1
|
Bitzenhofer NL, Höfel C, Thies S, Weiler AJ, Eberlein C, Heipieper HJ, Batra‐Safferling R, Sundermeyer P, Heidler T, Sachse C, Busche T, Kalinowski J, Belthle T, Drepper T, Jaeger K, Loeschcke A. Exploring engineered vesiculation by Pseudomonas putida KT2440 for natural product biosynthesis. Microb Biotechnol 2024; 17:e14312. [PMID: 37435812 PMCID: PMC10832525 DOI: 10.1111/1751-7915.14312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 06/25/2023] [Indexed: 07/13/2023] Open
Abstract
Pseudomonas species have become promising cell factories for the production of natural products due to their inherent robustness. Although these bacteria have naturally evolved strategies to cope with different kinds of stress, many biotechnological applications benefit from engineering of optimised chassis strains with specially adapted tolerance traits. Here, we explored the formation of outer membrane vesicles (OMV) of Pseudomonas putida KT2440. We found OMV production to correlate with the recombinant production of a natural compound with versatile beneficial properties, the tripyrrole prodigiosin. Further, several P. putida genes were identified, whose up- or down-regulated expression allowed controlling OMV formation. Finally, genetically triggering vesiculation in production strains of the different alkaloids prodigiosin, violacein, and phenazine-1-carboxylic acid, as well as the carotenoid zeaxanthin, resulted in up to three-fold increased product yields. Consequently, our findings suggest that the construction of robust strains by genetic manipulation of OMV formation might be developed into a useful tool which may contribute to improving limited biotechnological applications.
Collapse
Affiliation(s)
- Nora Lisa Bitzenhofer
- Institute of Molecular Enzyme Technology (IMET)Heinrich Heine University DüsseldorfDüsseldorfGermany
| | - Carolin Höfel
- Institute of Molecular Enzyme Technology (IMET)Heinrich Heine University DüsseldorfDüsseldorfGermany
| | - Stephan Thies
- Institute of Molecular Enzyme Technology (IMET)Heinrich Heine University DüsseldorfDüsseldorfGermany
| | - Andrea Jeanette Weiler
- Institute of Molecular Enzyme Technology (IMET)Heinrich Heine University DüsseldorfDüsseldorfGermany
| | - Christian Eberlein
- Department of Environmental BiotechnologyHelmholtz Centre for Environmental Research (UFZ)LeipzigGermany
| | - Hermann J. Heipieper
- Department of Environmental BiotechnologyHelmholtz Centre for Environmental Research (UFZ)LeipzigGermany
| | - Renu Batra‐Safferling
- Institute of Biological Information Processing – Structural Biochemistry (IBI‐7: Structural Biochemistry)Forschungszentrum JülichJülichGermany
| | - Pia Sundermeyer
- Ernst‐Ruska Centre for Microscopy and Spectroscopy with Electrons (ER‐C‐3/Structural Biology)Forschungszentrum JülichJülichGermany
- Institute for Biological Information Processing 6 (IBI‐6/ Structural Cellular Biology)Forschungszentrum JülichJülichGermany
| | - Thomas Heidler
- Ernst‐Ruska Centre for Microscopy and Spectroscopy with Electrons (ER‐C‐3/Structural Biology)Forschungszentrum JülichJülichGermany
- Institute for Biological Information Processing 6 (IBI‐6/ Structural Cellular Biology)Forschungszentrum JülichJülichGermany
| | - Carsten Sachse
- Ernst‐Ruska Centre for Microscopy and Spectroscopy with Electrons (ER‐C‐3/Structural Biology)Forschungszentrum JülichJülichGermany
- Institute for Biological Information Processing 6 (IBI‐6/ Structural Cellular Biology)Forschungszentrum JülichJülichGermany
- Department of BiologyHeinrich Heine University DüsseldorfDüsseldorfGermany
| | - Tobias Busche
- Center for Biotechnology (CeBiTec)Bielefeld UniversityBielefeldGermany
- Bielefeld University, Medical School East Westphalia‐LippeBielefeld UniversityBielefeldGermany
| | - Jörn Kalinowski
- Center for Biotechnology (CeBiTec)Bielefeld UniversityBielefeldGermany
| | - Thomke Belthle
- DWI─Leibniz‐Institute for Interactive MaterialsAachenGermany
- Functional and Interactive Polymers, Institute of Technical and Macromolecular ChemistryRWTH Aachen UniversityAachenGermany
| | - Thomas Drepper
- Institute of Molecular Enzyme Technology (IMET)Heinrich Heine University DüsseldorfDüsseldorfGermany
| | - Karl‐Erich Jaeger
- Institute of Molecular Enzyme Technology (IMET)Heinrich Heine University DüsseldorfDüsseldorfGermany
- Institute of Bio‐ and Geosciences IBG‐1: BiotechnologyForschungszentrum JülichJülichGermany
| | - Anita Loeschcke
- Institute of Molecular Enzyme Technology (IMET)Heinrich Heine University DüsseldorfDüsseldorfGermany
| |
Collapse
|
2
|
Hauke M, Metz F, Rapp J, Faass L, Bats SH, Radziej S, Link H, Eisenreich W, Josenhans C. Helicobacter pylori Modulates Heptose Metabolite Biosynthesis and Heptose-Dependent Innate Immune Host Cell Activation by Multiple Mechanisms. Microbiol Spectr 2023; 11:e0313222. [PMID: 37129481 PMCID: PMC10269868 DOI: 10.1128/spectrum.03132-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 04/05/2023] [Indexed: 05/03/2023] Open
Abstract
Heptose metabolites including ADP-d-glycero-β-d-manno-heptose (ADP-heptose) are involved in bacterial lipopolysaccharide and cell envelope biosynthesis. Recently, heptoses were also identified to have potent proinflammatory activity on human cells as novel microbe-associated molecular patterns. The gastric pathogenic bacterium Helicobacter pylori produces heptose metabolites, which it transports into human cells through its Cag type 4 secretion system. Using H. pylori as a model, we have addressed the question of how proinflammatory ADP-heptose biosynthesis can be regulated by bacteria. We have characterized the interstrain variability and regulation of heptose biosynthesis genes and the modulation of heptose metabolite production by H. pylori, which impact cell-autonomous proinflammatory human cell activation. HldE, a central enzyme of heptose metabolite biosynthesis, showed strong sequence variability between strains and was also variably expressed between strains. Amounts of gene transcripts in the hldE gene cluster displayed intrastrain and interstrain differences, were modulated by host cell contact and the presence of the cag pathogenicity island, and were affected by carbon starvation regulator A (CsrA). We reconstituted four steps of the H. pylori lipopolysaccharide (LPS) heptose biosynthetic pathway in vitro using recombinant purified GmhA, HldE, and GmhB proteins. On the basis of one- and two-dimensional nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry, the structures of major reaction products were identified as β-d-ADP-heptose and β-heptose-1-monophosphate. A proinflammatory heptose-monophosphate variant was also identified for the first time as a novel cell-active product in H. pylori bacteria. Separate purified HldE subdomains and variant HldE allowed us to uncover additional strain variation in generating heptose metabolites. IMPORTANCE Bacterial heptose metabolites, intermediates of lipopolysaccharide (LPS) biosynthesis, are novel microbe-associated molecular patterns (MAMPs) that activate proinflammatory signaling. In the gastric pathogen Helicobacter pylori, heptoses are transferred into host cells by the Cag type IV secretion system, which is also involved in carcinogenesis. Little is known about how H. pylori, which is highly strain variable, regulates heptose biosynthesis and downstream host cell activation. We report here that the regulation of proinflammatory heptose production by H. pylori is strain specific. Heptose gene cluster activity is modulated by the presence of an active cag pathogenicity island (cagPAI), contact with human cells, and the carbon starvation regulator A. Reconstitution with purified biosynthesis enzymes and purified bacterial lysates allowed us to biochemically characterize heptose pathway products, identifying a heptose-monophosphate variant as a novel proinflammatory metabolite. These findings emphasize that the bacteria use heptose biosynthesis to fine-tune inflammation and also highlight opportunities to mine the heptose biosynthesis pathway as a potential therapeutic target against infection, inflammation, and cancer.
Collapse
Affiliation(s)
- Martina Hauke
- Max von Pettenkofer Institute, Ludwig Maximilians University Munich, München, Germany
| | - Felix Metz
- Max von Pettenkofer Institute, Ludwig Maximilians University Munich, München, Germany
| | - Johanna Rapp
- Bacterial Metabolomics, CMFI, University Tübingen, Tübingen, Germany
| | - Larissa Faass
- Max von Pettenkofer Institute, Ludwig Maximilians University Munich, München, Germany
| | - Simon H. Bats
- Max von Pettenkofer Institute, Ludwig Maximilians University Munich, München, Germany
| | - Sandra Radziej
- Bavarian NMR Center–Structural Membrane Biochemistry, Department of Chemistry, Technical University Munich, Garching, Germany
| | - Hannes Link
- Bacterial Metabolomics, CMFI, University Tübingen, Tübingen, Germany
| | - Wolfgang Eisenreich
- Bavarian NMR Center–Structural Membrane Biochemistry, Department of Chemistry, Technical University Munich, Garching, Germany
| | - Christine Josenhans
- Max von Pettenkofer Institute, Ludwig Maximilians University Munich, München, Germany
| |
Collapse
|
3
|
García-Weber D, Arrieumerlou C. ADP-heptose: a bacterial PAMP detected by the host sensor ALPK1. Cell Mol Life Sci 2021; 78:17-29. [PMID: 32591860 PMCID: PMC11072087 DOI: 10.1007/s00018-020-03577-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 06/12/2020] [Accepted: 06/15/2020] [Indexed: 01/16/2023]
Abstract
The innate immune response constitutes the first line of defense against pathogens. It involves the recognition of pathogen-associated molecular patterns (PAMPs) by pathogen recognition receptors (PRRs), the production of inflammatory cytokines and the recruitment of immune cells to infection sites. Recently, ADP-heptose, a soluble intermediate of the lipopolysaccharide biosynthetic pathway in Gram-negative bacteria, has been identified by several research groups as a PAMP. Here, we recapitulate the evidence that led to this identification and discuss the controversy over the immunogenic properties of heptose 1,7-bisphosphate (HBP), another bacterial heptose previously defined as an activator of innate immunity. Then, we describe the mechanism of ADP-heptose sensing by alpha-protein kinase 1 (ALPK1) and its downstream signaling pathway that involves the proteins TIFA and TRAF6 and induces the activation of NF-κB and the secretion of inflammatory cytokines. Finally, we discuss possible delivery mechanisms of ADP-heptose in cells during infection, and propose new lines of thinking to further explore the roles of the ADP-heptose/ALPK1/TIFA axis in infections and its potential implication in the control of intestinal homeostasis.
Collapse
Affiliation(s)
- Diego García-Weber
- INSERM, U1016, Institut Cochin, CNRS, UMR8104, Université de Paris, 22 rue Méchain, 75014, Paris, France
| | - Cécile Arrieumerlou
- INSERM, U1016, Institut Cochin, CNRS, UMR8104, Université de Paris, 22 rue Méchain, 75014, Paris, France.
| |
Collapse
|
4
|
Cabral AD, Rafiei N, de Araujo ED, Radu TB, Toutah K, Nino D, Murcar-Evans BI, Milstein JN, Kraskouskaya D, Gunning PT. Sensitive Detection of Broad-Spectrum Bacteria with Small-Molecule Fluorescent Excimer Chemosensors. ACS Sens 2020; 5:2753-2762. [PMID: 32803944 DOI: 10.1021/acssensors.9b02490] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Antibiotic resistance is a major problem for world health, triggered by the unnecessary usage of broad-spectrum antibiotics on purportedly infected patients. Current clinical standards require lengthy protocols for the detection of bacterial species in sterile physiological fluids. In this work, a class of small-molecule fluorescent chemosensors termed ProxyPhos was shown to be capable of rapid, sensitive, and facile detection of broad-spectrum bacteria. The sensors act via a turn-on fluorescent excimer mechanism, where close-proximity binding of multiple sensor units amplifies a red shift emission signal. ProxyPhos sensors were able to detect down to 10 CFUs of model strains by flow cytometry assays and showed selectivity over mammalian cells in a bacterial coculture through fluorescence microscopy. The studies reveal that the zinc(II)-chelates cyclen and cyclam are novel and effective binding units for the detection of both Gram-negative and Gram-positive bacterial strains. Mode of action studies revealed that the chemosensors detect Gram-negative and Gram-positive strains with two distinct mechanisms. Preliminary studies applying ProxyPhos sensors to sterile physiological fluids (cerebrospinal fluid) in flow cytometry assays were successful. The results suggest that ProxyPhos sensors can be developed as a rapid, inexpensive, and robust tool for the "yes-no" detection of broad-spectrum bacteria in sterile fluids.
Collapse
Affiliation(s)
- Aaron D. Cabral
- Department of Chemical & Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road North, Mississauga, Ontario L5L 1C6, Canada
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Nafiseh Rafiei
- Department of Chemical & Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road North, Mississauga, Ontario L5L 1C6, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario M5S 3G9, Canada
| | - Elvin D. de Araujo
- Department of Chemical & Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road North, Mississauga, Ontario L5L 1C6, Canada
| | - Tudor B. Radu
- Department of Chemical & Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road North, Mississauga, Ontario L5L 1C6, Canada
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Krimo Toutah
- Department of Chemical & Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road North, Mississauga, Ontario L5L 1C6, Canada
| | - Daniel Nino
- Department of Chemical & Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road North, Mississauga, Ontario L5L 1C6, Canada
- Department of Physics, University of Toronto, 60 St. George Street, Toronto, Ontario M5S 1A7, Canada
| | - Bronte I. Murcar-Evans
- Department of Chemical & Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road North, Mississauga, Ontario L5L 1C6, Canada
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Joshua N. Milstein
- Department of Chemical & Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road North, Mississauga, Ontario L5L 1C6, Canada
- Department of Physics, University of Toronto, 60 St. George Street, Toronto, Ontario M5S 1A7, Canada
| | - Dziyana Kraskouskaya
- Department of Chemical & Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road North, Mississauga, Ontario L5L 1C6, Canada
| | - Patrick T. Gunning
- Department of Chemical & Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road North, Mississauga, Ontario L5L 1C6, Canada
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| |
Collapse
|
5
|
Soh SM, Jang H, Mitchell RJ. Loss of the lipopolysaccharide (LPS) inner core increases the electrocompetence of Escherichia coli. Appl Microbiol Biotechnol 2020; 104:7427-7435. [PMID: 32676713 DOI: 10.1007/s00253-020-10779-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 06/28/2020] [Accepted: 07/05/2020] [Indexed: 12/19/2022]
Abstract
Mutations that shorten the lipopolysaccharide (LPS) in Escherichia coli were found to significantly increase the number of transformants after electroporation. The loss of the LPS outer core increased the number of transformants with plasmid pAmCyan (3.3 kb) from 5.0 × 105 colony-forming units (CFU)/μg in the wild-type E. coli BW25113 to 3.3 × 107 CFU/μg in a ΔwaaG background, a 66.2-fold increase in efficiency. Truncation of the inner core improved this even further, with the ΔwaaF mutant exhibiting the best transformation efficiencies obtained, i.e., a 454.7-fold increase in the number of colonies over the wild-type strain. Similar results were obtained when a larger plasmid (pDA1; 11.3 kb) was used, with the ΔwaaF mutant once more giving the best transformation rates, i.e., a 73.7-fold increase. Subsequent tests proved that the enhanced transformabilities of these mutants were not due to a better survival or their surface charge properties, nor from preferential binding of these strains to the plasmid. Using N-phenyl-1-naphthylamine (NPN), we confirmed that the outer membranes of these mutant strains were more permeable. We also found that they leaked more ATP (3.4- and 2.0-fold higher for the ΔwaaF and ΔwaaG mutants, respectively, than wild-type E. coli BW25113), suggesting that the inner membrane stability is also reduced, helping to explain how the DNA enters these cells more easily. KEY POINTS: • LPS inner core gene knockouts increase the electrocompetence of E. coli. • No significant difference in survival, surface charge, or DNA binding was evident. • The LPS inner core mutants, however, exhibited higher outer membrane permeability. • Their inner membranes were also leaky, based on supernatant ATP concentrations.
Collapse
Affiliation(s)
- Sandrine M Soh
- School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, South Korea
| | - Hyochan Jang
- School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, South Korea
| | - Robert J Mitchell
- School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, South Korea.
| |
Collapse
|
6
|
LamB, OmpC, and the Core Lipopolysaccharide of Escherichia coli K-12 Function as Receptors of Bacteriophage Bp7. J Virol 2020; 94:JVI.00325-20. [PMID: 32238583 DOI: 10.1128/jvi.00325-20] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 03/24/2020] [Indexed: 01/01/2023] Open
Abstract
Bp7 is a T-even phage with a broad host range specific to Escherichia coli, including E. coli K-12. The receptor binding protein (RBP) of bacteriophages plays an important role in the phage adsorption process and determines phage host range, but the molecular mechanism involved in host recognition of phage Bp7 remains unknown. In this study, the interaction between phage Bp7 and E. coli K-12 was investigated. Based on homology alignment, amino acid sequence analysis, and a competitive assay, gp38, located at the tip of the long tail fiber, was identified as the RBP of phage Bp7. Using a combination of in vivo and in vitro approaches, including affinity chromatography, gene knockout mutagenesis, a phage plaque assay, and phage adsorption kinetics analysis, we identified the LamB and OmpC proteins on the surface of E. coli K-12 as specific receptors involved in the first step of reversible phage adsorption. Genomic analysis of the phage-resistant mutant strain E. coli K-12-R and complementation tests indicated that HepI of the inner core of polysaccharide acts as the second receptor recognized by phage Bp7 and is essential for successful phage infection. This observation provides an explanation of the broad host range of phage Bp7 and provides insight into phage-host interactions.IMPORTANCE The RBPs of T4-like phages are gp37 and gp38. The interaction between phage T4 RBP gp37 and its receptors has been clarified by many reports. However, the interaction between gp38 and its receptors during phage adsorption is still not completely understood. Here, we identified phage Bp7, which uses gp38 as an RBP, and provided a good model to study the phage-host interaction mechanisms in an enterobacteriophage. Our study revealed that gp38 of phage Bp7 recognizes the outer membrane proteins (OMPs) LamB and OmpC of E. coli K-12 as specific receptors and binds with them reversibly. HepI of the inner-core oligosaccharide is the second receptor and binds with phage Bp7 irreversibly to begin the infection process. Determining the interaction between the phage and its receptors will help elucidate the mechanisms of phage with a broad host range and help increase understanding of the phage infection mechanism based on gp38.
Collapse
|
7
|
Pleiotropy complicates a trade-off between phage resistance and antibiotic resistance. Proc Natl Acad Sci U S A 2020; 117:11207-11216. [PMID: 32424102 PMCID: PMC7260982 DOI: 10.1073/pnas.1919888117] [Citation(s) in RCA: 174] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Bacteriophages (“phages,” viruses that infect bacteria) are an important source of selection for bacterial populations. Phages use various structures to infect bacterial cells, and bacteria often evolve phage resistance by losing or modifying these structures. We examine a phage that uses two structures that also provide Escherichia coli cells with antibiotic resistance. We show that phage selection can result in bacteria evolving phage resistance by losing or modifying the structures. When phage resistance evolves, the bacteria sometimes also show increased antibiotic sensitivity. This result indicates an evolutionary trade-off between phage resistance and antibiotic resistance. However, we also discovered bacterial mutations that avoid the trade-off. We discuss the potential use of phage selection and evolutionary trade-offs in treating bacterial infections. Bacteria frequently encounter selection by both antibiotics and lytic bacteriophages. However, the evolutionary interactions between antibiotics and phages remain unclear, in particular, whether and when phages can drive evolutionary trade-offs with antibiotic resistance. Here, we describe Escherichia coli phage U136B, showing it relies on two host factors involved in different antibiotic resistance mechanisms: 1) the efflux pump protein TolC and 2) the structural barrier molecule lipopolysaccharide (LPS). Since TolC and LPS contribute to antibiotic resistance, phage U136B should select for their loss or modification, thereby driving a trade-off between phage resistance and either of the antibiotic resistance mechanisms. To test this hypothesis, we used fluctuation experiments and experimental evolution to obtain phage-resistant mutants. Using these mutants, we compared the accessibility of specific mutations (revealed in the fluctuation experiments) to their actual success during ecological competition and coevolution (revealed in the evolution experiments). Both tolC and LPS-related mutants arise readily during fluctuation assays, with tolC mutations becoming more common during the evolution experiments. In support of the trade-off hypothesis, phage resistance via tolC mutations occurs with a corresponding reduction in antibiotic resistance in many cases. However, contrary to the hypothesis, some phage resistance mutations pleiotropically confer increased antibiotic resistance. We discuss the molecular mechanisms underlying this surprising pleiotropic result, consideration for applied phage biology, and the importance of ecology in evolution of phage resistance. We envision that phages may be useful for the reversal of antibiotic resistance, but such applications will need to account for unexpected pleiotropy and evolutionary context.
Collapse
|
8
|
Klobucar K, French S, Côté JP, Howes JR, Brown ED. Genetic and Chemical-Genetic Interactions Map Biogenesis and Permeability Determinants of the Outer Membrane of Escherichia coli. mBio 2020; 11:e00161-20. [PMID: 32156814 PMCID: PMC7064757 DOI: 10.1128/mbio.00161-20] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 01/29/2020] [Indexed: 02/08/2023] Open
Abstract
Gram-negative bacteria are intrinsically resistant to many antibiotics due to their outer membrane barrier. Although the outer membrane has been studied for decades, there is much to uncover about the biology and permeability of this complex structure. Investigating synthetic genetic interactions can reveal a great deal of information about genetic function and pathway interconnectivity. Here, we performed synthetic genetic arrays (SGAs) in Escherichia coli by crossing a subset of gene deletion strains implicated in outer membrane permeability with nonessential gene and small RNA (sRNA) deletion collections. Some 155,400 double-deletion strains were grown on rich microbiological medium with and without subinhibitory concentrations of two antibiotics excluded by the outer membrane, vancomycin and rifampin, to probe both genetic interactions and permeability. The genetic interactions of interest were synthetic sick or lethal (SSL) gene deletions that were detrimental to the cell in combination but had a negligible impact on viability individually. On average, there were ∼30, ∼36, and ∼40 SSL interactions per gene under no-drug, rifampin, and vancomycin conditions, respectively; however, many of these involved frequent interactors. Our data sets have been compiled into an interactive database called the Outer Membrane Interaction (OMI) Explorer, where genetic interactions can be searched, visualized across the genome, compared between conditions, and enriched for gene ontology (GO) terms. A set of SSL interactions revealed connectivity and permeability links between enterobacterial common antigen (ECA) and lipopolysaccharide (LPS) of the outer membrane. This data set provides a novel platform to generate hypotheses about outer membrane biology and permeability.IMPORTANCE Gram-negative bacteria are a major concern for public health, particularly due to the rise of antibiotic resistance. It is important to understand the biology and permeability of the outer membrane of these bacteria in order to increase the efficacy of antibiotics that have difficulty penetrating this structure. Here, we studied the genetic interactions of a subset of outer membrane-related gene deletions in the model Gram-negative bacterium E. coli We systematically combined these mutants with 3,985 nonessential gene and small RNA deletion mutations in the genome. We examined the viability of these double-deletion strains and probed their permeability characteristics using two antibiotics that have difficulty crossing the outer membrane barrier. An understanding of the genetic basis for outer membrane integrity can assist in the development of new antibiotics with favorable permeability properties and the discovery of compounds capable of increasing outer membrane permeability to enhance the activity of existing antibiotics.
Collapse
Affiliation(s)
- Kristina Klobucar
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - Shawn French
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - Jean-Philippe Côté
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - James R Howes
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - Eric D Brown
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
9
|
Abstract
SAR11 clade members are among the most abundant bacteria on Earth. Their study is complicated by their great diversity and difficulties in being grown and manipulated in the laboratory. On the other hand, and due to their extraordinary abundance, metagenomic data sets provide enormous richness of information about these microbes. Given the major role played by phages in the lifestyle and evolution of prokaryotic cells, the contribution of several new bacteriophage genomes preying on this clade opens windows into the infection strategies and life cycle of its viruses. Such strategies could provide models of attack of large-genome phages preying on streamlined aquatic microbes. The SAR11 clade is one of the most abundant bacterioplankton groups in surface waters of most of the oceans and lakes. However, only 15 SAR11 phages have been isolated thus far, and only one of them belongs to the Myoviridae family (pelagimyophages). Here, we have analyzed 26 sequences of myophages that putatively infect the SAR11 clade. They have been retrieved by mining ca. 45 Gbp aquatic assembled cellular metagenomes and viromes. Most of the myophages were obtained from the cellular fraction (0.2 μm), indicating a bias against this type of virus in viromes. We have found the first myophages that putatively infect Candidatus Fonsibacter (freshwater SAR11) and another group putatively infecting bathypelagic SAR11 phylogroup Ic. The genomes have similar sizes and maintain overall synteny in spite of low average nucleotide identity values, revealing high similarity to marine cyanomyophages. Pelagimyophages recruited metagenomic reads widely from several locations but always much more from cellular metagenomes than from viromes, opposite to what happens with pelagipodophages. Comparing the genomes resulted in the identification of a hypervariable island that is related to host recognition. Interestingly, some genes in these islands could be related to host cell wall synthesis and coinfection avoidance. A cluster of curli-related proteins was widespread among the genomes, although its function is unclear. IMPORTANCE SAR11 clade members are among the most abundant bacteria on Earth. Their study is complicated by their great diversity and difficulties in being grown and manipulated in the laboratory. On the other hand, and due to their extraordinary abundance, metagenomic data sets provide enormous richness of information about these microbes. Given the major role played by phages in the lifestyle and evolution of prokaryotic cells, the contribution of several new bacteriophage genomes preying on this clade opens windows into the infection strategies and life cycle of its viruses. Such strategies could provide models of attack of large-genome phages preying on streamlined aquatic microbes.
Collapse
|
10
|
Abstract
Uropathogenic E. coli (UPEC) is the major cause of urinary tract infections and a frequent cause of sepsis. Nearly half of all UPEC strains produce the potent cytotoxin hemolysin, and its expression is associated with enhanced virulence. In this study, we explored hemolysin variation within the globally dominant UPEC ST131 clone, finding that strains from the ST131 sublineage with the greatest multidrug resistance also possess the strongest hemolytic activity. We also employed an innovative forward genetic screen to define the set of genes required for hemolysin production. Using this approach, and subsequent targeted mutagenesis and complementation, we identified new hemolysin-controlling elements involved in LPS inner core biosynthesis and cytoplasmic chaperone activity, and we show that mechanistically they are required for hemolysin secretion. These original discoveries substantially enhance our understanding of hemolysin regulation, secretion and function. Uropathogenic Escherichia coli (UPEC) is the major cause of urinary tract infections. Nearly half of all UPEC strains secrete hemolysin, a cytotoxic pore-forming toxin. Here, we show that the prevalence of the hemolysin toxin gene (hlyA) is highly variable among the most common 83 E. coli sequence types (STs) represented on the EnteroBase genome database. To explore this diversity in the context of a defined monophyletic lineage, we contextualized sequence variation of the hlyCABD operon within the genealogy of the globally disseminated multidrug-resistant ST131 clone. We show that sequence changes in hlyCABD and its newly defined 1.616-kb-long leader sequence correspond to phylogenetic designation, and that ST131 strains with the strongest hemolytic activity belong to the most extensive multidrug-resistant sublineage (clade C2). To define the set of genes involved in hemolysin production, the clade C2 strain S65EC was completely sequenced and subjected to a genome-wide screen by combining saturated transposon mutagenesis and transposon-directed insertion site sequencing with the capacity to lyse red blood cells. Using this approach, and subsequent targeted mutagenesis and complementation, 13 genes were confirmed to be specifically required for production of active hemolysin. New hemolysin-controlling elements included discrete sets of genes involved in lipopolysaccharide (LPS) inner core biosynthesis (waaC, waaF, waaG, and rfaE) and cytoplasmic chaperone activity (dnaK and dnaJ), and we show these are required for hemolysin secretion. Overall, this work provides a unique description of hemolysin sequence diversity in a single clonal lineage and describes a complex multilevel system of regulatory control for this important toxin.
Collapse
|
11
|
Nevermann J, Silva A, Otero C, Oyarzún DP, Barrera B, Gil F, Calderón IL, Fuentes JA. Identification of Genes Involved in Biogenesis of Outer Membrane Vesicles (OMVs) in Salmonella enterica Serovar Typhi. Front Microbiol 2019; 10:104. [PMID: 30778340 PMCID: PMC6369716 DOI: 10.3389/fmicb.2019.00104] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 01/17/2019] [Indexed: 12/26/2022] Open
Abstract
Outer membrane vesicles (OMVs) are nano-sized proteoliposomes discharged from the cell envelope of Gram-negative bacteria. OMVs normally contain toxins, enzymes and other factors, and are used as vehicles in a process that has been considered a generalized, evolutionarily conserved delivery system among bacteria. Furthermore, OMVs can be used in biotechnological applications that require delivery of biomolecules, such as vaccines, remarking the importance of their study. Although it is known that Salmonella enterica serovar Typhi (S. Typhi), the etiological agent of typhoid fever in humans, delivers toxins (e.g., HlyE) via OMVs, there are no reports identifying genetic determinants of the OMV biogenesis in this serovar. In the present work, and with the aim to identify genes participating in OMV biogenesis in S. Typhi, we screened 15,000 random insertion mutants for increased HlyE secretion. We found 9 S. Typhi genes (generically called zzz genes) determining an increased HlyE secretion that were also involved in OMV biogenesis. The genes corresponded to ompA, nlpI, and tolR (envelope stability), rfaE and waaC (LPS synthesis), yipP (envC), mrcB (synthesis and remodeling of peptidoglycan), degS (stress sensor serine endopeptidase) and hns (global transcriptional regulator). We found that S. Typhi Δzzz mutants were prone to secrete periplasmic, functional proteins with a relatively good envelope integrity. In addition, we showed that zzz genes participate in OMV biogenesis, modulating different properties such as OMV size distribution, OMV yield and OMV protein cargo.
Collapse
Affiliation(s)
- Jan Nevermann
- Laboratorio de Genética y Patogénesis Bacteriana, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Andrés Silva
- Laboratorio de Genética y Patogénesis Bacteriana, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Carolina Otero
- Escuela de Química y Farmacia, Facultad de Medicina, Universidad Andres Bello, Santiago, Chile
| | - Diego P Oyarzún
- Center of Applied Nanosciences, Universidad Andres Bello, Santiago, Chile
| | - Boris Barrera
- Unidad de Microbiología, Hospital Clínico Universidad de Chile, Santiago, Chile
| | - Fernando Gil
- Microbiota-Host Interactions and Clostridia Research Group, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Iván L Calderón
- Laboratorio de Genética y Patogénesis Bacteriana, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Juan A Fuentes
- Laboratorio de Genética y Patogénesis Bacteriana, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| |
Collapse
|
12
|
García-Weber D, Dangeard AS, Cornil J, Thai L, Rytter H, Zamyatina A, Mulard LA, Arrieumerlou C. ADP-heptose is a newly identified pathogen-associated molecular pattern of Shigella flexneri. EMBO Rep 2018; 19:embr.201846943. [PMID: 30455202 DOI: 10.15252/embr.201846943] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 10/26/2018] [Accepted: 10/29/2018] [Indexed: 01/13/2023] Open
Abstract
During an infection, the detection of pathogens is mediated through the interactions between pathogen-associated molecular patterns (PAMPs) and pathogen recognition receptors. β-Heptose 1,7-bisphosphate (βHBP), an intermediate of the lipopolysaccharide (LPS) biosynthesis pathway, was recently identified as a bacterial PAMP. It was reported that βHBP sensing leads to oligomerization of TIFA proteins, a mechanism controlling NF-κB activation and pro-inflammatory gene expression. Here, we compare the ability of chemically synthesized βHBP and Shigella flexneri lysate to induce TIFA oligomerization in epithelial cells. We find that, unlike bacterial lysate, βHBP fails to initiate rapid TIFA oligomerization. It only induces delayed signaling, suggesting that βHBP must be processed intracellularly to trigger inflammation. Gene deletion and complementation analysis of the LPS biosynthesis pathway revealed that ADP-heptose is the bacterial metabolite responsible for rapid TIFA oligomerization. ADP-heptose sensing occurs down to 10-10 M. During S. flexneri infection, it results in cytokine production, a process dependent on the kinase ALPK1. Altogether, our results rule out a major role of βHBP in S. flexneri infection and identify ADP-heptose as a new bacterial PAMP.
Collapse
Affiliation(s)
- Diego García-Weber
- INSERM, U1016, Institut Cochin, Paris, France.,CNRS, UMR8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Anne-Sophie Dangeard
- INSERM, U1016, Institut Cochin, Paris, France.,CNRS, UMR8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Johan Cornil
- Chemistry of Biomolecules Laboratory, Institut Pasteur, Paris Cedex 15, France.,CNRS UMR3523, Institut Pasteur, Paris, France
| | - Linda Thai
- Chemistry of Biomolecules Laboratory, Institut Pasteur, Paris Cedex 15, France.,CNRS UMR3523, Institut Pasteur, Paris, France
| | | | - Alla Zamyatina
- Department of Chemistry, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Laurence A Mulard
- Chemistry of Biomolecules Laboratory, Institut Pasteur, Paris Cedex 15, France.,CNRS UMR3523, Institut Pasteur, Paris, France
| | | |
Collapse
|
13
|
Maigaard Hermansen GM, Boysen A, Krogh TJ, Nawrocki A, Jelsbak L, Møller-Jensen J. HldE Is Important for Virulence Phenotypes in Enterotoxigenic Escherichia coli. Front Cell Infect Microbiol 2018; 8:253. [PMID: 30131942 PMCID: PMC6090259 DOI: 10.3389/fcimb.2018.00253] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 07/04/2018] [Indexed: 12/12/2022] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) is one of the most common causes of diarrheal illness in third world countries and it especially affects children and travelers visiting these regions. ETEC causes disease by adhering tightly to the epithelial cells in a concerted effort by adhesins, flagella, and other virulence-factors. When attached ETEC secretes toxins targeting the small intestine host-cells, which ultimately leads to osmotic diarrhea. HldE is a bifunctional protein that catalyzes the nucleotide-activated heptose precursors used in the biosynthesis of lipopolysaccharide (LPS) and in post-translational protein glycosylation. Both mechanisms have been linked to ETEC virulence: Lipopolysaccharide (LPS) is a major component of the bacterial outer membrane and is needed for transport of heat-labile toxins to the host cells, and ETEC glycoproteins have been shown to play an important role for bacterial adhesion to host epithelia. Here, we report that HldE plays an important role for ETEC virulence. Deletion of hldE resulted in markedly reduced binding to the human intestinal cells due to reduced expression of colonization factor CFA/I on the bacterial surface. Deletion of hldE also affected ETEC motility in a flagella-dependent fashion. Expression of both colonization factors and flagella was inhibited at the level of transcription. In addition, the hldE mutant displayed altered growth, increased biofilm formation and clumping in minimal growth medium. Investigation of an orthogonal LPS-deficient mutant combined with mass spectrometric analysis of protein glycosylation indicated that HldE exerts its role on ETEC virulence both through protein glycosylation and correct LPS configuration. These results place HldE as an attractive target for the development of future antimicrobial therapeutics.
Collapse
Affiliation(s)
| | - Anders Boysen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Thøger J Krogh
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Arkadiusz Nawrocki
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Lars Jelsbak
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Jakob Møller-Jensen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
14
|
Gronow S, Oertelt C, Ervelä E, Zamyatina A, Kosma P, Skurnik M, Holst O. Characterization of the physiological substrate for lipopolysaccharide heptosyltransferases I and II. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/09680519010070040701] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
L- Glycero-D- manno-heptopyranose is a characteristic compound of many lipopolysaccharide (LPS) core structures of Gram-negative bacteria. In Escherichia coli two heptosyltransferases, namely WaaC and WaaF, are known to transfer L- glycero-D- manno-heptopyranose to Re-LPS and Rd 2-LPS, respectively. It had been proposed that both reactions involve ADPL- glycero-D- manno-heptose as a sugar donor; however, the structure of this nucleotide sugar had never been completely elucidated. In the present study, ADPL- glycero-D- manno-heptose was isolated from a heptosyltransferase-deficient E. coli mutant, and its structure was determined by nuclear magnetic resonance spectroscopy and matrix-assisted laser-desorption/ionization time-of-flight mass spectrometry as ADPL- glycero-β-D- manno-heptopyranose. This compound represented the sole constituent of the bacterial extract that was accepted as a sugar donor by heptosyltransferases I and II in vitro .
Collapse
Affiliation(s)
- Sabine Gronow
- Medical and Biochemical Microbiology, Research Center Borstel, Germany
| | | | - Elise Ervelä
- Department of Medical Biochemistry, University of Turku, Finland
| | - Alla Zamyatina
- Department of Chemistry, University of Agricultural Sciences, Vienna, Austria
| | - Paul Kosma
- Department of Chemistry, University of Agricultural Sciences, Vienna, Austria
| | - Mikael Skurnik
- Department of Medical Biochemistry, University of Turku, Finland
| | - Otto Holst
- Analytical Biochemistry, Research Center Borstel, Germany,
| |
Collapse
|
15
|
Gronow S, Brade H. Invited review: Lipopolysaccharide biosynthesis: which steps do bacteria need to survive? ACTA ACUST UNITED AC 2016. [DOI: 10.1177/09680519010070010301] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A detailed knowledge of LPS biosynthesis is of the utmost importance in understanding the function of the outer membrane of Gram-negative bacteria. The regulation of LPS biosynthesis affects many more compartments of the bacterial cell than the outer membrane and thus contributes to the understanding of the physiology of Gram-negative bacteria in general, on the basis of which only mechanisms of virulence and antibiotic resistance can be studied to find new targets for antibacterial treatment. The study of LPS biosynthesis is also an excellent example to demonstrate the limitations of `genomics' and `proteomics', since secondary gene products can be studied only by the combined tools of molecular genetics, enzymology and analytical structural biochemistry. Thus, the door to the field of `glycomics' is opened.
Collapse
Affiliation(s)
- Sabine Gronow
- Division of Medical and Biochemical Microbiology, Research Center Borstel, Center for Medicine and Biosciences, Borstel, Germany,
| | - Helmut Brade
- Division of Medical and Biochemical Microbiology, Research Center Borstel, Center for Medicine and Biosciences, Borstel, Germany
| |
Collapse
|
16
|
Kumar A, Thotakura PL, Tiwary BK, Krishna R. Target identification in Fusobacterium nucleatum by subtractive genomics approach and enrichment analysis of host-pathogen protein-protein interactions. BMC Microbiol 2016; 16:84. [PMID: 27176600 PMCID: PMC4866016 DOI: 10.1186/s12866-016-0700-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 05/06/2016] [Indexed: 02/07/2023] Open
Abstract
Background Fusobacterium nucleatum, a well studied bacterium in periodontal diseases, appendicitis, gingivitis, osteomyelitis and pregnancy complications has recently gained attention due to its association with colorectal cancer (CRC) progression. Treatment with berberine was shown to reverse F. nucleatum-induced CRC progression in mice by balancing the growth of opportunistic pathogens in tumor microenvironment. Intestinal microbiota imbalance and the infections caused by F. nucleatum might be regulated by therapeutic intervention. Hence, we aimed to predict drug target proteins in F. nucleatum, through subtractive genomics approach and host-pathogen protein-protein interactions (HP-PPIs). We also carried out enrichment analysis of host interacting partners to hypothesize the possible mechanisms involved in CRC progression due to F. nucleatum. Results In subtractive genomics approach, the essential, virulence and resistance related proteins were retrieved from RefSeq proteome of F. nucleatum by searching against Database of Essential Genes (DEG), Virulence Factor Database (VFDB) and Antibiotic Resistance Gene-ANNOTation (ARG-ANNOT) tool respectively. A subsequent hierarchical screening to identify non-human homologous, metabolic pathway-independent/pathway-specific and druggable proteins resulted in eight pathway-independent and 27 pathway-specific druggable targets. Co-aggregation of F. nucleatum with host induces proinflammatory gene expression thereby potentiates tumorigenesis. Hence, proteins from IBDsite, a database for inflammatory bowel disease (IBD) research and those involved in colorectal adenocarcinoma as interpreted from The Cancer Genome Atlas (TCGA) were retrieved to predict drug targets based on HP-PPIs with F. nucleatum proteome. Prediction of HP-PPIs exhibited 186 interactions contributed by 103 host and 76 bacterial proteins. Bacterial interacting partners were accounted as putative targets. And enrichment analysis of host interacting partners showed statistically enriched terms that were in positive correlation with CRC, atherosclerosis, cardiovascular, osteoporosis, Alzheimer’s and other diseases. Conclusion Subtractive genomics analysis provided a set of target proteins suggested to be indispensable for survival and pathogenicity of F. nucleatum. These target proteins might be considered for designing potent inhibitors to abrogate F. nucleatum infections. From enrichment analysis, it was hypothesized that F. nucleatum infection might enhance CRC progression by simultaneously regulating multiple signaling cascades which could lead to up-regulation of proinflammatory responses, oncogenes, modulation of host immune defense mechanism and suppression of DNA repair system. Electronic supplementary material The online version of this article (doi:10.1186/s12866-016-0700-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Amit Kumar
- Centre for Bioinformatics, Pondicherry University, Puducherry, 605014, India
| | | | - Basant Kumar Tiwary
- Centre Head, Centre for Bioinformatics, Pondicherry University, Puducherry, 605014, India
| | - Ramadas Krishna
- Centre for Bioinformatics, Pondicherry University, Puducherry, 605014, India.
| |
Collapse
|
17
|
Martínez-Bussenius C, Navarro CA, Orellana L, Paradela A, Jerez CA. Global response of Acidithiobacillus ferrooxidans ATCC 53993 to high concentrations of copper: A quantitative proteomics approach. J Proteomics 2016; 145:37-45. [PMID: 27079981 DOI: 10.1016/j.jprot.2016.03.039] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Revised: 03/16/2016] [Accepted: 03/29/2016] [Indexed: 11/26/2022]
Abstract
UNLABELLED Acidithiobacillus ferrooxidans is used in industrial bioleaching of minerals to extract valuable metals. A. ferrooxidans strain ATCC 53993 is much more resistant to copper than other strains of this microorganism and it has been proposed that genes present in an exclusive genomic island (GI) of this strain would contribute to its extreme copper tolerance. ICPL (isotope-coded protein labeling) quantitative proteomics was used to study in detail the response of this bacterium to copper. A high overexpression of RND efflux systems and CusF copper chaperones, both present in the genome and the GI of strain ATCC 53993 was found. Also, changes in the levels of the respiratory system proteins such as AcoP and Rus copper binding proteins and several proteins with other predicted functions suggest that numerous metabolic changes are apparently involved in controlling the effects of the toxic metal on this acidophile. SIGNIFICANCE Using quantitative proteomics we overview the adaptation mechanisms that biomining acidophiles use to stand their harsh environment. The overexpression of several genes present in an exclusive genomic island strongly suggests the importance of the proteins coded in this DNA region in the high tolerance of A. ferrooxidans ATCC 53993 to metals.
Collapse
Affiliation(s)
- Cristóbal Martínez-Bussenius
- Laboratory of Molecular Microbiology and Biotechnology, Department of Biology, Faculty of Sciences, University of Chile, Santiago, Chile
| | - Claudio A Navarro
- Laboratory of Molecular Microbiology and Biotechnology, Department of Biology, Faculty of Sciences, University of Chile, Santiago, Chile
| | - Luis Orellana
- Laboratory of Molecular Microbiology and Biotechnology, Department of Biology, Faculty of Sciences, University of Chile, Santiago, Chile
| | - Alberto Paradela
- Proteomics Laboratory, National Biotechnology Center, CSIC, Madrid, Spain
| | - Carlos A Jerez
- Laboratory of Molecular Microbiology and Biotechnology, Department of Biology, Faculty of Sciences, University of Chile, Santiago, Chile
| |
Collapse
|
18
|
Wakao S, Siarot L, Aono T, Oyaizu H. Effects of alteration in LPS structure in Azorhizobium caulinodans on nodule development. J GEN APPL MICROBIOL 2016; 61:248-54. [PMID: 26782655 DOI: 10.2323/jgam.61.248] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The lipopolysaccharide (LPS) of Azorhizobium caulinodans ORS571, which forms N2-fixing nodules on the stems and roots of Sesbania rostrata, is known to be a positive signal required for the progression of nodule formation. In this study, four A. caulinodans mutants producing a variety of defective LPSs were compared. The LPSs of the mutants having Tn5 insertion in the rfaF, rfaD, and rfaE genes were more truncated than the modified LPSs of the oac2 mutants. However, the nodule formation by the rfaF, rfaD, and rfaE mutants was more advanced than that of the oac2 mutant, suggesting that invasion ability depends on the LPS structure. Our hypothesis is that not only the wild-type LPSs but also the altered LPSs of the oac2 mutant may be recognized as signal molecules by plants. The altered LPSs may act as negative signals that halt the symbiotic process, whereas the wild-type LPSs may prevent the halt of the symbiotic process. The more truncated LPSs of the rfaF, rfaD, and rfaE mutants perhaps no longer function as negative signals inducing discontinuation of the symbiotic process, and thus these strains form more advanced nodules than ORS571-oac2.
Collapse
Affiliation(s)
- Seiji Wakao
- Biotechnology Research Center, The University of Tokyo
| | | | | | | |
Collapse
|
19
|
Ebbensgaard A, Mordhorst H, Overgaard MT, Nielsen CG, Aarestrup FM, Hansen EB. Comparative Evaluation of the Antimicrobial Activity of Different Antimicrobial Peptides against a Range of Pathogenic Bacteria. PLoS One 2015; 10:e0144611. [PMID: 26656394 PMCID: PMC4684357 DOI: 10.1371/journal.pone.0144611] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 11/20/2015] [Indexed: 12/19/2022] Open
Abstract
ANALYSIS OF A SELECTED SET OF ANTIMICROBIAL PEPTIDES The rapid emergence of resistance to classical antibiotics has increased the interest in novel antimicrobial compounds. Antimicrobial peptides (AMPs) represent an attractive alternative to classical antibiotics and a number of different studies have reported antimicrobial activity data of various AMPs, but there is only limited comparative data available. The mode of action for many AMPs is largely unknown even though several models have suggested that the lipopolysaccharides (LPS) play a crucial role in the attraction and attachment of the AMP to the bacterial membrane in Gram-negative bacteria. We compared the potency of Cap18, Cap11, Cap11-1-18m2, Cecropin P1, Cecropin B, Bac2A, Bac2A-NH2, Sub5-NH2, Indolicidin, Melittin, Myxinidin, Myxinidin-NH2, Pyrrhocoricin, Apidaecin and Metalnikowin I towards Staphylococcus aureus, Enterococcus faecalis, Pseudomonas aeruginosa, Escherichia coli, Aeromonas salmonicida, Listeria monocytogenes, Campylobacter jejuni, Flavobacterium psychrophilum, Salmonella typhimurium and Yersinia ruckeri by minimal inhibitory concentration (MIC) determinations. Additional characteristics such as cytotoxicity, thermo and protease stability were measured and compared among the different peptides. Further, the antimicrobial activity of a selection of cationic AMPs was investigated in various E. coli LPS mutants. CAP18 SHOWS A HIGH BROAD SPECTRUM ANTIMICROBIAL ACTIVITY Of all the tested AMPs, Cap18 showed the most efficient antimicrobial activity, in particular against Gram-negative bacteria. In addition, Cap18 is highly thermostable and showed no cytotoxic effect in a hemolytic assay, measured at the concentration used. However, Cap18 is, as most of the tested AMPs, sensitive to proteolytic digestion in vitro. Thus, Cap18 is an excellent candidate for further development into practical use; however, modifications that should reduce the protease sensitivity would be needed. In addition, our findings from analyzing LPS mutant strains suggest that the core oligosaccharide of the LPS molecule is not essential for the antimicrobial activity of cationic AMPs, but in fact has a protective role against AMPs.
Collapse
Affiliation(s)
- Anna Ebbensgaard
- National Food Institute, Technical University of Denmark, Søltofts Plads, 2800 Kgs, Lyngby, Denmark
| | - Hanne Mordhorst
- National Food Institute, Technical University of Denmark, Søltofts Plads, 2800 Kgs, Lyngby, Denmark
| | - Michael Toft Overgaard
- Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220, Aalborg, Denmark
| | - Claus Gyrup Nielsen
- Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220, Aalborg, Denmark
| | - Frank Møller Aarestrup
- National Food Institute, Technical University of Denmark, Søltofts Plads, 2800 Kgs, Lyngby, Denmark
| | - Egon Bech Hansen
- National Food Institute, Technical University of Denmark, Mørkhøj Bygade 19, 2860, Søborg, Denmark
| |
Collapse
|
20
|
Zhang B, Yu Y, Zeng Z, Ren Y, Yue H. Deletion of the rfaE gene in Haemophilus parasuis SC096 strain attenuates serum resistance, adhesion and invasion. Microb Pathog 2014; 74:33-7. [PMID: 25078003 DOI: 10.1016/j.micpath.2014.07.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 06/20/2014] [Accepted: 07/21/2014] [Indexed: 11/27/2022]
Abstract
In Haemophilus parasuis, the lipooligosaccharide (LOS) has been identified as an important virulence factor. The rfa gene cluster encodes enzymes for LOS core biosynthesis. In order to investigate the role of the rfaE gene, we generated an rfaE deficient mutant (ΔrfaE) of a H. parasuis SC096 by a natural transformation method. The purified preparation of LOS from the ΔrfaE mutant strain showed truncated LOS structure on silver-stained SDS-PAGE. Compared to the wild-type SC096 strain, the generation time of ΔrfaE mutant strain was significantly extended from 59 min to 69 min. The ΔrfaE mutant strain caused an approximately 30-fold reductions in survival rate in 50% sera and 36-fold reductions in survival rate in 90% sera, respectively (p < 0.001). In adhesion and invasion assays, the ΔrfaE mutant strain had 10-fold less efficient adherence and 12-fold reductions in invasion of the porcine umbilicus vein endothelial cells (PUVEC) and porcine kidney epithelial cells (PK-15), respectively (p < 0.001). However, the complemented strain could restore the above phenotypes. Hence, the above results suggested that the rfaE gene participated in the pathogenicity of H. parasuis SC096 strain.
Collapse
Affiliation(s)
- Bin Zhang
- College of Life Science and Technology, Southwest University for Nationalities, Chengdu 610041, China
| | - Yuandi Yu
- College of Life Science and Technology, Southwest University for Nationalities, Chengdu 610041, China
| | - Ze Zeng
- College of Life Science and Technology, Southwest University for Nationalities, Chengdu 610041, China
| | - Yupeng Ren
- College of Life Science and Technology, Southwest University for Nationalities, Chengdu 610041, China
| | - Hua Yue
- College of Life Science and Technology, Southwest University for Nationalities, Chengdu 610041, China.
| |
Collapse
|
21
|
Lucchetti-Miganeh C, Redelberger D, Chambonnier G, Rechenmann F, Elsen S, Bordi C, Jeannot K, Attrée I, Plésiat P, de Bentzmann S. Pseudomonas aeruginosa Genome Evolution in Patients and under the Hospital Environment. Pathogens 2014; 3:309-40. [PMID: 25437802 PMCID: PMC4243448 DOI: 10.3390/pathogens3020309] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Revised: 03/26/2014] [Accepted: 03/28/2014] [Indexed: 11/21/2022] Open
Abstract
Pseudomonas aeruginosa is a Gram-negative environmental species and an opportunistic microorganism, establishing itself in vulnerable patients, such as those with cystic fibrosis (CF) or those hospitalized in intensive care units (ICU). It has become a major cause of nosocomial infections worldwide and a serious threat to Public Health because of overuse and misuse of antibiotics that have selected highly resistant strains against which very few therapeutic options exist. Herein is illustrated the intraclonal evolution of the genome of sequential isolates collected in a single CF patient from the early phase of pulmonary colonization to the fatal outcome. We also examined at the whole genome scale a pair of genotypically-related strains made of a drug susceptible, environmental isolate recovered from an ICU sink and of its multidrug resistant counterpart found to infect an ICU patient. Multiple genetic changes accumulated in the CF isolates over the disease time course including SNPs, deletion events and reduction of whole genome size. The strain isolated from the ICU patient displayed an increase in the genome size of 4.8% with major genetic rearrangements as compared to the initial environmental strain. The annotated genomes are given in free access in an interactive web application WallGene designed to facilitate large-scale comparative analysis and thus allowing investigators to explore homologies and syntenies between P. aeruginosa strains, here PAO1 and the five clinical strains described.
Collapse
Affiliation(s)
| | - David Redelberger
- UMR7255-Laboratoire d'Ingénierie des Systèmes Macromoléculaires, CNRS-Aix Marseille University, Marseille 13402, France.
| | - Gaël Chambonnier
- UMR7255-Laboratoire d'Ingénierie des Systèmes Macromoléculaires, CNRS-Aix Marseille University, Marseille 13402, France.
| | | | - Sylvie Elsen
- INSERM, UMR-S 1036, Biology of Cancer and Infection, Grenoble 38054, France.
| | - Christophe Bordi
- UMR7255-Laboratoire d'Ingénierie des Systèmes Macromoléculaires, CNRS-Aix Marseille University, Marseille 13402, France.
| | - Katy Jeannot
- Laboratoire de Bactériologie, Faculté de Médecine-Pharmacie, Université de Franche-Comté, Besançon 25030, France.
| | - Ina Attrée
- INSERM, UMR-S 1036, Biology of Cancer and Infection, Grenoble 38054, France.
| | - Patrick Plésiat
- Laboratoire de Bactériologie, Faculté de Médecine-Pharmacie, Université de Franche-Comté, Besançon 25030, France.
| | - Sophie de Bentzmann
- UMR7255-Laboratoire d'Ingénierie des Systèmes Macromoléculaires, CNRS-Aix Marseille University, Marseille 13402, France.
| |
Collapse
|
22
|
Nakao R, Ramstedt M, Wai SN, Uhlin BE. Enhanced biofilm formation by Escherichia coli LPS mutants defective in Hep biosynthesis. PLoS One 2012; 7:e51241. [PMID: 23284671 PMCID: PMC3532297 DOI: 10.1371/journal.pone.0051241] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Accepted: 11/01/2012] [Indexed: 12/28/2022] Open
Abstract
Lipopolysaccharide (LPS) is the major component of the surface of Gram-negative bacteria and its polysaccharide portion is situated at the outermost region. We investigated the relationship between the polysaccharide portion of LPS and biofilm formation using a series of Escherichia coli mutants defective in genes earlier shown to affect the LPS sugar compositions. Biofilm formation by a deep rough LPS mutant, the hldE strain, was strongly enhanced in comparison with the parental strain and other LPS mutants. The hldE strain also showed a phenotype of increased auto-aggregation and stronger cell surface hydrophobicity compared to the wild-type. Similar results were obtained with another deep rough LPS mutant, the waaC strain whose LPS showed same molecular mass as that of the hldE strain. Confocal laser scanning microscopy (CLSM) analysis and biofilm formation assay using DNase I revealed that biofilm formation by the hldE strain was dependent on extracellular DNA. Furthermore, a loss of flagella and an increase in amount of outer membrane vesicles in case of the hldE strain were also observed by transmission electron microscopy and atomic force microscopy, respectively. In addition, we demonstrated that a mutation in the hldE locus, which alters the LPS structure, caused changes in both expression and properties of several surface bacterial factors involved in biofilm formation and virulence. We suggest that the implication of these results should be considered in the context of biofilm formation on abiotic surfaces, which is frequently associated with nosocominal infections such as the catheter-associated infections.
Collapse
Affiliation(s)
- Ryoma Nakao
- Department of Molecular Biology and Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden
- Department of Bacteriology, National Institute of Infectious Diseases, Tokyo, Japan
| | | | - Sun Nyunt Wai
- Department of Molecular Biology and Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden
| | - Bernt Eric Uhlin
- Department of Molecular Biology and Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden
- * E-mail:
| |
Collapse
|
23
|
Loutet SA, Di Lorenzo F, Clarke C, Molinaro A, Valvano MA. Transcriptional responses of Burkholderia cenocepacia to polymyxin B in isogenic strains with diverse polymyxin B resistance phenotypes. BMC Genomics 2011; 12:472. [PMID: 21955326 PMCID: PMC3190405 DOI: 10.1186/1471-2164-12-472] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Accepted: 09/29/2011] [Indexed: 12/04/2022] Open
Abstract
Background Burkholderia cenocepacia is a Gram-negative opportunistic pathogen displaying high resistance to antimicrobial peptides and polymyxins. We identified mechanisms of resistance by analyzing transcriptional changes to polymyxin B treatment in three isogenic B. cenocepacia strains with diverse polymyxin B resistance phenotypes: the polymyxin B-resistant parental strain K56-2, a polymyxin B-sensitive K56-2 mutant strain with heptoseless lipopolysaccharide (LPS) (RSF34), and a derivative of RSF34 (RSF34 4000B) isolated through multiple rounds of selection in polymyxin B that despite having a heptoseless LPS is highly polymyxin B-resistant. Results A heptoseless LPS mutant of B. cenocepacia was passaged through multiple rounds of selection to regain high levels of polymyxin B-resistance. This process resulted in various phenotypic changes in the isolate that could contribute to polymyxin B resistance and are consistent with LPS-independent changes in the outer membrane. The transcriptional response of three B. cenocepacia strains to subinhibitory concentrations of polymyxin B was analyzed using microarray analysis and validated by quantitative Real Time-PCR. There were numerous baseline changes in expression between the three strains in the absence of polymyxin B. In both K56-2 and RSF34, similar transcriptional changes upon treatment with polymyxin B were found and included upregulation of various genes that may be involved in polymyxin B resistance and downregulation of genes required for the synthesis and operation of flagella. This last result was validated phenotypically as both swimming and swarming motility were impaired in the presence of polymyxin B. RSF34 4000B had altered the expression in a larger number of genes upon treatment with polymyxin B than either K56-2 or RSF34, but the relative fold-changes in expression were lower. Conclusions It is possible to generate polymyxin B-resistant isolates from polymyxin B-sensitive mutant strains of B. cenocepacia, likely due to the multifactorial nature of polymyxin B resistance of this bacterium. Microarray analysis showed that B. cenocepacia mounts multiple transcriptional responses following exposure to polymyxin B. Polymyxin B-regulated genes identified in this study may be required for polymyxin B resistance, which must be tested experimentally. Exposure to polymyxin B also decreases expression of flagellar genes resulting in reduced swimming and swarming motility.
Collapse
Affiliation(s)
- Slade A Loutet
- Centre for Human Immunology, Department of Microbiology and Immunology, the University of Western Ontario, London, Ontario, Canada
| | | | | | | | | |
Collapse
|
24
|
Wilson WA, Roach PJ, Montero M, Baroja-Fernández E, Muñoz FJ, Eydallin G, Viale AM, Pozueta-Romero J. Regulation of glycogen metabolism in yeast and bacteria. FEMS Microbiol Rev 2011; 34:952-85. [PMID: 20412306 DOI: 10.1111/j.1574-6976.2010.00220.x] [Citation(s) in RCA: 272] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Microorganisms have the capacity to utilize a variety of nutrients and adapt to continuously changing environmental conditions. Many microorganisms, including yeast and bacteria, accumulate carbon and energy reserves to cope with the starvation conditions temporarily present in the environment. Glycogen biosynthesis is a main strategy for such metabolic storage, and a variety of sensing and signaling mechanisms have evolved in evolutionarily distant species to ensure the production of this homopolysaccharide. At the most fundamental level, the processes of glycogen synthesis and degradation in yeast and bacteria share certain broad similarities. However, the regulation of these processes is sometimes quite distinct, indicating that they have evolved separately to respond optimally to the habitat conditions of each species. This review aims to highlight the mechanisms, both at the transcriptional and at the post-transcriptional level, that regulate glycogen metabolism in yeast and bacteria, focusing on selected areas where the greatest increase in knowledge has occurred during the last few years. In the yeast system, we focus particularly on the various signaling pathways that control the activity of the enzymes of glycogen storage. We also discuss our recent understanding of the important role played by the vacuole in glycogen metabolism. In the case of bacterial glycogen, special emphasis is placed on aspects related to the genetic regulation of glycogen metabolism and its connection with other biological processes.
Collapse
Affiliation(s)
- Wayne A Wilson
- Biochemistry and Nutrition Department, Des Moines University, Des Moines, IA, USA
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Taylor PL, Sugiman-Marangos S, Zhang K, Valvano MA, Wright GD, Junop MS. Structural and kinetic characterization of the LPS biosynthetic enzyme D-alpha,beta-D-heptose-1,7-bisphosphate phosphatase (GmhB) from Escherichia coli. Biochemistry 2010; 49:1033-41. [PMID: 20050699 DOI: 10.1021/bi901780j] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Lipopolysaccharide is a major component of the outer membrane of gram-negative bacteria and provides a permeability barrier to many commonly used antibiotics. ADP-heptose residues are an integral part of the LPS inner core, and mutants deficient in heptose biosynthesis demonstrate increased membrane permeability. The heptose biosynthesis pathway involves phosphorylation and dephosphorylation steps not found in other pathways for the synthesis of nucleotide sugar precursors. Consequently, the heptose biosynthetic pathway has been marked as a novel target for antibiotic adjuvants, which are compounds that facilitate and potentiate antibiotic activity. D-alpha,beta-D-heptose-1,7-bisphosphate phosphatase (GmhB) catalyzes the third essential step of LPS heptose biosynthesis. This study describes the first crystal structure of GmhB and enzymatic analysis of the protein. Structure-guided mutations followed by steady state kinetic analysis, together with established precedent for HAD phosphatases, suggest that GmhB functions through a phosphoaspartate intermediate. This study provides insight into the structure-function relationship of GmhB, a new target for combatting gram-negative bacterial infection.
Collapse
Affiliation(s)
- Patricia L Taylor
- Department of Biochemistry and Biomedical Sciences and M. G. DeGroote Institute for Infectious Disease Research, McMaster University, 1200 Main Street West, Hamilton, Ontario L8N 3Z5, Canada
| | | | | | | | | | | |
Collapse
|
26
|
Escherichia coli glycogen metabolism is controlled by the PhoP-PhoQ regulatory system at submillimolar environmental Mg2+ concentrations, and is highly interconnected with a wide variety of cellular processes. Biochem J 2009; 424:129-41. [PMID: 19702577 DOI: 10.1042/bj20090980] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Using the Keio collection of gene-disrupted mutants of Escherichia coli, we have recently carried out a genome-wide screening of the genes affecting glycogen metabolism. Among the mutants identified in the study, Delta mgtA, Delta phoP and Delta phoQ cells, all lacking genes that are induced under low extracellular Mg2+ conditions, displayed glycogen-deficient phenotypes. In this work we show that these mutants accumulated normal glycogen levels when the culture medium was supplemented with submillimolar Mg2+ concentrations. Expression analyses conducted in wild-type, Delta phoP and Delta phoQ cells showed that the glgCAP operon is under PhoP-PhoQ control in the submillimolar Mg2+ concentration range. Subsequent screening of the Keio collection under non-limiting Mg2+ allowed the identification of 183 knock-out mutants with altered glycogen levels. The stringent and general stress responses, end-turnover of tRNA, intracellular AMP levels, and metabolism of amino acids, iron, carbon and sulfur were major determinants of glycogen levels. glgC::lacZY expression analyses using mutants representing different functional categories revealed that the glgCAP operon belongs to the RelA regulon. We propose an integrated metabolic model wherein glycogen metabolism is (a) tightly controlled by the energy and nutritional status of the cell and (b) finely regulated by changes in environmental Mg2+ occurring at the submillimolar concentration range.
Collapse
|
27
|
Jimenez N, Vilches S, Lacasta A, Regué M, Merino S, Tomás JM. A bifunctional enzyme in a single gene catalyzes the incorporation of GlcN into the Aeromonas core lipopolysaccharide. J Biol Chem 2009; 284:32995-3005. [PMID: 19805547 DOI: 10.1074/jbc.m109.038828] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The core lipopolysaccharide (LPS) of Aeromonas hydrophila AH-3 and Aeromonas salmonicida A450 is characterized by the presence of the pentasaccharide alpha-d-GlcN-(1-->7)-l-alpha-d-Hep-(1-->2)-l-alpha-d-Hep-(1-->3)-l-alpha-d-Hep-(1-->5)-alpha-Kdo. Previously it has been suggested that the WahA protein is involved in the incorporation of GlcN residue to outer core LPS. The WahA protein contains two domains: a glycosyltransferase and a carbohydrate esterase. In this work we demonstrate that the independent expression of the WahA glycosyltransferase domain catalyzes the incorporation of GlcNAc from UDP-GlcNAc to the outer core LPS. Independent expression of the carbohydrate esterase domain leads to the deacetylation of the GlcNAc residue to GlcN. Thus, the WahA is the first described bifunctional glycosyltransferase enzyme involved in the biosynthesis of core LPS. By contrast in Enterobacteriaceae containing GlcN in their outer core LPS the two reactions are performed by two different enzymes.
Collapse
Affiliation(s)
- Natalia Jimenez
- Departamento de Microbiología, Facultad de Biología, Universidad de Barcelona, Diagonal 645, 08071 Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
28
|
King JD, Kocíncová D, Westman EL, Lam JS. Review: Lipopolysaccharide biosynthesis in Pseudomonas aeruginosa. Innate Immun 2009; 15:261-312. [PMID: 19710102 DOI: 10.1177/1753425909106436] [Citation(s) in RCA: 234] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Pseudomonas aeruginosa causes serious nosocomial infections, and an important virulence factor produced by this organism is lipopolysaccharide (LPS). This review summarizes knowledge about biosynthesis of all three structural domains of LPS - lipid A, core oligosaccharide, and O polysaccharides. In addition, based on similarities with other bacterial species, this review proposes new hypothetical pathways for unstudied steps in the biosynthesis of P. aeruginosa LPS. Lipid A biosynthesis is discussed in relation to Escherichia coli and Salmonella, and the biosyntheses of core sugar precursors and core oligosaccharide are summarised. Pseudomonas aeruginosa attaches a Common Polysaccharide Antigen and O-Specific Antigen polysaccharides to lipid A-core. Both forms of O polysaccharide are discussed with respect to their independent synthesis mechanisms. Recent advances in understanding O-polysaccharide biosynthesis since the last major review on this subject, published nearly a decade ago, are highlighted. Since P. aeruginosa O polysaccharides contain unusual sugars, sugar-nucleotide biosynthesis pathways are reviewed in detail. Knowledge derived from detailed studies in the O5, O6 and O11 serotypes is applied to predict biosynthesis pathways of sugars in poorly-studied serotypes, especially O1, O4, and O13/O14. Although further work is required, a full understanding of LPS biosynthesis in P. aeruginosa is almost within reach.
Collapse
Affiliation(s)
- Jerry D King
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | | | | | | |
Collapse
|
29
|
Characterization of a yjjQ mutant of avian pathogenic Escherichia coli (APEC). Microbiology (Reading) 2008; 154:1082-1093. [DOI: 10.1099/mic.0.2007/015784-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
30
|
Taylor PL, Blakely KM, de Leon GP, Walker JR, McArthur F, Evdokimova E, Zhang K, Valvano MA, Wright GD, Junop MS. Structure and function of sedoheptulose-7-phosphate isomerase, a critical enzyme for lipopolysaccharide biosynthesis and a target for antibiotic adjuvants. J Biol Chem 2007; 283:2835-45. [PMID: 18056714 DOI: 10.1074/jbc.m706163200] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The barrier imposed by lipopolysaccharide (LPS) in the outer membrane of Gram-negative bacteria presents a significant challenge in treatment of these organisms with otherwise effective hydrophobic antibiotics. The absence of L-glycero-D-manno-heptose in the LPS molecule is associated with a dramatically increased bacterial susceptibility to hydrophobic antibiotics and thus enzymes in the ADP-heptose biosynthesis pathway are of significant interest. GmhA catalyzes the isomerization of D-sedoheptulose 7-phosphate into D-glycero-D-manno-heptose 7-phosphate, the first committed step in the formation of ADP-heptose. Here we report structures of GmhA from Escherichia coli and Pseudomonas aeruginosa in apo, substrate, and product-bound forms, which together suggest that GmhA adopts two distinct conformations during isomerization through reorganization of quaternary structure. Biochemical characterization of GmhA mutants, combined with in vivo analysis of LPS biosynthesis and novobiocin susceptibility, identifies key catalytic residues. We postulate GmhA acts through an enediol-intermediate isomerase mechanism.
Collapse
Affiliation(s)
- Patricia L Taylor
- Department of Biochemistry and Biomedical Sciences, DeGroote School of Medicine, McMaster University, 1200 Main Street West, Hamilton, Ontario, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Loutet SA, Flannagan RS, Kooi C, Sokol PA, Valvano MA. A complete lipopolysaccharide inner core oligosaccharide is required for resistance of Burkholderia cenocepacia to antimicrobial peptides and bacterial survival in vivo. J Bacteriol 2006; 188:2073-80. [PMID: 16513737 PMCID: PMC1428139 DOI: 10.1128/jb.188.6.2073-2080.2006] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Burkholderia cenocepacia is an important opportunistic pathogen of patients with cystic fibrosis. This bacterium is inherently resistant to a wide range of antimicrobial agents, including high concentrations of antimicrobial peptides. We hypothesized that the lipopolysaccharide (LPS) of B. cenocepacia is important for both virulence and resistance to antimicrobial peptides. We identified hldA and hldD genes in B. cenocepacia strain K56-2. These two genes encode enzymes involved in the modification of heptose sugars prior to their incorporation into the LPS core oligosaccharide. We constructed a mutant, SAL1, which was defective in expression of both hldA and hldD, and by performing complementation studies we confirmed that the functions encoded by both of these B. cenocepacia genes were needed for synthesis of a complete LPS core oligosaccharide. The LPS produced by SAL1 consisted of a short lipid A-core oligosaccharide and was devoid of O antigen. SAL1 was sensitive to the antimicrobial peptides polymyxin B, melittin, and human neutrophil peptide 1. In contrast, another B. cenocepacia mutant strain that produced complete lipid A-core oligosaccharide but lacked polymeric O antigen was not sensitive to polymyxin B or melittin. As determined by the rat agar bead model of lung infection, the SAL1 mutant had a survival defect in vivo since it could not be recovered from the lungs of infected rats 14 days postinfection. Together, these data show that the B. cenocepacia LPS inner core oligosaccharide is needed for in vitro resistance to three structurally unrelated antimicrobial peptides and for in vivo survival in a rat model of chronic lung infection.
Collapse
Affiliation(s)
- Slade A Loutet
- Department of Microbiology and Immunology, Siebens-Drake Research Institute, University of Western Ontario, London, Ontario, Canada N6A 5C1
| | | | | | | | | |
Collapse
|
32
|
McArthur F, Andersson CE, Loutet S, Mowbray SL, Valvano MA. Functional analysis of the glycero-manno-heptose 7-phosphate kinase domain from the bifunctional HldE protein, which is involved in ADP-L-glycero-D-manno-heptose biosynthesis. J Bacteriol 2005; 187:5292-300. [PMID: 16030223 PMCID: PMC1196024 DOI: 10.1128/jb.187.15.5292-5300.2005] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The core oligosaccharide component of the lipopolysaccharide can be subdivided into inner and outer core regions. In Escherichia coli, the inner core consists of two 3-deoxy-d-manno-octulosonic acid and three glycero-manno-heptose residues. The HldE protein participates in the biosynthesis of ADP-glycero-manno-heptose precursors used in the assembly of the inner core. HldE comprises two functional domains: an N-terminal region with homology to the ribokinase superfamily (HldE1 domain) and a C-terminal region with homology to the cytidylyltransferase superfamily (HldE2 domain). We have employed the structure of the E. coli ribokinase as a template to model the HldE1 domain and predict critical amino acids required for enzyme activity. Mutation of these residues renders the protein inactive as determined in vivo by functional complementation analysis. However, these mutations did not affect the secondary or tertiary structure of purified HldE1, as judged by fluorescence spectroscopy and circular dichroism. Furthermore, in vivo coexpression of wild-type, chromosomally encoded HldE and mutant HldE1 proteins with amino acid substitutions in the predicted ATP binding site caused a dominant negative phenotype as revealed by increased bacterial sensitivity to novobiocin. Copurification experiments demonstrated that HldE and HldE1 form a complex in vivo. Gel filtration chromatography resulted in the detection of a dimer as the predominant form of the native HldE1 protein. Altogether, our data support the notions that the HldE functional unit is a dimer and that structural components present in each HldE1 monomer are required for enzymatic activity.
Collapse
Affiliation(s)
- Fiona McArthur
- Department of Microbiology and Immunology, Siebens Drake Research Institute, Schulich School of Medicine, University of Western Ontario, London, Ontario N6A 5C1, Canada
| | | | | | | | | |
Collapse
|
33
|
Samuel G, Reeves P. Biosynthesis of O-antigens: genes and pathways involved in nucleotide sugar precursor synthesis and O-antigen assembly. Carbohydr Res 2004; 338:2503-19. [PMID: 14670712 DOI: 10.1016/j.carres.2003.07.009] [Citation(s) in RCA: 387] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The O-antigen is an important component of the outer membrane of Gram-negative bacteria. It is a repeat unit polysaccharide and consists of a number of repeats of an oligosaccharide, the O-unit, which generally has between two and six sugar residues. O-Antigens are extremely variable, the variation lying in the nature, order and linkage of the different sugars within the polysaccharide. The genes involved in O-antigen biosynthesis are generally found on the chromosome as an O-antigen gene cluster, and the structural variation of O-antigens is mirrored by genetic variation seen in these clusters. The genes within the cluster fall into three major groups. The first group is involved in nucleotide sugar biosynthesis. These genes are often found together in the cluster and have a high level of identity. The genes coding for a significant number of nucleotide sugar biosynthesis pathways have been identified and these pathways seem to be conserved in different O-antigen clusters and across a wide range of species. The second group, the glycosyl transferases, is involved in sugar transfer. They are often dispersed throughout the cluster and have low levels of similarity. The third group is the O-antigen processing genes. This review is a summary of the current knowledge on these three groups of genes that comprise the O-antigen gene clusters, focusing on the most extensively studied E. coli and S. enterica gene clusters.
Collapse
Affiliation(s)
- Gabrielle Samuel
- School of Molecular and Microbial Biosciences, University of Sydney, Sydney, NSW 2006, Australia
| | | |
Collapse
|
34
|
Siegesmund AM, Konkel ME, Klena JD, Mixter PF. Campylobacter jejuni infection of differentiated THP-1 macrophages results in interleukin 1 beta release and caspase-1-independent apoptosis. MICROBIOLOGY-SGM 2004; 150:561-569. [PMID: 14993305 DOI: 10.1099/mic.0.26466-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Apoptosis induction of host macrophages has emerged as a common virulence mechanism among bacterial pathogens. Infection with Campylobacter jejuni is a leading cause of gastroenteritis worldwide and is characterized by an acute inflammatory response in the small intestine. The authors used the human monocytic cell line THP-1 to examine apoptosis induction and pro-inflammatory cytokine production during C. jejuni infection. Flow cytometric analysis revealed that 48 h after inoculation, a C. jejuni wild-type isolate induced apoptosis in 63 % of THP-1 cells while only 34 % of cells inoculated with a ciaB mutant, which does not secrete the Cia (Campylobacter invasion antigens) proteins, underwent apoptosis. Complementation of the ciaB mutant resulted in levels of apoptosis similar to those induced by the C. jejuni wild-type isolate, suggesting that the Cia proteins have a role in apoptosis induction. It was shown that a proteinase K- and heat-stable component of C. jejuni also stimulated THP-1 apoptosis. Inoculation with a C. jejuni gmhD mutant indicated that lipooligosaccharide was not the stimulatory molecule. Immunoblot and ELISA analyses revealed that C. jejuni infection stimulated the synthesis, processing and secretion of interleukin 1 beta (IL-1 beta). Inhibition of caspase 1 activity eliminated IL-1 beta processing and secretion, but did not affect apoptosis induction. In addition, treatment of cells with a caspase-9-specific inhibitor did not affect apoptosis induction, arguing against activation of an apoptotic pathway dependent on either caspase 1 or 9 activation. Collectively, these data suggest that the inoculation of macrophages with C. jejuni results in the processing of IL-1 beta and apoptosis through different regulatory pathways. Furthermore, these data argue that C. jejuni may use a mechanism distinct from Salmonella typhimurium and Shigella flexneri to initiate macrophage apoptosis and release of IL-1 beta.
Collapse
Affiliation(s)
- Amy M Siegesmund
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164-4234, USA
| | - Michael E Konkel
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164-4234, USA
| | - John D Klena
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164-4234, USA
| | - Philip F Mixter
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164-4234, USA
| |
Collapse
|
35
|
Provost M, Harel J, Labrie J, Sirois M, Jacques M. Identification, cloning and characterization of rfaE of Actinobacillus pleuropneumoniae serotype 1, a gene involved in lipopolysaccharide inner-core biosynthesis. FEMS Microbiol Lett 2003; 223:7-14. [PMID: 12798993 DOI: 10.1016/s0378-1097(03)00247-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Actinobacillus pleuropneumoniae is the causative agent of porcine pleuropneumonia and its lipopolysaccharides (LPS) have been identified as important adhesins involved in adherence to host cells. To better understand the role of LPS core in the virulence of this organism, the aim of the present study was to identify and clone genes involved in LPS core biosynthesis by complementation with Salmonella enterica serovar Typhimurium mutants (rfaC, rfaD, rfaE and rfaF). Complementation with an A. pleuropneumoniae 4074 genomic library was successful with Salmonella mutant SL1102. This Salmonella deep-rough LPS mutant is defective for the rfaE gene, which is an ADP-heptose synthase. Novobiocin was used to select transformants that had the smooth-LPS type, since Salmonella strains with wild-type smooth-LPS are less permeable, therefore more resistant to hydrophobic antibiotics like novobiocin. We obtained a clone that was able to restore the wild-type smooth-LPS Salmonella phenotype after complementation. The wild-type phenotype was confirmed using phage (Felix-O, P22c.2 and Ffm) susceptibility and SDS-PAGE (sodium dodecyl sulfate-polyacrylamide gel electrophoresis). One of the open reading frames contained in the 3.3-kb insert in the plasmid encoded a 475-amino-acid protein with 71% identity and 85% similarity to the RfaE protein of S. enterica. We then attempted to generate an A. pleuropneumoniae rfaE mutant by gene replacement. The rfaE gene seems essential in A. pleuropneumoniae viability as we were unable to isolate a heptose-less knockout mutant.
Collapse
Affiliation(s)
- Marilou Provost
- Groupe de Recherche sur les Maladies Infectieuses du Porc, Faculté de Médecine Vétérinaire, Université de Montréal, St-Hyacinthe, QC, Canada
| | | | | | | | | |
Collapse
|
36
|
Geoffroy MC, Floquet S, Métais A, Nassif X, Pelicic V. Large-scale analysis of the meningococcus genome by gene disruption: resistance to complement-mediated lysis. Genome Res 2003; 13:391-8. [PMID: 12618369 PMCID: PMC430250 DOI: 10.1101/gr.664303] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2002] [Accepted: 12/04/2002] [Indexed: 11/24/2022]
Abstract
The biologic role of a majority of the Neisseria meningitidis 2100 predicted coding regions is still to be assigned or experimentally confirmed. Determining the phenotypic effect of gene disruption being a fundamental approach to understanding gene function, we used high-density signature-tagged transposon mutagenesis, followed by a large-scale sequencing of the transposon insertion sites, to construct a genome-wide collection of mutants. The sequencing results for the first half of the 4548 mutants composing the library suggested that we have mutations in 80%-90% of N. meningitidis nonessential genes. This was confirmed by a whole-genome identification of the genes required for resistance to complement-mediated lysis, a key to meningococcal virulence. We show that all the genes we identified, including four previously uncharacterized, were important for the synthesis of the polysialic acid capsule or the lipooligosaccharide (LOS), suggesting that these are likely to be the only meningococcal attributes necessary for serum resistance. Our work provides a valuable and lasting resource that may lead to a global map of gene function in N. meningitidis.
Collapse
|
37
|
Hoover TA, Culp DW, Vodkin MH, Williams JC, Thompson HA. Chromosomal DNA deletions explain phenotypic characteristics of two antigenic variants, phase II and RSA 514 (crazy), of the Coxiella burnetii nine mile strain. Infect Immun 2002; 70:6726-6733. [PMID: 12438347 PMCID: PMC132984 DOI: 10.1128/iai.70.12.6726-6733.2002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2002] [Revised: 05/30/2002] [Accepted: 08/20/2002] [Indexed: 06/03/2023] Open
Abstract
After repeated passages through embyronated eggs, the Nine Mile strain of Coxiella burnetii exhibits antigenic variation, a loss of virulence characteristics, and transition to a truncated lipopolysaccharide (LPS) structure. In two independently derived strains, Nine Mile phase II and RSA 514, these phenotypic changes were accompanied by a large chromosomal deletion (M. H. Vodkin and J. C. Williams, J. Gen. Microbiol. 132:2587-2594, 1986). In the work reported here, additional screening of a cosmid bank prepared from the wild-type strain was used to map the deletion termini of both mutant strains and to accumulate all the segments of DNA that comprise the two deletions. The corresponding DNAs were then sequenced and annotated. The Nine Mile phase II deletion was completely nested within the deletion of the RSA 514 strain. Basic alignment and homology studies indicated that a large group of LPS biosynthetic genes, arranged in an apparent O-antigen cluster, was deleted in both variants. Database homologies identified, in particular, mannose pathway genes and genes encoding sugar methylases and nucleotide sugar epimerase-dehydratase proteins. Candidate genes for addition of sugar units to the core oligosaccharide for synthesis of the rare sugar 6-deoxy-3-C-methylgulose (virenose) were identified in the deleted region. Repeats, redundancies, paralogous genes, and two regions with reduced G+C contents were found within the deletions.
Collapse
Affiliation(s)
- T A Hoover
- Bacteriology Division, USAMRIID, Ft. Detrick, Frederick, Maryland 21701, USA
| | | | | | | | | |
Collapse
|
38
|
Hoover TA, Culp DW, Vodkin MH, Williams JC, Thompson HA. Chromosomal DNA deletions explain phenotypic characteristics of two antigenic variants, phase II and RSA 514 (crazy), of the Coxiella burnetii nine mile strain. Infect Immun 2002; 70:6726-33. [PMID: 12438347 PMCID: PMC132984 DOI: 10.1128/iai.70.12.6726-2733.2002] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
After repeated passages through embyronated eggs, the Nine Mile strain of Coxiella burnetii exhibits antigenic variation, a loss of virulence characteristics, and transition to a truncated lipopolysaccharide (LPS) structure. In two independently derived strains, Nine Mile phase II and RSA 514, these phenotypic changes were accompanied by a large chromosomal deletion (M. H. Vodkin and J. C. Williams, J. Gen. Microbiol. 132:2587-2594, 1986). In the work reported here, additional screening of a cosmid bank prepared from the wild-type strain was used to map the deletion termini of both mutant strains and to accumulate all the segments of DNA that comprise the two deletions. The corresponding DNAs were then sequenced and annotated. The Nine Mile phase II deletion was completely nested within the deletion of the RSA 514 strain. Basic alignment and homology studies indicated that a large group of LPS biosynthetic genes, arranged in an apparent O-antigen cluster, was deleted in both variants. Database homologies identified, in particular, mannose pathway genes and genes encoding sugar methylases and nucleotide sugar epimerase-dehydratase proteins. Candidate genes for addition of sugar units to the core oligosaccharide for synthesis of the rare sugar 6-deoxy-3-C-methylgulose (virenose) were identified in the deleted region. Repeats, redundancies, paralogous genes, and two regions with reduced G+C contents were found within the deletions.
Collapse
Affiliation(s)
- T A Hoover
- Bacteriology Division, USAMRIID, Ft. Detrick, Frederick, Maryland 21701, USA
| | | | | | | | | |
Collapse
|
39
|
Monteiro MA. Helicobacter pylori: a wolf in sheep's clothing: the glycotype families of Helicobacter pylori lipopolysaccharides expressing histo-blood groups: structure, biosynthesis, and role in pathogenesis. Adv Carbohydr Chem Biochem 2002; 57:99-158. [PMID: 11836945 DOI: 10.1016/s0065-2318(01)57016-x] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- M A Monteiro
- Institute for Biological Sciences, National Research Council, 100 Sussex Drive, Ottawa, Ontario K1A 0R6, Canada
| |
Collapse
|
40
|
Valvano MA, Messner P, Kosma P. Novel pathways for biosynthesis of nucleotide-activated glycero-manno-heptose precursors of bacterial glycoproteins and cell surface polysaccharides. MICROBIOLOGY (READING, ENGLAND) 2002; 148:1979-1989. [PMID: 12101286 DOI: 10.1099/00221287-148-7-1979] [Citation(s) in RCA: 110] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Miguel A Valvano
- Department of Microbiology and Immunology and Medicine, University of Western Ontario, London, Ontario, N6A 5C1, Canada1
| | - Paul Messner
- Zentrum für Ultrastrukturforschung und Ludwig Boltzmann-Institut für Molekulare Nanotechnologie, Universität für Bodenkultur Wien, A-1180 Wien, Austria2
| | - Paul Kosma
- Institut für Chemie, Universität für Bodenkultur Wien, A-1190 Wien, Austria3
| |
Collapse
|
41
|
|
42
|
Kneidinger B, Marolda C, Graninger M, Zamyatina A, McArthur F, Kosma P, Valvano MA, Messner P. Biosynthesis pathway of ADP-L-glycero-beta-D-manno-heptose in Escherichia coli. J Bacteriol 2002; 184:363-9. [PMID: 11751812 PMCID: PMC139585 DOI: 10.1128/jb.184.2.363-369.2002] [Citation(s) in RCA: 150] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The steps involved in the biosynthesis of the ADP-L-glycero-beta-D-manno-heptose (ADP-L-beta-D-heptose) precursor of the inner core lipopolysaccharide (LPS) have not been completely elucidated. In this work, we have purified the enzymes involved in catalyzing the intermediate steps leading to the synthesis of ADP-D-beta-D-heptose and have biochemically characterized the reaction products by high-performance anion-exchange chromatography. We have also constructed a deletion in a novel gene, gmhB (formerly yaeD), which results in the formation of an altered LPS core. This mutation confirms that the GmhB protein is required for the formation of ADP-D-beta-D-heptose. Our results demonstrate that the synthesis of ADP-D-beta-D-heptose in Escherichia coli requires three proteins, GmhA (sedoheptulose 7-phosphate isomerase), HldE (bifunctional D-beta-D-heptose 7-phosphate kinase/D-beta-D-heptose 1-phosphate adenylyltransferase), and GmhB (D,D-heptose 1,7-bisphosphate phosphatase), as well as ATP and the ketose phosphate precursor sedoheptulose 7-phosphate. A previously characterized epimerase, formerly named WaaD (RfaD) and now renamed HldD, completes the pathway to form the ADP-L-beta-D-heptose precursor utilized in the assembly of inner core LPS.
Collapse
Affiliation(s)
- Bernd Kneidinger
- Zentrum für Ultrastrukturforschung und Ludwig Boltzmann-Institut für Molekulare Nanotechnologie, A-1180 Vienna, Austria
| | | | | | | | | | | | | | | |
Collapse
|
43
|
|
44
|
Abstract
Bacterial lipopolysaccharides (LPS) typically consist of a hydrophobic domain known as lipid A (or endotoxin), a nonrepeating "core" oligosaccharide, and a distal polysaccharide (or O-antigen). Recent genomic data have facilitated study of LPS assembly in diverse Gram-negative bacteria, many of which are human or plant pathogens, and have established the importance of lateral gene transfer in generating structural diversity of O-antigens. Many enzymes of lipid A biosynthesis like LpxC have been validated as targets for development of new antibiotics. Key genes for lipid A biosynthesis have unexpectedly also been found in higher plants, indicating that eukaryotic lipid A-like molecules may exist. Most significant has been the identification of the plasma membrane protein TLR4 as the lipid A signaling receptor of animal cells. TLR4 belongs to a family of innate immunity receptors that possess a large extracellular domain of leucine-rich repeats, a single trans-membrane segment, and a smaller cytoplasmic signaling region that engages the adaptor protein MyD88. The expanding knowledge of TLR4 specificity and its downstream signaling pathways should provide new opportunities for blocking inflammation associated with infection.
Collapse
Affiliation(s)
- Christian R H Raetz
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710, USA.
| | | |
Collapse
|
45
|
Jin UH, Chung TW, Lee YC, Ha SD, Kim CH. Molecular cloning and functional expression of the rfaE gene required for lipopolysaccharide biosynthesis in Salmonella typhimurium. Glycoconj J 2001; 18:779-87. [PMID: 12441667 DOI: 10.1023/a:1021103501626] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The rfaE (WaaE) gene of Salmonella typhimurium is known to be located at 76min on the genetic map outside of the rfa gene cluster encoding core oligosaccharide biosynthesis of lipopolysaccharide(LPS). The rfaE mutant synthesizes heptose-deficient LPS; its LPS consists of only lipid A and 3-deoxy-D-manno-octulosonic acid (KDO), and the rfaE gene is believed to be involved in the formation of ADP-L-glycero-D-manno-heptose. Mutants, which make incomplete LPS, are known as rough mutants. Salmonella typhimurium deep-rough mutants affected in the heptose region of the inner core often show reduced growth rate, sensitivity to high temperature and hypersensitivity to hydrophobic antibiotics. We have cloned the rfaE gene of S. typhimurium. The chromosomal region carrying this gene was isolated by screening a genomic library of S. typhimurium using the complementation of S. typhimurium rfaE mutant. The 2.6-Kb insert in the plasmid pHEPs appears to carry a functional rfaE gene. SL1102 (rfaE543) makes heptose-deficient LPS and has a deep rough phenotype, but pHEPs complement the rfaE543 mutation to give the smooth phenotype. The sensitivity of SL1102 to bacteriophages (P22.c2, Felix-O, Br60) which use LPS as their receptor for adsorption is changed to that of wild-type strain. The permeability barrier of SL1102 to hydrophobic antibiotics (novobiocin) is restored to that of wild-type. LPS produced by SL1102 (rfaE543) carrying pHEPs makes LPS indistinguishable from that of smooth strains. The rfaE gene encoded a polypeptide of 477 amino acid residues highly homologous to the S. enterica rfaE protein (98% identity), E. coli (93% identity), Yersenia pestis (85% identity), Haemophilus influenzae (70% identity) and Helicobacter pyroli (41% identity) with a molecular weight 53 kDa.
Collapse
Affiliation(s)
- U H Jin
- Department of Biochemistry and Molecular Biology, College of Oriental Medicine, Dongguk University, Sukjang-Dong 707, Kyungju City, Kyungbuk 780-714, Korea
| | | | | | | | | |
Collapse
|
46
|
Shih GC, Kahler CM, Carlson RW, Rahman MM, Stephens DS. gmhX, a novel gene required for the incorporation of L-glycero-D-manno-heptose into lipooligosaccharide in Neisseria meningitidis. MICROBIOLOGY (READING, ENGLAND) 2001; 147:2367-2377. [PMID: 11496013 DOI: 10.1099/00221287-147-8-2367] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Lipooligosaccharide (LOS) is a critical virulence factor of Neisseria meningitidis. A Tn916 insertion mutant, designated 469, was found to exhibit a markedly truncated LOS of 2.9 kDa when compared by Tricine/SDS-PAGE to the parental LOS (4.6 kDa). Electrospray mass spectrometry analysis of 469 LOS revealed that it consisted of the deep rough, heptose-deficient structure, Kdo(2)-lipid A. Sequencing of chromosomal DNA flanking the Tn916 insertion in mutant 469 revealed that the transposon had inserted into an ORF predicted to encode a 187 aa protein with sequence homology to the histidinol-phosphate phosphatase domain of Escherichia coli HisB and to a family of genes of unknown function. The gene, designated gmhX, is part of a polycistronic operon (ice-2) containing two other genes, nlaB and orfC. nlaB encodes a lysophosphatidic-acid acyltransferase and orfC is predicted to encode a N-acetyltransferase. Specific polar and non-polar gmhX mutations in the parental strain, NMB, exhibited the truncated LOS structure of mutant 469, and repair of gmhX mutants by homologous recombination with the wild-type gmhX restored the LOS parental phenotype. GmhX mutants demonstrated increased sensitivity to polymyxin B. GmhX mutants and other Kdo(2)-lipid A mutants also demonstrated increased sensitivity to killing by normal human serum but were not as sensitive as inner-core mutants containing heptose. In the genomes of Helicobacter pylori and Synechocystis, gmhX homologues are associated with heptose biosynthesis genes; however, in N. meningitidis, gmhX was found in a location distinct from that of gmhA, rfaD, rfaE, aut and rfaC. GmhX is a novel enzyme required for the incorporation of L-glycero-D-manno-heptose into meningococcal LOS, and is a candidate for the 2-D-glycero-manno-heptose phosphatase of the heptose biosynthesis pathway.
Collapse
Affiliation(s)
- Giles C Shih
- Department of Veterans Affairs Medical Center, Atlanta, GA 30033, USA2
- Departments of Medicine, and Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322, USA1
| | - Charlene M Kahler
- Department of Veterans Affairs Medical Center, Atlanta, GA 30033, USA2
- Departments of Medicine, and Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322, USA1
| | - Russell W Carlson
- The Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA3
| | - M Mahbubur Rahman
- The Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA3
| | - David S Stephens
- Department of Veterans Affairs Medical Center, Atlanta, GA 30033, USA2
- Departments of Medicine, and Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322, USA1
| |
Collapse
|
47
|
Kneidinger B, Graninger M, Puchberger M, Kosma P, Messner P. Biosynthesis of nucleotide-activated D-glycero-D-manno-heptose. J Biol Chem 2001; 276:20935-44. [PMID: 11279237 DOI: 10.1074/jbc.m100378200] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The glycan chain repeats of the S-layer glycoprotein of Aneurinibacillus thermoaerophilus DSM 10155 contain d-glycero-d-manno-heptose, which has also been described as constituent of lipopolysaccharide cores of Gram-negative bacteria. The four genes required for biosynthesis of the nucleotide-activated form GDP-d-glycero-d-manno-heptose were cloned, sequenced, and overexpressed in Escherichia coli, and the corresponding enzymes GmhA, GmhB, GmhC, and GmhD were purified to homogeneity. The isomerase GmhA catalyzed the conversion of d-sedoheptulose 7-phosphate to d-glycero-d-manno-heptose 7-phosphate, and the phosphokinase GmhB added a phosphate group to form d-glycero-d-manno-heptose 1,7-bisphosphate. The phosphatase GmhC removed the phosphate in the C-7 position, and the intermediate d-glycero-alpha-d-manno-heptose 1-phosphate was eventually activated with GTP by the pyrophosphorylase GmhD to yield the final product GDP-d-glycero-alpha-d-manno-heptose. The intermediate and end products were analyzed by high performance liquid chromatography. Nuclear magnetic resonance spectroscopy was used to confirm the structure of these substances. This is the first report of the biosynthesis of GDP-d-glycero-alpha-d-manno-heptose in Gram-positive organisms. In addition, we propose a pathway for biosynthesis of the nucleotide-activated form of l-glycero-d-manno-heptose.
Collapse
Affiliation(s)
- B Kneidinger
- Zentrum für Ultrastrukturforschung und Ludwig Boltzmann-Institut für Molekulare Nanotechnologie, Universität für Bodenkultur Wien, Gregor-Mendel-Strasse 33, A-1180 Wien, Austria
| | | | | | | | | |
Collapse
|
48
|
Benz I, Schmidt MA. Glycosylation with heptose residues mediated by the aah gene product is essential for adherence of the AIDA-I adhesin. Mol Microbiol 2001; 40:1403-13. [PMID: 11442838 DOI: 10.1046/j.1365-2958.2001.02487.x] [Citation(s) in RCA: 141] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The diffuse adherence of Escherichia coli strain 2787 (O126:H27) is mediated by the autotransporter adhesin AIDA-I (adhesin-involved-in-diffuse-adherence) encoded by the plasmid-borne aidA gene. AIDA-I exhibits an aberrant mobility in denaturing gel electrophoresis. Deletion of the open reading frame (ORF) A immediately upstream of aidA restores the predicted mobility of AIDA-I, but the adhesin is no longer functional. This indicates that the mature AIDA-I adhesin is post-translationally modified and the modification is essential for adherence function. Labelling with digoxigenin hydrazide shows AIDA-I to be glycosylated. Using carbohydrate composition analysis, AIDA-I contains exclusively heptose residues (ratio heptose:AIDA-I approximately 19:1). The deduced amino acid sequence of the cytoplasmic open reading frame (ORF) A gene product shows homologies to heptosyltransferases. In addition, the modification was completely abolished in an ADP-glycero-manno-heptopyranose mutant. Our results provide direct evidence for glycosylation of the AIDA-I adhesin by heptoses with the ORF A gene product as a specific (mono)heptosyltransferase generating the functional mature AIDA-I adhesin. Consequently, the ORF A gene has been denoted 'aah' (autotransporter-adhesin-heptosyltransferase). Glycosylation by heptoses represents a novel protein modification in eubacteria.
Collapse
Affiliation(s)
- I Benz
- Institut für Infektiologie - Zentrum für Molekularbiologie der Entzündung (ZMBE), Universitätsklinikum Münster, Germany
| | | |
Collapse
|
49
|
Du L, Sánchez C, Chen M, Edwards DJ, Shen B. The biosynthetic gene cluster for the antitumor drug bleomycin from Streptomyces verticillus ATCC15003 supporting functional interactions between nonribosomal peptide synthetases and a polyketide synthase. CHEMISTRY & BIOLOGY 2000; 7:623-42. [PMID: 11048953 DOI: 10.1016/s1074-5521(00)00011-9] [Citation(s) in RCA: 215] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND The structural and catalytic similarities between modular nonribosomal peptide synthetases (NRPSs) and polyketide synthases (PKSs) inspired us to search for a hybrid NRPS-PKS system. The antitumor drug bleomycin (BLM) is a natural hybrid peptide-polyketide metabolite, the biosynthesis of which provides an excellent opportunity to investigate intermodular communication between NRPS and PKS modules. Here, we report the cloning, sequencing, and characterization of the BLM biosynthetic gene cluster from Streptomyces verticillus ATCC15003. RESULTS A set of 30 genes clustered with the previously characterized blmAB resistance genes were defined by sequencing a 85-kb contiguous region of DNA from S. verticillus ATCC15003. The sequenced gene cluster consists of 10 NRPS genes encoding nine NRPS modules, a PKS gene encoding one PKS module, five sugar biosynthesis genes, as well as genes encoding other biosynthesis, resistance, and regulatory proteins. The substrate specificities of individual NRPS and PKS modules were predicted based on sequence analysis, and the amino acid specificities of two NRPS modules were confirmed biochemically in vitro. The involvement of the cloned genes in BLM biosynthesis was demonstrated by bioconversion of the BLM aglycones into BLMs in Streptomyces lividans expressing a part of the gene cluster. CONCLUSION The blm gene cluster is characterized by a hybrid NRPS-PKS system, supporting the wisdom of combining individual NRPS and PKS modules for combinatorial biosynthesis. The availability of the blm gene cluster has set the stage for engineering novel BLM analogs by genetic manipulation of genes governing BLM biosynthesis and for investigating the molecular basis for intermodular communication between NRPS and PKS in the biosynthesis of hybrid peptide-polyketide metabolites.
Collapse
Affiliation(s)
- L Du
- Department of Chemistry, University of California, Davis 95616, USA
| | | | | | | | | |
Collapse
|