1
|
Schaenzer AJ, Wang W, Hackenberger D, Wright GD. Identification and characterization of the siderochelin biosynthetic gene cluster via coculture. mBio 2024; 15:e0187124. [PMID: 39189743 PMCID: PMC11481915 DOI: 10.1128/mbio.01871-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 07/23/2024] [Indexed: 08/28/2024] Open
Abstract
Many microbial biosynthetic gene clusters (BGCs) are inactive under standard laboratory conditions, making characterization of their products difficult. Silent BGCs are likely activated by specific cues in their natural environment, such as the presence of competitors. Growth conditions such as coculture with other microbes, which more closely mimic natural environments, are practical strategies for inducing silent BGCs. Here, we utilize coculture to activate BGCs in nine actinobacteria strains. We observed increased production of the ferrous siderophores siderochelin A and B during coculture of Amycolatopsis strain WAC04611 and Tsukamurella strain WAC06889b. Furthermore, we identified the siderochelin BGC in WAC04611 and discovered that the GntR-family transcription factor sidR3 represses siderochelin production. Deletion of the predicted aminotransferase sidA abolished production of the carboxamides siderochelin A/B and led to the accumulation of the carboxylate siderochelin D. Finally, we deleted the predicted hydroxylase sidB and established that it is essential for siderochelin production. Our findings show that microbial coculture can successfully activate silent BGCs and lead to the discovery and characterization of unknown BGCs for molecules like siderochelin.IMPORTANCESiderophores are vital iron-acquisition elements required by microbes for survival in a variety of environments. Furthermore, many siderophores are essential for the virulence of various human pathogens, making them a possible target for antibacterials. The significance of our work is in the identification and characterization of the previously unknown BGC for the siderophore siderochelin. Our work adds to the growing knowledge of siderophore biosynthesis, which may aid in the future development of siderophore-targeting pharmaceuticals and inform on the ecological roles of these compounds. Furthermore, our work demonstrates that combining microbial coculture with metabolomics is a valuable strategy for identifying upregulated compounds and their BGCs.
Collapse
Affiliation(s)
- Adam J. Schaenzer
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Wenliang Wang
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Dirk Hackenberger
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Gerard D. Wright
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
2
|
Marcos-Torres FJ, Juniar L, Griese JJ. The molecular mechanisms of the bacterial iron sensor IdeR. Biochem Soc Trans 2023:233013. [PMID: 37140254 DOI: 10.1042/bst20221539] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/12/2023] [Accepted: 04/18/2023] [Indexed: 05/05/2023]
Abstract
Life came to depend on iron as a cofactor for many essential enzymatic reactions. However, once the atmosphere was oxygenated, iron became both scarce and toxic. Therefore, complex mechanisms have evolved to scavenge iron from an environment in which it is poorly bioavailable, and to tightly regulate intracellular iron contents. In bacteria, this is typically accomplished with the help of one key regulator, an iron-sensing transcription factor. While Gram-negative bacteria and Gram-positive species with low guanine-cytosine (GC) content generally use Fur (ferric uptake regulator) proteins to regulate iron homeostasis, Gram-positive species with high GC content use the functional homolog IdeR (iron-dependent regulator). IdeR controls the expression of iron acquisition and storage genes, repressing the former, and activating the latter in an iron-dependent manner. In bacterial pathogens such as Corynebacterium diphtheriae and Mycobacterium tuberculosis, IdeR is also involved in virulence, whereas in non-pathogenic species such as Streptomyces, it regulates secondary metabolism as well. Although in recent years the focus of research on IdeR has shifted towards drug development, there is much left to learn about the molecular mechanisms of IdeR. Here, we summarize our current understanding of how this important bacterial transcriptional regulator represses and activates transcription, how it is allosterically activated by iron binding, and how it recognizes its DNA target sites, highlighting the open questions that remain to be addressed.
Collapse
Affiliation(s)
- Francisco Javier Marcos-Torres
- Department of Cell and Molecular Biology, Uppsala University, 751 24 Uppsala, Sweden
- Department of Biotechnology and Environmental Protection, Estación Experimental del Zaidín-CSIC, 18011 Granada, Spain
| | - Linda Juniar
- Department of Cell and Molecular Biology, Uppsala University, 751 24 Uppsala, Sweden
| | - Julia J Griese
- Department of Cell and Molecular Biology, Uppsala University, 751 24 Uppsala, Sweden
| |
Collapse
|
3
|
Marcos-Torres FJ, Maurer D, Juniar L, Griese JJ. The bacterial iron sensor IdeR recognizes its DNA targets by indirect readout. Nucleic Acids Res 2021; 49:10120-10135. [PMID: 34417623 PMCID: PMC8464063 DOI: 10.1093/nar/gkab711] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/19/2021] [Accepted: 08/02/2021] [Indexed: 01/11/2023] Open
Abstract
The iron-dependent regulator IdeR is the main transcriptional regulator controlling iron homeostasis genes in Actinobacteria, including species from the Corynebacterium, Mycobacterium and Streptomyces genera, as well as the erythromycin-producing bacterium Saccharopolyspora erythraea. Despite being a well-studied transcription factor since the identification of the Diphtheria toxin repressor DtxR three decades ago, the details of how IdeR proteins recognize their highly conserved 19-bp DNA target remain to be elucidated. IdeR makes few direct contacts with DNA bases in its target sequence, and we show here that these contacts are not required for target recognition. The results of our structural and mutational studies support a model wherein IdeR mainly uses an indirect readout mechanism, identifying its targets via the sequence-dependent DNA backbone structure rather than through specific contacts with the DNA bases. Furthermore, we show that IdeR efficiently recognizes a shorter palindromic sequence corresponding to a half binding site as compared to the full 19-bp target previously reported, expanding the number of potential target genes controlled by IdeR proteins.
Collapse
Affiliation(s)
| | - Dirk Maurer
- Department of Cell and Molecular Biology, Uppsala University, SE-751 24 Uppsala, Sweden
| | - Linda Juniar
- Department of Cell and Molecular Biology, Uppsala University, SE-751 24 Uppsala, Sweden
| | - Julia J Griese
- Department of Cell and Molecular Biology, Uppsala University, SE-751 24 Uppsala, Sweden
| |
Collapse
|
4
|
The genome sequence of the tomato-pathogenic actinomycete Clavibacter michiganensis subsp. michiganensis NCPPB382 reveals a large island involved in pathogenicity. J Bacteriol 2008; 190:2138-49. [PMID: 18192381 DOI: 10.1128/jb.01595-07] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Clavibacter michiganensis subsp. michiganensis is a plant-pathogenic actinomycete that causes bacterial wilt and canker of tomato. The nucleotide sequence of the genome of strain NCPPB382 was determined. The chromosome is circular, consists of 3.298 Mb, and has a high G+C content (72.6%). Annotation revealed 3,080 putative protein-encoding sequences; only 26 pseudogenes were detected. Two rrn operons, 45 tRNAs, and three small stable RNA genes were found. The two circular plasmids, pCM1 (27.4 kbp) and pCM2 (70.0 kbp), which carry pathogenicity genes and thus are essential for virulence, have lower G+C contents (66.5 and 67.6%, respectively). In contrast to the genome of the closely related organism Clavibacter michiganensis subsp. sepedonicus, the genome of C. michiganensis subsp. michiganensis lacks complete insertion elements and transposons. The 129-kb chp/tomA region with a low G+C content near the chromosomal origin of replication was shown to be necessary for pathogenicity. This region contains numerous genes encoding proteins involved in uptake and metabolism of sugars and several serine proteases. There is evidence that single genes located in this region, especially genes encoding serine proteases, are required for efficient colonization of the host. Although C. michiganensis subsp. michiganensis grows mainly in the xylem of tomato plants, no evidence for pronounced genome reduction was found. C. michiganensis subsp. michiganensis seems to have as many transporters and regulators as typical soil-inhabiting bacteria. However, the apparent lack of a sulfate reduction pathway, which makes C. michiganensis subsp. michiganensis dependent on reduced sulfur compounds for growth, is probably the reason for the poor survival of C. michiganensis subsp. michiganensis in soil.
Collapse
|
5
|
Kolodkina VL, Titov LP, Sharapa TN, Drozhzhina ON. Point mutations sites in tox promoter/operator and diphtheria toxin repressor (DtxR) gene associated with the level of toxin production by Corynebacterium diphtheriae strains isolated in Belarus. MOLECULAR GENETICS MICROBIOLOGY AND VIROLOGY 2007. [DOI: 10.3103/s0891416807010041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
6
|
Oram DM, Avdalovic A, Holmes RK. Construction and characterization of transposon insertion mutations in Corynebacterium diphtheriae that affect expression of the diphtheria toxin repressor (DtxR). J Bacteriol 2002; 184:5723-32. [PMID: 12270831 PMCID: PMC139604 DOI: 10.1128/jb.184.20.5723-5732.2002] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transcription of the bacteriophage-borne diphtheria toxin gene tox is negatively regulated, in response to intracellular Fe(2+) concentration, by the chromosomally encoded diphtheria toxin repressor (DtxR). Due to a scarcity of tools, genetic analysis of Corynebacterium diphtheriae has primarily relied on analysis of chemically induced and spontaneously occurring mutants and on the results of experiments with C. diphtheriae genes cloned in Escherichia coli or analyzed in vitro. We modified a Tn5-based mutagenesis technique for use with C. diphtheriae, and we used it to construct the first transposon insertion libraries in the chromosome of this gram-positive pathogen. We isolated two insertions that affected expression of DtxR, one 121 bp upstream of dtxR and the other within an essential region of the dtxR coding sequence, indicating for the first time that dtxR is a dispensable gene in C. diphtheriae. Both mutant strains secrete diphtheria toxin when grown in medium containing sufficient iron to repress secretion of diphtheria toxin by wild-type C. diphtheriae. The upstream insertion mutant still produces DtxR in decreased amounts and regulates siderophore secretion in response to iron in a manner similar to its wild-type parent. The mutant containing the transposon insertion within dtxR does not produce DtxR and overproduces siderophore in the presence of iron. Differences in the ability of the two mutant strains to survive oxidative stress also indicated that the upstream insertion retained slight DtxR activity, whereas the insertion within dtxR abolished DtxR activity. This is the first evidence that DtxR plays a role in protecting the cell from oxidative stress.
Collapse
Affiliation(s)
- Diana Marra Oram
- Department of Microbiology, University of Colorado Health Sciences Center, Denver, Colorado 80262, USA
| | | | | |
Collapse
|
7
|
Howard ST, Byrd TF, Lyons CR. A polymorphic region in Mycobacterium abscessus contains a novel insertion sequence element. MICROBIOLOGY (READING, ENGLAND) 2002; 148:2987-2996. [PMID: 12368432 DOI: 10.1099/00221287-148-10-2987] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A polymorphic region was discovered in the genetically uncharacterized opportunistic pathogen Mycobacterium abscessus. The region contains a novel 1.7 kb insertion sequence (IS) named ISMab1. ISMab1 contains two complete ORFs and one partial ORF located in segments with over 80% nucleotide identity to Mycobacterium avium IS1601 and IS999 and to previously unreported IS-like elements from Mycobacterium smegmatis. The marked similarity within this family of elements is supportive of horizontal transfer between environmental mycobacterial species. In clinical isolates, ISMab1 was either present as a single copy or absent. The polymorphic region containing ISMab1 was identified by genomic subtraction between a parental strain and phenotypic variant. The variant has a 14.2 kb genomic deletion and this is flanked in the parental strain by complex arrays of inverted and direct repeats. Clinical isolates of M. abscessus were probed for the deletion and flanking sequences and two were found to be missing more than 20 kb. No regional deletions were found in the type strain, ATCC 19977. Although M. abscessus is a rapidly growing species, comparative sequence analysis of 23 kb from the polymorphic region showed that most local ORFs have greater amino acid identity to proteins encoded by genes from the slowly growing mycobacteria, M. avium and Mycobacterium tuberculosis, than to the rapid-grower M. smegmatis. Several ORFs also have strong similarity to Pseudomonas aeruginosa genes with a potential role in beta-oxidation.
Collapse
Affiliation(s)
- Susan T Howard
- University of New Mexico School of Medicine, Dept of Internal Medicine, 915 Camino de Salud, Albuquerque, NM 87131, USA1
| | - Thomas F Byrd
- Department of Medicine, Albuquerque Veterans Affairs Medical Center, 1501 San Pedro SE, Albuquerque, NM 87108, USA2
- University of New Mexico School of Medicine, Dept of Internal Medicine, 915 Camino de Salud, Albuquerque, NM 87131, USA1
| | - C Richard Lyons
- UNM Health Science Center Cancer Research and Treatment Center, 900 Camino de Salud, Albuquerque, NM 87131, USA3
- University of New Mexico School of Medicine, Dept of Internal Medicine, 915 Camino de Salud, Albuquerque, NM 87131, USA1
| |
Collapse
|
8
|
Qian Y, Lee JH, Holmes RK. Identification of a DtxR-regulated operon that is essential for siderophore-dependent iron uptake in Corynebacterium diphtheriae. J Bacteriol 2002; 184:4846-56. [PMID: 12169610 PMCID: PMC135300 DOI: 10.1128/jb.184.17.4846-4856.2002] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The diphtheria toxin repressor (DtxR) uses Fe(2+) as a corepressor and inhibits transcription from iron-regulated promoters (IRPs) in Corynebacterium diphtheriae. A new IRP, designated IRP6, was cloned from C. diphtheriae by a SELEX-like procedure. DtxR bound to IRP6 in vitro only in the presence of appropriate divalent metal ions, and repression of IRP6 by DtxR in an Escherichia coli system was iron dependent. The open reading frames (ORFs) downstream from IRP6 and previously described promoter IRP1 were found to encode proteins homologous to components of ATP-binding cassette (ABC) transport systems involved in high-affinity iron uptake in other bacteria. IRP1 and IRP6 were repressed under high-iron conditions in wild-type C. diphtheriae C7(beta), but they were expressed constitutively in C7(beta) mutant strains HC1, HC3, HC4, and HC5, which were shown previously to be defective in corynebactin-dependent iron uptake. A clone of the wild-type irp6 operon (pCM6ABC) complemented the constitutive corynebactin production phenotype of HC1, HC4, and HC5 but not of HC3, whereas a clone of the wild-type irp1 operon failed to complement any of these strains. Complementation by subclones of pCM6ABC demonstrated that mutant alleles of irp6A, irp6C, and irp6B were responsible for the phenotypes of HC1, HC4, and HC5, respectively. The irp6A allele in HC1 and the irp6B allele in HC5 encoded single amino acid substitutions in their predicted protein products, and the irp6C allele in HC4 caused premature chain termination of its predicted protein product. Strain HC3 was found to have a chain-terminating mutation in dtxR in addition to a missense mutation in its irp6B allele. These findings demonstrated that the irp6 operon in C. diphtheriae encodes a putative ABC transporter, that specific mutant alleles of irp6A, irp6B, and irp6C are associated with defects in corynebactin-dependent iron uptake, and that complementation of these mutant alleles restores repression of corynebactin production under high-iron growth conditions, most likely as a consequence of restoring siderophore-dependent iron uptake mediated by the irp6 operon.
Collapse
Affiliation(s)
- Yilei Qian
- Department of Microbiology, University of Colorado Health Sciences Center, 4200 East Ninth Avenue, Denver, CO 80262, USA
| | | | | |
Collapse
|
9
|
Twigg PD, Parthasarathy G, Guerrero L, Logan TM, Caspar DL. Disordered to ordered folding in the regulation of diphtheria toxin repressor activity. Proc Natl Acad Sci U S A 2001; 98:11259-64. [PMID: 11572979 PMCID: PMC58717 DOI: 10.1073/pnas.191354798] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2001] [Indexed: 11/18/2022] Open
Abstract
Understanding how metal binding regulates the activity of the diphtheria toxin repressor protein (DtxR) requires information about the structure in solution. We have prepared a DtxR mutant construct with three additional N-terminal residues, Gly-Ser-His-DtxR(Cys-102 --> Asp), that retains metal-binding capabilities, but remains monomeric in solution and does not bind DNA under conditions that effect dimerization and DNA binding in the functional DtxR(Cys-102 --> Asp) construct. Although the interaction properties of this inactive mutant in solution are very different from that of active repressors, crystallization imposes the same dimeric structure as observed in all crystal forms of the active repressor with and without bound metal. Our solution NMR analyses of active and inactive metal-free diphtheria toxin repressors demonstrate that whereas the C-terminal one-third of the protein is well ordered, the N-terminal two-thirds exhibits conformational flexibility and exists as an ensemble of structural substates with undefined tertiary structure. Fluorescence binding assays with 1-anilino naphthalene-8-sulfonic acid (ANS) confirm that the highly alpha-helical N-terminal two-thirds of the apoprotein is molten globule-like in solution. Binding of divalent metal cations induces a substantial conformational reorganization to a more ordered state, as evidenced by changes in the NMR spectra and ANS binding. The evident disorder to order transition upon binding of metal in solution is in contrast to the minor conformational changes seen comparing apo- and holo-DtxR crystal structures. Disordered to ordered folding appears to be a general mechanism for regulating specific recognition in protein action and this mechanism provides a plausible explanation for how metal binding controls the DtxR repressor activity.
Collapse
Affiliation(s)
- P D Twigg
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306, USA
| | | | | | | | | |
Collapse
|
10
|
Feese MD, Ingason BP, Goranson-Siekierke J, Holmes RK, Hol WG. Crystal structure of the iron-dependent regulator from Mycobacterium tuberculosis at 2.0-A resolution reveals the Src homology domain 3-like fold and metal binding function of the third domain. J Biol Chem 2001; 276:5959-66. [PMID: 11053439 DOI: 10.1074/jbc.m007531200] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Iron-dependent regulators are primary transcriptional regulators of virulence factors and iron scavenging systems that are important for infection by several bacterial pathogens. Here we present the 2.0-A crystal structure of the wild type iron-dependent regulator from Mycobacterium tuberculosis in its fully active holorepressor conformation. Clear, unbiased electron density for the Src homology domain 3-like third domain, which is often invisible in structures of iron-dependent regulators, was revealed by density modification and averaging. This domain is one of the rare examples of Src homology domain 3-like folds in bacterial proteins, and, in addition, displays a metal binding function by contributing two ligands, one Glu and one Gln, to the pentacoordinated cobalt atom at metal site 1. Both metal sites are fully occupied, and tightly bound water molecules at metal site 1 ("Water 1") and metal site 2 ("Water 2") are identified unambiguously. The main chain carbonyl of Leu4 makes an indirect interaction with the cobalt atom at metal site 2 via Water 2, and the adjacent residue, Val5, forms a rare gamma turn. Residues 1-3 are well ordered and make numerous interactions. These ordered solvent molecules and the conformation and interactions of the N-terminal pentapeptide thus might be important in metal-dependent activation.
Collapse
Affiliation(s)
- M D Feese
- Department of Biological Structure, University of Washington, Seattle, Washington 98195, USA
| | | | | | | | | |
Collapse
|