Nat Commun 2019; 10:3290. [PMID: 31337764 PMCID: PMC6650430 DOI: 10.1038/s41467-019-11242-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 06/28/2019] [Indexed: 12/11/2022] Open
Abstract
Chromosome segregation typically occurs after replication has finished in eukaryotes but during replication in bacteria. Here, we show that the alphaproteobacterium Hyphomonas neptunium, which proliferates by bud formation at the tip of a stalk-like cellular extension, segregates its chromosomes in a unique two-step process. First, the two sister origin regions are targeted to opposite poles of the mother cell, driven by the ParABS partitioning system. Subsequently, once the bulk of chromosomal DNA has been replicated and the bud exceeds a certain threshold size, the cell initiates a second segregation step during which it transfers the stalk-proximal origin region through the stalk into the nascent bud compartment. Thus, while chromosome replication and segregation usually proceed concurrently in bacteria, the two processes are largely uncoupled in H. neptunium, reminiscent of eukaryotic mitosis. These results indicate that stalked budding bacteria have evolved specific mechanisms to adjust chromosome segregation to their unusual life cycle.
Collapse
|
2
|
DNA-Membrane Anchor Facilitates Efficient Chromosome Translocation at a Distance in Bacillus subtilis. mBio 2019; 10:mBio.01117-19. [PMID: 31239381 PMCID: PMC6593407 DOI: 10.1128/mbio.01117-19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
To properly segregate their chromosomes, organisms tightly regulate the organization and dynamics of their DNA. Aspects of the process by which DNA is translocated during sporulation are not yet fully understood, such as what factors indirectly influence the activity of the motor protein SpoIIIE. In this work, we have shown that a DNA-membrane tether mediated by RacA contributes to the activity of SpoIIIE. Loss of RacA nearly doubles the time of translocation, despite the physically distinct locations these proteins and their activities occupy within the cell. This is a rare example of an explicit effect that DNA-membrane connections can have on cell physiology and demonstrates that distant changes to the state of the chromosome can influence motor proteins which act upon it. Chromosome segregation in sporulating Bacillus subtilis involves the tethering of sister chromosomes at opposite cell poles. RacA is known to mediate chromosome tethering by interacting with both centromere-like elements in the DNA and with DivIVA, a membrane protein which localizes to the cell poles. RacA has a secondary function in which it assists in nucleoid condensation. Here we demonstrate that, in addition to positioning and condensing the chromosome, RacA contributes to efficient transport of DNA by the chromosome segregation motor SpoIIIE. When RacA is deleted, one-quarter of cells fail to capture DNA in the nascent spore, yet 70% of cells fail to form viable spores without RacA. This discrepancy indicates that RacA possesses a role in sporulation beyond DNA capture and condensation. We observed that the mutant cells had reduced chromosome translocation into the forespore across the entire length of the chromosome, requiring nearly twice as much time to move a given DNA locus. Additionally, functional abolition of the RacA-DivIVA interaction reduced translocation to a similar degree as in a racA deletion strain, demonstrating the importance of the RacA-mediated tether in translocation and chromosome packaging during sporulation. We propose that the DNA-membrane anchor facilitates efficient translocation by SpoIIIE, not through direct protein-protein contacts but by virtue of physical effects on the chromosome that arise from anchoring DNA at a distance.
Collapse
|
3
|
Slager J, Veening JW. Hard-Wired Control of Bacterial Processes by Chromosomal Gene Location. Trends Microbiol 2016; 24:788-800. [PMID: 27364121 PMCID: PMC5034851 DOI: 10.1016/j.tim.2016.06.003] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 05/31/2016] [Accepted: 06/08/2016] [Indexed: 12/23/2022]
Abstract
Bacterial processes, such as stress responses and cell differentiation, are controlled at many different levels. While some factors, such as transcriptional regulation, are well appreciated, the importance of chromosomal gene location is often underestimated or even completely neglected. A combination of environmental parameters and the chromosomal location of a gene determine how many copies of its DNA are present at a given time during the cell cycle. Here, we review bacterial processes that rely, completely or partially, on the chromosomal location of involved genes and their fluctuating copy numbers. Special attention will be given to the several different ways in which these copy-number fluctuations can be used for bacterial cell fate determination or coordination of interdependent processes in a bacterial cell.
Collapse
Affiliation(s)
- Jelle Slager
- Molecular Genetics Group, Groningen Biomolecular Sciences and Biotechnology Institute, Centre for Synthetic Biology, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - Jan-Willem Veening
- Molecular Genetics Group, Groningen Biomolecular Sciences and Biotechnology Institute, Centre for Synthetic Biology, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands.
| |
Collapse
|
4
|
Meeske AJ, Rodrigues CDA, Brady J, Lim HC, Bernhardt TG, Rudner DZ. High-Throughput Genetic Screens Identify a Large and Diverse Collection of New Sporulation Genes in Bacillus subtilis. PLoS Biol 2016; 14:e1002341. [PMID: 26735940 PMCID: PMC4703394 DOI: 10.1371/journal.pbio.1002341] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 11/25/2015] [Indexed: 01/09/2023] Open
Abstract
The differentiation of the bacterium Bacillus subtilis into a dormant spore is among the most well-characterized developmental pathways in biology. Classical genetic screens performed over the past half century identified scores of factors involved in every step of this morphological process. More recently, transcriptional profiling uncovered additional sporulation-induced genes required for successful spore development. Here, we used transposon-sequencing (Tn-seq) to assess whether there were any sporulation genes left to be discovered. Our screen identified 133 out of the 148 genes with known sporulation defects. Surprisingly, we discovered 24 additional genes that had not been previously implicated in spore formation. To investigate their functions, we used fluorescence microscopy to survey early, middle, and late stages of differentiation of null mutants from the B. subtilis ordered knockout collection. This analysis identified mutants that are delayed in the initiation of sporulation, defective in membrane remodeling, and impaired in spore maturation. Several mutants had novel sporulation phenotypes. We performed in-depth characterization of two new factors that participate in cell–cell signaling pathways during sporulation. One (SpoIIT) functions in the activation of σE in the mother cell; the other (SpoIIIL) is required for σG activity in the forespore. Our analysis also revealed that as many as 36 sporulation-induced genes with no previously reported mutant phenotypes are required for timely spore maturation. Finally, we discovered a large set of transposon insertions that trigger premature initiation of sporulation. Our results highlight the power of Tn-seq for the discovery of new genes and novel pathways in sporulation and, combined with the recently completed null mutant collection, open the door for similar screens in other, less well-characterized processes. Transposon sequencing enables the recovery of virtually all previously characterized genes required for the differentiation of the bacterium Bacillus subtilis into a dormant spore and identifies 24 new ones. When starved of nutrients, the bacterium Bacillus subtilis differentiates into a dormant spore that is impervious to environmental insults. Decades of research have uncovered over 100 genes required for spore formation. Molecular dissection of these genes has revealed factors that act at every stage of this developmental process. In this study, we used a high-throughput genetic screening method called transposon sequencing to assess whether there were any sporulation genes left to be discovered. This approach identified virtually all of the known sporulation genes, as well as 24 new ones. Furthermore, transposon sequencing enabled the discovery of two new sets of mutants in which the sporulation process was either delayed or accelerated. Using fluorescence microscopy, we determined the developmental stage at which each mutant was impaired and discovered mutants that are delayed in initiation of sporulation, or defective in morphogenesis, cell–cell signaling, or spore maturation. Our findings exemplify the utility of transposon sequencing to uncover new biology in well-studied processes, suggesting that it could similarly be used to identify novel genes required for other aspects of bacterial physiology, such as natural competence, stationary phase survival, or the responses to cell envelope stress and DNA damage.
Collapse
Affiliation(s)
- Alexander J. Meeske
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Christopher D. A. Rodrigues
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jacqueline Brady
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Hoong Chuin Lim
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Thomas G. Bernhardt
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - David Z. Rudner
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
5
|
Abstract
The Gram-positive bacterium Bacillus subtilis initiates the formation of an endospore in response to conditions of nutrient limitation. The morphological differentiation that spores undergo initiates with the formation of an asymmetric septum near to one pole of the cell, forming a smaller compartment, the forespore, and a larger compartment, the mother cell. This process continues with the complex morphogenesis of the spore as governed by an intricate series of interactions between forespore and mother cell proteins across the inner and outer forespore membranes. Given that these interactions occur at a particular place in the cell, a critical question is how the proteins involved in these processes get properly targeted, and we discuss recent progress in identifying mechanisms responsible for this targeting.
Collapse
|
6
|
Coupling of σG activation to completion of engulfment during sporulation of Bacillus subtilis survives large perturbations to DNA translocation and replication. J Bacteriol 2012; 194:6264-71. [PMID: 22984259 DOI: 10.1128/jb.01470-12] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Spore formation in Bacillus subtilis is characterized by activation of RNA polymerase sigma factors, including the late-expressed σ(G). During spore formation an asymmetric division occurs, yielding the smaller prespore and the larger mother cell. At division, only 30% of the chromosome is in the prespore, and the rest is then translocated into the prespore. Following completion of engulfment of the prespore by the mother cell, σ(G) is activated in the prespore. Here we tested the link between engulfment and σ(G) activation by perturbing DNA translocation and replication, which are completed before engulfment. One approach was to have large DNA insertions in the chromosome; the second was to have an impaired DNA translocase; the third was to use a strain in which the site of termination of chromosome replication was relocated. Insertion of 2.3 Mb of Synechocystis DNA into the B. subtilis genome had the largest effect, delaying engulfment by at least 90 min. Chromosome translocation was also delayed and was completed shortly before the completion of engulfment. Despite the delay, σ(G) became active only after the completion of engulfment. All results are consistent with a strong link between completion of engulfment and σ(G) activation. They support a link between completion of chromosome translocation and completion of engulfment.
Collapse
|
7
|
Diez V, Schujman GE, Gueiros-Filho FJ, de Mendoza D. Vectorial signalling mechanism required for cell-cell communication during sporulation in Bacillus subtilis. Mol Microbiol 2011; 83:261-74. [PMID: 22111992 DOI: 10.1111/j.1365-2958.2011.07929.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Spore formation in Bacillus subtilis takes place in a sporangium consisting of two chambers, the forespore and the mother cell, which are linked by pathways of cell-cell communication. One pathway, which couples the proteolytic activation of the mother cell transcription factor σ(E) to the action of a forespore synthesized signal molecule, SpoIIR, has remained enigmatic. Signalling by SpoIIR requires the protein to be exported to the intermembrane space between forespore and mother cell, where it will interact with and activate the integral membrane protease SpoIIGA. Here we show that SpoIIR signal activity as well as the cleavage of its N-terminal extension is strictly dependent on the prespore fatty acid biosynthetic machinery. We also report that a conserved threonine residue (T27) in SpoIIR is required for processing, suggesting that signalling of SpoIIR is dependent on fatty acid synthesis probably because of acylation of T27. In addition, SpoIIR localization in the forespore septal membrane depends on the presence of SpoIIGA. The orchestration of σ(E) activation in the intercellular space by an acylated signal protein provides a new paradigm to ensure local transmission of a weak signal across the bilayer to control cell-cell communication during development.
Collapse
Affiliation(s)
- Veronica Diez
- Instituto de Biología Molecular y Celular de Rosario and Departamento de Microbiología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, 2000 Rosario, Argentina
| | | | | | | |
Collapse
|
8
|
Higgins D, Dworkin J. Recent progress in Bacillus subtilis sporulation. FEMS Microbiol Rev 2011; 36:131-48. [PMID: 22091839 DOI: 10.1111/j.1574-6976.2011.00310.x] [Citation(s) in RCA: 327] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2011] [Revised: 08/25/2011] [Accepted: 09/02/2011] [Indexed: 11/29/2022] Open
Abstract
The Gram-positive bacterium Bacillus subtilis can initiate the process of sporulation under conditions of nutrient limitation. Here, we review some of the last 5 years of work in this area, with a particular focus on the decision to initiate sporulation, DNA translocation, cell-cell communication, protein localization and spore morphogenesis. The progress we describe has implications not only just for the study of sporulation but also for other biological systems where homologs of sporulation-specific proteins are involved in vegetative growth.
Collapse
Affiliation(s)
- Douglas Higgins
- Department of Microbiology and Immunology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | | |
Collapse
|
9
|
Regulation of growth of the mother cell and chromosome replication during sporulation of Bacillus subtilis. J Bacteriol 2011; 193:3117-26. [PMID: 21478340 DOI: 10.1128/jb.00204-11] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
During spore formation, Bacillus subtilis divides asymmetrically, resulting in two cells with different fates. Immediately after division, the transcription factor σ(F) becomes active in the smaller prespore, followed by activation of σ(E) in the larger mother cell. We recently showed that a delay in σ(E) activation resulted in the novel phenotype of two spores (twins) forming within the same mother cell. Mother cells bearing twins are substantially longer than mother cells with single spores. Here we explore the regulation of the growth and DNA replication of the mother cell. We find that length correlates with chromosome number in the mother cell. We show that replication and growth could occur after asymmetric division in mother cells with no active σ(E). In contrast, when σ(E) was active, replication and growth ceased. In growing mother cells, with no active σ(E), Spo0A-directed transcription levels remained low. In the presence of active σ(E), Spo0A-directed gene expression was enhanced in the mother cells. Artificial Spo0A activation blocked mother cell growth in the absence of σ(E). Spo0A activation blocked growth even in the absence of SirA, the Spo0A-directed inhibitor of the initiation of replication. Together, the results indicate that the burst of Spo0A-directed expression along with the activation of σ(E) provides mechanisms to block the DNA replication and growth of the mother cell.
Collapse
|
10
|
Loss of compartmentalization of σ(E) activity need not prevent formation of spores by Bacillus subtilis. J Bacteriol 2010; 192:5616-24. [PMID: 20802044 DOI: 10.1128/jb.00572-10] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Compartmentalization of the activities of RNA polymerase sigma factors is a hallmark of formation of spores by Bacillus subtilis. It is initiated soon after the asymmetrically located sporulation division takes place with the activation of σ(F) in the smaller cell, the prespore. σ(F) then directs a signal via the membrane protease SpoIIGA to activate σ(E) in the larger mother cell by processing of pro-σ(E). Here, we show that σ(E) can be activated in the prespore with little effect on sporulation efficiency, implying that complete compartmentalization of σ(E) activity is not essential for spore formation. σ(E) activity in the prespore can be obtained by inducing transcription in the prespore of spoIIGA or of sigE*, which encodes a constitutively active form of σ(E), but not of spoIIGB, which encodes pro-σ(E). We infer that σ(E) compartmentalization is partially attributed to a competition between the compartments for the activation signaling protein SpoIIR. Normally, SpoIIGA is predominantly located in the mother cell and as a consequence confines σ(E) activation to it. In addition, we find that CsfB, previously shown to inhibit σ(G), is independently inhibiting σ(E) activity in the prespore. CsfB thus appears to serve a gatekeeper function in blocking the action of two sigma factors in the prespore: it prevents σ(G) from becoming active before completion of engulfment and helps prevent σ(E) from becoming active at all.
Collapse
|
11
|
The threshold level of the sensor histidine kinase KinA governs entry into sporulation in Bacillus subtilis. J Bacteriol 2010; 192:3870-82. [PMID: 20511506 DOI: 10.1128/jb.00466-10] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Sporulation in Bacillus subtilis is controlled by a complex gene regulatory circuit that is activated upon nutrient deprivation. The initial process is directed by the phosphorelay, involving the major sporulation histidine kinase (KinA) and two additional phosphotransferases (Spo0F and Spo0B), that activates the master transcription factor Spo0A. Little is known about the initial event and mechanisms that trigger sporulation. Using a strain in which the synthesis of KinA is under the control of an IPTG (isopropyl-beta-d-thiogalactopyranoside)-inducible promoter, here we demonstrate that inducing the synthesis of the KinA beyond a certain level leads to the entry of the irreversible process of sporulation irrespective of nutrient availability. Moreover, the engineered cells expressing KinA under a sigma(H)-dependent promoter that is similar to but stronger than the endogenous kinA promoter induce sporulation during growth. These cells, which we designated COS (constitutive sporulation) cells, exhibit the morphology and properties of sporulating cells and express sporulation marker genes under nutrient-rich conditions. Thus, we created an engineered strain displaying two cell cycles (growth and sporulation) integrated into one cycle irrespective of culture conditions, while in the wild type, the appropriate cell fate decision is made depending on nutrient availability. These results suggest that the threshold level of the major sporulation kinase acts as a molecular switch to determine cell fate and may rule out the possibility that the activity of KinA is regulated in response to the unknown signal(s).
Collapse
|
12
|
Getting in the loop: regulation of development in Caulobacter crescentus. Microbiol Mol Biol Rev 2010; 74:13-41. [PMID: 20197497 DOI: 10.1128/mmbr.00040-09] [Citation(s) in RCA: 180] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Caulobacter crescentus is an aquatic Gram-negative alphaproteobacterium that undergoes multiple changes in cell shape, organelle production, subcellular distribution of proteins, and intracellular signaling throughout its life cycle. Over 40 years of research has been dedicated to this organism and its developmental life cycles. Here we review a portion of many developmental processes, with particular emphasis on how multiple processes are integrated and coordinated both spatially and temporally. While much has been discovered about Caulobacter crescentus development, areas of potential future research are also highlighted.
Collapse
|
13
|
Abstract
Simple visual inspection of bacteria indicated that, at least in some otherwise symmetric cells, structures such as flagella were often seen at a single pole. Because these structures are composed of proteins, it was not clear how to reconcile these observations of morphological asymmetry with the widely held view of bacteria as unstructured "bags of enzymes." However, over the last decade, numerous GFP tagged proteins have been found at specific intracellular locations such as the poles of the cells, indicating that bacteria have a high degree of intracellular organization. Here we will explore the role of chromosomal asymmetry and the presence of "new" and "old" poles that result from the cytokinesis of rod-shaped cells in establishing bipolar and monopolar protein localization patterns. This article is intended to be illustrative, not exhaustive, so we have focused on examples drawn largely from Caulobacter crescentus and Bacillus subtilis, two bacteria that undergo dramatic morphological transformation. We will highlight how breaking monopolar symmetry is essential for the correct development of these organisms.
Collapse
Affiliation(s)
- Jonathan Dworkin
- Department of Microbiology, College of Physicians and Surgeons, Columbia University, New York 10032, USA.
| |
Collapse
|
14
|
Wagner JK, Marquis KA, Rudner DZ. SirA enforces diploidy by inhibiting the replication initiator DnaA during spore formation in Bacillus subtilis. Mol Microbiol 2009; 73:963-74. [PMID: 19682252 DOI: 10.1111/j.1365-2958.2009.06825.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
How cells maintain their ploidy is relevant to cellular development and disease. Here, we investigate the mechanism by which the bacterium Bacillus subtilis enforces diploidy as it differentiates into a dormant spore. We demonstrate that a sporulation-induced protein SirA (originally annotated YneE) blocks new rounds of replication by targeting the highly conserved replication initiation factor DnaA. We show that SirA interacts with DnaA and displaces it from the replication origin. As a result, expression of SirA during growth rapidly blocks replication and causes cell death in a DnaA-dependent manner. Finally, cells lacking SirA over-replicate during sporulation. These results support a model in which induction of SirA enforces diploidy by inhibiting replication initiation as B. subtilis cells develop into spores.
Collapse
Affiliation(s)
- Jennifer K Wagner
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, MA 02115, USA
| | | | | |
Collapse
|
15
|
Eldar A, Chary VK, Xenopoulos P, Fontes ME, Losón OC, Dworkin J, Piggot PJ, Elowitz MB. Partial penetrance facilitates developmental evolution in bacteria. Nature 2009; 460:510-4. [PMID: 19578359 PMCID: PMC2716064 DOI: 10.1038/nature08150] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2008] [Accepted: 05/15/2009] [Indexed: 11/09/2022]
Abstract
Development normally occurs similarly in all individuals within an isogenic population, but mutations often affect the fates of individual organisms differently. This phenomenon, known as partial penetrance, has been observed in diverse developmental systems. However, it remains unclear how the underlying genetic network specifies the set of possible alternative fates and how the relative frequencies of these fates evolve. Here we identify a stochastic cell fate determination process that operates in Bacillus subtilis sporulation mutants and show how it allows genetic control of the penetrance of multiple fates. Mutations in an intercompartmental signalling process generate a set of discrete alternative fates not observed in wild-type cells, including rare formation of two viable 'twin' spores, rather than one within a single cell. By genetically modulating chromosome replication and septation, we can systematically tune the penetrance of each mutant fate. Furthermore, signalling and replication perturbations synergize to significantly increase the penetrance of twin sporulation. These results suggest a potential pathway for developmental evolution between monosporulation and twin sporulation through states of intermediate twin penetrance. Furthermore, time-lapse microscopy of twin sporulation in wild-type Clostridium oceanicum shows a strong resemblance to twin sporulation in these B. subtilis mutants. Together the results suggest that noise can facilitate developmental evolution by enabling the initial expression of discrete morphological traits at low penetrance, and allowing their stabilization by gradual adjustment of genetic parameters.
Collapse
Affiliation(s)
- Avigdor Eldar
- Howard Hughes Medical Institute and Division of Biology and Department of Applied Physics, California Institute of Technology, Pasadena, California 91125, USA
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Camp AH, Losick R. A feeding tube model for activation of a cell-specific transcription factor during sporulation in Bacillus subtilis. Genes Dev 2009; 23:1014-24. [PMID: 19390092 DOI: 10.1101/gad.1781709] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Spore formation by Bacillus subtilis takes place in a sporangium consisting of two chambers, the forespore and the mother cell, which are linked by pathways of intercellular communication. One pathway, which couples the activation of the forespore transcription factor sigma(G) to the action of sigma(E) in the mother cell, has remained mysterious. Traditional models hold that sigma(E) initiates a signal transduction pathway that specifically activates sigma(G) in the forespore. Recent experiments indicating that the mother cell and forespore are joined by a channel have led to the suggestion that a specific regulator of sigma(G) is transported from the mother cell into the forespore. As we report here, however, the requirement for the channel is not limited to sigma(G). Rather, it is also required for the persistent activity of the early-acting forespore transcription factor sigma(F) as well as that of a heterologous RNA polymerase (that of phage T7). We infer that macromolecular synthesis in the forespore becomes dependent on the channel at intermediate stages of development. We propose that the channel is a gap junction-like feeding tube through which the mother cell nurtures the developing spore by providing small molecules needed for biosynthetic activity, including sigma(G)-directed gene activation.
Collapse
Affiliation(s)
- Amy H Camp
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachustts 02138, USA
| | | |
Collapse
|
17
|
Burton BM, Marquis KA, Sullivan NL, Rapoport TA, Rudner DZ. The ATPase SpoIIIE transports DNA across fused septal membranes during sporulation in Bacillus subtilis. Cell 2008; 131:1301-12. [PMID: 18160039 DOI: 10.1016/j.cell.2007.11.009] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2007] [Revised: 10/18/2007] [Accepted: 11/02/2007] [Indexed: 11/18/2022]
Abstract
The FtsK/SpoIIIE family of ATP-dependent DNA transporters mediates proper chromosome segregation in dividing bacteria. In sporulating Bacillus subtilis cells, SpoIIIE translocates much of the circular chromosome from the mother cell into the forespore, but the molecular mechanism remains unclear. Using a new assay to monitor DNA transport, we demonstrate that the two arms of the chromosome are simultaneously pumped into the forespore. Up to 70 molecules of SpoIIIE are recruited to the site of DNA translocation and assemble into complexes that could contain 12 subunits. The fusion of the septal membranes during cytokinesis precedes DNA translocation and does not require SpoIIIE, as suggested by analysis of lipid dynamics, serial thin-section electron microscopy, and cell separation by protoplasting. These data support a model for DNA transport in which the transmembrane segments of FtsK/SpoIIIE form linked DNA-conducting channels across the two lipid bilayers of the septum.
Collapse
Affiliation(s)
- Briana M Burton
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
18
|
Bogush M, Xenopoulos P, Piggot PJ. Separation of chromosome termini during sporulation of Bacillus subtilis depends on SpoIIIE. J Bacteriol 2007; 189:3564-72. [PMID: 17322320 PMCID: PMC1855901 DOI: 10.1128/jb.01949-06] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacillus subtilis undergoes a highly distinctive division during spore formation. It yields two unequal cells, the mother cell and the prespore, and septum formation is completed before the origin-distal 70% of the chromosome has entered the smaller prespore. The mother cell subsequently engulfs the prespore. Two different probes were used to study the behavior of the terminus (ter) region of the chromosome during spore formation. Only one ter region was observed at the time of sporulation division. A second ter region, indicative of chromosome separation, was not distinguishable until engulfment was nearing completion, when one was in the mother cell and the other in the prespore. Separation of the two ter regions depended on the DNA translocase SpoIIIE. It is concluded that SpoIIIE is required during spore formation for chromosome separation as well as for translocation; SpoIIIE is not required for separation during vegetative growth.
Collapse
Affiliation(s)
- Marina Bogush
- Department of Microbiology and Immunology, Temple University School of Medicine, 3400 North Broad Street, Philadelphia, PA 19140, USA
| | | | | |
Collapse
|
19
|
Igoshin OA, Price CW, Savageau MA. Signalling network with a bistable hysteretic switch controls developmental activation of the sigma transcription factor in Bacillus subtilis. Mol Microbiol 2006; 61:165-84. [PMID: 16824103 DOI: 10.1111/j.1365-2958.2006.05212.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The sporulation process of the bacterium Bacillus subtilis unfolds by means of separate but co-ordinated programmes of gene expression within two unequal cell compartments, the mother cell and the smaller forespore. sigmaF is the first compartment-specific transcription factor activated during this process, and it is controlled at the post-translational level by a partner-switching mechanism that restricts sigmaF activity to the forespore. The crux of this mechanism lies in the ability of the anti-sigma factor SpoIIAB (AB) to form alternative complexes either with sigmaF, holding it in an inactive form, or with the anti-anti-sigma factor SpoIIAA (AA) and a nucleotide, either ATP or ADP. In the complex with AB and ATP, AA is phosphorylated on a serine residue and released, making AB available to capture sigmaF in an inactive complex. Subsequent activation of sigmaF requires the intervention of the SpoIIE serine phosphatase to dephosphorylate AA, which can then attack the AB-sigmaF complex to induce the release of sigmaF. By incorporating biochemical, biophysical and genetic data from the literature we have constructed an integrative mathematical model of this partner-switching network. The model predicts that the self-enhancing formation of a long-lived complex of AA, AB and ADP transforms the network into an essentially irreversible hysteretic switch, thereby explaining the sharp, robust and irreversible activation of sigmaF in the forespore compartment. The model also clarifies the contributions of the partly redundant mechanisms that ensure correct spatial and temporal activation of sigmaF, reproduces the behaviour of various mutants and makes strong, testable predictions.
Collapse
Affiliation(s)
- Oleg A Igoshin
- Department of Biomedical Engineering, One Shields Avenue, University of California, Davis, CA 95616, USA
| | | | | |
Collapse
|
20
|
McBride SM, Rubio A, Wang L, Haldenwang WG. Contributions of protein structure and gene position to the compartmentalization of the regulatory proteins sigma(E) and SpoIIE in sporulating Bacillus subtilis. Mol Microbiol 2005; 57:434-51. [PMID: 15978076 DOI: 10.1111/j.1365-2958.2005.04712.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
At an early stage in endospore formation Bacillus subtilis partitions itself into two dissimilar compartments with unique developmental fates. Transcription appropriate to each compartment is initiated by the activation of compartment-specific RNA polymerase sigma subunits, sigma(E) in the mother cell and sigma(F) in the forespore. Among the possible factors contributing to the compartment specificity of sigma(E) and sigma(F) is the selective accumulation of the sigma(E) protein in the mother cell and that of SpoIIE, a regulatory phosphatase essential to the activation of sigma(F), in the forespore. In the current work, fluorescent microscopy is used to investigate the contributions of sigma(E) and SpoIIE's protein structures, expression and the genetic asymmetry that develops during chromosome translocation into the forespore on their abundance in each compartment. Time of entry of the spoIIE and sigE genes into the forespore was found to have a significant effect on the enrichment of their products in one or the other compartment. In contrast, the structures of the proteins themselves do not appear to promote their transfer to a particular compartment, but nonetheless contribute to compartmentalization by facilitating degradation in the compartment where each protein's activity would be inappropriate.
Collapse
Affiliation(s)
- Shonna M McBride
- Department of Microbiology and Immunology, University of Texas Health Science Center, San Antonio, TX 78229-3900, USA
| | | | | | | |
Collapse
|
21
|
Steil L, Serrano M, Henriques AO, Völker U. Genome-wide analysis of temporally regulated and compartment-specific gene expression in sporulating cells of Bacillus subtilis. Microbiology (Reading) 2005; 151:399-420. [PMID: 15699190 DOI: 10.1099/mic.0.27493-0] [Citation(s) in RCA: 139] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Temporal and compartment-specific control of gene expression during sporulation inBacillus subtilisis governed by a cascade of four RNA polymerase subunits.σFin the prespore andσEin the mother cell control early stages of development, and are replaced at later stages byσGandσK, respectively. Ultimately, a comprehensive description of the molecular mechanisms underlying spore morphogenesis requires the knowledge of all the intervening genes and their assignment to specific regulons. Here, in an extension of earlier work, DNA macroarrays have been used, and members of the four compartment-specific sporulation regulons have been identified. Genes were identified and grouped based on: i) their temporal expression profile and ii) the use of mutants for each of the four sigma factors and abofAallele, which allowsσKactivation in the absence ofσG. As a further test, artificial production of active alleles of the sigma factors in non-sporulating cells was employed. A total of 439 genes were found, including previously characterized genes whose transcription is induced during sporulation: 55 in theσFregulon, 154σE-governed genes, 113σG-dependent genes, and 132 genes underσKcontrol. The results strengthen the view that the activities ofσF,σE,σGandσKare largely compartmentalized, both temporally as well as spatially, and that the major vegetative sigma factor (σA) is active throughout sporulation. The results provide a dynamic picture of the changes in the overall pattern of gene expression in the two compartments of the sporulating cell, and offer insight into the roles of the prespore and the mother cell at different times of spore morphogenesis.
Collapse
Affiliation(s)
- Leif Steil
- Ernst-Moritz-Arndt-University, Medical School, Laboratory for Functional Genomics, Walther-Rathenau-Str. 49A, D-17487 Greifswald, Germany
- Max-Planck-Institute for Terrestrial Microbiology, D-35043 Marburg, Germany
- Philipps-University Marburg, Department of Biology, Laboratory for Microbiology, D-35032 Marburg, Germany
| | - Mónica Serrano
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República, Apartado 127, 2781-901 Oeiras Codex, Portugal
| | - Adriano O Henriques
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República, Apartado 127, 2781-901 Oeiras Codex, Portugal
| | - Uwe Völker
- Ernst-Moritz-Arndt-University, Medical School, Laboratory for Functional Genomics, Walther-Rathenau-Str. 49A, D-17487 Greifswald, Germany
- Max-Planck-Institute for Terrestrial Microbiology, D-35043 Marburg, Germany
- Philipps-University Marburg, Department of Biology, Laboratory for Microbiology, D-35032 Marburg, Germany
| |
Collapse
|
22
|
Hilbert DW, Piggot PJ. Compartmentalization of gene expression during Bacillus subtilis spore formation. Microbiol Mol Biol Rev 2004; 68:234-62. [PMID: 15187183 PMCID: PMC419919 DOI: 10.1128/mmbr.68.2.234-262.2004] [Citation(s) in RCA: 252] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Gene expression in members of the family Bacillaceae becomes compartmentalized after the distinctive, asymmetrically located sporulation division. It involves complete compartmentalization of the activities of sporulation-specific sigma factors, sigma(F) in the prespore and then sigma(E) in the mother cell, and then later, following engulfment, sigma(G) in the prespore and then sigma(K) in the mother cell. The coupling of the activation of sigma(F) to septation and sigma(G) to engulfment is clear; the mechanisms are not. The sigma factors provide the bare framework of compartment-specific gene expression. Within each sigma regulon are several temporal classes of genes, and for key regulators, timing is critical. There are also complex intercompartmental regulatory signals. The determinants for sigma(F) regulation are assembled before septation, but activation follows septation. Reversal of the anti-sigma(F) activity of SpoIIAB is critical. Only the origin-proximal 30% of a chromosome is present in the prespore when first formed; it takes approximately 15 min for the rest to be transferred. This transient genetic asymmetry is important for prespore-specific sigma(F) activation. Activation of sigma(E) requires sigma(F) activity and occurs by cleavage of a prosequence. It must occur rapidly to prevent the formation of a second septum. sigma(G) is formed only in the prespore. SpoIIAB can block sigma(G) activity, but SpoIIAB control does not explain why sigma(G) is activated only after engulfment. There is mother cell-specific excision of an insertion element in sigK and sigma(E)-directed transcription of sigK, which encodes pro-sigma(K). Activation requires removal of the prosequence following a sigma(G)-directed signal from the prespore.
Collapse
Affiliation(s)
- David W Hilbert
- Department of Microbiology and Immunology, Temple University School of Medicine, 3400 N. Broad St., Philadelphia, PA 19140, USA
| | | |
Collapse
|
23
|
Middleton R, Hofmeister A. New shuttle vectors for ectopic insertion of genes into Bacillus subtilis. Plasmid 2004; 51:238-45. [PMID: 15109830 DOI: 10.1016/j.plasmid.2004.01.006] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2003] [Revised: 01/03/2004] [Indexed: 11/26/2022]
Abstract
We have constructed shuttle vectors for integration of genes via double homologous recombination into three ectopic sites on the chromosome of Bacillus subtilis. The sites of integration are the pyrD, gltA, and sacA genes located at 139 degrees, 172 degrees, and 333 degrees, respectively, on the chromosome. Integration of the vectors into the target genes leads to antibiotic resistance as well as different metabolic phenotypes. B. subtilis strains with integrations of the empty vectors were able to sporulate at rates comparable to wild type cells. Similar levels of expression were obtained from constitutive lacZ fusions integrated at the different sites.
Collapse
Affiliation(s)
- Rebecca Middleton
- Department of Plant and Microbial Biology, University of California, Berkeley, USA.
| | | |
Collapse
|
24
|
Abstract
The apparati behind the replication, transcription, and translation of prokaryotic and eukaryotic genes are quite different. Yet in both classes of organisms, genes may be organized in their respective chromosomes in similar ways by virtue of similarly acting selective forces. In addition, some gene organizations reflect biology unique to each class of organisms. Levels of organization are more complex than those of the simple operon. Multiple transcription units may be organized into larger units, local control regions may act over large chromosomal regions in eukaryotic chromosomes, and cis-acting genes may control the expression of downstream genes in all classes of organisms. All these mechanisms lead to genomes being far more organized, in both prokaryotes and eukaryotes, than hitherto imagined.
Collapse
Affiliation(s)
- Jeffrey G Lawrence
- Pittsburgh Bacteriophage Institute, Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA.
| |
Collapse
|
25
|
Fujita M, Losick R. The master regulator for entry into sporulation in Bacillus subtilis becomes a cell-specific transcription factor after asymmetric division. Genes Dev 2003; 17:1166-74. [PMID: 12730135 PMCID: PMC196045 DOI: 10.1101/gad.1078303] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Gene transcription at the onset of sporulation in Bacillus subtilis is governed by Spo0A, a member of the response regulator family of transcription factors. Spo0A is traditionally viewed as the master regulator for entry into development. We now report that Spo0A continues to function after the initiation phase of sporulation and that it becomes a cell-specific transcription factor when the sporangium is divided into a mother cell and forespore. We observed that (1) Spo0A and Spo0A-directed gene transcription reached high levels in the mother cell; (2) an activated form of Spo0A impaired sporulation when produced in the forespore but not when produced in the mother cell; and (3) an inhibitor of Spo0A called Spo0A-N impaired sporulation and Spo0A-directed transcription when produced in the mother cell but not when produced in the forespore. Spo0A-N, which corresponds to the NH(2)-terminal domain of Spo0A, was shown to compete with the full-length response regulator for phosphorylation by the phosphorelay protein Spo0B. We propose that Spo0A is the earliest-acting transcription factor in the mother-cell line of gene expression and that in terms of abundance and transcriptional activity Spo0A may function predominantly as a cell-specific regulatory protein.
Collapse
Affiliation(s)
- Masaya Fujita
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | | |
Collapse
|
26
|
Eichenberger P, Jensen ST, Conlon EM, van Ooij C, Silvaggi J, González-Pastor JE, Fujita M, Ben-Yehuda S, Stragier P, Liu JS, Losick R. The sigmaE regulon and the identification of additional sporulation genes in Bacillus subtilis. J Mol Biol 2003; 327:945-72. [PMID: 12662922 DOI: 10.1016/s0022-2836(03)00205-5] [Citation(s) in RCA: 190] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We report the identification and characterization on a genome-wide basis of genes under the control of the developmental transcription factor sigma(E) in Bacillus subtilis. The sigma(E) factor governs gene expression in the larger of the two cellular compartments (the mother cell) created by polar division during the developmental process of sporulation. Using transcriptional profiling and bioinformatics we show that 253 genes (organized in 157 operons) appear to be controlled by sigma(E). Among these, 181 genes (organized in 121 operons) had not been previously described as members of this regulon. Promoters for many of the newly identified genes were located by transcription start site mapping. To assess the role of these genes in sporulation, we created null mutations in 98 of the newly identified genes and operons. Of the resulting mutants, 12 (in prkA, ybaN, yhbH, ykvV, ylbJ, ypjB, yqfC, yqfD, ytrH, ytrI, ytvI and yunB) exhibited defects in spore formation. In addition, subcellular localization studies were carried out using in-frame fusions of several of the genes to the coding sequence for GFP. A majority of the fusion proteins localized either to the membrane surrounding the developing spore or to specific layers of the spore coat, although some fusions showed a uniform distribution in the mother cell cytoplasm. Finally, we used comparative genomics to determine that 46 of the sigma(E)-controlled genes in B.subtilis were present in all of the Gram-positive endospore-forming bacteria whose genome has been sequenced, but absent from the genome of the closely related but not endospore-forming bacterium Listeria monocytogenes, thereby defining a core of conserved sporulation genes of probable common ancestral origin. Our findings set the stage for a comprehensive understanding of the contribution of a cell-specific transcription factor to development and morphogenesis.
Collapse
Affiliation(s)
- Patrick Eichenberger
- Department of Molecular and Cellular Biology, Harvard University Biological Laboratories, 16 Divinity Avenue, Cambridge, MA 02138, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Chary VK, Piggot PJ. Postdivisional synthesis of the Sporosarcina ureae DNA translocase SpoIIIE either in the mother cell or in the prespore enables Bacillus subtilis to translocate DNA from the mother cell to the prespore. J Bacteriol 2003; 185:879-86. [PMID: 12533463 PMCID: PMC142829 DOI: 10.1128/jb.185.3.879-886.2003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The differentiation of vegetative cells of Bacillus subtilis into spores involves asymmetric cell division, which precedes complete chromosome partitioning. The DNA translocase SpoIIIE is required to translocate the origin distal 70% of the chromosome from the larger mother cell into the smaller prespore, the two cells that result from the division. We have tested the effect of altering the time and location of SpoIIIE synthesis on spore formation. We have expressed the spoIIIE homologue from Sporosarcina ureae in B. subtilis under the control of different promoters. Expression from either a weak mother cell-specific (sigma(E)) promoter or a weak prespore-specific (sigma(F)) promoter partly complemented the sporulation defect of a spoIIIE36 mutant; however, expression from a strong prespore-specific (sigma(F)) promoter did not. DNA translocation from the mother cell to the prespore was assayed using spoIIQ-lacZ inserted at thrC; transcription of spoIIQ occurs only in the prespore. Translocation of thrC::spoIIQ-lacZ into the prespore occurred efficiently when spoIIIE(Su) was expressed from the weak sigma(E)- or sigma(F)-controlled promoters but not when it was expressed from the strong sigma(F)-controlled promoter. It is speculated that the mechanism directing SpoIIIE insertion into the septum in the correct orientation may accommodate slow postseptational, prespore-specific SpoIIIE synthesis but may be swamped by strong prespore-specific synthesis.
Collapse
Affiliation(s)
- Vasant K Chary
- Department of Microbiology and Immunology, Temple University School of Medicine, 3400 N. Broad Street, Philadelphia, PA 19140, USA
| | | |
Collapse
|
28
|
Abstract
Certain species of Gram-positive bacteria can initiate a developmental program that results in the formation of two daughter cells with different fates. One cell develops into a spore and the other cell undergoes programmed lysis, with each process being mediated by a cascade of cell-type-specific transcription factors. An early and critical step in this developmental pathway is the formation of a division septum near one pole, creating two compartments of different sizes. But how is this morphological asymmetry translated into the transcriptional asymmetry of the two compartments? Recent results suggest that the chromosomal position of the genes encoding several key components of the transcriptional regulatory network has an important role in this process.
Collapse
Affiliation(s)
- Jonathan Dworkin
- Department of Molecular and Cellular Biology, The Biological Laboratories, 16 Divinity Avenue, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
29
|
Abstract
Bacteria are often highly polarized, exhibiting specialized structures at or near the ends of the cell. Among such structures are actin-organizing centers, which mediate the movement of certain pathogenic bacteria within the cytoplasm of an animal host cell; organized arrays of membrane receptors, which govern chemosensory behavior in swimming bacteria; and asymmetrically positioned septa, which generate specialized progeny in differentiating bacteria. This polarization is orchestrated by complex and dynamic changes in the subcellular localization of signal transduction and cytoskeleton proteins as well as of specific regions of the chromosome. Recent work has provided information on how dynamic subcellular localization occurs and how it is exploited by the bacterial cell. The main task of a bacterial cell is to survive and duplicate itself. The bacterium must replicate its genetic material and divide at the correct site in the cell and at the correct time in the cell cycle with high precision. Each kind of bacterium also executes its own strategy to find nutrients in its habitat and to cope with conditions of stress from its environment. This involves moving toward food, adapting to environmental extremes, and, in many cases, entering and exploiting a eukaryotic host. These activities often involve processes that take place at or near the poles of the cell. Here we explore some of the schemes bacteria use to orchestrate dynamic changes at their poles and how these polar events execute cellular functions. In spite of their small size, bacteria have a remarkably complex internal organization and external architecture. Bacterial cells are inherently asymmetric, some more obviously so than others. The most easily recognized asymmetries involve surface structures, e.g., flagella, pili, and stalks that are preferentially assembled at one pole by many bacteria. "New" poles generated at the cell division plane differ from old poles from the previous round of cell division. Even in Escherichia coli, which is generally thought to be symmetrical, old poles are more static than new poles with respect to cell wall assembly (1), and they differ in the deposition of phospholipid domains (2). There are many instances of differential polar functions; among these is the preferential use of old poles when attaching to host cells as in the interaction of Bradyrhizobium with plant root hairs (3) or the polar pili-mediated attachment of the Pseudomonas aeruginosa pathogen to tracheal epithelia (4). An unusual polar organelle that mediates directed motility on solid surfaces is found in the nonpathogenic bacterium Myxococcus xanthus. The gliding motility of this bacterium is propelled by a nozzle-like structure that squirts a polysaccharide-containing slime from the pole of the cell (5). Interestingly, M. xanthus, which has nozzles at both poles, can reverse direction by closing one nozzle and opening the other in response to end-to-end interactions between cells.
Collapse
Affiliation(s)
- Lucy Shapiro
- Department of Developmental Biology, Stanford University School of Medicine, B300 Beckman Center, Stanford, CA 94305, USA.
| | | | | |
Collapse
|
30
|
Abstract
During Bacillus subtilis sporulation, the SpoIIIE DNA translocase moves a trapped chromosome across the sporulation septum into the forespore. The direction of DNA translocation is controlled by the specific assembly of SpoIIIE in the mother cell and subsequent export of DNA into the forespore. We present evidence that the MinCD heterodimer, which spatially regulates cell division during vegetative growth, serves as a forespore-specific inhibitor of SpoIIIE assembly. The deletion of minCD increases the ability of forespore-expressed SpoIIIE to assemble and translocate DNA, and causes otherwise wild-type cells to reverse the direction of DNA transfer, producing anucleate forespores. We propose that two distinct mechanisms ensure the specific assembly of SpoIIIE in the mother cell, the partitioning of more SpoIIIE molecules into the larger mother cell by asymmetric cell division and the MinCD-dependent repression of SpoIIIE assembly in the forespore. Our results suggest that the ability of MinCD to sense positional information is utilized during sporulation to regulate protein assembly differentially on the two faces of the sporulation septum.
Collapse
Affiliation(s)
| | - Kit Pogliano
- Division of Biological Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0349, USA
Corresponding author e-mail:
| |
Collapse
|
31
|
Abstract
Recent studies have shown that, early during sporulation in Bacillus subtilis, the temporary exclusion of 70% of the chromosome from the forespore compartment is critical to the regulated activation of two major transcription factors, sigma(F) and sigma(E).
Collapse
Affiliation(s)
- Abraham L Sonenshein
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111-1800, USA.
| |
Collapse
|
32
|
Abstract
At certain junctures in development, gene transcription is coupled to the completion of landmark morphological events. We refer to this dependence on morphogenesis for gene expression as "morphological coupling." Three examples of morphological coupling in prokaryotes are reviewed in which the activation of a transcription factor is tied to the assembly of a critically important structure in development.
Collapse
Affiliation(s)
- D Z Rudner
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | | |
Collapse
|
33
|
Eichenberger P, Fawcett P, Losick R. A three-protein inhibitor of polar septation during sporulation in Bacillus subtilis. Mol Microbiol 2001; 42:1147-62. [PMID: 11886548 DOI: 10.1046/j.1365-2958.2001.02660.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We present evidence for a three-protein inhibitor of polar division that locks in asymmetry after the formation of a polar septum during sporulation in Bacillus subtilis. Asymmetric division involves the formation of cytokinetic Z-rings near both poles of the developing cell. Next, a septum is formed at one of the two polar Z-rings, thereby generating a small, forespore cell and a mother cell. Gene expression under the control of the mother-cell transcription factor sigmaE is needed to block cytokinesis at the pole distal to the newly formed septum. We report that this block in polar cytokinesis is mediated partly by sigmaE-directed transcription of spoIID, spoIIM and spoIIP, sporulation genes that were known to be involved in the subsequent process of forespore engulfment. We find that a spoIID, spoIIM and spoIIP triple mutant substantially mimicked the bipolar division phenotype of a sigmaE mutant and that cells engineered to produce SpoIID, SpoIIM and SpoIIP prematurely were inhibited in septum formation at both poles. Consistent with the hypothesis that SpoIID, SpoIIM and SpoIIP function at both poles of the sporangium, a GFP--SpoIIM fusion localized to the membrane that surrounds the engulfed forespore and to the potential division site at the distal pole.
Collapse
Affiliation(s)
- P Eichenberger
- Department of Molecular and Cellular Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA
| | | | | |
Collapse
|
34
|
Abstract
The activity of the transcription factor sigmaF is confined to one (the forespore) of two cells created by asymmetric division during sporulation in B. subtilis. We show that sigmaF activation is partly governed by the position of the gene for the unstable anti-sigmaF factor SpoIIAB. Because cytokinesis precedes chromosome segregation, most of the chromosome is translocated into the forespore after division. We hypothesize that because spoIIAB enters the forespore late, SpoIIAB lost to proteolysis is temporarily not replenished. Thus, chromosome asymmetry would be translated into the asymmetric distribution of SpoIIAB. Supporting this idea, transposition of spoIIAB to sites present in the forespore at the time of division impaired sporulation when a second pathway that participates in sigmaF activation was disabled.
Collapse
Affiliation(s)
- J Dworkin
- Department of Molecular and Cellular Biology, The Biological Laboratories, Harvard University, Cambridge, MA 02138, USA.
| | | |
Collapse
|
35
|
Zupancic ML, Tran H, Hofmeister AE. Chromosomal organization governs the timing of cell type-specific gene expression required for spore formation in Bacillus subtilis. Mol Microbiol 2001; 39:1471-81. [PMID: 11260465 DOI: 10.1046/j.1365-2958.2001.02331.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
During the early stages of spore formation in Bacillus subtilis, asymmetric division precedes chromosome segregation, such that the forespore transiently contains only about one-third of the genetic material surrounding the origin of replication. Shortly after septum formation, the transcription factor sigmaF initiates forespore-specific gene expression that is essential for the proteolytic activation of pro-sigmaE in the neighbouring mother cell. Moving the sigmaF-dependent spoIIR gene from its original origin-proximal position to an ectopic origin-distal site caused a delay in spoIIR transcription, as well as delays and reductions in the proteolytic activation of pro-sigmaE and sigmaE-directed gene expression. These defects correlated with the accumulation of disporic sporangia, thus reducing sporulation efficiency in a manner that depended upon the distance that spoIIR had been moved from the origin-proximal third of the chromosome. A significant proportion of disporic sporangia exhibited sigmaE activity in their central compartment, indicating that delays and reductions in sigmaE activation can lead to the formation of a second septum at the opposite pole. These observations support a model in which chromosomal spoIIR position temporally regulates sigmaE activation, thereby allowing for the rapid establishment of mother cell-specific gene expression that is essential for efficient spore formation. The implications of these findings for cell type-specific gene expression during the early stages of spore formation in B. subtilis are discussed.
Collapse
Affiliation(s)
- M L Zupancic
- Department of Plant and Microbial Biology, University of California, 111 Koshland Hall, Berkeley, CA 94720-3102, USA
| | | | | |
Collapse
|
36
|
Abstract
Progression of Bacillus subtilis through a series of morphological changes is driven by a cascade of sigma (sigma) factors and results in formation of a spore. Recent work has provided new insights into the location and function of proteins that control sigma factor activity, and has suggested that multiple mechanisms allow one sigma factor to replace another in the cascade.
Collapse
Affiliation(s)
- L Kroos
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA.
| | | |
Collapse
|